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A B S T R A C T   

The morphological anomalies of the early development stages of the sea urchin Paracentrotus lividus, caused by 
exposure to environmental stressors, are used as biomarker in ecotoxicological and ecological investigations. 
Here, we reviewed the available literature and classified the embryo and larval anomalies identified so far, to 
highlight potential commonalities or differences related to the biological action of the different stressors and 
their ecological impact. Morphological anomalies are influenced by a) the developmental stage of exposure to 
stressors; b) the intensity of the stress; c) the intra- and inter-cellular mechanisms affected by the exposure to 
environmental agents. The classification and analysis of embryo and larvae anomalies, either observed by the 
authors of this review and reported in literature, indicate that sea urchin abnormalities, caused by exposure to 
different stressors, can be very similar among them and classified into 18 main types, which can occur indi-
vidually or mixed. All anomalies can be used to calculate an Index of Contaminant Impact to assess the impact of 
multiple stressors and to identify relationships between morphological anomalies and compromised biological 
mechanisms. This approach could be useful for a first screening of the presence of potential stressors impairing 
the growth and development of the early life stages of marine organisms, thus providing a relevant advancement 
for in future monitoring activities devoted to assess the health status in coastal marine ecosystems.   

1. Introduction 

Biological models can integrate the toxicity effects of contaminants 
with those due to their detoxification/degradation products (Richardson 
et al., 2007), thus they are used in standard bioassays to assess the 
anthropogenic impact due to the presence of single or mixed contami-
nants or multiple stressors in natural ecosystems (Sarà, 2007). Sea ur-
chins are amongst the most common model organisms for ecological and 
toxicological studies (Dinnel et al., 1988; Carballeira et al., 2012a, 
2012b; Pagano et al., 2017a, b). Sea urchin fertilization and develop-
ment are sensitive to environmental changes because they are subject to 
interactive processes between egg and sperm, among blastomeres and 
among all these and environment, in which pollutants may interfere. For 

this reason, embryonic and larval stages of sea urchin development have 
often been used as biomarkers of environmental alterations (Moulin 
et al., 2011; Carballeira et al., 2012a; Morroni et al., 2018; Chiarelli 
et al., 2019). 

Sea urchin allows us to perceive risks to human health because it 
shares the mechanisms driving development and differentiation with 
higher organisms, including mammalians (Qiao et al., 2003). For this 
reason, it has been suggested as a model for the study of several human 
diseases (Buznikov et al., 2008). The transferability of results to mam-
malians is also supported by the ‘‘Sea Urchin Genome’’ project 
(Sodergren et al., 2006), which revealed a high degree of homologies. 

Paracentrotus lividus is a key species in shallow waters of the Medi-
terranean coasts, important in commercial terms, for food web 
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functioning and for its ability to reshape marine habitats (Steneck, 
2013). Among other echinoderms, P. lividus is emerging as a valid model 
for studies in marine ecotoxicology and ecology (Pagano et al., 2001; 
Losso et al., 2004; Volpi Ghirardini et al., 2005; Privitera et al., 2011; 
Morroni et al., 2016; Gambardella et al., 2020). It is considered one of 
the marine species to assess the toxicological risk of contaminated ma-
rine sediments by the Italian Ministerial Decree 173 (MD 173/2016), 
and an indicator species in European Directives (i.e. Habitat Directive 
92/43/EEC, the Marine Strategy Framework Directive). In addition, it 
has been proposed as a promising alternative model (Aluigi et al., 2008; 
Falugi et al., 2008; Pinsino and Alijagic, 2019) to promote the 
Replacement, Reduction and Refinement of animals used in regulatory 
testing (Do Prado Duzanski et al., 2015). P. lividus can be used as an 
attractive proxy to human non-mammalian model for exploring the 
safety of several contaminants (e.g. nanoparticles (NPs), pharmaceuti-
cals and personal-care products (PPCPs); Rosenfeld and Feng, 2011; 
Corinaldesi et al., 2017; Alijagic et al., 2020), which are defined 
“emerging” as their presence and environmental impact are under 
investigation since few years (Sauvé and Desrosiers, 2014). 

Sea urchin toxicity bioassays included in national and international 
legislation are based on spermiotoxicity and embryotoxicity (ASTM, 
1994, 1995, 2004; USEPA, 2002; MD 173/2016). Such bioassays based 
on gametes, zygotes, and embryos exposed to single or multiples 
stressors, are limited to provide the ratio of normal embryos or lar-
vae/total number of exposed specimens (Warnau et al., 1996; Sartori 
et al., 2017), distinguished between normal developmental stages and 
deformed ones rather than the anomaly types. 

In this review, we classified the main morphological anomalies 
caused by exposure to different contamininants (e.g. heavy metals-HMs- 
, organic compounds, nanoparticles -NPs, microplastics-MPs), as well as 
environmental stressors including climate change and other impacts. 
The aim of this review is to provide a guide of the main embryo and 
larvae morphological anomalies in relation to their developmental stage 
and contaminant/stressor types and concentrations. Embryo and larvae 
anomalies are shown by using original drawings and pictures owned by 
the authors of this review that have been elaborated with china ink to 
highlight the details of interest. Given the cause-effect relationship be-
tween contaminants and embryo and/or larval anomalies (Kobayashi 
and Okamura, 2004), the classification and analysis of the anomalies can 
be used to predict the type, the level of impairment of early develop-
mental stage based on multiple stressors occurring in the environment. 

2. Normal development of sea urchin 

Sea urchin development has been described by several authors 
(Steinhardt and Epel, 1974; Giudice, 1986; Vacquier, 2011; Santella 
et al., 2012). P. lividus development occurs normally in optimal condi-
tions of temperature: it proceeds synchronously up to pluteus (Shpigel 
et al., 2004; Falugi and Angelini, 2002), sustained by strong and straight 
skeletal rods (Fig. 1A–O). Skeletogenesis is fully driven by primary 
mesenchyme cells (PMCs), also responsible for organization of the em-
bryo (McClay et al., 2000; Croce and McClay, 2006). At later stages, the 
skeletogenic PMCs are still present, scattered along the rods, and are 
responsible for larval plasticity maintenance (Fig. 1 N, O). Plutei up to 
72 h can survive without feeding (Fenaux et al., 1985). Fed larval stages 
are seldom used for toxicity tests, as feeding may introduce confounding 
factors, according to the amount and quality of available food. Further 
details are present in Supplementary material. 

3. Naturally occurring anomalies 

Spontaneous anomalies may occur due to different factors, including: 
presence of confounding substances in seawater taken from the envi-
ronment; fertilization of gametes of scarce quality; presence of a huge 
number of sperms; inappropriate temperature range; crowded popula-
tion of developing embryos and larvae. The main spontaneous 

anomalies are defined as Spontaneous (S) 1–4. 

S 1: presence of immature oocytes. Sea urchin spawn fully ripe eggs, 
after the completion of meiosis. When spawning is forced at early 

Fig. 1. P. lividus normal development A: unfertilized egg (gamete); B: fertilized 
egg before amphimixis (zygote); C: mesenchymal blastula stage-the first PMCs 
enter the coelom; D: beginning of gastrulation with invagination of the basal 
plate: ingress of the endoderm and of the secondary mesenchyme cells to reach 
the roof of gastrula; E, F: gastrula with the first skeletal rods (gastrula stage); G, 
H: prism stage and change of symmetry axes of the larva (larval stage); L: early 
pluteus; M–O: 24–48 h pluteus. Bars A-O = 100 μm. 

Fig. 2. Non-exposure-related anomalies of P. lividus: A: normal egg; B: piece of 
ovarian tissue released under stimulation; C: immature oocyte (B, C = S1 
anomalies); D: membrane contact in eggs without jelly coat (S2 anomaly); E–I: 
aspects of damaged female gametes before fertilization (S3 anomalies); L–P: 
anomalous aspects of damaged eggs after fertilization (S4 anomalies). The same 
aspects are presented by eggs fertilized after acute exposure to pollutants (type 
2 anomalies). Type 2 anomalies after exposure to sunscreen products. Bars =
100 μm. 
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Fig. 3. P. lividus developmental anomalies due to early exposure (from gametes to zygote): A: polyspermic eggs 30–40 min after fertilization as a consequence of the 
alteration of the block of polyspermy (on the left polyspermic egg, and on the right polyspermic egg with destabilization of the fertilization membrane; the black 
arrows indicate sperm cells inside the eggs; see Figure S1); B: zygotes with blebs and dense material in the perivitelline space (type 2); C: anomalous cleavages from 
zygote to morula stage: the first on the left is reversible, the other two are irreversible and lethal (type 3 anomalies); D: asynchronous development at 3 h post 
fertilization; E: asynchronous development at 30 h after fertilization, with the presence of unfertilized eggs and anomalous gastrulae as indicated by the black arrows 
(type 4). Exposures to: A, C–E: pesticides; B: mercury. Bars = 100 μm. 

Fig. 4. P. lividus developmental anomalies due to early exposure to acute doses of pollutants: A: normal morula stage; B, C: disruption of cell adhesion in morula and 
early gastrula after exposure to mercury at zygote stage (type 5 anomalies); D: unhatched gastrula (type 7 anomalies); E, F: arrested gastrulae (type 7); G: normal 
gastrula, histochemical staining for AChE activity in PMCs; H: normal gastrula, semi-thin section showing wide blastocoel; I–N: exogastrulae (type 6 anomalies); O, P: 
normal migration of primary mesenchyme cells; Q, S: irregular migration of PMCs; R: resulting gastrula with narrow, if any, blastocoel (as indicated by the black 
arrow, type 8 anomalies). Staining of the PMCs by stain-coupled wheat germ agglutinin, WGA. Exposures to: B: nicotine; E, F: sunscreen products; I–N, Q–S: pes-
ticides. Bars = 100 μm. 
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maturation stage, pieces of ovary or immature oocytes may be 
released (Fig. 2 B, C). Immature oocytes present small dimensions 
(diameter <70 μm) and huge nucleus containing a scarce cytoplasm 
(Fig. 2 C). 
S 2: presence of eggs with damaged or lacking jelly coat: the eggs 
seem to stick together (Fig. 2 D). 
S 3: eggs with irregular shape and size, frequently showing 
apoptotic-like appearance. This happens when ripe eggs are retained 
inside the ovaries or in the coelom due to climatic conditions or to 
health state of the adults (Fig. 2E–I). 
S 4: immediately after fertilization, zygotes degenerate with 
apoptotic-like or swollen appearance, or blebbing (Fig. 2L–P). 

S3 and S4 anomalies are like those caused by exposure to contami-
nants in the early sea urchin developmental stages. 

4. Anomalies after exposure to environmental stressors 

Environmental stressors are factors of natural or anthropogenic 
origin that perturb an ecosystem beyond its natural limits of variation 
(Crain et al., 2008; Hewitt et al., 2016). In marine ecosystems, these 
stressors induced by human activities (e.g. fishing and pollution) 
together with anthropogenically induced global climate change (e.g. 
ocean warming and acidification) are causing irreversible impacts on 
coastal marine ecosystems in a multitude of ways (Carrier-Belleau et al., 
2021). Environmental stressors can affect ecosystems and biological 
processes in many organisms, including sea urchin development. The 
effect of these stressors on sea urchin development may differ according 
to 1- the exposure of the different stages (i.e. gametes, zygotes, early 
embryos, gastrula, larva); 2- pollutant mechanism of action, and 3- 
contaminants/mixtures concentrations to whom the samples are 
exposed (Sartori et al., 2017). 

Morphological anomalies can be classified as reversible and irre-
versible. The first ones include anomalies due to natural causes that may 
be recovered once sea urchin larvae are brought again to optimal 
environmental conditions. Actually, the cause of the onset of these 
anomalies is not well understood although is frequently observed also in 
natural environment (Lister et al., 2017). For instance, in some cases 
spontaneous mutations may rise in maternal or paternal genomes, with 
devastating consequences on the entire pool of embryos (Hinegardner, 
1975), in other cases changes in environmental factors (including diet 
and/or in water quality changes) may influence mathernal status, and 
produce embryo anomalies (Lister et al., 2017). 

Irreversible anomalies are considered lethal, since they prevent 
further development and impair reproductive success. To assess the 
anomalies of gametes and zygotes, spermiotoxicity and embryotoxicity 
bioassays are carried out, respectively. In the first case the sperms are 
exposed before fertilizing the eggs; in the second case the eggs are 
exposed, or exposure occurs during fertilization or at zygote stage. The 
main anomalies are reported and described in Table 1. 

The main anomalies of gametes and zygotes are:  

• Type 1: alteration of the block of polyspermy, which produces a 
number of polyspermed eggs (Fig. 3 A). Lethal concentrations (LC) of 
the selected stressors can be measured. 

• Type 2: the fertilization layer is elevated, with blebs or dense ma-
terial in the perivitelline space (Fig. 3 B). Acute toxicity effects are 
represented by dead or degenerated zygotes (Fig. 2 L-P (S 4)).  

• Type 3: odd blastomere cleavages or nuclear division not followed by 
complete cytoplasmic furrows (Fig. 3 C). 

• Type 4: delay in the elevation of fertilization layer and loss of syn-
chronicity in successive events (Fig. 3 D, E). This type of anomalies is 
partially reversible, provided that the optimal condition of water and 
temperature are restored. 

When the effect is sub-lethal, the embryos may proceed in 

development, reaching the pluteus stage, and anomalies may appear 
lately, mainly represented by anomalous gastrulae or skeletal anomalies 
(Morale et al., 1998; Pesando et al., 2003). 

The main anomalies that occur during cleavage and blastula stages 
are listed below:  

• Type 5: exposure during the cleavage and blastula stage may cause 
the loss of adhesion among cells, followed by embryonic disaggre-
gation (Fig. 4 B, C). 

Table 1 
Level of alteration of embryos and larvae of sea urchin, which is useful for 
calculating the index of contaminant impact (ICI).  

Type of 
anomalies 

Anomalies Level of 
alteration 

0 Healthy individual, with normal embryonic and 
larval development. 

0 

1 Loss of fertilizing ability of sperms and impaired 
block to polyspermy. In this case, the biomarker of 
toxicity is represented by the number of 
unfertilized eggs. Lethal concentrations (LC) of 
the selected stressors are measured in 
correspondence. 

3 

2 The fertilization layer is elevated, with blebs or 
dense material in the perivitelline space. Acute 
toxicity effects are represented by dead or 
degenerated zygotes (Fig. 2 L-P S 4). 

3 

3 Odd blastomere cleavages or nuclear division not 
followed by complete cytoplasmic furrows. 

3 

4 Delay in the elevation of fertilization layer and 
loss of synchronicity in successive events This 
type of anomalies is partially reversible, provided 
that the optimal condition of water and 
temperature are restored. 

1 

5 Exposure during the cleavage and blastula stage 
may cause the loss of adhesion among 
blastomeres, followed by embryonic 
disaggregation. 

3 

6 Anomalous of PMCs, which are unable to enter 
the coelom cavity and are extruded, forming 
exogastrulae. 

3 

7 Lack of hatching up to gastrula and prism stages. 
Arrested development at gastrula stage. 

3 

8 Altered aspects of PMCs migration, causing 
gastrulae lacking a coelom. The effect of exposure 
on PMC migration is also responsible for defective 
skeletogenesis at further stages (Type 9–12). 

2 

9 Small larvae, with swollen aspect, short and thin 
skeletal rods. 

1 

10 Short plutei, with little or no developed hind 
spines, so that the larva has a truncated 
appearance. 

1 

11 Larvae slightly smaller or equal to controls, with 
skeletal rods of the anterior arms fused, or with 
crossed tips. Sometimes both the aspects are 
present in the same larva. 

1 

12 Asymmetrical or bent larval body. 1 
13 Presence of spines and supernumerary rods or 

entirely doubled skeleton. 
2 

14 Severe skeletal regression usually in the arms, or 
in both the parts of larval body. 

3 

15 Light skeletal regression, the arms are transparent 
or flabby. 

1 

16 Total or partial soft tissue retraction, so that the 
naked rods protrude out of the larval body. 

2 

17 Larvae with swollen and dilated intestine and 
anus. 

2 

18 Dead larvae or with lethal anomalies due to acute 
exposure to toxicants. These larvae may present a 
disrupted aspect, with vestigial skeleton and 
degenerating tissues. Although these anomalies 
are irreversible and deadly, often these larvae 
continue to swim on the bottom of the vessel or in 
the water column for some days. 

3  
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• Type 6: collapsed ectodermal and/or endodermal cells, forming 
exogastrulae (Fig. 4I–N).  

• Type 7: lack of hatching up to gastrula and prism stages (Fig. 4 D). 
Arrested development at gastrula stage (Fig. 4E and F).  

• Type 8: Altered aspects of PMCs migration (Fig. 4 Q, S), causing 
gastrulae lacking a coelom (Fig. 4 R). The effect of exposure on PMC 
migration is also responsible for defective skeletogenesis at further 
stages (type 9–12).  

• Type 9: Small larvae, with swollen aspect, short and thin skeletal 
rods (Fig. 5 A).  

• Type 10: short plutei, with little or no developed hind spines, so that 
the larva has a truncated appearance (Fig. 5 B).  

• Type 11: larvae slightly smaller or equal to controls, with skeletal 
rods of the anterior arms fused, or with crossed tips. Sometimes both 
the aspects are present in the same larva (Fig. 5 C).  

• Type 12: asymmetrical or bent larval body (Fig. 5 D). These aspects 
were also described by Carballeira et al. (2012a) for larvae exposed 
to effluents from land-based turbot farms.  

• Type 13: Presence of spines and supernumerary rods or entirely 
doubled skeleton (Fig. 5E–I). 

In case of exposure at pluteus stages, the skeletal defects are sec-
ondary, because the skeletal rods and the body are already formed. 
Nevertheless, the following anomalies may be present:  

• Type 14: Severe skeletal regression (Fig. 6A–E) usually in the arms, 
or in both the parts of larval body.  

• Type 15: Light skeletal regression, the arms are transparent or flabby 
(Fig. 6 F, G)  

• Type 16: Total or partial soft tissue retraction, so that the naked rods 
protrude out of the larval body (Fig. 6 B, Fig. 6 H, I). 

These two types may also present clusters of pigment cells in the 
coelom and along the residual skeletal rods. The black and white figures 
show these clusters as dark spots (Fig. 6 B, C, D, H, I) (Ghilardi, 2016).  

• Type 17: larvae with swollen and dilated intestine and anus 
(Fig. 6L–O).  

• Type 18: Dead larvae or with lethal anomalies due to acute exposure 
to toxicants. These larvae may present a disrupted aspect, with 
vestigial skeleton and degenerating tissues (Fig. 6R–V). Although 
these anomalies are irreversible and deadly, often these larvae 
continue to swim on the bottom of the vessel or in the water column 
for some days. 

Studies on the quantitative relevance of anomalies in early devel-
opmental stages of P. lividus developed indices for assessing the degree 
of toxicity and environmental impact of contaminants (Carballeira et al., 
2012a; Corinaldesi et al., 2017). These indices could also be applied to 
all the different types of malformations identified in this work 
(Figs. 1–6). Corinaldesi et al. (2017) applied the Index of Sunscreen 
Impact to assess the environmental impact of sunscreen products. They 
grouped embryo and larvae anomalies according to their level of alter-
ation (i.e. 0 = normal development; 1 = light anomalies, easily revers-
ible; 2 = moderate anomalies; 3 = severe anomalies, leading to death 
and/or arrest of development; Table 1). By applying the formula 
described by Corinaldesi et al. (2017), on the frequency of anomalies for 
each degree of sea urchin embryo/larval alteration found in this review, 
an Index of Contaminant Impact (ICI) can be calculated, that summa-
rizes the impact of pollutants, as follows:  

ICI [ = 0 x % level 0 + 1 x % level 1 + 2 x % level 2 + 3% level 3]/100      

ICI index ranges from 0 (no impact) to 3 (high impact), also including 
the levels 1 (slight impact) and 2 (moderate impact). 

The effects of exposure to different contaminants depend on the 
interference, which the contaminants may exert on the developmental 
events taking place during the exposure. Here, the anomalies and their 
severity related to the ICI. 

Fig. 5. P. lividus late developmental anomalies due to 
early exposure to sublethal doses of pollutants 
compared to the control (on the right of the figure): A: 
inefficient skeletogenesis, swollen vegetalized-like 
appearance (type 9); B: short larvae, not joined skel-
etal rods at the apex (type 10); C: crossed tips at the 
apex, partial fusion of the perioral arms (type 11); D: 
asymmetrical arms and general structure (type 12); 
E–I: different aspects of larvae, with supernumerary 
skeletal rods (type 13). Exposures to: A: antibiotics; B: 
nanoparticles and suntan products; C: nanoparticles; 
D: sunscreen products; E–I: SiO2 nanoparticles. Bar =
100 μm.   
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5. Anomalies due to exposure to contaminants 

5.1. Heavy metals 

Anomalies of sea urchin fertilized eggs and first developmental 
stages have been reported after exposure to several heavy metals (HMs), 
including cadmium, manganese, copper, lead, chromium (Pagano et al., 
1982a, b; 1983; Congiu et al., 1984; Warnau and Pagano, 1994; Russo 
et al., 2003; Kobayashi and Okamura, 2004, 2005; Filosto et al., 2008; 
Soualili et al., 2008; Pinsino et al., 2010; Migliaccio et al., 2014; Gharred 
et al., 2016). The main morphological anomalies of the embryos and 
larvae exposed to HMs are attributable to type 1 and type 7. The effects 
of HMs are exerted through interference in multiple mechanisms, 
including direct modification by reactive oxygen species, inflammation 
processes, alteration of neurotransmitter molecules (i.e. acetylcholine, 
ACh). As a result, cell communications between cells supported by ion 
exchange are altered, as well as the intracellular ion concentration, 
which explains the inhibition of sperm fertilizing ability (Runnström and 
Manelli, 1964). 

Exposure to the inorganic salt HgCl2 at high concentrations (10− 4 - 
10− 8 M) impaired the block to polyspermy and caused block of devel-
opment: the zygotes presented blebs at the cell surface (type 5, Fig. 4 B, 
C). At low concentrations (10− 9 M), development could proceed to 
embryo stage, without reaching larval stages: the embryos showed 
anomalies like type 2 (Fig. 3B; Trielli et al., 1995; Berridge et al., 2000). 

HMs exposure generally causes severe anomalies (levels of alteration 
3). See further details in Supplementary information. 

5.2. Persistent Organic Pollutants (POPs) 

Early development of several sea urchin species can be sensitive to 

Persistent Organic Pollutants (POPs), such as PAHs (Bresch et al., 1972; 
Hose et al., 1983; Pillai et al., 2003; Suzuki et al., 2015) and PCB 
(Adams, 1983; Pagano et al., 1985; Anselmo et al., 2011). Exposure of 
benzo(a)pyrene and tobacco smoke condensate to gametes and zygotes 
of P. lividus, Stronglycentrotus purpuratus and Psammechinus miliaris did 
not induce anomalies in the early developmental stages (De Angelis and 
Giordano, 1974; Hose et al., 1983). Conversely, exposing zygotes of the 
sea urchin Hemicentrotus pulcherrimus and P. lividus to benz(a)anthra-
cene, benzene and metabolites of PAHs caused skeletal anomalies, like 
type 10 (Fig. 5 B; Pagano et al., 1988; Suzuki et al., 2015). Exposure of 
Lytechinus anemesis embryos to PAHs, caused exogastrulae with evagi-
nated archentera (Pillai et al., 2003) or retarded the cleavage with a loss 
of adhesion among blastomeres (Hose et al., 1983), ascribable to type 5 
and 6 (Fig. 4, B–C, I–N). PCB caused anomalies in the early development 
mainly represented by the presence of short or abnormal arms (Pagano 
et al., 1985; Anselmo et al., 2011), attributable to the types 9 and 10 
(Fig. 5 A, B). All these anomalies can be classified as low and severe 
anomalies (levels of alteration 1 and 3). Further information is reported 
in the Supplementary Material. 

5.3. Endocrine disrupters 

Environmental endocrine disrupting compounds (EDCs) are exoge-
nous substances or mixtures that alter function(s) of the endocrine sys-
tem and consequently cause adverse health effects in an intact organism, 
or its progeny, or (sub) populations (Damstra et al., 2002) (IPCS, 2002). 
They include organic synthetic compounds such as Bisphenol-A (BPA), 
hormones, acetylsalicylic acid and some pesticides, PPCPs and surfac-
tants (described in the next paragraphs). These EDCs have been shown 
affect the development of sea urchins (Roepke et al., 2005; Özlem and 
Hatice, 2008; Da Silva and de Souza Abessa, 2019). 

Fig. 6. P. lividus developmental anomalies due to late 
exposure (pluteus stage) to pollutants: A–E: 72 h 
plutei with resorbed skeletal rods and perioral arms 
(type 14); F, G: Plutei with partial resorption of 
spicules, and flabby arms (type 15); H, I: plutei with 
soft tissue retraction, leaving the skeletons naked (as 
indicated by the black arraows, type 16); L–O: various 
aspects of skeleton retraction; N, O: larvae with 
swollen intestine and anus (type 17); R–V: lethal 
forms of 72 h plutei (type 18). Exposure to sunscreen 
products.   
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Roepke et al. (2005) exposed developing sea urchin embryos 
(Strongylocentrotus purpuratus, L. anamesus) to natural and environ-
mentally relevant synthetic EDCs, including BPA. Exposure from fertil-
ization to 96 h development, caused morphological anomalies at all the 
investigated stages, according to other studies on the sea urchins 
P. lividus and E. locunter testing the effects of BPA, 17α-ethinylestradiol 
and acetylsalicylic acid (Özlem and Hatice, 2008; Da Silva and de Souza 
Abessa, 2019). The mechanism of action of EDCs may be due to a 
deregulation of calcium at cellular level, that may explain the skeletal 
anomalies in sea urchin larvae, similar to type 10, 14 and 18 (Fig. 5 B; 
Fig. 6 A-E; Fig. 6 T-V; Roepke et al., 2005). 

PCB exposure of zygotes and embryos mainly caused short or 
abnormal arms (Pagano et al., 1985; Anselmo et al., 2011), similar to 
P. lividus anomalies type 9 and 10 (Fig. 5 A, B). 

EDCs-related defects can be classified as low and severe anomalies 
(levels of alteration 1 and 3). 

5.4. Pesticides 

Exposure of sea urchin gametes and zygotes to neurotoxic pesticides 
(i.e. organophosphates, carbamates) causes type 1, 3, 4 and 6 anomalies 
(Morale et al., 1998; Falugi and Angelini, 2002; Aluigi et al., 2010). 
Exposure before gastrulation causes gastrulae without a well-defined 
blastocoel (type 8, Fig. 4 R), for impaired PMCs migration (Fig. 4 Q, S; 
Pesando et al., 2003). The exposure to lower concentrations of neuro-
toxic pesticides at early stages causes type 10, 11, 14 anomalies (Fig. 5 B, 
C), while high doses of pesticides (i.e. 10-3 M diazinon) causes arrested 
development or death (type 18 anomaly; Ohta et al., 2009). 

Based on the levels of alteration of sea urchin embryos and larvae, 
pesticides can cause levels of alterations ranging from 1 to 3. Additional 
information on pesticides effects on sea urchin are reported in the 
Supplementary Material. 

5.5. Pharmaceuticals and personal care products (PPCPs) 

Environmental contamination by PPCPs is increasing worldwide, 
since they are not regulated and their concentrations in the environment 
are lower than those of traditional contaminants (Arpin-Pont et al., 
2016). Among PPCPs, sea urchin development is affected by 17α-ethy-
nylestradiol (EE2), acetylsalicylic acid (ASA), antibacterial agents and 
sunscreens. The exposure of EE2 and ASA to several sea urchin species 
reduced fertilization success and impaired the development, causing 
anomalies similar to types 6 (Figs. 4 I), 8 (Fig. 4 P), 13 (Figs. 5 E) and 14 
(Fig. 6, E; Roepke et al., 2005; Capolupo et al., 2018; Da Silva and de 
Souza Abessa, 2019). 

Exposure of sea urchin fertilization to different concentrations of 
effluent waters containing antibiotics caused dose-dependent anomalies 
in embryos of P. lividus and Arbacia lixula, including S3–S4 types ab-
normalities, gastrulation abnormalities similar to 7 (Fig. 4 E, F) and 8 
(Fig. 4 Q, R) types. Exposure to minor concentrations allowed devel-
opment up to pluteus larva, with anomalies attributable to types 9, 10, 
11, 12 (Fig. 5A–D) and 17 (Fig. 6 L, M). 

Among antibacterial agents, triclosan (TCS) is one of the most used in 
Europe. Low TCS concentration does not affect S. nudus and P. lividus 
development, differently from high doses (Macedo et al., 2017). Indeed, 
the development in some embryos was delayed or tended to be arrested, 
without reaching the pluteus stage (type 7 anomaly Fig. 4 E; Hwang 
et al., 2014). 

Sunscreen products generally contain active ingredients to protect 
human skin from UV radiation, such as organic UV filters (e.g. benzo-
phenones) and/or inorganic filters (e.g. TiO2 and ZnO), which prevent 
or limit UV penetration. Other ingredients normally found in almost all 
commercial products include preservatives, adjuvants, moisturizers, and 
antioxidants. 

Sunscreen products and UV filters can affect embryo-larval devel-
opment of sea urchins (Au et al., 2002; Catalano et al., 2020; Corinaldesi 

et al., 2017), causing development block (type 7, Fig. 4 E, F), signs of 
necrosis (type 2, Fig. 3 B) or exogastrulae formation due to anomalous 
PMCs migration (type 6, Fig. 4H–N). The effects of sunscreen products 
were even more evident on the sea urchin larval development, showing 
death or lethal anomalies (types 17, 18, Fig. 6L–V). Different types of 
larval anomalies (type 10–16, Figs. 5 and 6) were observed when 
P. lividus was exposed to different brands of sunscreen products (Cor-
inaldesi et al., 2017). Further information about PPCPs effects on early 
stages of sea urchin is reported in the Supplementary Material. By 
classifying the anomalies, it can be observed that PPCPs cause a wide 
range of anomalies (levels of alteration 1, 2, 3). Further information is 
reported in the Supplementary Material. 

5.6. Surfactants 

Surfactants are the chemicals which react with lipid and lipoprotein 
of the cell membrane, disturbing the membrane structure (Bont et al., 
1969). Effects on several surfactants (i.e. sodium lauryl sulfate (SLS), 
sodium deoxycholate (DOC), cetyltrimethyl ammonium bromide 
(CTAB), Tween 20, Tween 80, linear alkylbenzene sulphonat) have been 
demonstrated in sea urchin cleavage and further development of the sea 
urchins Hemicentrotus pulcherrimus, Temnopleurus toreumaticus, Pseudo-
centrotus depressus and P. lividus (Tanaka, 1976, 1979; Bresch and Ock-
enfels, 1977; Bressan et al., 1989, 1991). Normal development has been 
observed after exposure to low surfactant concentrations, while high 
doses caused an altered PMC migration (type 8, Fig. 4 Q) responsible for 
exogastrulae formation (type 6, Fig. 4 M, N) and abnormal embryos 
characterized by few cells in their blastocoel (type 4, Fig. 3 E). The main 
anomalies found at larval stage were exerted on skeletal development 
(type 10, 11, Fig. 5 B, C) that was completely inhibited at high doses 
(Bressan et al., 1989). Overall, surfactant mechanism of action is 
maximum at the end of gastrulation, when Ca2+ uptake is high, pre-
sumably related to the beginning of the skeletal growth, that may affect 
calcium availability for morphogenesis (Bressan, 1991). 

Based on the levels of alterations, surfactants determined a wide 
range of alteration levels (1–3: from light to severe anomalies). 

5.7. Microplastics (MPs) 

MPs are derived from large plastic degradation (Andrady, 2011). The 
exposure of the sea urchin Tripneustes gratilla showed scarce sensitivity, 
and no developmental anomalies after ingestion of polyethylene MPs 
(Kaposi et al., 2014). On the contrary, P. lividus larvae showed aspects 
like the type 18 (Fig. 6 T, U, V) after exposure to high doses of poly-
styrene MPs (Della Torre et al., 2014; Messinetti et al., 2018), MP 
leachates (Oliviero et al., 2019) and pellet (Rendell-Bhatti et al., 2020), 
while sublethal MP concentrations caused type 7 (Fig. 4 E, F), 10 (Figs. 5 
B) and 14 anomalies (Fig. 6 A-E; Pinsino et al., 2017). Similar anomalies 
were observed in the sea urchin L. variegatus exposed to virgin and 
beach-stranded plastic pellets (Nobre et al., 2015) and in Sphaerechinus 
granularis exposed to MPs (Trifuoggi et al., 2019). 

MPs caused anomalies can be classified as low and high anomalies, 
respectively (levels of alteration 1 and 3). Further information is re-
ported in the Supplementary Material. 

5.8. Nanoparticles (NPs) 

NPs are tiny materials having size ranges from 1 to 100 nm. They can 
be classified into different groups based on their properties, shapes or 
sizes and have different applications. NPs including TiO2, CeO2, Ag, 
SnO2, Co and Fe3O4, generally exert an inflammation and oxidative 
stress in cells and tissues (Jeevanandam et al., 2018). Inflammation is 
generally related to alteration in the cholinergic system, causing an 
overexpression of AcetylCholine (Ach) (Wessler and Kirkpatrick, 2001). 
In P. lividus larvae, inflammatory process is demonstrated by the 
enhancement of ACh expression; thus, NP exposure causes anomalies 
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like types 10, 11, 13, including delayed development, bodily asymmetry 
and shortened or irregular arms (Gambardella et al., 2013, 2014; Šiller 
et al., 2013). 

Ingested metal oxide NPs (SnO2, CeO2, Fe3O4) can enter and accu-
mulate into the immunity cells, embryos, and larvae of P. lividus, causing 
developmental anomalies like type 10, 11, 13 (Falugi et al., 2012; 
Gambardella et al., 2015; Burič et al., 2015; Mesarič et al., 2015). 

These anomalies can be classified from low to moderate anomalies 
(levels of alteration 1 and 2). Additional information on nanoparticles 
effects on sea urchin are reported in the Supplementary Material. 

6. Other anthropogenic impacts and multiple stressors driven by 
climate change 

Besides traditional and emerging contaminants, other stressors have 
been reported to impact early developmental stages of sea urchin. 
Among them, electromagnetic fields (EM) radiations caused an impair-
ment of sea urchin development after exposure of fertilized eggs, due to 
damage of the membrane structures (Koldayev and Shchepin, 1997) and 
anomalies attributable to the type 3 (Fig. 3 C; Ravera et al., 2006). 
Conversely, larvae exposed to EM pulses did not cause developmental 
anomalies (Falugi et al., 1987). 

The environmental exposure to radioactivity of adult specimens 
caused damage to DNA in the spawned gametes and block of develop-
ment at blastula stage, with a high percentage of anomalies, mainly due 
to impaired cleavages and loss of symmetry (like type S4/types 2 and 3) 
(Gabel et al., 1979). Shoulkamy at al. (2018) observed that exposure to 
X-rays caused anomalies according to the developmental stage of 
exposure. Exposure of early stages and before gastrulation caused a 
scarce number of migrating PMCs (type 8, Fig. 4 Q), while exposure after 
gastrulation caused skeletal anomalies, like types 10, 11, 12. 

Sea urchins are subjected to multiple impacts which also include 
climate change (e.g., ocean warming, acidifying, and increasing in 
pCO2). These impacts can act simultaneously affecting their fertilization 
processes (Byrne et al., 2009, 2010). High temperatures (>30 ◦C) affect 
fertilization success (Mejía-Gutiérrez et al., 2019), showing alteration in 
the development, such as asymmetrical cleavage (type 3, Fig. 3 C). 
UV-radiations can also affect the cleavage stage embryo, besides the 
skeleton growth (Bonaventura et al., 2005, 2006), inhibiting develop-
ment and caused exogastrulae formation in two sea urchin species (like 
type 6, Fig. 4 L, M; Akimoto et al., 1983; Lesser et al., 2003; Ding et al., 
2019). 

According to Byrne et al. (2010), ocean warming might negatively 
affect sea urchin fertilization, especially sperm activity. Conversely, 
acidification did not affect fertilization and embryogenesis (Martin 
et al., 2011). Contrasting information about the impact of acidification 
was reported in other studies conducted on T. gratilla (Sheppard Bren-
nand et al., 2010). Increased acidity/pCO2 and decreased carbonate 
mineral saturation significantly reduced larval growth resulting in 
decreased skeletal length (attributable to types 14, Fig. 6), such as 
shortened perioral arms (Fig. 6, type E). 

Some categories of natural compounds produced by diatoms have 
been reported to cause stress and malformations in early developmental 
stages of P. lividus (Romano et al., 2010). In particular, natural oxylipins 
such as polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) 
have been demonstrated to exert a teratogenic effect on P. lividus embyos 
(Marrone et al., 2012; Varrella et al., 2016) and a strong developmental 
delay with increasing decadienal concentrations (from 1.32 μM up to 
5.36 μM, Romano et al., 2010). Further studies demonstrated that PUAs 
induced malformations in P. lividus larvae of type 10, 11, 12, 17 and 18 
(Varrella et al., 2014). HEPEs also caused anomalies of type 11 at lower 
concentrations (6–10 μM) and anomalies of type 7 at higher concen-
trations (15–30 μM; Varrella et al., 2016). 

The anomalies produced by stressors described in this paragraph can 
cause a wide range of anomalies at all the level of alterations (i.e. 1, 2, 
3). Further information is reported in the Supplementary Material. 

7. Main remarks and future perspectives 

Morphological anomalies due to the exposure to different contami-
nants and multiple stressors are attributable to similar dose-dependent 
mechanisms of interference in cell-to-cell communication driven by 
intracellular or intercellular ion alteration. The acute exposure to con-
taminants causes almost immediately lethal or irreversible anomalies, 
while the effect of subacute exposure is observed over long times (ca. 10 
days) and not at the first developmental stages. As more diluted are the 
toxic compounds, as later the effects appear visible (Marchi et al., 1996; 
Carballeira et al., 2012a), potentially because the embryonic develop-
ment is a multiphasic event. Thus, effects which at early development 
stages may appear negligible, are generally amplified during develop-
ment, and become evident and often lethal at later stages. 

A common effect of the exposure of the early developmental stages of 
sea urchin to different stressors including pesticides (Sultatos, 1994), 
metallic NPs (Gambardella et al., 2013), EDCs (Sarkar et al., 2006) and 
sunscreen products (Corinaldesi et al., 2017) is the alteration of 
acetylcholinesterase (AChE) activity. This activity is one of the main 
biomarkers for several pollutants, and is present during morphogenetic 
events, including PMC and lateral laminae of mammalians (Drews, 
1975). Data summarized in this review suggest that the effects of AChE 
alteration may be due to the impairing of the regulation of 
calcium-related events since the earliest stages (Harrison et al., 2002; 
Jennings et al., 2008). Besides AChE, other biochemical and molecular 
mechanisms can be altered in sea urchin development due to contami-
nant exposure, therefore they need to be further considered. The 
different kinds of anomalies here classified may depend on time/-
concentration/stressor type, impinging on the mechanism of positional 
information occurring during the exposure (Table 2). Therefore, the 
anomalies themselves can be considered specific biomarkers of the 
presence and degree of impact of the responsible stressors. However, 
further investigations are needed to demonstrate the cause-effect re-
lationships between sea urchin development and stressors, also by using 
molecular and biochemical approaches to better understand the re-
sponses of the organisms (Buznikov et al., 2001; Pinsino and Matranga, 
2012; Gambardella et al., 2013; Corinaldesi et al., 2017). 

In this light, the identified types could be used as specific biosensors 
for the different pollutants in monitoring plans and help us to make: i) a 
first screening of the potential contaminants/stressors in marine envi-
ronment, which should be identified with specific analyses, and ii) a 
prediction of the degree of environmental impact (Table 1) to deepen 
investigations. 

The rationalization of the information collected in this review further 
highlight the utility of sea urchin as a model to assess the effects of 
multiple stressors and contaminants in marine environment. However, 
although several experimental studies and ecotoxicological bioassays 
have been already conducted using sea urchins, this review underlines 
the importance to increase information on the analyses of embryo and 
larvae morphological anomalies and mechanisms behind these biolog-
ical responses aiming at upgrade and expand the categories of malfor-
mations related to the different contaminants and stressors. In the light 
of the current and future scenarios of climate change, we claim to ur-
gently investigate the effects of multiple anthropogenic impacts on early 
developmental stages of sea urchin to forecast the effects of climate 
change and define specific management strategies and conservation in 
marine environment. 
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