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Abstract—Sometimes in control processes it would be 

necessary to know variables at locations that are barely 

accessible. In such cases, soft sensors (also known as 

“virtual sensors”) could really help. In fact, they are 

powerful instruments for the indirect measure of quantities 

that would not be measurable, if not with the installation of 

physical sensors that could perturbate the normal working 

conditions of the system under test. In this paper, the 

authors describe an approach to indirectly measure 

temperature values in a brew group of a professional coffee 

machine. A Finite Element (FE) model simulating both the 

fluid dynamics and the thermal distribution on the group 

was developed and validated by dedicated experimental 

tests. The FE model was then exploited to feed an 

autoregressive exogenous model (ARX model) linking the 

temperature in the boiler (i.e. a quantity ordinarily assessed 

in the coffee machine) and the one near the water output, 

where otherwise a hardware sensor would compromise the 

correct coffee brewing process and the safety/quality of the 

brewed coffee. The obtained data-driven soft sensor can 

help to improve the control unit architecture of the coffee 

machine. 

 
Index Terms—Autoregressive exogenous model, Data-driven 

models, Numerical simulation, Soft sensor, System identification, 

Temperature sensors  

 

I. INTRODUCTION 

HE main objective of a soft (or virtual) sensor is to estimate 

unavailable quantities based on other available 

measurements. In the last three decades, soft sensors have 

gained more and more popularity in many industrial 

applications, since they have become very efficient and 

powerful tools, able to substitute hardware (i.e. physical) 

sensors when the targeted monitoring variable is not easily 

accessible or is measurable only expensively or with significant 

delays with respect to the timing requested [1]–[3]. Therefore, 

soft sensors represent a valuable alternative to traditional means 

for the acquisition of critical variables and, consequently, for 

process monitoring in general [4]. 
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They were born in the field of process control, but nowadays 

their application has widely broadened in different areas: 

biomedical engineering [5]–[7], automotive [8], industrial 

applications [9]–[11], structural health monitoring [12]–[14], 

building energy efficiency and thermal comfort [15], 

smartphone applications [16] and even agriculture [17]–[19].  

Virtual sensors base their functioning on the estimation of an 

analytical model depending on the data collected by means of 

physical sensors, or, alternatively, provided by numerical 

models (e.g. Finite Element Models); the second option can 

accelerate the training  phase of the analytical model in absence 

of experimental data. This is a fundamental aspect, for example 

in industrial applications of neural networks [20]. The model 

representing the system that receives and processes the input 

data can be obtained with different system identification 

techniques. Among others, Neural Networks (very efficient in 

combining, as inputs, quantities from different sensors for 

estimating variables not directly measurable [21]), genetic 

algorithms (making it possible to estimate fast and accurate 

models useful also in the field of virtual sensing [22]), transfer 

functions, multi-state-dependent parameter models, polynomial 

models, represent valid options for the purpose. The accuracy 

of the model is fundamental in order to obtain reliable output 

from the soft sensor. 

In this paper, the authors want to describe the experimental 

and numerical studies which have allowed them to develop a 

“soft sensor” able to indirectly measure the temperature value 

of water used for coffee brewing in a commercial coffee 

machine produced by Nuova Simonelli. The target point is 

close to the hydraulic circuit outlet, scarcely accessible with 

physical sensors in a non-intrusive way. Even tough 

temperature is an extremely important parameter to obtain a 

perfect coffee, commercial and professional coffee machines do 

not have many temperature measuring devices integrated in 

their architecture, because the presence of physical sensors can 

easily compromise the correct functioning of the machine, e.g. 

by modifying the normal fluid dynamics of the system, and alter 

the flavor/safety of the coffee itself (because of releasing 

issues). At present, the control of temperature is made indirectly 

by means of a sensor positioned on a metal part of the coffee 

machine, that entails a heat transmission delay between metal 
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and water. Indeed, inserting a temperature gauge (e.g. a 

thermocouple) in correspondence of the flow output would 

modify the flow conditions themselves, which is evidently 

undesirable, as well could cause unwanted release of particles 

(e.g. increasing the content of heavy metals in coffee). On the 

other hand, knowing the temperature of the water exiting the 

hydraulic circuit of the brew group would make it possible to 

verify that it is in the optimal temperature range for the coffee 

brewing according to the producers’ requirements, without the 

necessity to have hardware sensors installed in the water circuit. 

In general, the accuracy of temperature regulation needed for a 

coffee machine is generally equal to ±1°C. 

The authors’ idea was to develop a virtual sensor starting 

from temperature measurements ordinarily made by means of 

the coffee machine integrated sensors in correspondence of the 

boiler. A FE model is necessary to produce temperature data in 

different points of the brew group, which are scarcely 

accessible in operational conditions. In this way, after having 

validated the numerical model itself (by means of 

measurements made with temperature gauges specifically 

installed on the brew group that are not present in commercial 

machines), it is possible to generate data for developing the 

analytical model constituting the soft sensor. 

At first, the coffee machine group head (sometimes referred 

to as “brew group” or “brew head” or simply “group”) has been 

experimentally characterized in terms of temperature 

distribution in space and time. Then, a numerical model has 

been realized and validated by means of experimental data thus 

collected. Thanks to the numerical results, it has been possible 

to obtain temperature distributions also in points commonly not 

accessible/accessible with difficulty, so that an analytical model 

has been derived according to system identification theory by 

means of a linear ARX (Auto-regressive with eXogenous input) 

model. This represents an innovative indirect method for the 

temperature measurement on the brew group, in order to 

improve the machine control ability and to maximize its 

efficiency thanks to the soft-sensing abilities. 

Such a model could be integrated in the control unit of the 

coffee machine, so improving its performance and allowing a 

deeper control of the coffee brewing process itself, without the 

need of adding physical sensors to the machine hardware. 

II. MATERIALS AND METHODS 

In order to realize an analytical model able to predict the 

temperature in the points of interest, the model itself has to be 

trained by means of data (for this reason, we often talk about 

“data-driven models”). There are two possibilities: to use 

experimental or numerical data. The second choice is preferable 

in case of points scarcely accessible or when hardware sensors 

could affect the normal mode of operation of the system under 

test. 

A. Experimental Characterization 

To measure the temperature distribution in the brew group of 

the coffee machine, thermocouples of Type T, Class I were 

used. Their accuracy values, according to the IEC 60584 [23] 

are reported in Table I. 

Both water and metal temperature values were acquired, 

according to the sensor positioning reported in Table II. 

 
Temperature signals were acquired by means of a DAQ 

system (34980A multifunction switch/measure unit, Agilent 

[24]). 

 

 

 
Fig. 1.  Thermocouples positioning in the water circuit: Point 1 is near the water 

entry, Point 2 close to the top cap (on the picture on the left), Point 3 is near the 

front cap and Point 4 inside the portafilter. 
 

  

 
Fig. 2.  Thermocouples positioning on the brew group metal surface: two on the 

back side (labelled as “5” and “6”, on the left of the picture), one on the right 

side (labelled as “7”, on the centre of the picture) and one on the left side 
labelled as “8”, on the right of the picture.  

TABLE I 

ACCURACY OF THERMOCOUPLES TYPE T, CLASS I, 
ACCORDING TO THE IEC 60 584-2:1995. 

Thermocouple Type T Class I (°C) 

Temperature -40 ≤ T ≤ 125 

Tolerance ± 0.5 

Temperature 125 ≤ T ≤ 350 
Tolerance ± 0.004*|T| 

“T” stands for “temperature”. 

 

 

TABLE II 

THERMOCOUPLE SENSORS POSITIONING. 

Sensor Location Notes 

3 thermocouples in 
the hydraulic 

circuit 

Near the water entry, 
close to the top and 

the front caps 

(because of the easy 
access to these 

locations) 

Labels 1, 2 and 3 in 
Fig. 1 

1 thermocouple on 
metal 

Integrated in the 
portafilter (which, 

however, is just 

outside the water 
circuit) 

Label 4 in Fig. 1 

1 thermoresistance 

PT100 

On the top of the 

brew group 

Supplied with the 

coffee machine 
1 thermocouple  Immersed in the 

boiler 

- 

5 thermocouples On the brew group 
metal surface: 2 on 

the back side (near 

the water input point 
and close to the 

cartridge heater), on 

the right and on the 
left sides  

Fastened by means of 
specific high 

temperature tape; 

labels “5” and “6” in 
Fig. 2 (left) for the 

back side, “7” and 

“8” (centre and right, 
respectively) for right 

and left sides 
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Moreover, power supplied by the cartridge heater was 

measured by means of a Power Analyzer (Precision Power 

Analyzer WT3000, Yokogawa [25]). The sampling frequency 

was equal to 2 Hz for temperature measurement, to 20 Hz for 

power measurement. 

Finally, also the logical signal of the static relay controlling 

the power supply of the cartridge heater was acquired by means 

of another DAQ (NI6008, National Instruments [26]). 

B. Numerical Characterization 

The numerical model of the brew group was realized in 

COMSOL Multiphysics [27]. The geometry was imported in 

.stl format as provided by Nuova Simonelli; it includes the 

group head, the group ring seat, the solenoid valve and the 

hydraulic circuit, as described in Fig. 3 and Fig. 4. 

 

 

 
The materials used for the model domains are reported in 

Table III. 

Both thermal and fluid dynamics aspects of the brewing 

phenomenon were simulated, thanks to interface “Conjugate 

Heat Transfer”, including the “Laminar Flow” interface (the 

flow inside the hydraulic circuit of the brew group can be 

considered laminar, given the pipe diameter, the flow velocity 

and the water properties). This interface solves the continuity 

(1) and momentum (2) equations (i.e. the Navier-Stokes 

equation, which represents the conservation of momentum) 

[28]: 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢) = 0           (1) 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢 ∙ ∇𝑢 = −∇𝑝 + ∇ ∙ 𝜏 + 𝐹         (2) 

 

where: 

• ρ is the density (kg/m3); 

• u is the flow velocity (m/s); 

• p is the pressure (Pa);  

• F is the body force vector [N/m3]; 

• τ is the viscous stress tensor (Pa), which is defined in Equation 

(3), where μ [Pa*s] is the dynamic viscosity, I is the identity 

matrix and the apex T stands for “transposed” [28]: 

 

𝜏 = 𝜇(∇𝑢 + (∇𝑢)𝑇) −
2

3
𝜇(∇ ∙ 𝑢)𝐼    (3) 

 

In addition, also the heat equation (4) [28] is solved: 

 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢 ∙ ∇𝑇) + ∇ ∙ (𝑞 + 𝑞𝑟) = 𝛼𝑝𝑇 (

𝜕𝑝

𝜕𝑡
+ 𝑢 ∙ ∇𝑝) + 𝜏: ∇𝑢 + 𝑄            (4) 

 

where: 

• Cp is the specific heat capacity at constant pressure (J/(kg·K)); 

• T is the absolute temperature (K); 

• q is the heat flux by conduction (W/m2); 

• qr is the heat flux by radiation (W/m2); 

• αp is the coefficient of thermal expansion (1/K); 

• Q contains heat sources other than viscous heating (W/m3). 

 

With regard to the fluid dynamics part, the inputs to the 

model were the input velocity and the outlet condition (i.e. 

atmospheric pressure) on the hydraulic circuit; the input 

velocity was derived from the measured values of flow rate and 

pipe section. On the other side, i.e. for the thermal section, the 

inputs to the model were the temperature of the input water, the 

initial temperature values of water and metal domains and the 

heating power for the cartridge heater. These values were 

derived from experimental measurements, as described in the 

previous section. 

The results from this kind of simulation allow to achieve a 

 
Fig. 3. Geometry of the numerical FEM model; it consists of the brew group 

itself (the “group head”), the group ring side (to which the portafilter can be 

attached), the hydraulic circuit and the solenoid valve (which allows - or not - 

the water flow). 

 
Fig. 4. Geometry of the model - back view; it is possible to note the water input 
in the hydraulic circuit, as well as the cartridge heater. 

TABLE III 

MODEL MATERIALS AND THEIR THERMAL PROPERTIES: DENSITY (kg/m3), 

THERMAL CONDUCTIVITY [W/(m*K)] AND  SPECIFIC HEAT (J/(kg*K)). 

Material Location ρ (kg/m3) k (W/(m∙K)) 
Cp 
(J/(kg∙K)) 

Water 
Hydraulic 

circuit 

Already provided in COMSOL 

Multiphysics materials database 

depending on temperature and pressure 

Brass OT57 
Brew 

group 
8400 120 375 

Steel AISI 

304 

Cartridge 
heater, 

screws 

8000 16.2 500 
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mapping of temperature, which is very difficult to obtain by 

means of physical sensors [29]. 

C. ARX Model 

System Identification Toolbox™ in MATLAB® [30] 

environment was used for a grey-box system identification, 

starting from input-output data. In particular, the system 

dynamics was represented by means of a linear ARX model, 

which is a polynomial model, estimated using time domain 

data. 

Input data could be both experimental and numerical ones. 

We exploited numerical data because the target point is barely 

accessible and we do not want to alter the normal operating 

conditions of the machine. The ARX approach (already used in 

literature for temperature modelling [31], [32]) was thus used 

on numerically generated data (from the FE model described in 

the previous section) to obtain a relationship between the output 

temperature (i.e. temperature at Point 3) and the setpoint 

temperature (i.e. the one set in the boiler). This approach was 

chosen both for its low computational cost and for its better 

accuracy with respect to different polynomial models, as it is 

reported in Table IV. 

 

Equation (5) characterizes the simplified model [33]: 

 

𝐴(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡) + 𝑒(𝑡)      (5) 

where: 

• A(z) = a0 + a1 z-1 + a2 z-2 + a3 z-3 + a4 z-4; 

• B(z) = b1 z-1; 

• y(t) = temperature on Point 3 (i.e. data obtained from 

simulation); 

• u(t) = input temperature (i.e. boiler setpoint). 

 

In these equations, z-1 is the backward shift operator that 

compactly represents time difference equations, as described in 

Equation (6): 

 

𝑧−1𝑢(𝑡) = 𝑢(𝑡 − 1)       (6) 

 

This polynomial model was then validated by experimentally 

measuring the temperature on the point of interest (i.e. Point 3). 

Six different temperature setpoints was considered for the 

boiler, starting from the value most commonly used in practice 

(Tb) and considering lower temperatures (in a range of 10°C, 

with a 2°C-step). Simulations with these different temperatures 

were run for generating data targeted to the training of the ARX 

model in correspondence of different inputs (i.e. different boiler 

setpoint values). 

III. RESULTS 

In this section, the results related to experimental 

measurements on the coffee machine brew group, the numerical 

results from the FE model and the ARX model obtained from 

the system identification procedure are discussed. Data are 

provided in terms of relative temperature values. Absolute 

temperature values cannot be exposed for confidentiality issues. 

However, the whole approach still holds. 

A. Experimental Characterization 

The parameters of interest extracted for the simulation are the 

following ones: 

1) Temperature of the input water; 

2) Initial temperature of the metal (obtained from the 

temperature value measured by the coffee machine integrated 

thermoresistance); 

3) Velocity of the input flow (derived by flow rate and 

section); 

4) Heating power (mean value measured during the coffee 

brewing operation). 

The comparison point between experimental and numerical 

results is Point 3, which is the point of greatest concern. This is 

the point in which sensor mounting accuracy is the highest. 

Indeed, Point 4 suffered of mounting uncertainty: it should have 

been mounted inside the water circuit but it turn out to be 

external. On the contrary, Point 4 on the FE model was kept 

inside the water domain. This choice was adopted on purpose, 

to guarantee the presence of a terminal control point on the 

circuit. 

The parameters that were evaluated for the model validation 

are the following ones: 

1) Lowest temperature; 

2) Highest temperature; 

3) Heating time in correspondence of Point 3 (up to the 

desired temperature, labelled as “Td”). 

An example of the measurements made is reported in Fig. 5 

and in Fig. 6, with regard to temperature (in water) and power 

measurements, respectively. It is possible to observe that the 

target temperature is reached on point 3 after approximately 2 s 

after the start of brewing operation. Indeed, the initial decrease 

is due to the cooling effect taking place when water flows in the 

hydraulic circuitry.  

The temperature values measured on the metal surface 

resulted to be not very useful for the simulation, since in the FE 

model we are interested on the temperature in the canal surface, 

which is higher than the superficial one. The same for the 

temperature measured in the boiler, since it is lower than that 

measured in Point 1 (maybe because of the cooling in the tube 

connecting the boiler and the hydraulic circuit of the brew 

group). 

With regard to the logical signal measured on the relay 

controlling the cartridge heater, it was noted that reproducing 

this trend in simulation, we did not obtain a sufficient heating 

of water: probably, in real conditions, the thermal inertia of the 

group makes the cartridge not to cool down rapidly when the 

relay is OFF. To evaluate the magnitude of the controlling 

effect on the heater switching on, experimental measurements 

TABLE IV 

DIFFERENT POLYNOMIAL MODELS AND THEIR ACCURACY 

Model Accuracy 

ARX (Autoregressive exogenous model) 93.62 

BJ (Box-Jenkins polynomial model) 92.65 

AMX (Autoregressive–moving-average model) 82.63 

OE (Output-Error polynomial model) 76.89 
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were carried out in two different conditions: 

1) cartridge heater always supplied by the power grid during the 

coffee brewing; 

2) cartridge heater supplied under the control unit action. 

 

 
In particular, a comparison was made between a measurement 

carried out in the former case and a curve averaged on 5 

measurements made under the control unit action. The results 

with control unit acting and with continuous cartridge heater 

supply are reported in Fig. 7 and Fig. 8, respectively. 

The results show similar trends, so that in simulation, for 

sake of simplicity, we considered a continuous power source of 

the cartridge heater (i.e. cartridge heater always switched on 

during the coffee brewing phase). 

 

 

 

B. Numerical Characterization 

The initial conditions for the FE model were set as follows: 

1) Initial temperature of water: the highest temperature 

measured by the thermocouples immersed in water (Points 1-

3); 

2) Initial temperature of metal: it is obtained by means of 

parametric studies starting from the measurement carried out by 

the thermoresistance integrated in the machine; 

3) Temperature of the input water: lowest temperature 

measured for the input water (i.e. Point 1). 

 

The model obtained was experimentally validated by 

comparing the results on Point 3, which is the one closest to the 

hydraulic circuit outlet, since, as previously said, Point 4 is not 

comparable between experimental and numerical setups. 

The results obtained from the FE model validation are good, 

especially if we consider the temperature measured on Point 3, 

which is the most interesting one. The comparison between 

experimental and numerical results can be observed in Fig. 9 in 

terms of deviations in correspondence of Point 3, which is the 

one of greatest interest. 

 
With regard to Point 3 (i.e. the point of major concern), the 

deviations between simulated (Tsim) and experimental (Texp) 

data at the maximum and minimum temperature are 0.1°C and 

0°C, respectively. The intercept value with the horizontal line 

representing the desired temperature for water (Td) is equal to 

1.95 s, both in simulated and experimental data. 

It is worth to note how, slightly varying the position of 

thermocouple junction in Point 2 (as described in Fig. 10), the 

effect on temperature is significant, as it can be noted in Fig. 

 
Fig. 5. Example of temperature measurements in water circuit; Td indicates the 
desired value of temperature for output water. Being Point 4 not comparable  

between experimental and numerical conditions (since in the first case it is 

outside the hydraulic circuit, while in the FEM model it is inside the water 

domain), the point of greatest concern is Point 3. 

 

 
 

 

 
 

 

 
Fig. 6. Example of power measurement during coffee brew (Pnom indicates the 
nominal value of the power supplied by the cartridge heater); in this test, the 

cartridge heater was powered in a continuous way during the brewing (without 

the action of the control unit). 

 

 

 
 

 

 
Fig. 7. Temperature measurements with cartridge heater supplied under the 

action of control unit; the curve averaged on 5 measurements is drawn in black. 
 

 

 
 

 
Fig. 8. Temperature measurements with continuous power source of the 
cartridge heater. 

 

 
 

 
Fig. 9. Model validation – deviations between simulated (i.e. data from FE 

model) and experimental temperature values in the point of interest (i.e. Point 

3). 
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11.  

 

 
In particular: 

1) Temperature in Point 2, up: approximately equal to 2°C 

hotter than temperature in Point 2; 

2) Temperature in Point 2, down: approximately equal to 

Temperature in Point 2; 

3) Temperature in Point 2, right: approximately equal to 1°C 

hotter than temperature in Point 2; 

4) Temperature in Point 2, left: approximately equal to 0,2°C 

colder than temperature in Point 2. 

C. ARX Model 

The numerical results used to feed the ARX model are 

reported in Fig. 12. 

The results of ARX model identification, reported in terms 

of polynomial coefficients given for the different input values 

analyzed are reported in Table V. 

The validation of the model with experimental data was made 

for the typical temperature set point value of the boiler, i.e. Tb. 

It resulted that, in the working conditions of the coffee machine, 

the model accuracy is equal to 93.62%; the comparison between 

the model output and the experimental data in these conditions 

is reported in Fig. 13. It is possible to notice that ARX model 

output fits experimental data very well. Also FE method 

provides a similar trend and the minimum temperature is 

coincident in the three curves.  

 

 
With regard to the uncertainty of the virtual sensor, Monte 

Carlo analysis was carried out in order to evaluate the system 

uncertainty. The computed ARX model was run for 107 times 

giving as input a Gaussian distribution of the boiler temperature 

(considering a standard deviation of 1°C), centered on its 

setpoint, and evaluating its output in correspondence of the time 

instant on which the output temperature reaches the target value 

Td. the distributions of input and output temperature are 

reported in Fig. 14. The standard deviation obtained was equal 

to 0.07, which turns out in an extended uncertainty of 0.14°C if 

considering a coverage factor k=2. Considering the time needed 

to reach the target temperature, the Monte Carlo simulation 

provides a distribution with a mean value of 2.18 s and a 

standard deviation of 0.37 s. 

 

 
Fig. 10. Different positioning of thermocouple junction in Point 2; thanks to 

numerical simulation, the authors investigated the effect of a slight change of 

the thermocouple junction position around the nominal location (i.e. the 

perfectly centered one). 

 
 

 

 
Fig. 11. Effect of different positions of thermocouple junction in Point 2 on 

temperature measurement; results on Point 2 with the different positioning of 
the thermocouple junction are reported in blue. 

 

 
 

 

 
Fig. 12. Numerical results obtained with different boiler setpoint values (Tb is 
the commonly used value); these are the data feeding the ARX model for the 

system identification. 

 
 

 

 
Fig. 13. Model validation for boiler setpoint = Tb. The accuracy in this 
conditions is approximately equal to 93.62%. 

 
Fig. 14. Input (top) and output (bottom) temperature distributions of Monte 

Carlo simulation; Tb is the typical value for the temperature setpoint in the 

coffee machine boiler, while Td is the desired temperature in Point 3. 
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IV. DISCUSSION AND CONCLUSIONS 

In this paper, the authors present the experimental and 

numerical studies that brought to the development of a soft 

sensor enabling temperature measurement in the brew group of 

a professional coffee machine in correspondence of a point 

close to the water exit. This location is barely accessible in a 

coffee machine (both professional and for home use); 

moreover, the presence of a physical sensor (e.g. a 

thermocouple junction) would compromise the normal flow 

conditions as well as alter the safety/flavor of the coffee 

brewed. A numerical FE model, which was validated by means 

of experimental data (acquired with temperature sensors 

installed in the group specifically for this objective), was 

exploited to generate data for feeding an ARX model 

constituting the core of the virtual sensor developed. In this 

way, it is possible to indirectly measure the temperature value 

on a point otherwise not accessible. This information can be 

useful for better tuning the brewing machine temperature range 

to the one required by the specific type of coffee. In 

correspondence of the normal operation conditions of the coffee 

machine, the accuracy of the ARX model is approximately 

equal to 93.62%, with an associated expanded uncertainty equal 

to 0.14°C (k=2) if an input temperature standard deviation of 

1°C is considered; this is fundamental for the soft sensor 

functioning, since it allows the operator to obtain reliable data. 

Knowing the temperature of water at the outlet of the hydraulic 

circuit is of key importance for ensuring that the brewing 

operation does not alter the flavor of coffee. Moreover, such a 

single input-single output model could be easily integrated in 

the control unit of the coffee machine, thus guaranteeing a 

better control of the whole brewing process as well as benefits 

in terms of energy efficiency. Indeed, the whole approach is 

general enough to be repeated for obtaining temperature data 

also in different points with respect to the one considered in this 

paper, in case they would be of concern. 
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