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Abstract
In recent decades, swarm optimization methods have been employed to address various optimization problems in structural 
health monitoring (SHM). One of the widely recognized swarm-based algorithms, particle swarm optimization (PSO), has 
gained significant popularity and found extensive applications across diverse fields. However, it presents some limitations, 
such as the low convergence rate in the iterative process. The butterfly optimization algorithm (BOA) is a recently developed 
algorithm that has demonstrated its performance in solving a variety of optimization problems. In this research, a novel hybrid 
swarm optimization algorithm is introduced, integrating PSO and BOA, with the aim of enhancing its effectiveness. To 
overcome the limitations of the traditional Artificial Neural Network (ANN) technique and enhance its training performance, 
this new hybrid algorithm is integrated with ANN. The study offers valuable insights into the creation of a predictive model, 
known as PSO-BOA-ANN, for detecting structural damage. Input parameters for the model include natural frequencies, 
while the output parameter is the severity of the damage. To test the efficiency of the proposed technique, data were collected 
from a finite element model using a simulation tool, and from frequency response function (FRF) after experimental modal 
analysis for single and double cracked aluminum beams considering different crack depths. A comparative analysis was 
conducted between the results obtained from PSO, BOA, GA, and their respective combinations with ANN. The findings 
indicate that the novel PSO-BOA-ANN approach outperforms the other approaches in terms of accuracy when it comes to 
damage prediction.

Keywords  Structural health monitoring · Swarm optimization algorithms · Artificial neural network · Modal analysis · 
Finite element analysis

1  Introduction

Structure health monitoring (SHM) is a multidiscipli-
nary domain that involves measuring structural loads and 
responses automatically and diagnosing structural health 

using a variety of instruments and sensors. Scientists and 
administrative authorities have recognized the importance 
of long-term SHM systems for civil infrastructures over 
a significant period. These systems play a crucial role in 
ensuring structural safety and detecting potential issues in 
a timely manner, thereby preventing costly and potentially 
catastrophic consequences. There are several components 
that make up SHM systems, including sensors, data acquisi-
tion devices, transmission systems, databases, data analysis 
programs, alarm devices, software, and operating systems 
[1]. Mechanical, aerospace, and civil engineering are among 
the fields that have adopted SHM systems [2–7].

The use of evolutionary algorithms to solve linear and 
nonlinear problems in engineering has recently been dem-
onstrated using particle swarm optimization and genetic 
algorithms [8–11]. Moreover, it has been used for dam-
ages prediction in different civil structures like bridge piers 
[12, 13], Tunnels [14], and dike [15]. There have been a 
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number of other optimization algorithms used to solve SHM 
problems, including Cuckoo Search algorithms (CS) [16, 
17], Firefly algorithms (FA) [18], Artificial Bee Colonies 
(ABC) [19], Ant Colony Optimizations (ACO) [20], BAT 
Algorithm [21, 22], and Harmony Search algorithms (HS) 
[23]. In their study, Na et al. [24] employed a genetic algo-
rithm (GA) to identify and assess damages in a large-scale 
building. It was still possible to determine damage locations 
and severity, even though measured data for the considered 
structures were incomplete. Yildiz [25] utilized the cuckoo 
search (CS) algorithm to present optimization problems in 
the manufacturing domain. Specifically, CS was applied to 
optimize milling processes, and its performance was com-
pared with other algorithms such as PSO, Ant Colony (AC) 
algorithm, and immune algorithm. A comparison of CS and 
the aforementioned algorithms revealed CS to be superior. 
Using static deflections, mode shapes, and natural frequen-
cies as objective functions, Jung et al. [26] utilized a hybrid 
GA to perform updates on a small-scale bridge.

Artificial intelligence techniques, such as artificial neural 
networks (ANN), have proven to be highly effective in resolv-
ing engineering SHM issues. Reduced mode shapes and com-
putational tools were used by Gomes et al. [27] to apply an 
improved technique for GA and ANN-based delamination 
detection of CFRP laminated composite plates. Kellouch et al. 
[28] utilized an artificial neural network (ANN) to estimate the 
lifespan of fly ash concrete. They developed a prediction model 
based on carbonation depth to accurately assess the concrete's 
durability. According to tests done to verify the created model, 
ANN is a reliable technique for forecasting the carbonation 
depth of fly ash concrete. An ANN model was employed to 
characterize the tensile behavior of hybrid fiber reinforced con-
crete (HFRC) beyond the stress–strain curve [29]. This ANN 
model provided a comprehensive description of the concrete's 
response to tensile stress. The results indicate that the ANN 
model outperforms the equation-based model in accurately 
predicting the tensile stress–strain curve, tensile strength, and 
strain associated with the tensile strength of HFRC. To esti-
mate the fracture energy of polymer nanocomposites, Hamdia 
et al. [30] integrated ANN with an adaptive neuro-fuzzy infer-
ence system (ANFIS). The creation, training, and testing of 
ANN and ANFIS models utilized a collection of 115 experi-
mental datasets sourced from existing literature. The results 
obtained using the latter method were significantly superior, 
as evidenced by lower values of root mean square error and 
mean absolute percentage error. For the purpose of predicting 
beam fractures, Khatir et al. [31] proposed a vibration-based 
method combining ANN and Butterfly Optimization Algorithm 
(BOA) for crack depth prediction in different locations in a steel 
beams. The crack depth is the output, and natural frequencies 
are the input parameters. Its precision demonstrates that BOA-
ANN produces accurate results. They have proposed also new 
approaches such PSO-Yuki and Radial Bases Function to deal 

with crack identification in carbon fiber reinforced polymer 
beam models [32] and RC beams [33]. According to an algo-
rithm provided by Dunant et al. [34], the sets of interacting 
degrees of freedom are generated dynamically as the material's 
state changes. Consequently, a modified Newton approach was 
used to solve a non-local damage model. Jierula et al. [35] intro-
duced a deep learning methodology aimed at identifying dam-
aged areas within pile foundations based on acoustic emission 
data. As a result, it is possible to assess the concrete structures’ 
degradation progression using the trained classification learner.

For the past few decades, the investigation of dynamic 
responses has emerged as a highly active research domain 
within the field of structural damage detection. The primary 
identification methods rely on changes in natural frequencies 
[36], modal shapes [37], and frequency response function 
(FRF) [38–41]. In order to identify damage to a beam, Salehi 
[42] exploited both real and imagined portions of FRF forms. 
The identification of damage is accomplished through the 
Gapped Smoothing Method (GSM), which detects modifica-
tions in the shapes of FRFs resulting from the damage. FRFs 
were used by Golafshani et al. [43] to identify damage to shear 
buildings. A minimum rank perturbation theory was used in 
order to locate the damage position.

Using numerical and experimental vibration analysis as 
training data sources, this paper aims to address the limita-
tions of existing predictive models for structural damage by 
introducing a novel hybrid approach called PSO-BOA-ANN. 
The motivation behind this research lies in the need for accu-
rate and efficient crack depth prediction in aluminum beam 
models. The main goals and objectives of this study are to 
enhance the accuracy and convergence speed of the predictive 
model by integrating PSO with the recently developed BOA 
and to assess the performance of the improved model through 
a comprehensive comparison with other intelligence-based 
models. The novelty of this research lies in the integration 
of PSO and BOA to optimize the parameters of an ANN and 
improve its training performance. By exploring the potential 
of the PSO-BOA-ANN model in accurately predicting crack 
depths, this study contributes to the field of structural damage 
detection and offers valuable insights into the development of 
more effective and reliable predictive models. The proposed 
approach has the potential to advance the current state of the 
art in SHM and provide valuable information for damage 
assessment and maintenance decision-making processes.

2 � Particle swarm optimization and Butterfly 
optimization algorithm

The suggested method combines PSO and BOA to develop 
a hybrid algorithm that is better than BOA or PSO alone. 
Basic concepts of both considered optimization approaches 
are given in this section.
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2.1 � The basic concept of particle swarm 
optimization (PSO)

The PSO algorithm is grounded in emulating the movement 
of a group of birds as they navigate a multidimensional 
search space in search of food. This algorithm, as described 
in reference [44], relies on two fundamental attributes: posi-
tion and velocity. These properties are essential in determin-
ing the optimal value. In the context of the search space, 
each entity is denoted as a particle, and they are initially 
assigned random positions and velocities to initiate the opti-
mization process. The following is the global particle that 
has the best location in the ideal solution:

where vt+1
i

 and vt+1 denote the velocity of the ith particle at 
iteration number (t) and (t + 1), respectively. Typically, the 
constants c1 and c2 are both set to 2, and rand1 and rand2 
represent random numbers within the range of (0, 1). The 
value of ω can be calculated as follows:

where �max = 0.9 ,   �min = 0.2 and T
max

 denotes the maxi-
mum number of iterations.

2.2 � The basic concept of Butterfly optimization 
algorithm (BOA)

A meta-heuristic method called the Butterfly Optimization 
Algorithm [45] replicates the feeding and mating behavior of 
butterflies. The BOA differs from previous meta-heuristics 
because every butterfly has a distinctive fragrance of its own. 
In accordance with the degree of physical stimulation, the 
fragrance is produced in the following ways:

In the context provided, fi represents the perceived fra-
grance magnitude, c denotes the sensory modality, I repre-
sents the stimulation intensity, and a represents the power 
exponent, which is dependent on the degree of fragrance 
absorption.

In the BOA process, the value of the sensory morphol-
ogy coefficient c is determined based on the specificity 
of the optimization problem. As the algorithm advances 
through the optimal search phase, the sensory modality c 
can be formulated as follows:
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In this context, Tmax represents the maximum number 
of iterations for the algorithm, and the initial value of the 
parameter c is set to 0.01.

The algorithm encompasses two crucial phases: the 
global search phase and the local search phase. Equa-
tion  (6) provides a mathematical representation of the 
global search motions of the butterflies.

where xt
i
 represents the solution vector xi of the ith butterfly 

in iteration number t. gbest denotes the current best solution 
identified among all the solutions in the current iteration. 
The fragrance of the ith butterfly is represented by fi, and r 
represents a random number within the range of [0, 1]. The 
formulation of the local search phase can be expressed as 
follows:

where xt
i
 is the ith butterfly's solution vector xi in itera-

tion number t. g
best

 is the current best solution identified 
among all the solutions in the current iteration. The ith 
butterfly’s fragrance is represented by fi, while r is a ran-
dom number in the range [0, 1]. The local search phase can 
be formulated as follows:

In this context, xt
j
 and xk

i
 refer to the jth and kth butter-

flies randomly selected from the solution space. If xt
j
 and 

xk
i
 belong to the same iteration, the butterfly undergoes a 

local random walk. However, if they do not belong to the 
same iteration, the solution becomes more diverse due to 
this random movement.

In nature, butterflies conduct both global and local-
scale searches for food and mates. To transition from a 
typical global search to an intensive local search, a switch 
probability ρ is defined. During each cycle, the BOA gen-
erates a random number within the range of [0, 1], which 
is compared to the switch probability ρ. This compari-
son determines whether a global or local search should 
be performed.

2.3 � PSO‑BOA hybrid algorithm

A new hybrid PSO-BOA is introduced in this section, which 
is an integration of distinct BOA and PSO and new individu-
als are generated differently. PSO can solve high-dimensional 
optimization problems, but it is limited in a number of dimen-
sions. The advantages of the two algorithms can be combined 
when both algorithms are used together, rather than using both 
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algorithms sequentially. Therefore, there is heterogeneity in 
the final results between both algorithms, due to the method 
involved in producing them. The following is the suggested 
hybrid:

where C1 and C2 both set to 0.5, the value of w can be calcu-
lated using Eq. (3). Additionally, r1 and r2 represent random 
numbers within the range of (0, 1)

Eqs. (6) and (7) can be used to calculate the BOA's global 
and local search phase. The hybrid PSO-BOA search phase 
can be formulated as follows:

The hybrid PSO-BOA's local search phase can be 
expressed as follows:
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where Xk
i
 and Xt

j
 represent the jth and kth butterflies ran-

domly selected from the solution space, respectively (Fig. 1). 

3 � ANN training for damage detection using 
PSO‑BOA

In this study, the utilization of an ANN, which is a machine 
learning technique, is implemented. It consists of intercon-
nected neurons that work together to process information. 
The classic architecture of an ANN comprises an input layer, 
one or more hidden layers, and an output layer. Each layer 
can have a varying number of neurons. These neurons estab-
lish connections with each other to facilitate information 
flow. The determination of the ANN's topology involved 
a systematic approach that took into account several fac-
tors. These factors included the complexity of the problem 
at hand, the available computational resources, and prior 
knowledge gained from similar applications. We carefully 
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j

)

× fi

Fig. 1   Pseudo-code of hybrid PSO-BOA
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considered these aspects to design an appropriate archi-
tecture for the ANN. Figure 2 illustrates the specific ANN 
architecture utilized in the present research.

The number of neurons in each layer is determined based 
on the specific problems being analyzed and the amount 
of data available from numerical or experimental studies. 
Figure 2 shows the input layer of the proposed indicator as 
a natural frequencies, which is then passed to the hidden 
layer. To examine the acquired data from the first to the last 
phase, we must go through the two following formulations:

In this context,  represents the data obtained from the 
jth element of the hidden layer, m determines the num-
ber of neurons utilized in the hidden layer, and n signifies 
the number of elements introduced into the input layer. fi 
denotes the output data, while w and b refer to the weight 
and bias, respectively, employed for training purposes. w 
refers to the weight matrix that connects the neurons in 
different layers of ANN. It represents the strength of the 
connections between neurons. On the other hand, b refers 
to the bias vector in the ANN, which allows for shifting 
the activation function of each neuron. In the initial for-
mulation (Eq. 12), the training parameters are employed to 
calculate the summation function. Subsequently, Eq. (13) 
is utilized to compute the output of the hidden layer after 
 has been defined.

(12)

(13)

In this research, the PSO-BOA algorithm was utilized 
to optimize the weight and bias of the optimal network 
structure obtained from the ANN. The training process of 
the network involved determining the weights and biases 
using the Levenberg–Marquardt (LM) technique, which 
is based on multilayer feed-forward backpropagation. To 
conduct the ANN simulation, the MATLAB toolbox was 
employed. For solving the approximation problem, the 
Mean Squared Error (MSE) was adopted as the fitness 
function, as described in Eqs. (14) and (15). The optimal 
architecture of the ANN was identified by choosing the 
configuration that yielded the lowest MSE. Figure 3 illus-
trates PSO-BOA-ANN algorithm work process.

This study presents a novel contribution with the 
introduction of the PSO-BOA-ANN hybrid approach for 
structural damage detection. This approach combines the 
strengths of PSO and BOA to optimize the parameters of 
ANN for crack depth prediction. Unlike existing formula-
tions that rely on PSO or BOA alone, our hybrid approach 
offers improved performance by leveraging the synergistic 
benefits of both algorithms. This integration enhances the 
accuracy and convergence speed, making it a promising 
solution for accurate crack depth prediction in structural 
health monitoring.

(14)RMSE =

√

√

√

√

P
∑

P=1

N
∑

i=1

(

tPi − OPi

)2
∕P × N

Fig. 2   ANN structure for dam-
age level determination



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:621

1 3

621  Page 6 of 20

In this context, N represents the number of output 
units, while P denotes the number of pattern units.

The process of determining the most suitable topol-
ogy for the Artificial Neural Network (ANN) within our 
proposed PSO-BOA-ANN model is a pivotal aspect in 
achieving accurate predictions. To select the optimal 
topology, an extensive exploration of various configu-
rations was undertaken, encompassing diverse numbers 
of hidden layers and neurons in each layer. During this 
phase, strategies such as early stopping and regularization 
were employed to curb overfitting and bolster the model's 
generalization capabilities. Furthermore, a meticulous 
cross-validation process was executed, involving the par-
titioning of the dataset into distinct training, validation, 
and testing subsets. The ANN topology that exhibited 
superior performance across multiple validation metrics 
was singled out as the best configuration. This rigorous 
approach ensures that the chosen ANN topology adeptly 
addresses the challenges posed by structural damage pre-
diction, striking a harmonious balance between complex-
ity and generalization.

(15)
MSE = 100 ×

RMSE

P
∑

P=1

N
∑

i=1

tPi∕P × N

4 � Numerical simulation

A model of an aluminum beam is shown in Fig. 4 with 
geometrical and mechanical properties shown in Table 1. 
It has been modeled using ABAQUS 16.4 software which 
considers a free-free boundary condition. Three-dimen-
sional beam modeling is completed using the eight-node 
C3D8R brick element. Each node has six degrees of free-
dom, including three rotational displacements (x, y, z) and 
three transitional displacements (u, w, v). Cracks with var-
ying depths were intentionally generated at multiple loca-
tions along the length of the beam. The undamaged (D0) 
beam's frequency data are presented in Table 2, obtained 
from both numerical simulations and experimental obser-
vations. Due to experimental constraints, the torsional 
modes were not considered in the analysis. The first three 
mode shapes, obtained from both experimental and numer-
ical approaches, are displayed in Fig. 5. To evaluate the 
effectiveness of the PSO-BOA-ANN method in predicting 
crack depths, two damage scenarios were examined. In 
the first scenario (D1), a single crack was introduced in 
the middle of the beam, with the crack depth gradually 
increasing from 0.5 mm to 25 mm. In the second scenario 
(D2), a double crack with a separation of 350 mm was 
created, and the crack depth was increased from 0.5 mm 

Fig. 3   Pseudo-code of hybrid PSO-BOA-ANN
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to 25 mm. Consequently, a total of 50 datasets were gen-
erated for each damage scenario, resulting in a dataset of 
100 instances used for training prediction models (refer 
to the Appendix).

The convergence criteria used for the Finite Element 
Model (FEM) in our study were defined based on the dis-
placement convergence and the stress convergence. The 
displacement convergence criterion ensures that the solu-
tion reaches a stable state, while the stress convergence 
criterion ensures the accurate quantification of internal 
stress resultants and the corresponding stresses. These 
convergence criteria are essential for obtaining accurate 
results in FEM analysis as they indicate the convergence 
of the iterative solution process. The importance of con-
vergence criteria lies in their ability to validate the quality 
of the solution and ensure reliable and accurate results. By 

satisfying these convergence criteria, we can ensure that 
the analysis adequately captures the behavior of the beam 
under various loading conditions and accurately predicts 
the crack depths. Moreover, convergence criteria also play 
a role in controlling the computational load associated 
with the analysis. By achieving convergence, we optimize 
the computational effectiveness and reduce the computa-
tional time required for the analysis.

5 � Results and discussion

The datasets were collected based on the analyzed results of 
damage cases D1 and D2 to predict the selected cracks depth 
of 5, 15, and 22 mm applied on beam model as shown in 
Fig. 4. PSO-BOA-ANN is trained considering the number 
of neurons is set to 5. The parameter settings for considered 
algorithms were determined through an iterative process of 
experimentation and fine-tuning. Initially, a range of values 
for each parameter was selected based on prior research and 
domain knowledge. Then, extensive experimentation was 
performed using different combinations of parameter values 
to evaluate the performance of each algorithm. The param-
eter settings that yielded the best results in terms of accuracy 
and convergence were selected for inclusion in Table 3. To 
study the effectiveness of PSO-BOA for ANN training, it 
is compared to other approaches namely PSO-ANN, BOA-
ANN, and GA-ANN.

In the optimization of the proposed hybrid PSO-BOA-
ANN model, the selection of appropriate parameters is 
crucial for achieving optimal performance. The process of 
determining these parameters involved a systematic and 
iterative approach. Initially, we conducted a comprehensive 

Table 1   Geometrical and mechanical characteristics of beam model

Length L 
(mm)

Width W 
(mm)

Thickness t 
(mm)

Density ρ 
(kg/m3)

Young 
modulus E 
(GPA)

600 30 5 2710 70

Table 2   Measured Frequencies of undamaged beam model

Modes FEM (Hz) Experimental (Hz)

1 400.07 385.81
2 1085.1 1097.65
3 2079.5 2102.00

Fig. 4   Aluminum beam model 
and the two examined damage 
cases, D1 and D2
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Fig. 5   The three first mode shapes and frequencies of undamaged beam; a numerical, and b experimental frequency response function

Table 3   Considered algorithms parameter settings

BOA Power exponent a Switch probability ρ Sensory morphology coefficient c(0) Population size
0.1 0.5 0.01 100

PSO Velocity v c1, c2 coefficients ω coefficient Population size
vmax = 1, vmin = − 1 c1 = c2 = 2 ωmax = 0.9, ωmin = 0.2 100

PSO-BOA Power exponent a Switch probability ρ Sensory morphology coefficient c(0) c1, c2 coefficients
0.1 0.5 0.01 c1 = c2 = 0,5

GA Mutation Crossover Number of generation Population size
0.01 0.8 200 [100, 1000]
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literature review to identify potential parameter ranges based 
on previous studies in similar domains. Subsequently, we 
performed a series of experiments, varying the parameters 

individually and in combinations, while assessing their 
impact on the model's performance using validation data. 
This process allowed us to identify parameter configurations 

Table 4   Crack depths predictions for damage case D1 using ANN trained by PSO-BOA, PSO, BOA, and GA

Damage case Real crack 
depth (mm)

Predicted crack depth 
(mm)

Error in predicted 
results (%)

Fitness following number of iteration

1 25 50 75 100

D1 5 PSO-BOA 4.9880 0.240 9.46815 0.00679 0.00563 0.00034 0.00034
BOA 5.3828 7.656 7.18666 1.10807 0.71010 0.50290 0.50290
PSO 5.3888 7.776 2.66122 1.33205 0.90125 0.85542 0.81000
GA 5.6101 12.202 5.53255 1.90012 1.30218 1.09250 1.00846

15 PSO-BOA 14.9916 0.056 1.10104 0.00758 0.00011 0.00011 0.00003
BOA 14.9312 0.459 2.20933 0.02528 0.00033 0.00026 0.00026
PSO 15.2161 1.441 1.65485 0.11122 0.00222 0.00093 0.00093
GA 15.6100 4.067 6.00211 1.88801 0.83213 0.03251 0.00998

22 PSO-BOA 22.0191 0.087 0.64047 0.28256 0.03435 0.00999 0.00013
BOA 22.2120 0.964 2.47983 0.06840 0.06840 0.01467 0.01467
PSO 22.2999 1.363 3.65464 0.96454 0.09988 0.09988 0.03211
GA 23.2222 5.555 7.65498 2.55444 0.91001 0.88001 0.20012

Fig. 6   Regression for damage case D1 with PSO-BOA (a), BOA (b), PSO (c), GA (d), and performance study (e)
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that led to improved accuracy and generalizability. Further-
more, to prevent the model from converging to local minima, 
we employed a range of initializations and explored a diverse 
set of parameter values. The final parameter values presented 
in Table 3 were chosen based on a trade-off between model 
complexity and predictive accuracy. This approach ensures 
that the selected parameters are robust and well-suited for 
the task of structural damage prediction.

5.1 � Damage case D1

In this specific damage instance, PSO-BOA-ANN has 
employed to forecast single crack depths at beam mid-
span, with 5, 15, and 22 mm depth. Figure 6 shows a study 
of the regression and performance of PSO-BOA-ANN in 
comparison with PSO-ANN, BOA-ANN, and GA-ANN 
with a hidden layer size n equal to 5. Table 4 provides a 
summary of the results.

The findings clearly demonstrate the superior perfor-
mance of the hybrid PSO-BOA-ANN approach compared to 
individual methods such as PSO, BOA, and GA. The regres-
sion value obtained from the hybrid approach is close to 1, 
indicating a high level of accuracy. With a hidden layer size 
of n equal to 5, the maximum projected inaccuracy between 
the predicted and desired outcomes is estimated to be within 
the range of 0.02 mm. While PSO, BOA, and GA also 
exhibit the capability to forecast crack depths, the hybrid 
PSO-BOA approach outperforms them. This is primarily due 
to its wider error range and the fact that GA required more 
generations and populations, resulting in increased compu-
tational time. The detailed outcomes are presented in Fig. 7.

5.2 � Damage case D2

By utilizing the identical crack depth values employed in the 
first scenario, we employed the PSO-BOA-ANN method to 
forecast the depths of the double cracks in the beam for this 
particular damage case. The regression performance of PSO-
BOA-ANN was then compared to that of PSO-ANN, BOA-
ANN, and GA-ANN, all with a hidden layer size of n equal 
to 5. Figure 8 illustrates this comparison. A comprehensive 
overview of the results can be found in Table 5.

Upon comparing the predicted and desired outcomes, it is 
observed that the maximum error for the PSO-BOA method 
falls within the range of 0.12 mm when the regression value 
approaches 1; however, the hybrid PSO-BOA requires fewer 
iterations. A study conducted by ANN enhanced with PSO-
BOA found that ANN was more reliable than BOA and PSO 
separately in predicting crack depth in this damage case, 
while GA was less accurate and took longer to calculate. A 
list of the outcomes is shown in Fig. 9.

6 � Experimental validation

In this experiment, aluminum specimens with the mechani-
cal properties specified in Table  1 had their structural 
components triggered by an impact hammer, and the 
accelerometers estimated the results based on the accelera-
tion properties. With the help of the DEWEsoft data col-
lecting system, beam specimens were studied. Figure 10 
shows the device components and the experimental setup 
with the models of the damaged beam that are taken into 

Fig. 7   Real and predicted cracks depths for damage case D1
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Table 5   Crack depths predictions for damage case D2 using ANN trained by PSO-BOA, PSO, BOA, and GA

Damage case Real crack 
depth (mm)

Predicted crack depth 
(mm)

Error in pre-
dicted results (%)

Fitness following number of iteration

1 25 50 75 100

D2 5 PSO-BOA 4.8888 2.224 4.71930 0.07199 0.00040 0.00040 0.00003
BOA 4.8000 4.000 18.13683 2.32771 0.00701 0.00207 0.00075
PSO 5.2091 4.182 15.25466 3.66211 0.01021 0.00388 0.00098
GA 5.5354 10.708 30.02544 7.51254 4.02111 3.11209 2.10991

15 PSO-BOA 14.9001 0.666 3.12132 0.00017 0.00017 0.00017 0.00017
BOA 15.1311 0.874 3.10542 0.10522 0.00933 0.00135 0.00135
PSO 15.1371 0.914 8.63585 0.88801 0.00502 0.00325 0.00091
GA 15.6666 4.444 1.26544 1.00012 0.11564 0.02545 0.02545

22 PSO-BOA 22.0099 0.045 0.51559 0.00204 0.00022 0.00022 0.00001
BOA 22.2299 1.045 0.95712 0.12929 0.12929 0.03005 0.00457
PSO 22.1999 0.909 1.99650 0.92658 0.12221 0.05252 0.00635
GA 22.6999 3.181 1.65656 0.76520 0.32555 0.10010 0.08520

(a) (b) (c)

(d)

0 20 40 60 80 100

Iteration
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10
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30
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Fig. 8   Regression for damage case D2 with PSO-BOA (a), BOA (b), PSO (c), GA (d), and performance study (e)
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Fig. 9   Real and predicted cracks depths for damage case D2

Fig. 10   Operating mode for cracked beam modal analysis. a Experimental device, b beam excitation mode, and c cracked beam models
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Fig. 11   Experimental envelope of FRF diagrams for damaged beam with crack depth 5 mm (a), 15 mm (b), and 22 mm (c) at accelerometer position a1, a2, and a3
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Fig. 12   Comparison of envelopes of FRFs for undamaged and damaged with crack depth at accelerometer position a1 (a), a2 (b), and a3 (c)
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consideration. A Type 4508 piezoelectric accelerometer was 
installed at regular intervals of 200 mm on points labeled 
as a1, a2, and a3. To measure frequency values, a measure-
ment device employing the Fast Fourier Transform (FFT) 
technique and Pulse software was utilized. For each acceler-
ometer point (ai), a series of 10 hits (h) were generated, and 
the average value (h) for each hit was determined.

The experimental frequency response function (FRF) 
envelope, obtained from vibration measurements recorded 
by the accelerometer on beam models with double cracks, 
is shown in Figs. 11, 12. The cracks in the models have 
the same depth (d) of 5, 15, and 22 mm, which were also 
considered in the numerical analysis. Table 6 presents a 
comparison of the experimental frequency values obtained 
for the damaged beams with their corresponding numerical 
values. To mitigate distortions and artifacts caused by alias-
ing and leakage phenomena, anti-aliasing filters are applied 
and windowing techniques are employed during frequency 
analysis. This helps address the issues and ensure accurate 
results without the negative effects of aliasing and leakage. 
The coherence in the experimental data was evaluated to 
assess the correlation and consistency between input and 
output signals, ensuring the reliability and validity of the 
measurements.

FRFs were acquired without explicitly accounting for 
damping effects. The focus of our study was on assessing 
the predictive capabilities of the hybrid PSO-BOA-ANN 
model for structural damage detection. The conversion from 
resonant frequency to natural frequency was achieved by 
taking into account the inherent characteristics of the beam 
specimens and employing established methodologies. This 
process allowed for an accurate estimation of the natural 

frequency based on the measured resonant frequencies, 
ensuring consistency and reliability in the analysis. While 
damping effects were not explicitly incorporated, it is impor-
tant to note that the experimental measurements were con-
ducted under controlled conditions with minimal damping 
present.

This section data are used in order to test PSO-BOA-
ANN's accuracy. Based on the experimental frequencies 
dataset in Table 6, the crack depth prediction model is tested 
using the parameters in Table 3. Figure 13 compares PSO-
BOA-ANN regressions and convergences to PSO, BOA, and 
GA combined with ANN. Table 7 provides a summary of 
the results.

The maximum error range in crack depth prediction, 
when compared to PSO, BOA, and GA individually, is 
found to be within the range of 0.09 mm. In contrast, these 
algorithms exhibit a wider error range of up to 0.59 mm, 
requiring a significant number of generations and popula-
tions, and consuming more computational time. One phys-
ical reason behind the superior performance of PSO-BOA-
ANN is its regression value, which is remarkably close to 
1 when comparing the predicted and desired results. The 
utilization of ANN in conjunction with PSO-BOA yields 
the most accurate crack depth prediction for this particular 
damage case. Figure 14 provides a visual representation of 
the obtained outcomes.

7 � Conclusion

In this study, a hybrid optimization algorithm is employed 
to detect cracks in a free-free aluminum beam. The algo-
rithm combines PSO with BOA to improve both accuracy 
and convergence speed. To improve its training perfor-
mance for damage prediction, the new hybrid algorithm 
PSO-BOA has been combined with ANN. Input data con-
sist of natural frequencies obtained from numerical and 
experimental modal analysis, while output data consist of 
crack depths. The new approach was tested against exist-
ing methods of PSO-ANN, BOA-ANN, and GA-ANN to 
illustrate its accuracy.

The results show that PSO-BOA-ANN is the most suc-
cessful hybrid algorithm for predicting crack depth out 
of all those that have been presented. However, PSO-
BOA-ANN was slightly faster than PSO-ANN in its con-
vergence, while BOA-ANN was the best with respect to 
computational time. This hybrid algorithm could be used 
for more complex structures.

Table 6   Experimental and numerical frequency values for undam-
aged and damaged beam

Crack depth d 
(mm)

Mode 1 Mode 2 Mode 3

0
 FEM 400.07 1085.1 2079.5
 EXP 385.81 1097.65 2102.00

5
 FEM 396.33 1056.5 2013.4
 EXP 383.22 1085.00 2055.25

15
 FEM 365.36 860.15 1601.8
 EXP 370.78 1069.00 2048.11

22
 FEM 276.40 549.66 1118.2
 EXP 287.00 888.00 1871.15
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Fig. 13   Regression for ANN trained with PSO-BOA (a), BOA (b), PSO (c), GA (d), and performance study (e) for damaged beam with d = 15 mm
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While our results demonstrated the effectiveness and 
accuracy of the proposed method under controlled experi-
mental conditions, it is important to acknowledge its limi-
tations and areas for future improvement. One limitation 
of our study is the assumption of noise-free conditions, 
which may not reflect real-service environments. Future 
work should focus on incorporating noise effects and 
developing robust techniques to separate external fac-
tors from actual damage signals. Additionally, the current 

study mainly focused on crack depth prediction and did not 
explore other types of damage. Future research can expand 
the application of the hybrid approach to various damage 
types and investigate its performance in more complex 
structural systems. Overall, addressing these limitations 
and considering noise effects will contribute to enhanc-
ing the practical applicability and reliability of the pro-
posed method in real-world structural health monitoring 
applications.

Table 7   Predicted double crack depth using experiment data and ANN trained by -PSO-BOA, BOA, PSO, and GA

Real experimental 
crack depth (mm)

Predicted crack depth (mm) Error in predicted 
results (%)

Fitness following number of iteration

1 25 50 75 100

5 PSO-BOA 4.9111 1.778 12.56354 0.00819 0.00333 0.00011 0.00011
BOA 4.8822 2.356 10.46765 1.88808 0.21099 0.00229 0.00121
PSO 4.8999 2.002 6.66772 2.22005 0.91125 0.00542 0.00091
GA 5.4545 9.090 16.11222 4.10948 1.00212 0.89334 0.89334

15 PSO-BOA 15.0011 0.007 9.85104 0.00811 0.00009 0.00009 0.00002
BOA 14.9711 0.192 15.42331 1.30343 0.05056 0.00211 0.00046
PSO 15.1999 1.332 10.23435 1.62211 0.08092 0.00321 0.00067
GA 15.5200 3.466 6.53233 1.23453 1.02222 1.02222 1.02222

22 PSO-BOA 22.1111 0.505 6.00293 0.18256 0.04445 0.00019 0.00019
BOA 22.1246 0.566 2.99981 0.14445 0.00846 0.00846 0.00067
PSO 22.1998 0.908 7.05864 0.92384 0.00888 0.00888 0.00111
GA 22.5985 2.720 7.24858 1.88888 0.92434 0.09001 0.01012

Fig. 14   Crack prediction using ANN trained by PSO-BOA, BOA, PSO, and GA for experimental data
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Appendix

Frequency values of different cracks depth in both dam-
aged scenarios.

Crack 
depth 
(mm)

Single crack Double crack

Mode 1 
(Hz)

Mode 2 
(Hz)

Mode 3 
(Hz)

Mode 1 
(Hz)

Mode 2 
(Hz)

Mode 3 
(Hz)

0.5 399.68 1084.4 2077.2 399.47 1082.1 2072.1
1 399.35 1084.4 2076.0 399.34 1081.0 2069.7
1.5 398.87 1084.4 2074.2 399.15 1079.5 2066.1
2 398.26 1084.4 2071.9 398.91 1077.5 2061.4
2.5 397.50 1084.4 2069.1 398.62 1075.0 2055.8
3 396.62 1084.4 2065.7 398.27 1072.2 2049.2
3.5 395.59 1084.4 2061.7 397.87 1068.9 2041.6
4 394.44 1084.4 2057.4 397.41 1065.2 2033.1
4.5 393.16 1084.4 2052.7 396.90 1061.1 2023.7
5 391.75 1084.4 2047.6 396.33 1056.5 2013.4
5.5 390.20 1084.4 2041.9 395.71 1051.5 2002.2
6 388.52 1084.4 2035.9 395.02 1046.2 1990.0
6.5 386.69 1084.4 2029.4 394.26 1040.3 1976.9
7 384.72 1084.3 2022.4 393.44 1034.0 1962.9
7.5 382.59 1084.3 2014.9 392.54 1027.3 1947.9
8 380.31 1084.3 2007.0 391.57 1020.1 1932.0
8.5 377.87 1084.3 1998.7 390.52 1012.4 1915.1
9 375.26 1084.2 1989.8 389.37 1004.2 1897.2
9.5 372.47 1084.2 1980.5 388.13 995.47 1878.3
10 369.50 1084.1 1970.7 386.79 986.22 1858.4
10.5 366.33 1084.1 1960.4 385.34 976.42 1837.4
11 362.97 1084.0 1949.6 383,77 966.05 1815.5
11.5 359.39 1084.0 1938.3 382.07 955.10 1792.4
12 356.03 1083.9 1926.5 380.23 943.53 1768.4
12.5 355.60 1083.9 1914.2 378.23 931.34 1743.2
13 355.15 1083.8 1901.3 376.06 918.49 1717.0
13.5 354.68 1083.7 1888.0 373.71 904.97 1689.8
14 354.18 1083.6 1874.2 371.16 890.76 1661.5
14.5 353.67 1083.5 1859.8 368.38 875.82 1632.1
15 353.13 1083.4 1845.0 365.36 860.15 1601.8
15.5 352.57 1083.3 1829.7 362.07 843.71 1570.5
16 351.99 1083.2 1813.9 358.48 826.49 1538.4
16.5 351.38 1083.1 1797.7 354.55 808.46 1505.3
17 350.74 1082.9 1781.0 350.26 789.60 1471.6
17.5 350.07 1082.8 1764.0 345.56 769.87 1437.0
18 349.37 1082.6 1746.6 340.41 749.28 1401.9
18.5 348.64 1082.5 1728.9 334.76 727.78 1366.4
19 347.88 1082.3 1710.9 328.56 705.35 1330.5
19.5 347.08 1082.1 1692.7 321.75 681.96 1294.4
20 346.24 1081.9 1674.3 314.28 657.59 1258.4
20.5 345.35 1081.7 1655.8 306.07 632.21 1222.5
21 344.42 1081.4 1637.3 297.07 605.78 1187.0
21.5 343.44 1081.2 1618.8 287.20 578.27 1152.2

Crack 
depth 
(mm)

Single crack Double crack

Mode 1 
(Hz)

Mode 2 
(Hz)

Mode 3 
(Hz)

Mode 1 
(Hz)

Mode 2 
(Hz)

Mode 3 
(Hz)

22 342.40 1080.9 1600.4 276.40 549.66 1118.2
22.5 341.29 1080.6 1582.2 264.62 519.92 1085.3
23 340.11 1080.2 1564.2 251.81 489.02 1053.8
23.5 338.85 1079.8 1546.5 237.92 456.96 1023.7
24 337.49 1079.4 1529.1 222.95 423.75 995.47
24.5 336.02 1078.9 1512.3 206.89 389.41 969.14
25 334.42 1078.3 1495.9 189.78 354.00 944.88
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