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A B S T R A C T

MiR-126 has been shown to suppress malignant mesothelioma (MM) by targeting cancer-related genes without
inducing toxicity or histopathological changes. Exosomes provide the opportunity to deliver therapeutic cargo to
cancer stroma. Here, a tumour stromal model composed of endothelial cells (HUVECs), fibroblasts (IMR-
90 cells), non-malignant mesothelial cells (Met-5A cells) and MM cells (H28 and MM-B1 cells) was used. The
cells were treated with exosomes from HUVECs carrying endogenous (exo-HUVEC) and enriched miR-126 (exo-
HUVECmiR−126), and the uptake/turnover of exosomes; miR-126 distribution within the stroma; and effect of
miR-126 on cell signalling, angiogenesis and cell proliferation were evaluated. Based on the sensitivity of MM
cells to exo-HUVEC miR-126 treatment, miR-126 was distributed differently across stromal cells. The reduced
miR-126 content in fibroblasts in favour of endothelial cells reduced angiogenesis and suppressed cell growth in
an miR-126-sensitive environment. Conversely, the accumulation of miR-126 in fibroblasts and the reduced level
of miR-126 in endothelial cells induced tube formation in an miR-126-resistant environment via VEGF/EGFL7
upregulation and IRS1-mediated cell proliferation. These findings suggest that transfer of miR-126 via HUVEC-
derived exosomes represents a novel strategy to inhibit angiogenesis and cell growth in MM.

1. Introduction

Malignant mesothelioma (MM) is an aggressive tumour associated
with occupational and environmental exposure to asbestos with limited
therapeutic options. The therapy of choice for MM is treatment with
cisplatin and pemetrexed; however, this treatment regime is mainly
palliative and short-lasting with low efficacy [1]. Although im-
munotherapy has given new hope for the treatment of various types of
cancer, it has thus far been disappointing in the case of MM [2]. New
therapeutic strategies for MM are therefore warranted.

The altered expression of miRNAs in MM is linked to dysregulated

metabolism and poor prognosis [3–5]. Therefore, miRNAs have become
intriguing therapeutic targets for MM, and clinical trials investigating
the effect of miRNA-based therapeutics are being launched [6–8]. Re-
cently, a phase I trial evaluated the safety and biological activity of
miR-16 in patients with recurrent MM [9]. MiR-16 administered in a
minicell-based formulation was well tolerated by MM patients. In spite
of its low toxicity, the proportion of patients that showed a response to
this treatment was only 5%. Currently, the main barrier to im-
plementing miRNA-based therapy is the lack of an effective delivery
system to protect miRNAs from nuclease degradation, deliver them to
the tumour stroma, and release them into target cancer cells.
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Exosomes are physiological carriers of miRNAs, and their involve-
ment in cell-to-cell communication provides an opportunity to deliver
therapeutic cargo directly into the cytoplasm of target cells. There is
evidence of the effect of miR-126 as a tumour suppressor in MM in both
cell culture and a xenograft model [4,10]. In the present study, the
anticancer effect of miR-126 using exosomes as a delivery system was
evaluated in an in vitro stromal model. Since miR-126 is highly ex-
pressed in endothelial cells (ECs), we used exosomes derived from
human umbilical vein endothelial cells (HUVECs) to deliver and restore
miR-126 in mesothelial cells and MM cells within three types of stromal
environment, i.e., non-malignant, miR-126-sensitive and miR-126-re-
sistant environments, and evaluate the anticancer effects of miR-126.

2. Materials and methods

2.1. Cell culture

Non-malignant (NM) mesothelial (Met-5A), sarcomatoid (H28), and
biphasic (MSTO-211H) MM cell lines from the American Type Culture
Collection (ATCC) and MM-B1 cells (biphasic) [11] were grown in
RPMI-1640 medium. MPP89 epithelial cells obtained from the ATCC
were maintained in Ham's F10 with 15% foetal bovine serum (FBS) and
supplemented with glutamine (2mM) and antibiotics. Human foetal
lung fibroblasts (IMR-90) were obtained from the ATCC and grown in
Dulbecco's modified Eagle's medium (DMEM). The RPMI medium and
DMEM were supplemented with 10% FBS, 1% penicillin and 1%
streptomycin (all Life Technologies). HUVECs obtained from Gibco
(Life Technologies) were grown in Medium 200 (Life Technologies)
with large vessel endothelial supplement (LVES; Life Technologies). All
cells were cultured in a humidified incubator at 37 °C and in an at-
mosphere of 5% CO2. The cells were periodically checked for the ab-
sence of mycoplasma contamination using the PCR mycoplasma test.
Cell authentication was performed using a PowerPlex Fusion 6C system
(Promega, Fitchburg, WI).

2.2. Transfection

MM cells were transiently transfected in exosome-depleted serum-
containing medium with an miR-126 mimic, miRNA mimic scrambled
control (100 nM, MISSION microRNA Mimic, Sigma), or antisense miR-
126 (50 nM, anti-miR, Ambion), using High Perfect Transfection re-
agent (Qiagen) according to the manufacturer's instructions. After 72 h
of incubation, exosomes enriched in miR-126, miRNA scrambled, or
anti-miR were obtained.

2.3. Cell proliferation assay

Cell proliferation was assessed by the MTT assay. MM cells and their
miR-126 mimic-transfected counterparts were incubated for 24, 48 and
72 h, following which cell viability was evaluated. Briefly, 10 μl of MTT
(5mg/ml in PBS; Sigma) was added to each well, and after 3 h in-
cubation, the formed crystals were dissolved in isopropanol. The ab-
sorbance at 550 nm was read with an ELISA plate reader (Sunrise,
Tecan).

2.4. Colony formation assay

H28 and MM-B1 cells and their miR-126 mimic-transfected coun-
terparts were seeded in a 12-well plate at 500 cells per well. Colonies
that formed after 10 days of incubation were fixed with formalin (4.0%
v/v), stained with crystal violet (0.5% w/v) and counted using a ste-
reomicroscope.

2.5. Exosome isolation and quantification

Exosomes were isolated and purified using differential centrifuga-
tions as previously described [12]. After isolation, the pellet was re-
suspended in PBS, treated with 0.1 mg/ml RNase A (Qiagen) for
30min at 37 °C to remove miRNA contamination, and clarified using a

Fig. 1. MiR-126 levels in the cellular components
and susceptibility of MM cells to miR-126 treat-
ment. A) Cellular and exosomal levels of miR-126 in
non-malignant mesothelial cells (Met-5A cells),
sarcomatoid MM cells (H28 cells), biphasic MM cells
(MM-B1 cells), endothelial cells (HUVECs) and fi-
broblasts (IMR-90 cells). The insert shows the levels
of miR-126 in exosomes released by miR-126 and
miRNA mimic scrambled control (scr)-transfected
HUVECs. Colony formation assays in H28 and MM-
B1 cells (B) and their proliferation curves (C, D)
before and after miR-126 mimic treatment, respec-
tively. The results are the mean values ± S.D.s of
three experiments performed in duplicate. The
symbol ‘*’ denotes statistically significant differ-
ences between un-treated cells (Ctrl) and miR-126-
mimic-treated cells, p < 0.05.
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0.22 μm filter before use. After treatment and filtration, the protein
content of the purified exosomes was determined by the Bradford assay
(Sigma). All ultracentrifugation steps were performed at 4 °C in a
Beckton Dickinson ultracentrifuge fitted with the TLS-55 swing bucket
rotor.

2.6. Exosome PKH67 labelling and uptake

Exosomes were labelled with the green fluorescence plasma mem-
brane stain PKH67 (20 μM; Sigma) according to the manufacturer's
instructions, and protein levels were measured using Bradford reagent.
Cells (5× 104) were seeded on coverslips in a 24-well plate and al-
lowed to attach overnight, and PKH67-labelled exosomes (50 μg/ml)
were added to the exosome-depleted culture medium. After 6 h of in-
cubation, exosome uptake was assessed by confocal microscopy (Leica
SP5). Mitochondria were stained with MitoTracker Red (100 nM;
Molecular Probes). Alternatively, the cells were incubated with PKH67-
labelled exosomes at increased concentrations in exosome-depleted cell
culture medium, and exosome uptake was analysed over time by flow
cytometry (FACSCalibur, BD).

2.7. Quantitative RT-PCR

Total cellular RNA was obtained using an RNeasy Mini Kit (Qiagen)
according to the manufacturer's instructions. First-strand cDNAs were
synthetized from the mRNAs by individual TaqMan miRNA Assay
(Applied Biosystems, Life Technologies) according to the manufac-
turer's instructions. The qRT-PCR reactions were carried out using a
TaqMan® Fast Advanced Master gene expression kit (Applied
Biosystems, Life Technologies) and U6 for normalization. IRS1, VEGF,
and EGFL7 first-strand cDNA was synthesized using a High-Capacity
cDNA Reverse Transcription Kit (Life Technologies). qRT-PCR was
performed using SYBR Select Master Mix (Life Technologies) with
GAPDH as a housekeeping gene. The sequences of the primers used are
listed in Supplementary Table 1.

To detect exosomal miR-126, RNA was extracted from exosomes
(20 μg protein), and miR-126 expression was evaluated as previously
described [3].

2.8. Tri-culture model

Tri-culture was performed by layering fibroblasts (IMR-90) and

Fig. 2. Representative image showing HUVEC-de-
rived exosome uptake by stromal cells. Met-5A,
H28, MM-B1, and IMR-90 cells and HUVECs cul-
tured in exosome-depleted serum were incubated
with PKH67-labelled exosomes (exo-HUVEC, 50 μg/
ml) for 6 h, as shown in the scheme (top left car-
toon), and exosomal internalization was visualized
by fluorescence microscopy (Zeiss, AxioCam MRc5).
Mitochondria were stained with MitoTracker Red
(100 nM) and used as a control. The scale bar in-
dicates 50 μm. The images are representative of
three independent experiments. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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endothelial cells (HUVECs) on two opposite surfaces of Transwell in-
serts, with NM (Met-5A) or MM (H28, MPP89, MSTO-211H or MM-B1)
cells cultured at the bottom of the plate. HUVEC-derived exosomes and
miR-126- or anti-miR-enriched exosomes (20 μg/ml) were added to the
upper chamber of the tri-culture system, and the cells were collected

after 24 or 48 h of incubation.

2.9. Angiogenetic activity assessment

Angiogenesis was determined by evaluating the formation of ca-
pillary-like structures in a three-dimensional setting. Tube formation
was assessed by incubating (16 h) HUVEC-derived exosomes and miR-
126- or anti-miR-enriched exosomes (20 μg/ml) with Met-5A, H28,
MPP89, MSTO-211H or MM-B1 cells in the tri-culture system with IMR-
90 cells using 3-μm Transwell inserts. After incubation, polygonal
structures made up of a network of endothelial cell capillaries were
established, and images were captured at 10×magnification using an
AxioCam MRc5 optical microscope (Zeiss). Tube formation was esti-
mated by counting the number of complete capillaries connecting in-
dividual points of the polygonal structures. Three fields in the central
area in each well were chosen randomly.

2.10. Ki-67 proliferation assay

Met-5A, H28, MPP89, MSTO-211H or MM-B1 cells were seeded on
coverslips in a 24-well plate in the tri-culture system and treated with
HUVEC-derived exosomes and miR-126- or anti-miR-enriched exo-
somes (20 μg/ml) for 48 h. The cells were then fixed (4% formalin for
30min at 4 °C) and permeabilized (0.05% saponin and 2% FBS in PBS
for 30min at 4 °C). Next, the cells were incubated overnight at 4 °C with
a primary antibody against Ki-67 (1:200; DAKO) and a FITC-conjugated
secondary IgG (Sigma). Ki-67-positive cells were evaluated by fluores-
cence microscopy (Zeiss; AxioCam MRc5, magnification 60× ). The
proliferation index was expressed as the percentage of Ki-67-positive
cells.

2.11. Western blot analysis

Cells or exosomes (10 μg of protein or 20 μl of exosome suspension)
were lysed in RIPA buffer containing Na3VO4 (1mM) and protease in-
hibitors (1 μg/ml). Protein concentration was assessed by the Bradford
assay. The cell and exosome lysates were separated using 4–12% SDS-
PAGE (Life Technologies) and transferred onto a nitrocellulose mem-
brane (Protran). After blocking with 5% non-fat milk in PBS-Tween
(0.1%), the membranes were incubated overnight at 4 °C with primary
antibodies against IRS1 (Bethyl), phospho-p38 MAPK, p38 MAPK,
phospho-AKT and AKT (all Cell Signalling). β-Actin (Cell Signalling)
was used as a loading control. Anti-CD81 and anti-CD63 IgG (gener-
ously provided by Prof. Fabio Malavasi, University of Torino, Italy)
were used to detect exosomes. After incubation with HRP-conjugated
secondary IgG (Cell Signalling), the blots were developed using ECL
(Pierce). The band intensities were visualized and quantified with
ChemiDoc using Quantity One software (Bio-Rad Laboratories).

2.12. Statistical analysis

Data are presented as means ± standard deviations (SDs).
Comparisons between and among groups of data were determined using
Student's t-test and one-way analysis of variance (ANOVA) with Tukey's
post hoc analysis. A p-value≤ 0.05 indicated statistical significance. All
statistical analyses were performed using SPSS software.

3. Results

3.1. MiR-126 level in cellular stroma components and MM cell response to
miR-126 treatment

The levels of miR-126 in MM cellular stroma components, such as
NM or MM cells (mesothelial Met-5A cells, sarcomatoid H28 cells, bi-
phasic MM-B1 cells), IMR-90 cells and HUVECs, were evaluated.
Among these cells, HUVECs showed the highest miR-126 content in

Fig. 3. Exosomal transfer of miR-126 between cells and exosomes. Stromal cells
(Met-5A, H28, MM-B1, and IMR-90 cells and HUVECs) were treated with
HUVEC-derived exosomes (T1), exosome-enriched miR-126 (T2), or exosome-
enriched miRNA scrambled control (scr), and after 24 h of incubation, the levels
of miR-126 in cells (A) and exosomes (B) were evaluated. The released exo-
somes were quantified by detecting exosomal protein using the Bradford assay
(C), and CD81 and CD63 levels were assessed by Western blot analysis, and the
results expressed as fold change respect to the T0 (D). The results are the mean
values ± S.D.s of three experiments performed in duplicate. Comparisons
among treatments were performed by ANOVA with Tukey's post hoc analysis.
The symbol ‘*’ denotes statistically significant differences between un-treated
cells (T0) and exo-miR-126-treated cells (T1,T2 and scr), p < 0.05.
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both the cellular and exosomal compartments (Fig. 1A). HUVECs
transfected with the miR-126 mimic exhibited further increased exo-
somal miR-126 content. The transfection of HUVECs with a nonspecific
miRNA mimic scrambled control did not affect the exosomal miR-126
content (Fig. 1A, insert).

Next, we evaluated the sensitivity of MM cells to the effects induced
by miR-126. H28 and MM-B1 cells were treated with the miR-126
mimic and subjected to cell proliferation and colony formation assays.
As shown in Fig. 1B–D, miR-126 inhibited the growth of H28 cells (miR-
126-sensitive cells) but had no effect on MM-B1 cells (miR-126-resistant
cells).

3.2. Uptake of HUVEC-derived exosomes and the transfer of miR-126 in
stromal cells

Given that HUVECs released exosomes rich in miR-126 and miR-126
transfection further increased the miR-126 level in HUVECs, we used
exosomes from control HUVECs as an endogenous delivery system for
miR-126 (exo-HUVEC). The exosomal uptake in all cellular components

of the stromal model was evaluated. All cells were able to internalize
the exosomes, as visualized by punctuate green fluorescence (Fig. 2).
Next, the kinetics of exosomal uptake were evaluated by quantitative
flow cytometry assay. PKH67-labelled exosomes (exo-HUVEC) were
administered at an increasing amount, and exosomal uptake by stroma
recipient cells was evaluated over time. As shown in Supplementary
Fig. 1, the uptake of exosomes at 100 μg/ml exosome protein was linear
for up to 360min. Stromal cells took up labelled exosomes in a time-
and concentration-dependent manner (Supplementary Fig. 1, insert). As
shown by the kinetic analysis, exosomal uptake was rapid in MM-B1
cells and HUVECs (Supplementary Fig. 1, bottom right image). Next, we
evaluated the exosomal transfer of miR-126 between cells and the re-
lease of miR-126 into the medium. Cells were treated with exo-HUVEC
(T1), exo-HUVEC miR-126 enriched (T2), or exo-HUVEC scrambled
(exo-HUVECscr), and the miR-126 contents in both cells and exosomes
released into the medium were detected. MiR-126 was found to accu-
mulate in H28 cells, while miR-126 levels decreased in HUVECs fol-
lowing treatment (Fig. 3A). The effects of exo-HUVECscr treatment re-
sembled those of T1 treatment (exo-HUVEC) in stromal cells, while the

Fig. 4. Exosomal uptake and exosomal miR-126
transfer in the stromal model. The stromal model is
represented in the scheme (top left cartoon).
Exosomal uptake (A) and miR-126 levels in cells
(recipient cells) in the stromal environments of a
non-malignant environment (B), an miR-126-sensi-
tive MM environment (C), and an miR-126-resistant
MM environment (D) following no treatment (T0),
exosome-endogenous miR-126 treatment (T1), and
exosome-enriched miR-126 treatment (T2). The re-
sults are the mean values ± S.D.s of three experi-
ments performed in duplicate. The symbol ‘*’ de-
notes statistically significant differences between
un-treated cells (T0) and exo-HUVEC-treated cells
(T1 and T2), p < 0.05.
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miR-126 content in exosomes released by the cells after treatment was
decreased (Fig. 3A and B). Although exosome release was decreased by
treatment (Fig. 3C and D), the released exosomes were enriched in miR-
126 (Fig. 3B).

3.3. Exosome uptake and exo-HUVEC miR-126 distribution in the stromal
model

To investigate the interactions between cancer cells and cancer-as-
sociated cells within the tumour microenvironment, an in vitro stromal
model was used. By stratifying ECs (HUVECs) and fibroblasts (IMR-

90 cells) on the upper and lower surfaces of a Transwell insert and
normal or MM cells (miR-126-sensitive and miR-126-resistant cells,
respectively) on the bottom of the well in which the insert was placed
(Fig. 4, top left cartoon), three microenvironments were obtained: (i)
non-malignant, (ii) miR-126-sensitive and (iii) miR-126-resistant en-
vironments. Next, after turning the cells from the insert to the bottom of
the well (recipient cells), both exosomal uptake and miR-126 content
after exo-HUVEC treatments (T1 and T2) in each cellular component
were evaluated. Exosome uptake was observed in all cellular compo-
nents (Fig. 4A). Treatment in the non-malignant environment increased
the level of miR-126 in IMR-90 cells and HUVECs without changing the
miR-126 level in Met-5A cells (Fig. 4B). An increased level of miR-126
in H28 cells and HUVECs associated with a reduction in miR-126 in
IMR-90 cells was found in the miR-126-sensitive MM environment fol-
lowing treatment (Fig. 4C). Conversely, in the miR-126-resistant MM
environment, treatment increased the level of miR-126 in IMR-90 cells,
which was associated with a reduction in miR-126 content in both MM-
B1 cells and HUVECs (Fig. 4D). The distribution of miR-126 among the
cells in the three environments was also evaluated (Supplementary
Fig. 2). MiR-126 accumulated in fibroblasts in the non-malignant en-
vironment after treatment. In the miR-126-sensitive MM environment,
miR-126 was transferred following treatment and accumulated in
H28 cells and HUVECs. Conversely, in the miR-126-resistant MM en-
vironment, miR-126 introduced by treatment was sequestered by fi-
broblasts (36–77%), thus reducing the miR-126 level in both MM-B1
cells and HUVECs.

Given that the microenvironment affected the miR-126 distribution
among the cells, we next evaluated the modulation of miR-126 target
genes following exo-HUVEC treatment. The following three miR-126
targets involved in angiogenesis and cell growth were evaluated: insulin
receptor substrate 1 (IRS1), vascular endothelial growth factor (VEGF)
and EGF-like domain 7 (EGFL7). The treatments induced the expression
of VEGF and EGFL7 in Met-5A and H28 cells and upregulated IRS1 in
MM-B1 cells (Fig. 5A). VEGF and EGFL7 were found to be down-
regulated in IMR-90 cells in the miR-126-sensitive MM environment. In
contrast, treatment induced VEGF and EGFL7 expression in both IMR-
90 cells and HUVECs in the miR-126-resistant MM environment (Fig. 5B
and C).

3.4. Exo-HUVEC miR-126 treatment modulated angiogenesis and cell
growth in the stromal model

The increased expression of VEGF and EGFL7 in IMR-90 cells and
HUVECs in the miR-126-resistant MM environment following exo-
HUVEC treatment contributed to angiogenesis induction in the stromal
model. In contrast, treatment with exosomes inhibited vessel formation
in the miR-126-sensitive MM environment. Angiogenesis was slightly
inhibited in the non-malignant environment following treatment. These
effects were reversed by blocking the function of miR-126 using anti-
sense miR126 (anti-miR), which further confirmed the involvement of
miR-126 in these effects (Fig. 6A). Notably, these results were inverted
in a co-culture system without fibroblasts (IMR-90 cells), in which exo-
HUVEC treatment inhibited vessel formation in the miR-126-resistant
MM environment and induced angiogenesis in the miR-126-sensitive
environment. This finding suggests a role for fibroblasts in the mod-
ulation of angiogenesis (Fig. 6B). However, when miR-126-sensitive
(H28) and miR-126-resistant (MM-B1) MM cells were grown together,
angiogenesis was inhibited by exo-HUVEC treatment (Fig. 6C).

The IRS1 protein, a direct target of miR-126, is involved in tumour
suppression [10,13]. Therefore, the impact of exosome treatment on the
modulation of IRS1 signalling was evaluated in non-malignant Met-5A
and MM cells (H28 and MM-B1) in the tri-culture stromal model. Exo-
HUVEC treatment markedly inhibited IRS1 expression, which was as-
sociated with the reduced expression of downstream AKT and p38
targets in the miR-126-sensitive MM environment. Conversely, the in-
creased expression of IRS1 observed in the miR-126-resistant

Fig. 5. Modulation of miR-126 target expression by exosome-delivered miR-
126 in the stroma model. A) IRS1, VEGF, and EGFL7 gene expression was
evaluated in recipient Met-5A cells (non-malignant environment), H28 cells
(miR-126-sensitive MM environment) and MM-B1 cells (miR-126-resistant MM
environment) or IMR-90 cells (B) and HUVECs (C) within the three MM en-
vironments. The results are the mean values ± S.D.s of three experiments
performed in duplicate. The symbol ‘*’ denotes statistically significant differ-
ences between un-treated cells (T0) and exo-HUVEC-treated cells (T1 and T2),
p < 0.05.
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environment in response to treatment did not affect the signalling
pathway (Fig. 7). Cell proliferation was also evaluated in the tri-culture
model after incubation with exo-HUVEC. As shown in Fig. 8, the per-
centage of Ki-67-positive cells was significantly decreased in the miR-
126-sensitive MM environment after treatment, which was reversed by
anti-miR. No Ki-67-positive cells were detected in MM-B1 cells. The
relationship between miR-126 stromal distribution, angiogenesis and
cell growth was further confirmed in two other MM cell lines with
epithelial (MPP89) and biphasic (MSTO-211H) phenotypes, showing
the pronounced inhibition of cell growth and angiogenesis in miR-126-
responsive MSTO-211H cells (Supplementary Fig. 3).

4. Discussion

Based on the results in this report, we propose exosomes as carriers
for the delivery of miR-126, an miRNA previously found to suppress
MM tumour formation in mice. An in vitro study was performed to
evaluate the impact of miR-126 delivered by exosomes on cell-to-cell
communication within the stroma of MM. Exosomes from endothelial
cells were used as a natural carrier of miR-126 (cf Fig. 1). Therefore,

exosome-delivered endogenous miR-126 and miR-126 enriched by
mimic transfection (exo-HUVECmiR−126) were used to treat MM cells.
The cells responded differently to the treatments. The cancer stroma
consists of a heterogeneous group of cells whose growth and progres-
sion greatly depend on reciprocal interactions between genetically al-
tered neoplastic cells and the non-neoplastic microenvironment
[14,15]. All cellular components of the ‘stroma’ took up exo-miR-126 in
a dose- and time-dependent manner and released exosomes enriched in
miR-126 into the microenvironment; these exosomes may be inter-
nalised by the cells themselves or other cellular components of the
environment (cf Figs. 2 and 3). A negative feedback mechanism of
exosome release has been observed (Fig. 3). Exosomes introduced by
exo-HUVEC treatments can suppress the further release of exosomes
from the cells, as previously reported [16,17].

In a tri-culture system, miR-126 was introduced and distributed
among the cells via autocrine and paracrine mechanisms. Therefore, by
culturing fibroblasts and ECs with Met-5A, H28 and MM-B1 cells, three
environments were formed: non-malignant, miR-126-sensitive and miR-
126-resistant MM environments. Consistent with the formation of in-
dividual environments, miR-126 delivered by exosomes was distributed

Fig. 6. Regulation of angiogenesis by exosome-de-
livered miR-126 in the stromal model. Angiogenesis
was evaluated via tube formation in a tri-culture
model in which non-malignant mesothelial cells
(Met-5A cells) or MM cells (H28 and MM-B1 cells)
and fibroblasts (IMR-90 cells) were grown on the
upper and lower surface of a Transwell insert, re-
spectively, with endothelial cells (HUVECs) grown
at the bottom of the well. A) MM-B1 cells (miR-126-
resistant MM environment), H28 cells (miR-126-
sensitive MM environment) and Met-5A cells (non-
malignant environment) were treated with exo-miR-
126 (T1 and T2) or exo-HUVECanti-miR, and tube
formation was visualized and quantified. B) MM-B1
and H28 cells cultured in the stromal environment
without fibroblasts were treated with exo-
HUVECmiR−126 (T2), and tube formation was vi-
sualized and quantified. C) H28 and MM-B1 cells
were co-cultured in the stroma model, and vessel
formation was evaluated after exo-HUVECmiR−126

(T2) treatment. The images are representative of
three independent experiments performed in dupli-
cate. The symbol ‘*’ denotes statistically significant
differences between un-treated cells (T0) and exo-
HUVEC-treated cells (T1, T2 and anti-miR),
p < 0.05.
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differently across the cells, thereby affecting angiogenesis and cell
growth. For instance, exo-HUVEC miR-126 treatment induced miR-126
upregulation in ECs in the miR-126-sensitive MM environment. The
downregulation of miR-126 in ECs and high miR-126 levels in fibro-
blasts were found in the miR-126-resistant MM environment (cf Fig. 4;
Sup. 2). In the latter case, a shift of the miR-126 content from en-
dothelial cells to fibroblasts induced tube formation, which was sup-
pressed in the culture system lacking fibroblasts, suggesting the role of
these cells in cancer-stroma cross-talk (cf Fig. 6). The induction of an-
giogenesis was related to high levels of EGFL7 and VEGF. Fibroblasts
contributed to blood vessel abnormalities by altering their secretion of
various pro- and anti-angiogenic factors [18]. Among these factors,
EGFL7 is an endothelial cell-derived factor involved in regulating the
spatial arrangement of cells during vascular tube formation and re-
modelling [19].

Although functional EGFL7 protein is regulated by miR-126 ex-
pression, whether EGFL7 protein and microRNA act in synergy or an-
tagonistically is unclear. The infiltration of cancer-associated fibroblasts
(CAFs) has been found in MM specimens, and lung fibroblast-condi-
tioned medium promoted MM cell growth and migration via the pro-
duction of fibronectin and hepatocyte growth factor (HGF) [20]. Fi-
bronectin acts as a chemoattractant for fibroblasts, ECs and cancer cells;
HGF, which is expressed at high levels in MM patients [21], likely plays
an important role in tumour progression. Similarly, the fibroblast
growth factor (FGF) is a potent driver of malignancy in MM that can be

regulated by the miR-15/16 family [22].
Breast cancer cells mixed with CAFs enhanced tumour formation by

angiogenesis via adrenomedullin (ADM) secretion [23]. Cross-talk be-
tween cervical cancer cells and fibroblasts has been reported to induce
the downregulation of miR-126 in HUVECs with a consequent increase
in tube formation. The pro-angiogenetic ADM was identified as a target
inhibited by miR-126 [24]. Therefore, we postulate that the exosome-
induced upregulation of miR-126 in endothelial cells inhibits ADM
expression, thus inhibiting angiogenesis. We demonstrated that cross-
talk between MM cells and fibroblasts modulated angiogenesis, which
was dependent on the response of MM cells to miR-126 treatment.
However, in a heterogeneous cell environment in which cells respond
differently to the miR-126 treatment, the inhibitory effect of miR-126
on angiogenesis in miR-126-sensitive MM cells was greater than that in
the miR-126-resistant cells, indicating the efficacy of the treatments.

Various studies have shown that inhibition of IRS1 results in the
downregulation or inhibition of angiogenesis [24–27] and that IRS1
expression and activation are associated with the MM phenotype [28].
Here, we found that exo-HUVEC miR-126 treatment affected IRS1 sig-
nalling by modulating the AKT and MAPK pathways downstream of
IRS1 (cf Fig. 7). MAPK proteins include extracellular signal-regulated
kinase (ERK), p38, and the c-Jun NH2-terminal kinase (JNK). The sig-
nalling pathways associated with these proteins regulate a variety of
cellular activities, including proliferation, differentiation, survival, and
death [29]. Inhibition of the IRS1 pathway with the consequent arrest
of cell growth was observed in the miR-126-sensitive MM environment
after exo-HUVEC miR-126 treatment. Conversely, MM cells resistant to
miR-126 showed the increased expression of IRS1, which was asso-
ciated with increased cell proliferation. Taken together, these data
suggest that cross-talk between MM cells and components of the
stroma, such as fibroblasts and ECs, modulates miR-126 distribution
within the stromal environment following exo-HUVEC miR-126 treat-
ment. The reduced miR-126 content in fibroblasts in favour of ECs in-
hibited both angiogenesis and cell growth. In contrast, the accumula-
tion of miR-126 in fibroblasts and the reduced level of miR-126 in ECs
induced tube formation via VEGF/EGFL7 upregulation and IRS1-
mediated cell proliferation. Consistently, exosomes from HUVECs have
been proposed to alleviate ischaemic injury [30,31], and miR-126-
loaded exosomes obtained from marrow-derived endothelial progenitor
cells were used to treat thrombotic events in an animal model [32].
Therefore, the transfer of miR-126 via HUVEC-derived exosomes may
represent a novel strategy to inhibit angiogenesis and the proliferation
of MM with translational consequences.
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Fig. 7. Activation of IRS1 signalling by exosome-delivered miR-126 in the
stromal model. Non-malignant mesothelial cells (Met-5A cells) or MM cells
(H28 and MM-B1 cells) grown in the tri-culture system with fibroblasts (IMR-
90) and endothelial cells (HUVECs) were treated with exo-HUVEC (T1) or exo-
HUVECmiR−126 (T2) (20 μg/ml), and the expression of IRS1, pAKT, AKT, pP38,
and P38 was evaluated after 2 days of incubation. Band densities were related
to the level of actin (bottom panel). The images are representative of three
independent experiments performed in duplicate.
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