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Prediction of pellet quality through machine learning
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Abstract

In recent years, pellet has received increasing attention among other biofuels
due to its low storage costs and high combustion efficiency. The traceability
of pellet quality along the entire supply chain is a critical issue, since fraud-
ulent behaviours, such as the replacement with lower quality pellet, may
both cause an economic damage and harm consumers’ health. Traditionally,
pellet quality is evaluated through laboratory analysis, which is costly and
time-consuming. To overcome these limitations, in this work we define a
methodology for quick and low-cost evaluation of pellet quality, which may
be used along the entire supply chain. The proposed technique is based
on the classification of pellet spectra through machine learning techniques.
Spectra are obtained by means of a near-infrared (NIR) spectrophotometer,
which is a relatively cheap instrument of small dimensions (even portable)
that is suitable for on-site analysis at any phase of the supply chain. We pro-
pose two different approaches, namely an automatic classification of pellet,
which does not require laboratory analysis, and a semi-automatic approach,
that increases the overall accuracy but requires laboratory analysis for uncer-
tainly classified samples. We validate the methodology by performing several
experiments on real-world data, by training different machine learning algo-

∗Corresponding author
Email addresses: m.mancini@univpm.it (Manuela Mancini), a.mircoli@univpm.it

(Alex Mircoli), d.potena@univpm.it (Domenico Potena), c.diamantini@univpm.it
(Claudia Diamantini), d.duca@univpm.it (Daniele Duca), g.toscano@univpm.it
(Giuseppe Toscano)

Preprint submitted to Elsevier April 24, 2024



rithms and evaluating the impact of several transformations introduced to
reduce the scattering effect, which is a well-known issue related to NIR data.

Keywords: pellet quality, near-infrared spectroscopy, machine learning,
supply chain management, ash content, biofuel analysis, biomass analysis

1. Introduction

Nowadays, renewable energy is becoming increasingly important as a
mean to meet the growing global energy demand1, while keeping the impact
on the environment under control. Among the different types of renewable
energies, energy from biomass sources has proven to be of strategic impor-
tance. According to the International Energy Agency (IEA), it accounts for
9% of global primary energy supply (International Energy Agency, 2017). In
particular, pellet turns out to be one of the most competitive biomass sources
(Magelli et al., 2009; Mola-Yudego et al., 2014; Selkimaki et al., 2010). Al-
though pellet can be made up of different biomass materials, traditionally the
most used are the woody materials from wood processing industries, wood
shavings and wood chips (Nielsen et al., 2009). Pellet is created by the pel-
letizing process, which consists in condensing raw materials under heat and
pressure. The result is a product with cylindrical shape, high heating value
and low moisture content. These features make pellet advantageous in com-
parison to other biomasses, as they allow to obtain a clean burning and a
reduction of produced ashes. In addition, the high fuel density of pellet re-
sults in a reduction of transportation and storage costs (Mola-Yudego et al.,
2014; Selkimaki et al., 2010). Pellet can be used both for residential heating
and industrial use (co-generation plants). In both cases its quality plays an
essential role. Pellets with high quality and more constant properties make
easier to regulate the combustion process, avoiding technical problems, re-
ducing maintenance costs and ensuring high efficiency (Filbakk et al., 2011;
Garćıa et al., 2019). This is particularly true for small-scale boilers and
stoves, since industrial boilers are equipped with more advanced flue gas
cleaning, combustion and process control systems (Garćıa et al., 2019).

According to the technical standard EN ISO 17225-2, pellet is divided
into three quality classes (A1, A2 and B) on the basis of qualitative features

1According to the International Energy Agency the global energy demand grew by 2.3%
in the 2018 - https://www.iea.org/geco/
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and chemical-physical parameters. The A1 and A2 classes guarantee quality
requirements that allow pellet to be used in residential devices, while pellet
belonging to B class can be used only for industrial purposes. Out of spec-
ification (OOS) pellets are of poor quality, but can be still used in special
industrial boilers equipped with more advanced flue gas cleaning and process
control systems able to handle high ash content. With regard to the chem-
ical parameters, ash content is one of the most relevant to be monitored on
biomass samples (Duca et al., 2014). In fact, ash content is related to other
critical elements like sulphur, chlorine and potassium and gives useful indi-
cations about problems for combustion devices (Toscano et al., 2013, 2016;
Monti et al., 2008). In particular, the technical standard assigns samples
with ash content less than 0.7% to A1 class, with ash content between 0.7%
and 1.2% to A2 class and with ash content between 1.2% and 2.0% to B
class.

Given the increasing wood pellet imports in Europe over the years (Sun
and Niquidet, 2017), it is fundamental to guarantee the traceability of its
quality. In fact, since the pellet supply chain involves several actors from
production to retail, there is high risk of fraudulent behaviours (e.g., substi-
tution with lower quality pellet) that may affect the quality of the combustion
and hence expose consumers to health risks. Currently, ash content can be
determined by sending a pellet sample to a laboratory for specific analysis,
which requires some days. Nevertheless, biomass has a very high variability
and chemical complexity, which implies that the results of the analysis of a
single sample may not be representative of the entire batch. As a matter of
fact, from a study carried out within the PHYDADES project, it was found
that laboratory analysis is error-prone and 80% of the errors depend on sam-
pling, 15% on sample preparation and 5% on analyses (Burvall et al., 2008).
Furthermore, in order to trace the quality of pellet throughout the entire
supply chain, different analysis should be performed at each phase. Hence,
determining pellet quality takes a long time, which results in additional costs
in terms of pellet immobilization at each phase of the supply chain.

In this paper we propose a cheap and quick methodology to assign pellet
samples to a quality class. To this end, we use machine learning techniques
to classify pellet samples, represented as spectra obtained by means of near-
infrared (NIR) spectrophotometer. NIR spectroscopy is a rapid and low-cost
analysis technique, and hence can be used in every phase of the supply chain.
Indeed, since the NIR spectrophotometer is small (even portable), it can be
used directly on a pellet batch, avoiding the delay due to laboratory analysis
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(i.e., sample shipping, sample preparation and analysis). Furthermore, since
acquisition time needs few seconds, several spectra from different samples
can be easily gathered, reducing the issue of sample representativeness. In
details, we propose two different approaches: i) automatic classification of
pellet on the basis of ash content, which does not require laboratory analysis,
and ii) semi-automatic approach, which increases the overall accuracy but
requires laboratory analysis for uncertainly classified samples. Furthermore,
we evaluate several preprocessing techniques which aim at reducing two well-
known issues related to NIR method, namely the scattering effect and the
high dimensionality of data.

The rest of the paper is structured as follows: in Section 2 we present
some related work on the evaluation of pellet characteristics through NIR
spectroscopy. Section 3 introduces the methodology for preprocessing and
classification of pellet, while Section 4 presents the results of experiments on
real-world data. Finally, Section 5 draws conclusions and discusses future
work.

2. Related Work

Different studies have investigated the applicability of NIR spectroscopy
for the analysis of the quality of solid biofuels. NIR method has been ex-
amined for the prediction of both qualitative (i.e., origin and source) and
quantitative parameters of biomass, as requested by the technical standard
EN ISO 17225.

NIR method has been already investigated for predicting the ash con-
tent on different biofuels. In Fagan et al. (2011), authors tried to predict
the main chemical-physical properties of two dedicated bioenergy crops us-
ing NIR spectroscopy. In particular, Partial Least Squares (PLS) regression
models were developed for the prediction of moisture, ash, carbon and nitro-
gen content with poor results for both ash and carbon content. In Gillespie
et al. (2015), a hyperspectral imaging instrument is used for the prediction
of the same quantitative parameters directly on pellet samples. Even in this
case the performance of the PLS model for the prediction of ash content
resulted to be poor. In Maranan and Laborie (2008), NIR spectra of dif-
ferent hybrid poplar clones samples have been acquired and their chemical
characteristics predicted using PLS models.

NIR spectroscopy has been used also for real-time monitoring of pel-
let quality. In Lestander et al. (2009), authors studied the possibility of
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using online NIR spectroscopy directly in the pelletizing process for predict-
ing moisture content, sawdust blends and energy consumption of the pellet
press, with the aim of optimizing the pellet production process. In a succes-
sive study, the authors also examined the opportunity of getting information
about species composition and moisture content of the dried wood particles
(Lestander et al., 2012). The possibility of predicting moisture content, gross
calorific value and ash content in real time by analyzing wood samples placed
in a rotating cup through NIR spectroscopy was studied in Lestander and
Christofer (2005). A reasonably good model for the prediction of ash content
was developed using bi-orthogonal partial least squares regression (BPLS).

It is to be noted here that all the mentioned studies have used regression
algorithms for the prediction of the ash content of pellet samples. Consider-
ing the poor results of the regression models for the ash content prediction
and the standard EN ISO 17225-2 which defines three quality classes for pel-
let on the basis of ash content values, the use classification models could be
a good alternative to predict pellet quality. To the best of our knowledge,
the use of classification algorithms in literature is focused on the evaluation
of pellet shape and density, which is performed through radial basis function
networks (Kusumoputro et al., 2013) or adaptive neuro fuzzy inference sys-
tems (ANFIS) (Sutarya and Kusumoputro, 2011), and to the detection of
origin and source of the material (Santoni et al., 2015; Sandak et al., 2011;
Espinoza et al., 2012).

In order to guarantee the product’s complete traceability, the analysis of
pellet quality should be extended to the entire supply chain, which is usually
long and has different analysis requirements among the various steps. In
this regard, in Quddus et al. (2017), authors discussed the possibility of
developing optimization models for the design and management of the pellet
supply chain. However, although machine learning techniques were applied
to the analysis of the entire supply chain in different domains (e.g., (Fu and
Chien, 2019; Baryannis et al., 2019; Cavalcante et al., 2019)), to the best of
our knowledge only Medina-Gonzalez et al. (2020) deals with biofuel supply
chain and no work focuses on pellet. The analysis of the supply chain was
addressed from different points of view, for instance to predict demand in
order to improve the resilience of the supply chain (Fu and Chien, 2019);
to minimize risks by predicting adverse or undesirable circumstances (e.g.
a delivery delay) (Baryannis et al., 2019); and to identify resilient suppliers
(as opposed to critical suppliers), i.e. manufacturers who do not exceed the
delivery deadlines (Cavalcante et al., 2019). In the field of biofuel, authors of
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Figure 1: The proposed methodology for pellet classification

(Medina-Gonzalez et al., 2020) rely on machine learning techniques coupled
with mathematical programming for the optimization of the biomass supply
chain under conditions of multiple factors of uncertainty (e.g. fluctuating
demand, manufacturers with unpredictable delivery times, etc.).

3. Methodology

It is fundamental to get information about pellet quality not only at the
end of the pelletizing process, when the product is ready to be sold, but at
each step of the supply chain, in order to monitor and assess the quality
of the entire process. To enable this control, we define a methodology that
consists in analyzing pellet samples by means of spectroscopy techniques and
classifying the resulting spectral data through machine learning techniques.
The methodology includes different steps, as depicted in Figure 1. First,
near-infrared data gathering is performed on a pellet sample; then, the re-
sulting spectra are treated with preprocessing techniques aimed at reducing
scattering effects and data dimensionality. Finally, spectral data are classified
through machine learning algorithms.

A detailed description of each methodology step is presented in the fol-
lowing subsections, along with the discussion of the main issues.

3.1. NIR Data Gathering

The main goal of this step is the acquisition of near-infrared spectra from
different pellet samples.

In NIR spectroscopy, molecular chemical bonds are struck by near-infra-
red radiation, which causes vibrations at different energy level on the basis
of the molecular structure and chemical composition of the material. The
spectrophotometer returns a spectrum, where for each NIR wavelength the
corresponding energy absorption value is reported (Pasquini, 2003).
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Different NIR spectrophotometers can be used for spectral analysis. Since
the on-line quality control of pellet can be performed directly in the produc-
tion line, it is important for the instrument to be robust, so that its optical
parts are not damaged by environmental humidity or dust. Therefore, the
technology employed for the wavelength selection should be based on ro-
bust solutions, as fixed dispersive optics or sensor arrays, where no moving
parts are present. In this work, spectral measurements have been performed
in reflectance using an online NIR spectrophotometer (NIR-Online; Buchi
Labortechnik AG, Flawil, Switzerland). The instrument is based on diode-
array technology and is equipped with a rotating module (X-Rot module;
Buchi Labortechnik AG, Flawil, Switzerland) placed below the spectropho-
tometer and simulating the production line in a pellet plant or the input
material in a power plant. Each spectrum is an average of 32 successive
scans; all the scans have been performed at room temperature (18-20 ◦C).
The wavelength range is from 400 to 1,700 nm and the spectral resolution is
5 cm-1, resulting in 261 absorption values.

Since the pellet usually has a cylindrical shape, data gathering through
NIR spectrophotometer could be affected by scattering effect. This is a
typical physical phenomenon that happens during spectra acquisition from
solid samples, consisting in the deviation of light from a straight trajectory.
Scattering effect leads to different spectra when the NIR analysis is repeated
on the same sample, as shown in Figure 2. The average distance ∆ between
two different spectra S1 and S2 can be calculated through the formula ∆ =

1

N

N∑
i=1

√
(S1(fi)− S2(fi))2, where S1(fi) and S2(fi) are the absorbance values

at frequency fi of S1 and S2 respectively. The value of ∆ of the two spectra
in Figure 2 is 1.03 · 10−2.

In order to take into account the scattering effect, we apply two strategies:
a physical transformation of the sample and a transformation of the spec-
trum. The first transformation consists in stabilizing the material at 40◦C
for 24 hours and grinding it below 1 mm of particle size. This transformation
is compliant to UNI EN 14780:2017:“Methods for sample preparation”, and
guarantees that all samples reach similar moisture content and the spectral
differences are related only to chemical differences. The transformation of
the spectrum is based on the use of derivatives and will be described on
Subsection 3.2.

Figure 3 shows two spectra obtained by repeating the NIR analysis after
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Figure 2: Two spectra (dotted and solid lines) obtained repeating the NIR analysis on the
same randomly selected pellet sample.

having ground the same sample used in Figure 2. In this case, the scattering
effect is reduced; indeed, the average distance between the two spectra is
∆ = 3.5 · 10−3, which is lower than the one computed on the two spectra in
Figure 2.

Hence, data acquisition through NIR spectrophotometer is performed on
both original and, after the sample preparation, ground pellet samples. Here-
after we refer to the two sample sets as pellet and ground pellet.

Finally, in order to define the training set to be used in the classification
step of the proposed methodology, we assign each sample to a quality class.
To this end, ash content is calculated according to EN ISO 18122:2015. More
in detail, the ash content can be determined using a thermo-gravimetric
analyzer (TGA). The ground pellet samples are incinerated using a muffle
furnace at the controlled temperature of 550± 10◦C, then the residues mass
is used to calculate the percentage of ash content air dried (Ac). Samples
with ash content less than 1.2% are assigned to class A, samples with ash
content between 1.2% and 2.0% are assigned to class B and samples with
ash content greater than 2.0% are assigned to the out-of-specification (OOS)
class that can be used only for limited industrial applications with a reduced
economic value. Unlike the technical standard EN ISO 17225-2, we combine
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Figure 3: Two spectra (dotted and solid lines) obtained repeating the NIR analysis on the
same randomly selected ground pellet sample.

the two classes A1 and A2 into the class A since they can be used in the
same combustion devices.

3.2. Data Preprocessing

As introduced in 3.1, the transformation of spectrum is a way to reduce
the scattering effect. In particular, the use of first and second derivatives
is a widely adopted preprocessing technique in spectroscopy to reduce offset
difference between spectra (Rinnan et al., 2009; Rinnan, 2014).

The Savitzky-Golay filter (Savitzky and Golay, 1964) is a method used for
smoothing and deriving spectra with the aim of decreasing the detrimental
effect on the signal-to-noise ratio of the spectra. Basically, the method com-
putes several convolutions by fitting a low-degree polynomial on successive
sub-sets of adjacent frequencies. The fitted polynomial is used to calculate
the first and second derivatives at the central point of each sub-set. The
procedure is applied for all the points of the spectra subsequently.

As an example, Figure 4 shows the same spectra reported in Figure 2
pretreated with second derivative (Savitzky-Golay filter with 13 smoothing
points and 2nd order polynomial). It is to be noted that the second deriva-
tive removes the additive and slope effects of the scattering, resulting in a

9



Figure 4: Second derivative of two spectra (dotted and solid lines) obtained repeating the
NIR analysis on the same randomly selected ground pellet sample.

reduction of the offset between the spectra. Indeed, the average distance
between the two spectra in Figure 4 is ∆ = 2 · 10−5, which is much lower
than the one computed for related pellet sample.

Both datasets obtained by pellet and ground pellet are transformed by
using the first and the second derivatives, generating four additional datasets.

3.3. Feature Selection and Classification

As described in Subsection 3.1, the NIR spectrophotometer performs
spectral analysis over a wide range of frequencies, providing absorption val-
ues at each wavelength. Therefore, each sample is represented by a high-
dimensional vector composed of 261 elements (called features). The presence
of a large number of features is a well-known problem, usually referred to
as curse of dimensionality, and negatively impacts on the accuracy of clas-
sification. For this reason, we use a feature selection technique to reduce
the number of features, by selecting only the most significant ones for the
considered problem. The proposed technique is based on the use of four
Decision Trees (DTs), each of which is trained on the same dataset using a
different splitting criterion, namely Gini index, information gain, accuracy
and gain ratio. The technique is an extension of the approach proposed in
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(Peng et al., 2002) and (Sugumaran et al., 2007), where a single DT is used
for feature selection. Since in a DT the best splits are performed early while
growing the decision tree, we select only features that appear within the top
levels of all induced DTs; the other features can be discarded since they have
poor discriminating capability. For an evaluation of the optimal number of
features for the considered problem we refer to Section 4.2.

The selected features are used to build a classification model and to pre-
dict pellet quality. To this end, we propose two classification approaches,
namely automatic and semi-automatic approach. The former works at spec-
trum level, that is for each sample only one spectrum is collected, and the
class of the spectrum is assigned to the sample. The latter works at sample
level. Given a set of spectra related to the same sample, if spectra are evenly
classified then the same class is assigned to the sample; otherwise traditional
laboratory analysis is required. In both approaches, the quality class of a
pellet batch is given by majority voting of samples classification.

The use of information from different spectra and, when needed, the use
of laboratory analysis make semi-automatic approach more accurate. How-
ever, semi-automatic approach is slower than automatic one. Furthermore,
automatic approach is advantageous (as well as necessary) when it is diffi-
cult to take more than one spectrum from a sample. This is the case, for
instance, of pellet unloaded from a ship by a conveyor belt, in which a fixed
NIR spectrophotometer can be installed in order to perform real-time anal-
ysis. In such case, pellet continuously flows under the NIR device and hence
it is not possible to repeat a scan on the same sample.

4. Experiments

This section is devoted to discussing the results of the application of
the proposed methodology to real-world data, by training several machine
learning algorithms and evaluating the impact of transformations used to
reduce both the scattering effect and the number of features.

4.1. Experimental setup

The proposed methodology is evaluated by analyzing 70 pellet samples,
which different Italian power plants sent to our laboratory for quality analy-
sis. The sampling period refers to March-May 2017 and February-May 2018.
For each pellet sample, two spectra are extracted. Hence, both pellet dataset
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No. of samples 70
No. of spectra 140
No. of features 261
Class distribution A 48

B 10
OOS 12

Table 1: Dataset characteristics.

(P) and ground pellet dataset (GP) have 140 spectra and 261 features. Table
1 provides an overview of datasets characteristics and class distribution.

In next experiments we consider six datasets generated applying prepro-
cessing techniques described in Subsection 3.2: pellet with no transformation
(P), pellet using first derivative (P-FD), pellet using second derivative (P-
SD), ground pellet (GP), ground pellet using first derivative (GP-FD), and
ground pellet using second derivative (GP-SD). For each dataset, we apply
seven classification algorithms, namely Support Vector Machine (SVM), De-
cision Tree (DT), Random Forest (RF), MultiLayer Perceptron (MLP), Lin-
ear Discriminant Analysis (LDA), Näıve Bayes (NB) and k-Nearest Neighbor
(k-NN). In order to set up algorithms, we first varied parameters’ values in
commonly used ranges and then we chose the values that give the best results.
In particular, the ranges for each algorithm are as follows:

• SVM: kernel ∈ {linear, rbf(gamma∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}),
polynomial(degree ∈ {2, 3, 4})}; C ∈ {0.001, 0.01, 0.1, 0, 1, 10, 100, 1000};
max iterations ∈ {1000, 5000, 10000, 50000, 100000, 150000, 200000}.

• DT: max depth from 5 to 30 with step 5; min leaf size from 1 to 10 with
step 1; splitting criterion={gini index, information gain, gain ratio,
accuracy}.

• RF: splitting criterion ∈ {gini index, information gain, gain ratio, ac-
curacy}; num trees ∈ {10, 20, 50, 100, 200, 500, 1000}; max depth from
5 to 30 with step 5; min leaf size from 1 to 10 with step 1.

• MLP: activation function ∈ {tanh, ReLU, maxout}; epochs ∈ {100,
200, 500, 1000, 1500, 2000, 2500}; units per layers from 10 to 100 with
step 10; hidden layers ∈ {1, 2, 3}.
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Algorithm Parameters

SVM kernel={linear(C=1), rbf(gamma=0.001; C=10),
polynomial(degree=3; C=0.001)}, max iterations=100000

DT splitting criterion={gini index, information gain,
gain ratio, accuracy}, max depth=20, min leaf size=2

RF num trees=100, splitting criterion=information gain
MLP activaction function=Maxout, epochs=2000,

hidden layers=2, units per layer=50
NB Laplace correction=true
k-NN k=3

Table 2: List of algorithms and parameters setting.

• NB: Laplace correction ∈ {true, false}.

• K-NN: k from 3 to 10 with step 1.

The values of parameters we use in the next experiments are reported in
Table 2.

We compare classification algorithms by means of two metrics: classifica-
tion accuracy and F1 score. Let xij be the number of data belonging to j-th
class which have been classified as i-th class. Let C be the number of classes
and N be the total number of data. The accuracy achieved by a classifier is
computed as:

accuracy =
1

N

C∑
i=1

xii (1)

Precision and recall of i-th class are determined as follows:

precisioni =
xii

C∑
j=1

xij

(2)

recalli =
xii

C∑
j=1

xji

(3)

F1 score of i-th class is equal to:
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Dataset Best classifier Accuracy F1

P-SD NB 0.82 0.75
P-FD RF 0.82 0.68
GP-FD RF 0.81 0.68
P MLP 0.79 0.63
GP-SD SVM (linear kernel) 0.81 0.59
GP SVM (linear kernel) 0.74 0.46

Table 3: Performance of the best classifier for each dataset (without feature selection),
ordered by F1 score.

F1i = 2 · precisioni · recalli
precisioni + recalli

(4)

Therefore, the F1 score achieved by a classification model is defined as the
average of F1i:

F1 =
1

C

C∑
i=1

F1i (5)

The F1 score is considered since in presence of imbalanced datasets (as
the one used in the experiments) it gives more precise information about
the classification performance. In order to make the comparison significant,
we compute the metrics using the leave-one-out cross validation technique.
Since for each sample we have two spectra (which, although not identical,
have very similar values), at each iteration of the leave-one-out the test set is
composed by the two spectra of the same sample. In this way, we guarantee
independence between training and test set. Hence, for each classification
algorithm, we define 70 classification models, compute metrics and return
average values.

4.2. Evaluation of preprocessing techniques

As first goal of our experiments, we evaluate the impact of transformations
used to reduce the scattering effects. To this end, we first analyse results
without applying feature selection technique. Table 3 shows the best result
in terms of accuracy and F1 score for each dataset.

The differences between the various configurations in terms of accuracy
are rather small, but the highest F1 values are obtained when analyzing pellet
samples and pre-treating the data with the second derivative.
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It is to be noted that each transformation of the spectrum improves per-
formance. Indeed, results obtained using first and second derivatives (P-FD,
P-SD, GP-FD and GP-SD) are better than those on corresponding origi-
nal datasets (P and GP). Furthermore, unlike what one could expect, the
grinding process combined with spectral analysis does not contribute to im-
proving pellet classification. Indeed, the physical transformation worsens
the results obtained on the original dataset. All three datasets represent-
ing ground pellet samples (GP, GP-FD, GP-SD) have less performance than
the corresponding datasets with pellet samples (P, P-FD, P-SD). From the
point of view of the implementation of the quality control process, this re-
sult represents an advantage: as a matter of fact, computing derivatives is
a mathematical operation that, unlike grinding, is not time-consuming and
does not require additional equipment.

4.3. Feature selection

As second goal of the experimental evaluation, we evaluate the impact
of the feature selection technique proposed in 3.3. First, in order to choose
the right number of features to be used, we trained all the classifiers several
times, increasing the number of features. In details, at iteration i, we se-
lected only features used in the top i levels of the decision trees (as described
in Subsection 3.3). Figure 5 shows accuracy achieved by all classification
algorithms on the P-SD dataset. In all cases, as the number of levels (and
consequently the number of selected features) grow, the accuracy tends to
stabilize. Results in Figure 5 are constant from the sixth level of the de-
cision trees, corresponding to 19 features. For this reason, in the following
experiments we set to 19 the number of features to be selected.

In order to qualitatively evaluate the selected features, in Figure 6 we
show the second derivative of the averaged spectra of all pellet samples of
each class. Most of the selected features are in the near-infrared region of
the electromagnetic spectrum. In particular, the region from 1330 to 1365
nm is assigned to 1st overtone of CH combination bands (CH stretching and
CH deformation) of cellulose and hemicellulose compounds (Schwanninger
et al., 2011; Popescu et al., 2018). The peak at 1605 nm is also related
to 1st overtone of CH stretching (Schwanninger et al., 2011). Instead, the
1st and 2nd overtones of CH stretching vibrations in methyl and methylene
groups are found in the region from 1100 to 1330 nm (Popescu et al., 2018).
In detail, the peak at 1195 nm is assigned to the 2nd overtone asymmetric
CH stretching vibration of CH3 groups in acetyl ester groups (Schwanninger
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Figure 5: Classification accuracy obtained on P-SD dataset increasing the number of
features.

et al., 2011; Popescu et al., 2018). The assignment is in line with bibliogra-
phy studies (Fagan et al., 2011; Mancini et al., 2018). It is noteworthy that
in Literature the presence of CH containing compounds is recognized to be
indirectly related to the ash content (Gillespie et al., 2015; Lestander and
Rhén, 2005). Hence, having selected features mainly assigned to CH com-
pounds confirms their suitability for predicting pellet quality classes. Other
features are related to the visible part of the spectrum. Relevant differences
in the averaged spectra of the three quality classes of pellet samples can be
seen at peak 435, 665, 670 and 680 nm. Lastly, it is important to note that
not all the spectral differences are selected by our features since some of them
are probably not relevant for ash content prediction but could be useful for
other quality parameters. For example, the peak at 1435 nm is essential
for moisture content prediction, as it is assigned to the OH bonds of water
(Schwanninger et al., 2011).

Table 4 reports the best results in terms of accuracy and F1 score obtained
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Figure 6: Second derivative averaged spectra of pellet samples divided by A, B and OOS
quality classes. The selected features are marked with dotted lines.

for each dataset when feature selection technique is applied. It is to be noted
that the use of feature selection provides a general improvement in terms of
classification accuracy and F1. In particular, the best result is again obtained
by the Näıve Bayes algorithm on the pellet dataset preprocessed with second
derivative. In this case, we have an increase of 8.53% in accuracy and 12.00%
in F1, if compared with P-SD without feature selection. Analyzing results
achieved by all twelve classification models, it turns out that results obtained
on P-SD dataset are always better than those obtained on P dataset, in 9 out
of 10 models are better than results obtained on GP dataset, and in 8 out 10
cases are better than those achieved on GP-FD and GF-SD datasets. Results
on P-SD and P-FD are similar in terms of accuracy (P-SD wins P-FD 6 times
out of 10), but P-SD dataset performs better in terms of F1 score. Hence,
P-SD with feature selection has proved to be the best dataset for predicting
pellet quality class.

In order to better appreciate the effect of feature reduction on the classifi-
cation, in Table 5 are reported the best performance achieved by all classifica-
tion algorithms on P-SD dataset with and without applying feature selection.
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Dataset Best classifier Accuracy F1

P-SD NB 0.89 0.84
P-FD RF 0.86 0.75
GP-FD MLP 0.85 0.75
GP-SD MLP 0.83 0.73
GP MLP 0.74 0.57
P SVM (linear kernel) 0.79 0.51

Table 4: Performance of the best classifier for each dataset (with feature selection), ordered
by F1 score.

It should be noted that, regardless of the classification algorithm, feature se-
lection leads to an improvement in terms of accuracy and F1. Performance
does not change only in the case of SVM with polynomial kernel, where there
is a slight loss in terms of F1. On average, when feature selection is adopted
the classification accuracy (F1 score) increases from 0.76 to 0.84 (from 0.66
to 0.72). The effect of feature reduction is more evident using LDA, in which
accuracy doubles.

4.4. Classification approaches

This subsection is devoted to present the approaches to classify a batch
of pellet using NIR technology, namely the automatic and semi-automatic
approaches. Basically, the former approach classifies each spectrum inde-
pendently, hence the class of a sample is given by the class of its spectrum.
In the latter approach the classification of a sample is obtained by applying
unanimity rule to classification of spectra related to the sample and per-
forming traditional laboratory analysis for uncertain classifications. In both
approaches, the quality class of an entire batch corresponds to the majority
class of its samples.

In order to analyze performance of the automatic approach, in Table 6 we
report the confusion matrix obtained by NB trained on P-SD dataset with
feature selection, which achieves the best performance. The three classes
have good recall, which means that only few samples for each class are mis-
classified. For what concerns precision, the values for classes A and OOS are
high while the value for B class is low: only 17 out of 30 spectra predicted
as B actually belong to this class. This could be explained by consider-
ing that the B class has intermediate values of ash content and hence same
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No Feature Selection Feature Selection

Classifier Accuracy F1 Accuracy F1

LDA 0.40 0.37 0.80 0.65
DT (gain ratio) 0.74 0.65 0.81 0.71
DT (information gain) 0.74 0.54 0.80 0.65
DT (gini index) 0.71 0.59 0.79 0.66
DT (accuracy) 0.81 0.71 0.83 0.72
SVM (linear) 0.81 0.68 0.84 0.73
SVM (rbf) 0.83 0.65 0.85 0.65
SVM (polynomial) 0.83 0.69 0.83 0.68
K-NN 0.79 0.71 0.85 0.73
NB 0.82 0.75 0.89 0.84
MLP 0.82 0.68 0.85 0.74
RF 0.79 0.69 0.86 0.78

Table 5: Best performance achieved by all classification algorithms on P-SD, without and
with feature selection.

samples could show some similarities with the other two classes. Analyzing
misclassified spectra, it is noteworthy that 5.71% (i.e., 8 samples) of spectra
are assigned to a higher quality class: 3 samples of B class are assigned to A
class, and 5 samples of OOS class to B class. These are fraudulent behaviors,
because it means to consider acceptable for residential use some samples that
can be used only in industry (B samples classified as A), and for industrial
use samples that can be used only in special industrial power plants (OOS
samples classified as B). On the contrary, the 8 spectra belonging to A class

Actual A Actual B Actual OOS Precision

Predicted A 88 3 0 0.97

Predicted B 8 17 5 0.57

Predicted OOS 0 0 19 1

Recall 0.92 0.85 0.79

Table 6: Confusion matrix related to NB on P-SD with FS.
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Actual A Actual B Actual OOS Precision

Predicted A 43 1 0 0.98

Predicted B 3 8 1 0.67

Predicted OOS 0 0 8 1

Undefined 2 1 3

Recall 0.93 0.89 0.89

Table 7: Confusion matrix related to NB on P-SD with FS. Sample classification with
undefined class.

that are labelled as B represent a loss of gain for the manufacturer, as the
selling price depends on the quality class.

It is noteworthy that, in the automatic approach, for each of the 70 clas-
sifiers (obtained applying leave-one-out), the two spectra representing the
same sample are both in the test set, but are classified independently. In
semi-automatic approach we take advantage of having replications of spectra
to increase the accuracy of prediction. To this end, we propose a reformula-
tion of the classification rule, as follows: if the two spectra are classified as
belonging to the same class i, then the sample will be labelled as i; otherwise
the classification is uncertain and the sample will be labelled as undefined.
In this way, some samples (i.e., undefined ones) cannot be automatically
classified and require further investigation in a laboratory, which returns a
correct classification. The effect of this rule on the confusion matrix shown
in Table 6 is reported in Table 7, where each matrix entry represents number
of samples instead of spectra.

Now, only the 7.14% of samples are misclassified, returning an accuracy
of 0.92 and an average F1 of 0.89. Furthermore, both precision and recall
values are higher than ones reported in Table 6. It is noteworthy that only 2
misclassified samples (i.e., less than 3%) are assigned to higher quality class.
Since laboratory analysis is a time-consuming task, unlike the automatic ap-
proach, the use of undefined elements is not suitable for real-time analysis.
However, it considerably reduces the number of pellet samples needing labo-
ratory analysis (i.e., only the 8.57% of samples). Indeed, the time for analysis
in the laboratory mainly depends on samples shipping, samples preparation
(i.e., according to UNI EN 14780:2017, to stabilize the material at 40◦C for
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24 hours and grind it below 1 mm of particle size) and ash content analysis.
In particular, time required for both grinding and ash content analysis de-
pends on the number of samples to be analysed. It should be noted that even
if the most modern instrumentation is adopted, which allows a small set of
samples to be examined at a time, ash content analysis takes at least some
hours for the set2(Liu, 2019). Hence, by reducing the number of samples to
be sent to the laboratory, the semi-automatic approach is both cheaper and
quicker than the traditional approach, which requires the laboratory analysis
for all samples.

4.5. Discussion

On the basis of the experiments presented in previous subsections, we can
define the best approach for evaluating pellet quality at each phase of the
supply chain. It consists of the following steps:

• NIR Data Gathering: given a batch of pellet, there are two main
ways to acquire samples: (i) using an on-line NIR spectrophotome-
ter (which can be easily installed on a conveyor belt) or (ii) using a
hand-held NIR device. In the former case, spectra are continuously ac-
quired, while in the latter two spectra are gathered from each randomly
picked samples. It is to be noted that in both cases the acquisition of
a spectrum through NIR devices requires a very short time.

• Preprocessing: in order to reduce the scattering effect, spectra are
pre-processed by computing second derivative.

• Feature Selection: data dimensionality is reduced by only selecting
predefined relevant features, as described in Subsection 4.3.

• Classification: pellet samples are assigned to quality classes by using
a pre-trained classification model, according to two approaches:

– automatic approach: classification is performed at spectrum level,
namely the quality class of a sample is the same as that of the

2The TGA 701 Leco used in this work allows up to 19 samples to be analyzed simul-
taneously. Since usually each sample is duplicated to reduce errors and one slot is used
for reference analysis, the instrument allows up to 9 different samples simultaneously and
needs around 5 hours to perform the analysis.

21



corresponding spectrum. This approach is suited for fixed NIR
devices (e.g., installed on a conveyor belt);

– semi-automatic approach: classification is performed at sample
level. Given a sample, if the two spectra are evenly classified, then
the quality class is assigned to the sample; otherwise a laboratory
analysis is required. This approach is suited for hand-held NIR
devices.

In both cases, the class with the majority of samples is assigned to the
batch.

Since NIR data gathering requires a very short time and no physical
transformations (e.g., grinding) is needed, the proposed methodology allows
to easily collect data from several samples. This overcomes the problem of
sample representativeness, ensuring a more accurate assignment of the entire
batch to a quality class. Furthermore, using a hand-held device, a higher
number of spectra for each sample can be also collected, allowing for the re-
duction of measurement uncertainty and the achievement of a more accurate
classification of a sample. In this case, in order to reduce the request for
laboratory analysis, a majority voting mechanism can be introduced instead
of unanimity rule.

The choice between the two classification approaches depends on two
main factors: (i) the physical characteristic of the place where acquisitions
are performed (e.g., unloading of a ship, warehouse, power plant); (ii) the
trade-off between confidence on classification results and time/cost saving.
Indeed, the semi-automatic approach provides higher accuracy, but it is more
expensive and time-consuming than the automatic approach, as it could re-
quire some laboratory analysis. Furthermore, from experiments it turns out
that only part (i.e., 8.57%) of samples needs laboratory analysis; therefore,
analysing x samples through traditional laboratory approach and applying
the semi-automatic approach to a number of samples 11.66 (i.e., 100/8.57)
times greater than x are equivalent from a temporal perspective, but the
latter guarantees a far greater representativeness.

5. Conclusion

The goal of this work is the introduction of a methodology for quick
and low-cost classification of pellet quality. To this end, machine learning
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techniques are used to classify pellet spectra obtained by means of NIR spec-
troscopy. In details, we propose two different approaches: i) a spectrum-level
automatic classification of pellet, which does not require laboratory analysis,
and ii) a sample-level semi-automatic approach, which increases the overall
accuracy but requires laboratory analysis for uncertainly classified samples.
We validate the methodology by performing several experiments on real-
world data, training different machine learning algorithms and evaluating
the impact of transformations used to reduce both the scattering effect and
number of features.

In detail, pellet quality class is predicted with a classification accuracy of
89% using the automatic approach and with an accuracy of 92% using the
semi-automatic approach. These results show that machine learning coupled
with NIR method is a valid alternative to the traditional laboratory analysis,
opening new perspectives for the sector.

Specifically, the speed of analysis and dimensions of the device is a char-
acteristic that makes NIR method suitable in different operational contexts
along the supply chain (e.g., ship unloading, pelletizing process, warehouse,
power plant), allowing sector operators to perform a high number of analysis
in short time and to have a real time quality control of the product.

We plan to extend the experimental evaluation by using a larger dataset
of pellet samples, increasing both the number of collected spectra and the
variability of pellet in terms of producers and raw materials. Furthermore,
in order to improve the industrial application of the methodology, we plan to
analyze the confidence of classification with respect to the number of spectra
acquired for each sample.
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