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Abstract: The prediction of future cancer burden represents a key element for the design of cancer 28 
control programs and for the allocation of economic resources in the health system. To capture the 29 
complex relationships between risk factors and cancer incidences in the United States, we adopted 30 
an artificial neural network (ANN) algorithm. Data on the incidence of the four most common 31 
tumors (breast, colorectal, lung and prostate) from 1992 to 2013 (available from National Cancer 32 
Institute online datasets) were used for training and validation and data until 2050 were predicted. 33 

According to our predictions, the rapid decreasing trend of prostate cancer incidence started in 2010 34 
will continue until 2018/2019 and then it will slow down and reach a plateau after 2050, with several 35 
differences among different ethnicities. The incidence of breast cancer will reach a plateau in 2030, 36 
while colorectal cancer incidence will reach a minimum value of 30/100.000 in 2025, followed by a 37 
plateau in 2030 in men and in 2050 in women. As for lung cancer, the incidence will decrease from 38 
53/100.000 (2015) to 42/100.000 in 2030 and 32/100.000 in 2050. 39 

This up-to-date prediction of cancer burden in the United States could be a crucial resource for 40 
planning and evaluation of cancer-control programs. Urgent global actions towards a dramatic 41 
reduction of cancer-related risk-factors are actually needed and will accelerate the drop of 42 
incidences and the route to cancer eradication in future years.   43 

Keywords: Artificial Neural Network; Breast cancer; Colorectal cancer; Future tumor burden; Lung cancer; 44 
Prostate Cancer. 45 

 46 

1. Introduction 47 
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Cancer represents the second most lethal disease condition in the US, with more than 1,600 48 
deaths per day and an estimated total that will exceed 600,000 Americans in 2018 [1]. The number of 49 
new diagnoses has progressively increased in the last decades getting over 1,700,000 new cases 50 
estimated in the US in 2018 [1]. However, it is important to note that in the last 25 years the rate of 51 
cancer-related deaths has declined for the four types of tumor with the highest incidences (prostate, 52 
breast, colorectal and lung) [1]. This event can be explained through both (1) the advances obtained 53 
by introduction of molecularly targeted drugs and novel immunotherapies as well as (2) the 54 
development of more effective diagnostic techniques and (3) the downward trend of cancer-related 55 
risk factors, above all smoking attitude.  56 

The predictions of incidence cancer rates could be very useful to optimize the allocation of finite 57 
resources, the key elements of cancer control in next years and the future planning of cancer control 58 
programs. This has become rapidly fundamental due to the rising costs of oncologic treatments 59 
approved by the US Food and Drug Administration (FDA) in the last decades [2−5]. The trends of 60 
population growth and the ageing represent crucial factors for predicting the future burden of cancer, 61 
as the majority of tumors is age-dependent [6]. Furthermore, we might attempt to estimate the future 62 
incidence of different tumor types basing on the plausible changes of the risk patterns over time.  63 

Previously, several prediction techniques have been employed to estimate future cancer trends. 64 
These methods include: linear extrapolation of trends [7,8], simple linear Poisson models [9,10] and 65 
classical [6, 11] or Bayesian age-period-cohort models [12]. However, the limits of these techniques 66 
[13] have led to the research of more accurate prediction models. To capture the complex 67 
relationships between input and target variables, we adopted an artificial neural network (ANN) 68 
algorithm. This mathematical model imitates the human brain strategy to solve problems and is able 69 
to extract knowledge directly from the raw data. These non-parametric modeling algorithms are very 70 
flexible and can perform any complex function mapping. Since ANN algorithms can train themselves 71 
under various circumstances, they are used in various fields, from finance to medicine [14-17]. In this 72 
study, we estimated the incidences of the four most frequent cancer diseases (prostate, breast, 73 
colorectal and lung) by developing an ANN algorithm to predict the number of new cases in the US 74 
till 2050.  75 

 76 
2. Materials and methods 77 
 78 

2.1 Data sets 79 
USA population and USA life expectancy data derived from Gapminder (www.gapminder.org). 80 

Observed and projected obesity data in USA for male and female come from work of Wang et al. [18]. 81 
Number of cancer cases from 1975 to 2013 in USA was obtained by National Cancer Institute 82 
(https://progressreport.cancer.gov/diagnosis/incidence). We extracted data about tobacco 83 
consumption in developed countries derived from the work of Ng et al. [19]. Note that the best fitting 84 
polynomial to predict and interpolate missing data was Y = -0.3737 * X^2 – 3.7956 * X + 2363, where 85 
X is the year and Y the tobacco consumption. 86 

 87 
2.2 Implementation of Artificial Neural Networks 88 
Four ANNs, one for each cancer type, were built. To predict future incidence of prostate cancer 89 

in USA, we considered the three main risk factors internationally recognized: (1) demographic trend, 90 
(2) life expectancy data and (3) race/ethnicity [20−22]. Since the output also depends on race/ethnicity, 91 
we retrained this ANN with prostate cancer cases of White, Black, Hispanic, Asian/Pacific Islander 92 
and American Indian/Alaska Native races. Our predictions did not include prostate cancer with 93 
positive family history due to the lack of historical series in this setting. Data from 1992 to 2013 were 94 
used for training and validation and data from 2014 to 2050 were predicted. 95 

Age is a commonly known factor associated with the risk of breast cancer [23]. It is estimated 96 
that females who survive till 85 years will present a lifetime rate of approximately 11% of developing 97 
breast cancer [23]. Similarly, obesity is associated with an increased risk of both premenopausal [24] 98 
and postmenopausal breast cancer [25], being also associated with worse cancer-related survival in 99 
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all breast cancer subtypes. To predict the incidence of breast cancer in USA, our ANN was based on 100 
(1) demographic trend, (2) life expectancy data and (3) obesity. Data from 1992 to 2013 were used for 101 
training and validation and data from 2014 to 2050 were predicted. As for prostate cancer, here we 102 
considered total population as an input variable. 103 

The risk of developing colorectal cancer increases with age, with more than 90% of cases 104 
occurred in patients who are 50 years old or older [26]. It has been estimated that 29.5% of colorectal 105 
cancers can be attributable to a Body Mass Index (BMI)>22.5 [27], with an incidence that results 106 
different between men and women [28]. To predict the future incidence of colorectal cancer in USA, 107 
we included (1) demographic trend, (2) life expectancy data and (3) obesity as inputs of the ANN 108 
algorithm. Data from 1975 to 2013 were used for training and validation and data from 2014 to 2050 109 
were predicted. 110 

The vast majority of lung cancers can be attributable to tobacco attitude, with over 80% of lung 111 
tumors related to smoking [29]. As an indirect measure of exposure to pulmonary carcinogens 112 
(ionizing radiation, radon gas, etc), age can be considered as a predictive factor of lung cancer in both 113 
smokers and never-smokers patients [30]. Indeed, the relationship between age and lung cancer in 114 
non-smokers has been widely reported [31−33]. To predict the future incidence of lung cancer in USA, 115 
we considered (1) demographic trend, (2) life expectancy data and (3) smoking prevalence as input 116 
variables. Data from 1975 to 2013 were used for training and validation and data from 2014 to 2050 117 
were predicted. 118 

As a forecasting model we used multilayered perceptrons (MLP), a layered feed forward 119 
network that is trained by back propagation algorithm. Generally, a perceptron has several inputs 120 
and one output and the function connecting inputs and output is nonlinear. A back propagation 121 
training algorithm adjusts the connection strength between adjacent nodes. This method is easy to 122 
use, and it can model any kind of data although for training it takes longer time than other methods 123 
and it requires large amounts of training data. The flow of the algorithm that we used in this paper 124 
is showed in FigureS1. In order to obtain the best scores, the network structure and its internal 125 
parameters, hidden neuron number and transfer functions, the learning rate (LR) and learning 126 
momentum (LM) have been determined by many trials according to the trial-and-error method. 127 
Performance of each topology was assessed by the Mean Square Error and the Regression values. We 128 
sought to reach the best results by minimum number of nodes to avoid that the ANN memorized 129 
data rather learning them for generalization. Our ANNs are constructed with three layers, the input 130 
layer has as many neurons as inputs and the output layer has one neuron. The ANNs for colorectal, 131 
lung, breast and prostate cancers have respectively 10, 25, 20 and 20 neurons that implement the 132 
“tansig” function in the hidden layer. Software package Matlab R2014b (Mathworks Inc.) was used 133 
in this study. Inputs were scaled, by “mapminmax” function of Matlab, to fall in between -1 and 1 in 134 
order to account for different variations and degrees of magnitude of input variables. We used 70% 135 
of the data for training and 30% for validation and these data sets were chosen randomly. 136 

 137 
3. Results 138 
 139 
3.1 Prostate cancer 140 
The incidence of prostate cancer has decreased from an incidence of 200 cases/100.000 habitants 141 

registered in the 1990s in USA to less than 150/100.000 in 2010 and, according to our predictions, will 142 
successively fall under 50/100.000 from 2025 (Figure 1A). As for all the different races/ethnicities, our 143 
algorithm predicts that the rapid decreasing trend started in 2010 will continue until 2018/2019 and 144 
then it will slow down and will reach a plateau after 2050 (Figure 1A). The trend observed in the 145 
overall population reflects that reported in white patients, characterized by an incidence of less than 146 
200/100.000 cases in the 1990s, with a drop under 50/100.000 in 2020s (Figure 1B). The incidence is 147 
superior in black patients (Figure 1C), who have been associated with an incidence lower that 148 
200/100.000 only from 2012 and will reach a value of less than 50/100.000 only more than ten years 149 
later (Figure 1C). Otherwise, patients with Asian/Pacific ethnicity as well as American Indian and 150 
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Alaska native are characterized by a lower incidence (Figure 1E, 1F). Only for American 151 
Indian/Alaska Native Races the decreasing trend is almost steady (Figure 1F). 152 

 153 
Figure 1. Trend and predicted new cases of prostate cancer overall (A) and by ethnicity 154 

(B=White; C=Black; D=Hispanic; E=Asian/Pacific Islander; F=American Indian/Alaska Native). 155 

 156 
 157 
The fading in prostate cancer decreasing from 2018 could reflect the fading in life expectancy 158 

and population increasing. The racial disparities are caused by behavioral differences and unequal 159 
access to high-quality health care but this gap is rapidly reducing. 160 

 161 
3.2 Breast cancer 162 
The incidence of breast cancer has slightly decreased from 1990s (133 cases/100.000 habitants), 163 

registering a drop to 125/100.000 in 2002 and to 124/100.000 in 2015 (Figure 2). Based on our prediction 164 
algorithm, the incidence will decrease to 123/100.000 in 2020, reaching a plateau in 2030 (Figure 2). 165 
Performance of Train and Validation phases (Figure S3) showed that, in this setting, the ANN 166 
algorithm obtained worst predicting results (Performance of Train = 0.641; Validation phases = 0.577) 167 
compared to prostate, colorectal and lung cancer. The reasons of this different behavior are discussed 168 
in the next sections.  169 

 170 
Figure 2. Trend and predicted new cases of breast cancer. Our calculations are based on 171 

population, life expectancy and obesity data for female. 172 
 173 
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 174 
 175 
3.3 Colorectal cancer 176 
The incidence of colorectal cancer has progressively increased from 1970s (60 cases/100.000 177 

habitants), registering its maximum in 1985 (66/100.000) (Figure 3A). From late 1980s, the downward 178 
trend led an incidence of 55/100.000 in 2000, with a progressive reduction to 35/100.000 in 2015 (Figure 179 
3A). Based on our prediction algorithm, the incidence will reach a minimum value of 30/100.000 in 180 
2025, followed by a plateau until 2050 (Figure 3A).  181 

Due to the influence of gender on colorectal cancer incidence [33], we further predicted the 182 
incidence in males (Figure 3B) and females (Figure 3C). We found that the incidence was maximum 183 
for men in 1985 (79/100.000) and for women in 1985 (57/100.000), respectively (Figure 3B, 3C). 184 
Interestingly, we predicted that the reduction of the incidence trend will lead to a plateau around 185 
30/100.000 in 2030 in men, while women will be associated with a lower incidence that will drop 186 
below 20/100.000 in 2050 (Figure 3B, 3C).  187 

 188 
Figure 3.Trend and predicted new cases of colon cancer overall (A) and by gender (B=males; 189 

C=females). Our calculations are based on population, life expectancy and obesity for males and 190 
females. 191 
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 192 
 193 
3.4 Lung cancer 194 
The incidence of lung cancer has progressively increased from 1970s (53 cases/100.000 habitants), 195 

registering its maximum in 1992, characterized by 69/100.000 (Figure 4A). From 1990s, the downward 196 
trend in the smoking attitude has led to a gradually reduction of new cases of lung cancer, with an 197 
incidence in 2015 comparable to 1970s (53/100.000) (Figure 4A). Based on our prediction algorithm, 198 
the incidence will decrease to 42/100.000 in 2030 and fall to 32/100.000 in 2050 (Figure 4A). 199 

Due to the different time-trends in tobacco consumption, we further predicted the incidence in 200 
males (Figure 4B) and females (Figure 4C). While the maximum incidence was registered in 1984 for 201 
males (102/100.000), the highest value (54/100.000) for women was reported in 2005 due to the rapid 202 
increase of smoking prevalence among women about 20 years later than men (Figure 4B, 4C). 203 
Interestingly, the drop of the incidence trend appears slower in males than in females, reaching a 204 
plateau beyond 2050 (25/100.000), 15 years after the plateau predicted for females (28/100.000) (Figure 205 
4B, 4C). 206 

 207 
Figure 4. Trend and predicted new cases of lung cancer overall (A) and by gender (B=males; 208 

C=females). Our calculations are based on population, life expectancy and smoking data for males 209 
and females. 210 
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 211 
 212 
3.5 Regression Analysis 213 
The ANN outputs with respect to targets for training and validation sets are shown in scatter 214 

plots (Figures S2-S5). The dashed line represents the perfect result, i.e.: outputs = targets. The solid 215 
line depicts linear best fit between the outputs and the targets. The R-value summarizes the 216 
relationship between the outputs and targets. In particular, if R=1 there is an exact linear relationship 217 
between outputs and targets. If R is close to zero means that a no linear relationship links outputs to 218 
targets. In almost all our models, apart for breast cancer and prostate cancer in American 219 
Indian/Alaska Native Races, the R-values around 0.9 or greater indicate a reasonably good fit for a 220 
data set. Analogously, a very small value of mean square error (MSE) suggests the goodness of the 221 
models.  222 

 223 
4. Discussion 224 
 225 
The lifetime risk of developing cancer is related, in general, to a longer life expectancy. However, 226 

a range of influences, from environmental and attitude changes to prevention campaigns, screening 227 
programs and innovation technologies, should be taken into account in order to increase the accuracy 228 
of predicting models for cancer incidence. 229 
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Among the four most frequent tumor types we showed a general decline in the incidences in the 230 
United States. The changes in prostate cancer incidence observed in the late 1980s and early 1990s 231 
(Figure 1A) were probably due to the introduction of widespread prostate-specific antigen (PSA) 232 
testing that allowed the detection of asymptomatic disease [34]. The reduction in prostate cancer 233 
incidence from 2010 to 2013 can be attributed to decreased PSA testing. In fact, the US Preventive 234 
Services Task Force (USPSTF) diffused a recommendation about the use of PSA as a screening method 235 
for prostate cancer. The task force, basing on data from Prostate, Lung, Colorectal and Ovary cancer 236 
screening study (PLCO) and the European Randomized Study of Screening for Prostate Cancer 237 
(ERSPC) trial, informed that the potential harms of testing (erectile dysfunction, incontinence and 238 
serious surgical complications) overcame the benefits (PSA screening reduced cancer-related 239 
mortality by 4 men for every 1000 men, after 14 years of follow-up) [35]. 240 

In breast cancer, the ANN did not reach good performances. The small variability of incidence 241 
data from 1990 to 2050, together with the high multifactoriality of this tumor, may partially explain 242 
the less good performance of our ANN in this disease (as evident from the regression curves in Figure 243 
S3). This evidence suggests that the number of new cases does not strictly follow the trends registered 244 
for age and obesity in USA (i.e. the peak from 1995 to 2002 in cancer incidence in a time-interval 245 
characterized by the reduction of both risk factors) and underlines the necessity of identifying more 246 
effective input variables beyond the most commonly recognized risk factors. 247 

As for colorectal cancer, the drop of the incidence rates before 2000 should be explained by the 248 
changes in risk factors and the introduction of screening (Fecal Occult Blood Testing (FOBT) and 249 
endoscopy) [36]. The prevalence results distinct between men and women due to a series of 250 
underlying different mechanisms that include estrogen exposure, menopausal status, insulin 251 
resistance, chronic inflammation and steroid hormones [37, 38].  252 

Lung cancer is among the most deadly cancers for both men and women [39]. Reducing its 253 
incidence represents a major goal for cancer researchers, and both the results of these enforces and 254 
the worldwide prevention campaigns to decrease tobacco consumption find a mirror in Figure 4A 255 
showing the falling incidence of lung cancer. This progressive reduction would be even more rapid 256 
as an effect of the global action towards the 2040 tobacco-free world goal [40]. As for the gender 257 
differences (Figure 4B, 4C), they reflect the historical attitudes in tobacco use, with women starting 258 
to smoke in large numbers later and at older ages than men. 259 

Our study presents several limitations. As other prediction systems, ANN algorithms are 260 
affected by errors and biases compared to real data. However, ANNs provide for training, 261 
performance and validation phases that may partially reduce system biases and increase the accuracy 262 
of predictions. 263 

 264 
5. Conclusions 265 
 266 
This up-to-date prediction of cancer burden in the United States could be a crucial resource for 267 

planning and evaluation of cancer-control programs. Urgent global actions towards a dramatic 268 
reduction of cancer-related risk-factors are actually needed and will accelerate the drop of incidences 269 
and the route to cancer eradication in future years.   270 

 271 
Supplementary material:  272 

Figure S1.The flow of the Artificial Neural Network (ANN) algorithm employed in this study. 273 
Figure S2. Performance of Train and Validation phases for prostate cancer by ethnicity. Data were 274 
scaled into the range used by the input neurons in the neural network. In this case the range is -1 to 275 
1 (A=all races; B=White; C=Black; D=Hispanic; E=Asian/Pacific Islander; F=American Indian/Alaska 276 
Native).  277 
Figure S3.Performance of Train and Validation phases for breast cancer. Data were scaled into the 278 
range used by the input neurons in the neural network. In this case the range is -1 to 1. Mean squared 279 
normalized errors for the Train and Validation sets are respectively 0.27882 and 0.14008. 280 
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Figure S4. Performance of Train and Validation phases for breast cancer. Data were scaled into the 281 
range used by the input neurons in the neural network. In this case the range is -1 to 1 (A=total 282 
population; B=males; C=females). 283 
Figure S5. Performance of Train and Validation phases for lung cancer. Data were scaled into the 284 
range used by the input neurons in the neural network. In this case the range is -1 to 1 (A=total 285 
population; B=males; C=females). 286 
 287 
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