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Featured Application: Proper operation control of concentrated solar power plants is of paramount
importance to increase their conversion efficiency. In this study, a fuzzy logic controller is devel-
oped and its capability investigated to increase the conversion efficiency of a micro-cogeneration
plant based on concentrated solar technology to perform a thermal-load-following operation.

Abstract: Solar energy is widely recognized as one of the most attractive renewable energy sources
to support the transition toward a decarbonized society. Use of low- and medium-temperature
concentrated solar technologies makes decentralized power production of combined heating and
power (CHP) an alternative to conventional energy conversion systems. However, because of the
changes in solar radiation and the inertia of the different subsystems, the operation control of
concentrated solar power (CSP) plants is fundamental to increasing their overall conversion efficiency
and improving reliability. Therefore, in this study, the operation control of a micro-scale CHP plant
consisting of a linear Fresnel reflector solar field, an organic Rankine cycle unit, and a phase change
material thermal energy storage tank, as designed and built under the EU-funded Innova Microsolar
project by a consortium of universities and companies, is investigated. In particular, a fuzzy logic
control is developed in MATLAB/Simulink by the authors in order to (i) initially recognize the
type of user according to the related energy consumption profile by means of a neural network
and (ii) optimize the thermal-load-following approach by introducing a set of fuzzy rules to switch
among the different operation modes. Annual simulations are performed by combining the plant
with different thermal load profiles. In general, the analysis shows that that the proposed fuzzy logic
control increases the contribution of the TES unit in supplying the ORC unit, while reducing the
number of switches between the different OMs. Furthermore, when connected with a residential user
load profile, the overall electrical and thermal energy production of the plant increases. Hence, the
developed control logic proves to have good potential in increasing the energy efficiency of low- and
medium-temperature concentrated solar ORC systems when integrated into the built environment.

Keywords: concentrated solar power plant; micro-combined heat and power system; micro-solar
ORC; load-following control

1. Introduction

The increasing energy demand worldwide, the catastrophic effects of climate changes,
and the limited conventional energy sources are stressing increasingly the key role of
renewable energy technologies for sustainable development. According to [1], the added
net capacity of renewables around the world in 2018 was the same as in 2017 (about
180 GW) and further efforts are needed to fulfill the challenging commitments set out by
the Paris Agreement in 2015.
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Among the different renewable energy sources to support this energy transition,
solar energy is considered one of the most promising. Indeed, solar energy is available
worldwide and is abundant on Earth: about 1 × 105 TW reaches the surface of the Earth
from the sun. Therefore, in the past decades, attention has been paid to solar technologies.
In addition to traditional solar technologies such as solar thermal panels and photovoltaics
(PV), innovative solar energy technologies such as concentrated solar power (CSP) systems
have been developed. CSP plants are able to concentrate the incident radiation into a
smaller area by means of lenses or mirrors. This energy is then collected by a solar receiver
and converted into electricity or thermal power, depending on the need. In this way, it
is possible to achieve higher overall conversion efficiencies compared to traditional solar
technologies. Among the different methods of capturing solar thermal energy in CSP
plants, linear Fresnel reflectors (LFRs) are considered a promising alternative to parabolic
trough collectors in the medium-temperature range. Indeed, the former can overcome
some techno-economic limits of the latter, thanks to a lighter structure and a fixed receiver.
These characteristics make the LFR suitable for many applications such as those at the
residential level.

To convert the medium-temperature solar energy into generated power, organic
Rankine cycle (ORC) plants are adopted. Such plants work similarly to Rankine steam
power plants, but they make use of organic working fluids, which have lower boiling
points than water and, in addition, lead to above atmospheric pressures in the condenser.
While medium- and large-scale ORC plants are already available in the market, on the small
scale, several challenges need to be solved in order to increase their electric conversion
efficiency and make them cost-competitive [2].

In general, use of solar energy in decentralized energy systems to simultaneously
produce thermal and electrical energy (combined heat and power (CHP)) is considered a
valuable alternative to substitute the thermal and electric power generation from fossil fuels.
However, despite being abundant, solar energy is intermittent, and to ensure the proper
operation of systems and reliable power supply, thermal energy storage (TES) technologies
are usually combined with solar energy. In the low-temperature range, sensible heat
TES is commonly adopted, but at the medium–high temperature level, latent heat TES is
preferred [3]. Therefore, the design of multi-energy systems is becoming an important topic
driven by the need for integrating distributed energy sources. Furthermore, the correct
balance between energy supply and demand is considered a prominent subject of research.
Hence, in the recent years, research in the field of energy system modeling and optimization
has been carried out extensively [4]. In addition to general tools, including models of
different technologies such as TRNSYS, Dymola, and Modelica, several commercial tools
have been developed for the simulation of hybrid renewable energy systems, such as
HOMER and RETSCREEN. For example, Bolognese et al. [5] carried out a modeling study
of an industrial process integrating CSP technologies, and in particular, they focused on the
use of parabolic trough collectors using the software Dymola in combination with MATLAB.
Desideri et al. [6], instead, performed and validated the dynamic model of a parabolic
trough collector in Thermocycle Modelica against the experimental results obtained at
the Plataforma Solar de Almeria, finding good agreement both under steady-state and
transient operating conditions. Manfrida et al. [7] mathematically investigated in TRNSYS
latent heat TES for application to a solar power ORC system over a one-week period,
obtaining a weekly average overall solar-to-electricity efficiency of 3.9%. Furthermore, the
authors found that appropriate control logics are required to improve the performance
of the system over a more extended period. Similarly, some of the authors of the present
paper [8] numerically analyzed the performance of a novel solar ORC system based on an
LFR, combined with an advanced latent heat TES unit, finding that the integrated plant
had significant heat losses, which could be sensibly reduced by improving the control
strategy of the plant. In subsequent work [9], the authors developed a hardware-in-the-loop
simulator of the system to support the optimization of the control algorithms and to define
the best control strategy to ensure proper operation of the ORC unit. Nevertheless, the
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work pointed out that further analyses were required to optimize the operation of the
integrated system and maximize the energy production or the conversion efficiency.

Indeed, the operation of medium-temperature solar energy systems is sensitive to
varying ambient conditions and users’ needs. In addition, the thermal inertia of the
different components has an important impact on the dynamics of these plants. Therefore,
the development of an effective control logic is of paramount importance to maximize
the conversion efficiencies of these systems. Among all the possible control approaches,
a fuzzy logic controller is considered suitable for similar integrated systems.

Fuzzy logic, firstly introduced by Lofti Zadeh in [10], has been, indeed, applied with
success in several engineering domains and has proved to be useful in renewable energy
systems in general. Fuzzy logic is used for modeling purposes, such as in [11], where a
household electric quantitative and qualitative representation was obtained in order to
evaluate, ex ante, the economic benefit of energy management (EM). It is also used for
design purposes, as in [12], to compare different heat transfer fluids (HTF) based on their
benefits and costs in CSP applications. Most frequently, however, fuzzy logic is adopted for
control design, as proposed by [13] for reducing the daily peak demands in limited-capacity,
battery-based energy storage systems or by [14] to track the maximum power point of a
PV array in a stand-alone photovoltaic system. Fuzzy logic controllers are preferred over
model-based approaches whenever the mathematical model of the plant is not available
or is highly uncertain [15]. This is especially true in complex solar power plants, where
operative modes are identified according to the internal configuration of the plants and
switching between modes is based on priority rules [16]. In this regard, yjr authors of [17]
proposed a supervisory controller of an isolated hybrid AC/DC microgrid, where a state
machine was used to govern the transitions between the different operating modes, while
fuzzy logic was adopted to maintaining the desired state of charge (SOC) of the battery
banks. In [18], a fuzzy logic controller was developed with the goal of minimizing the
power profile fluctuations in a residential grid-connected microgrid, while keeping the
SOC of the battery within secure limits. However, such approaches do not address the
problem of discriminating between different load profiles in order to adjust the control
logic accordingly. Furthermore, to the best of the authors’ knowledge, there is no paper in
the literature that considers the use of fuzzy logic to control small-scale concentrated solar
ORC plants for the built environment.

Therefore, in this paper, a concentrated solar ORC system, as designed and built under
the EU-funded project Innova MicroSolar [19] by several universities and companies, is
considered as a case study to investigate the potential of fuzzy logic control in optimizing
the operation of small-scale solar ORC plants. More precisely, advanced models of the
different subsystems are developed by the authors in MATLAB/Simulink in order to take
into account the dynamics of the system under varying ambient and operating conditions.
In addition, a fuzzy logic control strategy is included in the simulator, aimed at performing
load following by dynamically adapting the plant operation to the user load profile.

Hence, the main contributions of the work rely on (i) the design of a fuzzy controller
of a small-scale solar ORC plant for thermal load following and (ii) the use of the pro-
posed control logic approach on complex solar energy systems by means of an advanced
simulation tool developed by the authors.

Therefore, the paper is structured as follows: After this introduction, the methods
used in the analysis and the developed models are presented in Section 2. Section 3 reports
the impact of the proposed control logic on the operation and performance of the plant
under investigation, while in Section 4, the main conclusions are discussed.

2. Methods and Models

In this section, the methodology of the work and the main characteristics of the models
developed by the authors and implemented in MATLAB/Simulink are presented.
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2.1. The Integrated Innova Microsolar Plant

The plant under investigation consists of (i) a 146 m2 solar field based on an LFR pro-
ducing heat at temperatures in the range of 250–280 ◦C, (ii) a 2 kWe/18 kWth regenerative
ORC unit, and (iii) a 3.8 ton latent heat thermal storage tank made of nitrate solar salt
kNO3 (40 wt%)/NaNO3 (60 wt%) and equipped with heat pipes. In addition, a balance of
the plant (BOP) with a total length of 49 m pipes connecting all the different subsystems is
considered. Further details on the plant specifications can be found in [20].

Figure 1 shows a scheme of the plant under investigation.
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Figure 1. Scheme of the Innova Microsolar prototype plant.

The considered phase change material (PCM) has a melting temperature in the range
of 216–223 ◦C [21], a high heat of fusion, but low thermal conductivity. As regard the ORC
unit, it operates under subcritical conditions using NOVEC 649 as a working fluid.

Based on the solar radiation and the state of charge of the TES, the plant works
according to different operation modes (OM), as summarized in Table 1 and schematically
represented in Figure 2. In particular, in OM1, the diathermic oil from the solar field
supplies directly the ORC unit at temperatures higher than 210 ◦C. When the collected
power from the solar field exceeds the nominal power input to the ORC (about 28 kWth),
instead, the oil supplies both the TES and the ORC unit (OM4). In case the TES is fully
charged, instead, the LFR collector defocuses (OM−1). On the contrary, when the power
produced by the solar field is low or zero and the average TES temperature is close to that
of melting, the thermal energy of the TES can be used to run the ORC unit (TORC,on = 217 ◦C
and TORC,off = 215 ◦C with hysteresis) and ensure its operation for a maximum of 4 h with
no sun. In particular, in OM5, only the TES supplies the ORC, while in OM6, both the LFR
solar field and the TES supply the ORC unit.
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Table 1. Operation modes of the Innova Microsolar plant.

OM Subsystems Operating Condition

−1 LFR (defocused) + ORC Oil flow rate = 0.22 kg/s

0 LFR recirculation If PLFR,out < 15 kWth and TLFR,out < TTES,av,
oil flow rate = 1 kg/s

1 LFR + ORC If 15 kWth < PLFR,out < 26 kWth,
0.11 kg/s < oil flow rate < 0.22 kg/s

2 Plant off If PLFR,out = 0 kWth
3 LFR + LHTES If PLFR,out < 15 kWth and TLFR,out = TTES,av + 10 ◦C

4 LFR + LHTES + ORC
If PLFR,out > 26 kWth and TTES,av < 280 ◦C,

0.22 kg/s < oil flow rate < 3 kg/s,
otherwise OM−1

5 TES + ORC If PLFR,out = 0 kWth and TTES,av > TORC,off,
oil flow rate = 3 kg/s

6 LFR + LHTES + ORC If PLFR,out < 15 kWth and TTES,av > TORC,off,
oil flow rate = 3 kg/s

2.2. The Models of the Main Subsystems

The plant under analysis was modeled in MATLAB/Simulink [22] using MATLAB
function blocks. The receiver tube of the LFR system, the TES unit, and the pipelines of the
BOP were represented by dynamic models and the ORC unit by a quasi-steady state model
since its thermal inertia is significantly lower compared to the other subsystems. Hence, the
use of a quasi-steady state model for the ORC system can be considered acceptable since it
does not affect the relaxation time of the overall plant, as further discussed in [9]. Therefore,
in this way, it is possible to reproduce the transient operation of the real plant and to take
into account the effect of the changing working conditions on its overall performance.

As regard the solar field, the thermal power output was calculated according to
Equation (1):

PLFR,out = Asf·DNI·cos (θ)·ηopt·ηrec (1)

where Asf is the net area of the primary collectors; DNI the direct normal irradiance; θ the
incident angle; ηopt the optical efficiency of the LFR, which depends on the incident angle
modifier (IAM); and ηrec the receiver efficiency.

As regard the optical efficiency, it was calculated as

ηopt = ηopt,max(θ = 0)·IAM(α, σ) (2)

where α and σ are the solar elevation and azimuthal angles, respectively. The values of the
maximum optical efficiency and the IAM were provided by the manufacturing company
ELIANTO [23] based on a ray-tracing analysis. Eventually, with reference to the receiver
efficiency, it is calculated by applying the well-known Forristal model [24] for the evacuated
tubes. In particular, a one-dimensional longitudinal model was adopted, and the same
numerical scheme used for the pipelines was applied. It is worth noting that in the case of
the receiver tube, only the thermal inertia of the diathermic oil was considered while those
of the metal parts and the glass tube were neglected.

The TES unit was represented by means of a lumped model according to the guidelines
of the IEA Task 32 report on advanced storage concepts [25]. For the scope of the analysis,
the PCM was supposed to be isotropic and isothermal in each internal time step. The use
of heat pipes was included into the model in terms of the maximum power exchanged
with the oil (40 kW) and of a minimum temperature difference between the oil and the
PCM (equal to 5 ◦C). Hence, the TES varied its temperature, as described in Equation (3):

∆TTES(t+1) = ∆TTES (t)·e[−∆t_int-timestep·f] (3)

where ∆TTES(t) is the temperature difference between the diathermic oil and the PCM itself
at time step t, while f depends on the convective Nusselt number of the PCM. To increase
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the accuracy of the model, an internal time step lower than that of the overall simulation is
considered. As regard the thermal losses of the TES unit, they were equal to 0.4 W/m2·K.

The pipelines connecting all the different subsystems were modeled by means of
a one-dimensional longitudinal model, as discussed in detail in [26]. In summary, the
simplified advection Equation (4) was solved for each tube:

∂ (ρcp TA)/∂t + ∂ (ρucpTA)/∂x = −Pexch (4)

where ρ, cp, T, and u are, respectively, the density, specific heat, temperature, and axial
velocity of the oil; A is the internal cross-sectional area of the tube; and Pexch is the
exchanged power between the fluid and the environment (positive for losses, negative
for gain). The equation was solved using the finite difference method with the explicit
first-order upwind scheme.

With reference to the ORC unit, its electric and thermal power outputs were calculated
as in Equations (5) and (6):

Pel =
.

mf·[ηm·ηel·∆he − ∆hp/(ηm·ηel)] (5)

Pth =
.

mc·cp,c·(Tout − Tin) (6)

where
.

mf is the mass flow rate of the working fluid; ∆he and ∆hp are the expander and
pump enthalpy difference, respectively; and ηm and ηel the mechanical and electrical
efficiencies assumed constant and equal to 0.95 and 0.9, respectively, for both the expander
and the pump. In addition,

.
mc is the mass flow rate of the cooling water, cp,c its specific

heat, and Tin and Tout the inlet and outlet temperatures, respectively, of the cooling water
at the condenser.

The turbine isentropic efficiency varies with the operating conditions, and its values
are based on the experimental data provided by the manufacturer ENOGIA [27]. In partic-
ular, under nominal operating conditions, the maximum isentropic efficiency is about 0.53,
and it decreases with a pressure ratio, as better detailed in [28]. For the sake of the present
analysis, a gear pump was considered to ensure the required refrigerant mass flow rate.
Despite its related small size, the isentropic efficiency of this kind of pump can be assumed
constant over all the considered operating range and equal to 0.7 according to [29].

The heat exchangers were modeled by means of the simplified ε-NTU method, accord-
ing to which the overall heat transfer coefficient is considered constant. The thermodynamic
state points and the organic fluid flow rate (design value of 0.20 kg/s) were obtained at each
time step according to an iterative procedure to achieve a fixed overheating temperature
difference at the evaporator. Table 2 reports the typical temperatures and pressures of the
different state points (as indicated in Figure 3) with varying diathermic oil temperatures
for a fixed inlet temperature of the cooling water at the condenser of 60 ◦C.
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Table 2. Temperature and pressure of the different state points in the ORC unit with varying inlet temperatures of the
diathermic oil at the evaporator.

1 2 3 4 5 6 7

Toil,in = 210 ◦C Temperature (◦C) 73.14 163.66 168.57 135.32 85.57 72.00 113.93
Pressure (bar) 2.1 17 17 2.1 2.1 2.1 17

Toil,in = 150 ◦C Temperature (◦C) 72.34 115.85 120.77 110.63 80.00 72.00 97.28
Pressure (bar) 2.1 6.5 6.5 2.1 2.1 2.1 6.5

2.3. The Fuzzy Logic Controller

The switch between the different OMs is decided according to the implemented
control strategy. In this section, a control strategy based on fuzzy logic is proposed and
described: it improved the performance of the system with respect to the baseline strategy,
originally developed and described in [8], as will be later shown in Section 3. Please note
that the proposed control strategy can be used for small-scale solar ORC plants integrating
latent heat TES, as long as their OMs are defined, together with the rules for switching
from one OM to another. This is common in complex plants, where operating modes and
conditions are expressed according to the knowledge of the system engineers, which is
often qualitative (experience based) and not quantitative (model based).

2.3.1. Baseline

The baseline control strategy is the initial control strategy developed to ensure reliable
operation of the plant independent of the users’ needs. It calculates the OM, starting from
the available process variables, namely the collected thermal power from the solar field
(i.e., PLFR,out), the related temperature of the diathermic oil in the LFR solar field (i.e., TLFR),
and the average temperature of the TES unit (i.e., TTES,av). Based on the values of these
parameters, the appropriate OM is selected according to Table 3. As it can be seen, the
baseline controller relies on a set of “if then . . . else . . . ” rules, which makes the control
logic difficult to modify and/or integrate with external system knowledge.

Table 3. The “if then . . . else . . . ” rules of the baseline control strategy.

OM Rules

−1 TTES,av ≥ TTES,max
1

0 OM = 3 & TLFR ≤ TTES,av + 10 ◦C
1 PLFR,out ≥ PORC,min

2 & PLFR ≤ PORC,max
3

2 PLFR,out = 0 & TTES,av ≤ Tset
4

3 PLFR,out ≥ PORC,min
2 & TTES,av ≤ Tset

4

4 PLFR,out ≥ PORC,max
3

5 PLFR,out = 0 & TTES,av ≥ Tset
4

6 PLFR,out ≥ PORC,min
2 & TTES,av ≥ Tset

4

1 TTES,max denotes the upper temperature threshold of the TES tank before defocus. 2 PORC,min denotes the
minimum power threshold of the ORC. 3 PORC,max denotes the maximum power threshold of the ORC. 4 Tset is
set to TORC,off (switch-off temperature of the ORC) when TTES,av ≥ TORC,on and to TORC,on (switch-on temperature
of the ORC) when TTES,av ≥ TORC,off.

2.3.2. Thermal Load Following

In contrast, the objective of the developed fuzzy logic control is to ensure that the
user thermal demand is satisfied by the CHP plant according to a thermal-load-following
approach. In other words, the CHP plant modifies its operation control based on the
thermal energy demand of the user. Next, the design of the thermal load following control
logic is discussed.

With reference to the developed fuzzy logic controller, the considered inputs were the
thermal power output from the solar field (PLFR,out,), the average temperature of the TES
unit (TTES,av), the outlet temperature of the diathermic oil from the solar field (TLFR,out),
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the temperature difference between the outlet temperature of the diathermic oil from the
solar field and the average temperature of the TES (Tdiff), the period of the day when the
load is expected to be higher than the rest of the day (Time), and the system information
(Systeminfo) about the overall performance of the plant, as further detailed in Section 2.3.2.1.
Qualitatively speaking, the variable Time was introduced to account for loads that increase
at specific times in a day (e.g., a school building, an office, etc.), while the variable Systeminfo
provides feedback information about how well the thermal following is performing. These
variables can belong to specific fuzzy sets via membership functions, where the choice
of their shapes and values is made based on the knowledge of the system engineer and
according to the experience derived from trial-and-error procedures. The trapezoidal
membership functions shown in Figure 4 were considered. Please note that when the
(thermal) load is distributed all over the day, then the Time variable can be neglected.
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The control policy was, instead, based on a Mamdani fuzzy inference system [30],
which synthesizes a set of linguistic control rules. In Table 4, a set of 16 rules for a residential
load model is reported, where the Time variable is neglected. In Table 5, a set of 21 rules
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for a school is reported, where the load is expected to be concentrated in the time period
7 a.m.–1 p.m. Finally, the fuzzy control action was defuzzied according to the center-of-area
method, thus returning the OM to be selected.

Table 4. Set of 16 linguistic rules at the base of the fuzzy load-following control strategy (residential
load model). Membership functions are defined in Figure 4.

Rule Number PLFR,out TTES,av TLFR,out Systeminfo Tdiff OM

1 zero high OM3 high ok 3
2 low normal bad 0
3 ok * ¬good 1
4 ok * ¬high good 4
5 zero normal * ¬high bad 2
6 zero high OM3 high ok 3
7 low high OM3 high ok 3
8 high * ¬high good 4
9 high high 1

10 zero ok bad 5
11 zero high 5
12 low ok 6
13 low high 6
14 zero low * ¬high bad 2
15 ok high good 1
16 high * ¬good 1

* ¬is the logic negation symbol.

Table 5. Set of 21 linguistic rules at the base of the fuzzy load-following control strategy (school load
model); when the rule number is not reported, the rule is identical to the one detailed in Table 4.
Membership functions are defined in Figure 4.

Rule Number PLFR,out TTES,av TLFR,out Systeminfo Tdiff Time OM

3 ok ¬good ok 1
10 zero ok bad ok 5
11 zero high ok 5
12 low ok good ok 6
17 ok * ¬good bad * ¬ok 4
18 zero high * ¬ok 2
19 zero ok * ¬ok 2
20 low ok * ¬ok 3
21 low high * ¬ok 6

* ¬is the logic negation symbol.

2.3.2.1. Performance-Based Supervision

The Systeminfo variable contains information about the overall performance of the
plant. This variable is one of the inputs to the fuzzy inference system and concurs to choose
the best OM, following a performance-based supervision approach [31]. The Systeminfo
variable is built according to the logic depicted in Figure 5. The input to the system is
u(t) = Ep(t)− El(t), namely the difference between the produced thermal energy and
that required by the user (load). This difference is fed to a high-pass filter, which accounts
for high-frequency components, added to a term composed by a constant value, which
accounts for low-frequency noise, and added again to a scaled version of the input itself.
The resulting signal is low-pass-filtered to obtain a smoother signal and saturated over a
custom range, here selected between −4 and +4. The variable is finally fuzzified according
to the membership functions (Figure 4f). Negative values imply that the consumption is
greater than the production, with a trend that can be decreasing (bad) or increasing (poor).
Positive values imply, instead, that the production is greater than the consumption, with a
trend that can be decreasing (ok) or increasing (good).
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2.3.2.2. Neural Network

The load-following control strategy requires some knowledge of the load to follow
in order to customize the set of rules to adopt within the fuzzy inference system (e.g.,
residential load, school load, etc.). This information is provided by an artificial neural
network (ANN), whose task is to discriminate (runtime) the load type connected to the
plant and switch to the most suitable set of rules. Hence, by using an ANN to classify
the load connected to the plant, it is possible to employ the same load-following control
strategy to different users, each one characterized by a custom set of fuzzy rules. The
adopted neural network is of perceptron type and requires as input the day, hour, u(t)
(defined in Section 2.3.2.1), its mean value u(t), its variance σ2

u(t), and the root mean square
(RMS) value. The output of the neural network is a discrete variable that represents the
load type. A graphical representation of the network is detailed in Figure 6.
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The network can be easily trained with time series obtained by using the simulator
built upon the model in Section 2.2, considering different months and labeling each time
series with the relevant load profile.

3. Results

In this section, the results obtained by means of the simulation model are presented.
In particular, in Section 3.1, the capability of the neural network to recognize the kind of
user based on the related thermal load is proven, while in Section 3.2, the comparison of
the plant performances in the case of a baseline controller and a fuzzy logic controller is
presented and discussed.

3.1. The Capability of the Neural Network

The perceptron-based ANN is trained by using time series generated by the simulator
built upon the model described in Section 2, “Methods and Models,” where three different
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load profiles, namely residential, school, and office, are considered. The load profiles are
based on realistic data, all over the year, collected every 10 min. After generating the time
series, the features described in Section 2.3.2.2, namely the day, hour, u(t), its mean value
u(t), its variance σ2

u(t), and the root mean square (RMS) value, are randomly divided into
training (70%), test (15%), and validation (15%). The training is performed over 35 epochs,
with a gradient method and a network made of 14 neurons in a hidden layer with a sigmoid
activation function.

The ANN is then tested in order to discriminate the target class, where class 1 repre-
sents the residential profile, class 2 the school profile, and class 3 the office profile. The
confusion matrices for the training, validation, and test are depicted in Figure 7, where
the target classes are reported in the horizontal axis, the output (predicted) classes in the
vertical axis, and each matrix element both in absolute and in percentual terms. As seen,
classification performances were high.
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3.2. The Micro-Solar CHP Plant Performance

The performance of the micro-solar ORC plant was investigated during a whole year
with a simulation time step of 10 min. Weather data (i.e., solar radiation and ambient
temperature) were taken from the Energy+ [32] database for the city of Lerida in Spain,
which is close to the town of Almatret, where the Innova Microsolar prototype plant
is located. For the sake of the analysis, it was assumed, as often done in the literature,
that the system can work under the given reference conditions at the condenser. More
precisely, the return water temperature entering the condenser was assumed at 60 ◦C and
the temperature difference equal to 10 ◦C, with a fixed flow rate of 0.5 kg/s, hence at a
temperature level able to satisfy the thermal energy demands for space heating and hot
water of residential users.

As regard the load, two different profiles were considered: (i) a scale-down profile
of a school building and (ii) a residential user profile related to four apartments with a
floor area of 100 m2 each. The thermal load of the school building was taken from [33],
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while that of the residential user was calculated by means of TRNBuild [34], considering
an indoor comfort temperature of 20 ◦C and according to the tap profile number 2, as
reported in the European standard UNI EN 15316-3 [35] for space heating and domestic hot
water, respectively. In addition, with reference to the residential user, an average electricity
demand per apartment of 3600 kWh/year was considered based on the statistical data
available in [36]. Anyhow, electrical load following was not considered in this work, and
only a simplified coverage factor as the ratio between the electricity production from the
plant and the overall demand was calculated for the residential user.

First, the performance of the CHP plant in the case of a baseline controller was assessed,
as reported in Table 6.

Table 6. Micro-solar ORC plant performance in the case of a baseline controller: collected thermal energy by the LFR
(Eth,LFR), inlet thermal energy to the ORC unit (Eth,ORCin), electric energy output from the ORC (Eel,ORC), thermal energy
output from the ORC (Eth,ORCout), electric efficiency (ηel,ORC), thermal efficiency (ηth,ORC), input thermal energy to the TES
(Eth,TESin), and output thermal energy to the TES (Eth,TESout).

Month Eth,LFR
(kWh)

Eth,ORCin
(kWh)

Eel,ORC
(kWh)

Eth,ORCout
(kWh)

ηel,ORC
(%)

ηth,ORC
(%)

Eth,TESin
(kWh)

Eth,TESout
(kWh)

Jan. 3.08 × 103 1.54 × 103 1.21 × 102 1.11 × 103 7.86 72.23 6.56 × 102 −2.37 × 100

Feb. 5.49 × 103 3.72 × 103 2.93 × 102 2.68 × 103 7.88 72.21 1.18 × 103 −4.87 × 102

Mar. 9.59 × 103 7.26 × 103 5.74 × 102 5.24 × 103 7.91 72.18 3.08 × 103 −2.30 × 103

Apr. 1.08 × 104 8.16 × 103 6.46 × 102 5.89 × 103 7.92 72.17 3.53 × 103 −2.76 × 103

May 1.27 × 104 9.64 × 103 7.64 × 102 6.96 × 103 7.92 72.17 3.96 × 103 −3.17 × 103

Jun. 1.41 × 104 1.09 × 104 8.64 × 102 7.86 × 103 7.93 72.16 4.36 × 103 −3.57 × 103

Jul. 1.53 × 104 1.19 × 104 9.41 × 102 8.56 × 103 7.93 72.16 4.80 × 103 −4.02 × 103

Aug. 1.38 × 104 1.07 × 104 8.51 × 102 7.75 × 103 7.92 72.17 4.41 × 103 −3.63 × 103

Sep. 1.12 × 104 8.71 × 103 6.90 × 102 6.29 × 103 7.92 72.17 3.80 × 103 −3.07 × 103

Oct. 7.41 × 103 5.35 × 103 4.22 × 102 3.86 × 103 7.90 72.19 1.98 × 103 −1.25 × 103

Nov. 3.83 × 103 2.27 × 103 1.78 × 102 1.64 × 103 7.85 72.25 7.47 × 102 −1.11 × 102

Dec. 2.69 × 103 1.33 × 103 1.03 × 102 9.66 × 102 7.72 72.38 5.51 × 102 −4.41 × 10−1

Total 1.10 × 105 8.15 × 104 6.45 × 103 5.88 × 104 7.89 72.20 3.31 × 104 −2.44 × 104

Although the thermal energy collected by the solar field is about 110 MWh/year, the
annual electrical and thermal energy production by the ORC unit corresponds to 6450 and
58,800 kWh, respectively. As expected, the performances of the proposed system were
significantly affected by seasonality. Indeed, the ORC unit electrical and thermal energy
productions were around eight times in July than in December. Furthermore, during the
winter season, with the baseline controller, the operation of the TES unit was limited and
even more its operating efficiency, which is defined as the ratio between the thermal energy
output from the TES unit and the thermal energy input. This means that the thermal energy
stored in the TES unit is dissipated into the ambient and not usefully recovered to satisfy
the thermal energy demand of the users.

To better understand the energy production of the proposed plant, we took into
account the related number of hours of the different operation modes of the plant during
the year as reported in Table 7. During the hot months, there is more solar radiation
and the plant can store surplus energy in the PCM thermal storage, thus working for a
consistent number of hours also in operation modes OM5 and OM6. Furthermore, the
collected thermal energy is so high that the system is forced to defocus, thus operating also
in OM−1.

Later, the performances of the plant were evaluated for both thermal load profiles
using the case of a fuzzy logic controller aimed at satisfying the thermal energy demand of
the users by means of the plant operation. Tables 8 and 9 report the plant performances
when coupled with a school building load profile.



Appl. Sci. 2021, 11, 5491 13 of 20

Table 7. Number of hours of operation modes in the case of a baseline controller.

Month OM−1
(h)

OM0
(h)

OM1
(h)

OM2
(h)

OM3
(h)

OM4
(h)

OM5
(h)

OM6
(h)

Jan. 0.00 × 100 8.88 × 101 5.83 × 101 5.34 × 102 5.08 × 101 1.24 × 101 0.00 × 100 0.00 × 100

Feb. 0.00 × 100 8.09 × 101 5.66 × 101 4.12 × 102 2.19 × 101 6.93 × 101 6.40 × 100 0.00 × 100

Mar. 5.95 × 100 4.95 × 101 5.48 × 101 3.74 × 102 1.90 × 101 1.31 × 102 6.89 × 101 5.95 × 100

Apr. 2.49 × 101 6.43 × 101 6.01 × 101 3.10 × 102 8.95 × 100 1.27 × 102 8.29 × 101 2.49 × 101

May 4.18 × 101 7.16 × 101 6.17 × 101 2.60 × 102 1.63 × 101 1.46 × 102 9.44 × 101 4.18 × 101

Jun. 5.30 × 101 5.24 × 101 6.40 × 101 2.17 × 102 5.28 × 100 1.65 × 102 1.02 × 102 5.30 × 101

Jul. 6.72 × 101 5.47 × 101 6.14 × 101 2.00 × 102 5.45 × 100 1.75 × 102 1.16 × 102 6.72 × 101

Aug. 4.08 × 101 5.43 × 101 6.94 × 101 2.41 × 102 7.20 × 100 1.65 × 102 1.14 × 102 4.08 × 101

Sep. 1.35 × 101 5.60 × 101 5.65 × 101 2.97 × 102 8.32 × 100 1.50 × 102 9.81 × 101 1.35 × 101

Oct. 0.00 × 100 7.86 × 101 6.73 × 101 4.17 × 102 2.28 × 101 9.47 × 101 3.79 × 101 0.00 × 100

Nov. 0.00 × 100 8.63 × 101 6.14 × 101 4.94 × 102 3.99 × 101 3.08 × 101 1.72 × 100 0.00 × 100

Dec. 0.00 × 100 1.04 × 102 6.05 × 101 5.21 × 102 5.62 × 101 1.43 × 100 0.00 × 100 0.00 × 100

Total 2.47 × 102 8.41 × 102 7.32 × 102 4.28 × 103 2.62 × 102 1.27 × 103 7.23 × 102 2.47 × 102

Table 8. Micro-solar ORC plant performance in the case of a fuzzy logic controller for a school building scale-down profile:
collected thermal energy by the LFR (Eth,LFR), inlet thermal energy to the ORC unit (Eth,ORCin), electric energy output
from the ORC (Eel,ORC), thermal energy output from the ORC (Eth,ORCout), electric efficiency (ηel,ORC), thermal efficiency
(ηth,ORC), input thermal energy to the TES (Eth,TESin), and output thermal energy to the TES (Eth,TESout).

Month Eth,LFR
(kWh)

Eth,ORCin
(kWh)

Eel,ORC
(kWh)

Eth,ORCout
(kWh)

ηel,ORC
(%)

ηth,ORC
(%)

Eth,TESin
(kWh)

Eth,TESout
(kWh)

Jan. 3.03 × 103 1.55 × 103 1.21 × 102 1.12 × 103 7.82 72.50 7.92 × 102 −1.65 × 102

Feb. 5.54 × 103 3.44 × 103 2.69 × 102 2.49 × 103 7.83 72.50 1.47 × 103 −7.35 × 102

Mar. 9.12 × 103 6.09 × 103 4.78 × 102 4.41 × 103 7.85 72.49 2.50 × 103 −1.66 × 103

Apr. 9.85 × 103 6.73 × 103 5.29 × 102 4.88 × 103 7.86 72.49 2.43 × 103 −1.71 × 103

May 1.09 × 104 7.68 × 103 6.07 × 102 5.57 × 103 7.90 72.46 2.28 × 103 −1.49 × 103

Jun. 1.17 × 104 8.21 × 103 6.51 × 102 5.95 × 103 7.92 72.44 2.02 × 103 −1.18 × 103

Jul. 1.25 × 104 8.94 × 103 7.08 × 102 6.48 × 103 7.91 72.44 2.02 × 103 −1.33 × 103

Aug. 1.21 × 104 8.33 × 103 6.55 × 102 6.04 × 103 7.86 72.49 2.51 × 103 −1.62 × 103

Sep. 9.83 × 103 6.86 × 103 5.39 × 102 4.97 × 103 7.86 72.49 2.16 × 103 −1.59 × 103

Oct. 7.34 × 103 4.90 × 103 3.84 × 102 3.55 × 103 7.85 72.49 1.91 × 103 −1.22 × 103

Nov. 3.83 × 103 2.20 × 103 1.73 × 102 1.60 × 103 7.84 72.48 8.78 × 102 −2.56 × 102

Dec. 2.64 × 103 1.33 × 103 1.02 × 102 9.70 × 102 7.63 72.68 7.82 × 102 −2.76 × 102

Total 9.83 × 104 6.63 × 104 5.21 × 103 4.80 × 104 7.84 72.49 2.18 × 104 −1.32 × 104

Table 9. Number of hours of operation modes in the case of a fuzzy logic controller for a school building scale-down profile.

Month OM−1
(h)

OM0
(h)

OM1
(h)

OM2
(h)

OM3
(h)

OM4
(h)

OM5
(h)

OM6
(h)

Jan. 1.17 × 10−1 4.22 × 101 6.44 × 101 5.34 × 102 8.53 × 101 1.86 × 101 1.67 × 10−1 0.00 × 100

Feb. 4.33 × 10−1 4.36 × 101 5.81 × 101 4.03 × 102 6.72 × 101 7.69 × 101 1.55 × 101 7.58 × 100

Mar. 2.33 × 101 1.10 × 101 6.51 × 101 4.07 × 102 6.34 × 101 1.13 × 102 3.55 × 101 2.50 × 101

Apr. 4.64 × 101 1.76 × 101 8.07 × 101 3.65 × 102 4.97 × 101 9.53 × 101 2.76 × 101 3.75 × 101

May 7.38 × 101 9.38 × 100 9.48 × 101 3.42 × 102 7.31 × 101 9.36 × 101 1.19 × 101 4.52 × 101

Jun. 9.81 × 101 1.24 × 101 1.08 × 102 3.04 × 102 7.30 × 101 8.90 × 101 1.58 × 101 1.97 × 101

Jul. 1.13 × 102 2.78 × 100 1.06 × 102 3.08 × 102 7.58 × 101 9.51 × 101 7.35 × 100 3.62 × 101

Aug. 7.86 × 101 1.02 × 100 1.01 × 102 3.43 × 102 5.43 × 101 1.07 × 102 1.13 × 101 4.77 × 101

Sep. 4.93 × 101 1.40 × 101 8.16 × 101 3.75 × 102 4.37 × 101 9.79 × 101 1.95 × 101 3.89 × 101

Oct. 7.75 × 100 3.57 × 101 7.33 × 101 4.35 × 102 5.24 × 101 9.21 × 101 2.02 × 101 2.78 × 101

Nov. 1.33 × 10−1 5.50 × 101 6.31 × 101 4.92 × 102 6.54 × 101 3.79 × 101 4.08 × 100 2.40 × 100

Dec. 5.00 × 10−2 7.60 × 100 6.50 × 101 5.21 × 102 1.41 × 102 8.03 × 100 0.00 × 100 0.00 × 100

Total 4.91 × 102 2.52 × 102 9.60 × 102 4.83 × 103 8.44 × 102 9.24 × 102 1.69 × 102 2.88 × 102

As expected, because of the thermal-load-following approach, the electrical and
thermal energy production of the CHP plant was significantly affected by the load pro-
file of the connected user. By comparing the results reported in Table 8 with those in
Table 6, it can be noted that, overall, the electrical and thermal energy production of the
CHP plant is lower (5214 kWhe and 48,023 kWth, respectively, in the case of a fuzzy logic
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controller), although the conversion efficiencies of the ORC unit are almost the same. On
the contrary, during winter, the fuzzy logic controller is able to improve the integration with
the TES unit time, thus supporting the ORC operation also in OM5 and OM6, as reported in
Table 9. On an annual basis, in the case of a fuzzy logic controller, the operation of the
plant in OM3 increases (about 844 h/year compared to 262 h/year in the case of a baseline
controller), the operating hours of the ORC system reduce (about 3220 h/year in the case
of a baseline controller and about 2830 h/year with a fuzzy logic controller) and the solar
field is subjected to a longer period of defocusing (OM−1).

To better appreciate the peculiarities of the fuzzy logic controller in case the plant
is coupled with a school building load profile, the daily trends of the most important
performance parameters are reported in Figure 8a–d for a sunny winter day and a partially
cloudy mid-season day by comparing the impact of both controllers. Independent from the
controller, when the solar radiation is high, and, as a consequence, the collected thermal
energy, the diathermic oil reaches a temperature level high enough to run the ORC under
nominal operating conditions with almost constant electrical and thermal power outputs.
On the contrary, when the TES also supplies energy to the ORC unit, the inlet temperature
of the diathermic oil to the evaporator may reduce with time and the power outputs from
the ORC as well. As can be clearly noted, the fuzzy logic controller is able to extend the
operation of the ORC unit for a longer period when a thermal load is required, thus better
exploiting the collected thermal energy by the solar field. This is obtained by reducing the
number of switches between the different OMs when the thermal energy demand is absent
or low (i.e., in the afternoon), while storing the collected thermal energy in the latent heat
TES (on a typical winter day, the plant works in OM3 for a significantly longer period). The
benefits of the fuzzy logic controller are even higher during the mid-season days, when
the TES is also able to provide thermal energy to the ORC unit in the early morning, thus
covering most of the energy demand while operating in OM5 and OM6.
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This is possible thanks to the higher temperatures reached by the TES unit in the case
of a fuzzy logic controller, as reported in Figure 9a–d. Hence, during a typical winter day,
the system can also prolong its operation when the collected thermal energy decreases by
working in OM6, while during the mid-season days, the collected thermal energy by the
solar field allows full melting of the PCM material and thus the operation of the plant also
in OM5. Hence, it is evident that the fuzzy logic controller permits better usage of the TES
unit, in accordance with the information embedded in the Time variable, which accounts
for the periods of time when the load is expected to be higher.
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In Tables 10 and 11, instead, the performances of the plant when integrated with a
residential user load profile are reported in the case of a fuzzy logic controller.

In this case, as can be noted by comparing the results reported in Table 10 with
those in Table 6, the overall electrical and thermal energy production of the CHP plant
is higher (6450 kWhe and 58,800 kWth, respectively, in the case of a baseline controller
and 6740 kWhe and 61,680 kWth, respectively, in the case of a fuzzy logic controller),
although the conversion efficiencies of the ORC unit are almost the same. According to the
detailed results of the operating hours reported in Table 8, with the fuzzy logic controller,
the operating time of the ORC is about 3450 h/year, while with the baseline controller, it is
3220 h/year (increase of about 7%). In particular, the use of the TES unit is significantly
extended. Indeed, in the case of a fuzzy logic controller, the solar field charges the TES
443 h/year in OM3 and about 1320 h/year in OM4, while with the baseline controller, the
operating hours in these OMs are about 262 h/year and 1270 h/year, respectively. As a
consequence, in the case of a fuzzy logic controller, the operational time of the plant in
OM5 is higher: more precisely, it is about 914 h/year versus 723 h/year with the baseline
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controller. Hence, the fuzzy logic controller is able to improve the contribution of the TES
in performing load following.

Table 10. Micro-solar ORC plant performance in the case of a fuzzy logic controller for a residential user load profile:
collected thermal energy by the LFR (Eth,LFR), inlet thermal energy to the ORC unit (Eth,ORCin), electric energy output
from the ORC (Eel,ORC), thermal energy output from the ORC (Eth,ORCout), electric efficiency (ηel,ORC), thermal efficiency
(ηth,ORC), input thermal energy to the TES (Eth,TESin), and output thermal energy to the TES (Eth,TESout).

Month Eth,LFR
(kWh)

Eth,ORCin
(kWh)

Eel,ORC
(kWh)

Eth,ORCout
(kWh)

ηel,ORC
(%)

ηth,ORC
(%)

Eth,TESin
(kWh)

Eth,TESout
(kWh)

Jan. 3.02 × 103 1.58 × 103 1.24 × 102 1.15 × 103 7.82 72.50 7.84 × 102 −1.68 × 102

Feb. 5.42 × 103 3.84 × 103 3.03 × 102 2.78 × 103 7.89 72.45 1.32 × 103 −6.61 × 102

Mar. 9.62 × 103 7.51 × 103 5.95 × 102 5.44 × 103 7.92 72.42 3.32 × 103 −2.55 × 103

Apr. 1.09 × 104 8.56 × 103 6.79 × 102 6.20 × 103 7.93 72.42 3.80 × 103 −3.08 × 103

May 1.28 × 104 1.02 × 104 8.05 × 102 7.35 × 103 7.93 72.42 4.29 × 103 −3.52 × 103

Jun. 1.42 × 104 1.14 × 104 9.06 × 102 8.26 × 103 7.94 72.41 4.72 × 103 −3.94 × 103

Jul. 1.54 × 104 1.25 × 104 9.92 × 102 9.06 × 103 7.94 72.42 5.18 × 103 −4.47 × 103

Aug. 1.39 × 104 1.13 × 104 8.98 × 102 8.20 × 103 7.93 72.42 4.81 × 103 −4.05 × 103

Sep. 1.13 × 104 9.10 × 103 7.21 × 102 6.59 × 103 7.93 72.42 4.09 × 103 −3.38 × 103

Oct. 7.36 × 103 5.53 × 103 4.37 × 102 4.00 × 103 7.90 72.44 2.11 × 103 −1.41 × 103

Nov. 3.79 × 103 2.33 × 103 1.83 × 102 1.69 × 103 7.87 72.46 8.43 × 102 −2.24 × 102

Dec. 2.64 × 103 1.33 × 103 1.02 × 102 9.70 × 102 7.62 72.69 7.84 × 102 −2.75 × 102

Total 1.10 × 105 8.52 × 104 6.74 × 103 6.17 × 104 7.88 72.45 3.61 × 104 −2.77 × 104

Table 11. Number of hours of operation modes in the case of a fuzzy logic controller for a residential user load profile.

Month OM−1
(h)

OM0
(h)

OM1
(h)

OM2
(h)

OM3
(h)

OM4
(h)

OM5
(h)

OM6
(h)

Jan. 1.00 × 10−1 4.37 × 101 6.45 × 101 5.35 × 102 8.20 × 101 1.85 × 101 0.00 × 100 1.70 × 100

Feb. 1.33 × 10−1 5.10 × 101 5.84 × 101 4.07 × 102 3.89 × 101 7.69 × 101 1.09 × 101 2.83 × 101

Mar. 6.25 × 100 3.33 × 101 5.65 × 101 3.57 × 102 2.90 × 101 1.39 × 102 8.62 × 101 3.67 × 101

Apr. 2.18 × 101 5.09 × 101 6.97 × 101 2.88 × 102 1.50 × 101 1.31 × 102 1.05 × 102 3.84 × 101

May 3.72 × 101 5.82 × 101 7.83 × 101 2.36 × 102 1.86 × 101 1.47 × 102 1.19 × 102 5.01 × 101

Jun. 4.78 × 101 4.46 × 101 8.36 × 101 1.91 × 102 5.47 × 100 1.64 × 102 1.29 × 102 5.48 × 101

Jul. 5.95 × 101 4.80 × 101 8.49 × 101 1.68 × 102 5.58 × 100 1.70 × 102 1.48 × 102 5.96 × 101

Aug. 3.60 × 101 4.54 × 101 8.22 × 101 2.12 × 102 7.67 × 100 1.68 × 102 1.43 × 102 4.90 × 101

Sep. 1.24 × 101 4.40 × 101 5.98 × 101 2.74 × 102 1.52 × 101 1.57 × 102 1.21 × 102 3.66 × 101

Oct. 1.93 × 100 6.36 × 101 6.98 × 101 4.06 × 102 2.75 × 101 1.01 × 102 4.89 × 101 2.44 × 101

Nov. 1.50 × 10−1 5.78 × 101 6.31 × 101 4.93 × 102 5.67 × 101 3.79 × 101 3.08 × 100 8.15 × 100

Dec. 5.00 × 10−2 6.88 × 100 6.50 × 101 5.21 × 102 1.42 × 102 8.02 × 100 0.00 × 100 0.00 × 100

Total 2.23 × 102 5.47 × 102 8.36 × 102 4.09 × 103 4.43 × 102 1.32 × 103 9.14 × 102 3.88 × 102

Finally, Figure 10a,b and Figure 11a,b report the daily trends of the most important
performance parameters of the plant and of the TES unit when connected with a residential
user for a typical winter day. In addition, in this case, the use of the TES is extended,
although the overall benefit is a bit lower than in the case of the school load profile. In any
case, the fuzzy controller is able to reduce the number of switches between the different
OMs (as can be seen by comparing Figure 10a,b) and to better follow the peak demands
in the time range of 14:00–17:00. Nevertheless, perfect following cannot be achieved,
especially in the early hours of the day, since the temperature of the latent heat TES unit
is not high enough to run the ORC (OM5) and the collected thermal energy used to heat
up the diathermic oil. In any case, the absence of an additional TES unit between the
ORC system and the users to store the thermal energy output from the condenser of the
ORC unit does limit the capability of the plant in satisfying the thermal energy demand
when the solar radiation is low. Nevertheless, the potential of the proposed fuzzy logic
controller in increasing the electrical and thermal energy production of the plant together
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while better satisfying the required thermal energy demand is also proven in the case of a
residential user.
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4. Conclusions

In this work, a fuzzy logic controller performing the thermal load following of different
user profiles was developed to improve the energy use and overall conversion efficiency of
a micro-solar CHP plant based on an LFR solar field. First, an ANN was developed by the
authors to recognize the kind of user based on the related thermal load, and then different
sets of linguistic rules were included in the fuzzy logic controller to better adjust the plant
operation with the request of the specific user.

Hence, the performances of the plant in the case of a fuzzy logic controller were
assessed and compared with those in the case of a baseline controller. In general, the
proposed fuzzy controller shows good capability in performing the load following by
increasing the contribution of the TES unit in supplying the ORC unit and reducing the
number of switches between the different OMs. When coupled with a school building load
profile, the plant works in OM3 for a significantly longer period by storing the collected
thermal energy from the solar field into the TES unit (when thermal demand is absent or
low) and providing this amount of thermal energy to the ORC unit in the early morning
after operating in OM5 and OM6. In this way, although the overall electrical and thermal
production of the ORC unit is lower, the plant is able to cover more the thermal energy
demand of the user. When coupled with a residential user load profile, instead, the electrical
and thermal production of the plant even increases by means of a fuzzy logic controller but
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the absence of an additional TES unit between the ORC system and the user to store the
thermal energy output from the condenser of the ORC unit limits the ability of the plant in
satisfying the thermal energy demand all the time.

In any case, the analysis has proven the capability of the proposed fuzzy logic con-
troller in performing thermal load following, and the proposed control strategy could also
be adopted in the case of other integrated systems based on CSP technologies and latent
heat TES units.
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Nomenclature

A internal cross-sectional area of the tube (m2)
Asf area of the primary collectors (m2)
BOP balance of the plant
cp specific heat (kJ/(kg·K) )
CHP combined heat and power
CSP concentrated solar power
f factor depending on the Nusselt number
DNI direct normal irradiation (kW/m2)
HTF heat transfer fluid
IAM incident angle modifier
LFR linear Fresnel reflector
.

m mass flow rate (kg/s)
.

mc mass flow rate of the cooling water (kg/s)
.

mf mass flow rate of the organic fluid (kg/s)
OM operation mode
ORC organic Rankine cycle
Pexch exchanged power between the fluid and the environment (kW)
Pel electrical power output from the ORC unit (kWe)
Pth thermal power output from the ORC unit (kWth)
PLFR,out outlet thermal power from the LFR (kWth)
PCM phase change material
PORC,min minimum power threshold of the ORC unit (kWth)
PORC,max maximum power threshold of the ORC unit (kWth)
SOC state of charge
T temperature (◦C)
TLFR,out outlet temperature of the diathermic oil from the LFR (◦C)
TORC,off switch-off temperature of the ORC (◦C)
TORC,on switch-on temperature of the ORC (◦C)
Tin inlet temperature of the cooling water at the condenser (◦C)
Tout outlet temperature of the cooling water at the condenser (◦C)
TTES,av average temperature of the TES tank (◦C)
TTES,max upper temperature threshold of the TES tank before defocus (◦C)
TES thermal energy storage
u velocity (m/s)
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∆he actual specific enthalpy difference across the expander (kJ/(kg K) )
∆hp actual specific enthalpy difference across the pump (kJ/(kg K) )
∆TTES temperature difference between the diathermic oil and the PCM
∆tint-timestep time interval of the internal time step (s)
ηel electric efficiency
ηm mechanical efficiency
ηopt optical efficiency
ηrec efficiency of the receiver
θ solar incident angle
ρ diathermic oil density (kg/m3)
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