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Florence, December 23rd, 2021 

 

Subject: Submission to Fuel Processing Technology 
 
Dear Editor! 
 
The manuscript I am submitting to FUPROC - also on behalf of my co-authors - explores the potential of 
a portable NIR spectrophotometer for rapid and non-destructive assessment of moisture content. The 
hand-held sensor is a commercial device, already used in food and pharmaceutical applications. The 
novelty of the research lies on the dedicated prediction models, specifically developed for solid biomass 
characterization.   
 
Differently than most of the technologies for moisture content estimation, the tested NIR 
spectrophotometer is portable, and can be deployed directly on the fuel yard or transportation unit. 
This creates a wide range of possible innovations in quality control, ranging from the sampling procedure 
to the cost of analysis. Additionally, the paper also reports the real performance of the analyzer in term 
of measurement time, a crucial figure when the technology is applied in commercial applications.   
 
To our knowledge this is the first study based on a large dataset of “commercial” biofuel assessing both 
reliability and “productivity” of a portable moisture meter. This topic should be relevant to the FUPROC 
readers, as the results provide insights on how solve one of the main challenges in bioenergy systems 
based on solid biofuel: the fast and reliable assessment of moisture content. 
  
This research is in synergy with previous FUPROC papers exploring the quality assessment and 
management of biomass, such as: 
 
- Gary D. Gillespie et al. (2016) The use of near infrared hyperspectral imaging for the prediction of 

processing parameters associated with the pelleting of biomass feedstocks. FPT 152, pp. 343-349 
- Ashman J. M. (2018) Some characteristics of the self-heating of the large scale storage of biomass. 

FUPROC 174, pp. 1-8 
- Aminti G. et al (2018) Industrial stress-test of a magnetic resonance moisture meter for woody 

biomass in southern European conditions. FUPROC 178, pp. 189-196 
 
We conducted our research with the utmost scientific rigor, while trying to keep the paper as concise 
and easy to read as possible. We also confirm that this paper is the original product of our research. I 
hope that you (as well as the reviewers and the readers) will find it interesting and useful.  
 
In the annex (following page) you can find the suggested reviewers along with the relative paper listed 
in the reference section.  
 
We are looking forward to your kind feedback. 
 
Best regards  

Gianni Picchi 
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ABSTRACT 20 

The environmental policy of the European Union is boosting the development of renewable energies. Among 21 

these, bioenergy holds the main share and is expected to further increase. Such development requires a higher 22 

degree of efficiency in the whole supply chain. This is achieved also with an enhanced fuel quality control and 23 

a better matching with the energy conversion systems. For solid biofuels, moisture content is the main quality 24 

parameters, influencing the sustainability of the whole energy system. With the aim to provide a real-time and 25 

flexible tool for moisture measurement, a portable near infrared spectrometer was tested on a dataset of 817 26 

woodchip samples provided by an industrial facility. A set of key performance parameters were used to 27 

compare the estimation of three prediction models and the standard oven dry method. Results show a 28 

satisfactory reliability with R2 ranging from 0.86 to 0.89 depending on the model. A single measure can be 29 

acquired in few seconds, and the potential to deploy the non-destructive analysis directly on the fuel stocks 30 

and at different steps of the supply chain discloses a wide range of options to efficiently control fuel quality.    31 

 32 

 33 

 34 

Nomenclature and acronyms  35 

 36 

EU European Union 

KPI Key Performance Indicator 

LVF Linear-variable Filter 

MC Moisture Content 

MOD Model 

NIR Near InfraRed Spectroscopy  

PLS Partial Least Square regression 

RE Renewable Energy 

RMSEP Root mean square error of prediction 

R&R Repeatibility and Reproducibility test 

SEP Standard error of performance 

SNV Standard normal variate 

 37 
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 41 

1. Introduction 42 

The recent European Green Deal climate actions boosted the efforts to reduce the emission of climate-altering 43 

pollutants in the European Union (EU). In particular, the “Fit for 55” package sets a maximum emission 44 

threshold to be met by 2030, corresponding to 55% of the figures recorded in 1990. This program involves 45 

particularly the energy sector, which must increase the share of renewable energy (RE) to 40% in the same 46 

time span [1]. A rather ambitious target considering that by 2017 RE provided just 17.6% of the total energy 47 

supply in the EU [2]. Since bioenergy was responsible for over 58.5% of total RE output the present stimulus 48 

is expected to increase up to fivefold the energy consumption of biomass in the next decades, strengthening its 49 

role of RE backbone in the energy mix of the EU [3]. In order to meet the expectations, the bioenergy sector 50 

must seek for a higher degree of efficiency of the whole supply chain. This requires, among other aspects, a 51 

higher quality control of the fuel and a better matching between fuel properties and energy conversion systems. 52 

For solid biofuels, moisture content (MC) is considered as the most relevant quality factor [4] and a thorough 53 

monitoring of MC is the most cost-effective strategy for managing biofuel procurement in energy facilities, in 54 

spite of the investment in time and resources that it requires [5]. In fact, a high MC has detrimental effects on 55 

the whole forest-energy supply chain, beginning with the reduction of the effective payload of trucks, which 56 

decreases the environmental and economic sustainability of biomass procurement [6,7]. Once in the yard, long-57 

term storage of woodchips with high MC may lead to important biomass losses due to microbial development 58 

[8–10], causing an immediate value loss and an undesired proliferation of fungal spores in the biomass piles 59 

[11]. In some cases, this process can even lead to self-ignition [12] with total destruction of the stored fuel. As 60 

a further inconvenience, a high MC strongly reduces the heating value [13], increasing the biomass required 61 

for the same energy output. Additionally, storage in uncovered yards may modify, where the biomass is  62 

exposed to uncontrollable factors such as rain, snow and wind generally leads MC increase [14,15], but it may 63 

also reduce it if the conditions are favourable [16]. This represents a further challenge as the combustion of 64 

biomass with unknown and variable MC leads to unstable and inefficient firing process [17]. This issue can be 65 

partially coped with indirect systems for monitoring and adjusting the combustion performance, based on flue 66 

gas analysis [18] or energy output [19]. Yet, these systems based on post-combustion parameters are hindered 67 

by unavoidable inertia of reaction, which increases with the size of the furnace. In-line and real-time 68 



monitoring of the fuel fed to the furnace would be a much more effective solution to adjust combustion settings 69 

according biomass quality. For instance, encouraging results had been obtained for in-line detection of MC 70 

with microwave reflection sensors on sawdust [20]. Another promising technology for fast determination of 71 

MC along the biomass supply chain is near infrared spectroscopy (NIR). It has already proved its potential in 72 

characterizing solid fuels on conveyor belt (in-line) [21], laboratory MC analysis [22] as well as used directly 73 

in the field with portable instruments [23,24]. NIR sensors can provide a wider range of services besides pure 74 

MC determination, deploying the same spectra for quantification of other fuel properties such as calorific 75 

value, ash content [25] and the type of woody biomass [26]. In addition, the availability of portable NIR sensors 76 

with real-time measurement, allows to assess the relevant quality parameters and their spatial patterns directly 77 

on the pile or the truckload [27]. This application could strongly improve the MC control of loose industrial 78 

biofuels, as the present biomass sampling procedures struggle to achieve a compromise between reliability and 79 

acceptable costs [28,29]. An issue particularly relevant in regions with a high variety of woody biomass 80 

sources, such as Southern Europe, where these fuels feature very inhomogeneous characteristics [30–33], 81 

leading to an additional effort to control the quality of biomass feedstock.  82 

Finally, the availability of a portable NIR tool for the determination of MC (and other quality parameters) of 83 

woody biomass would pave the way to several applications falling in the frame of the forthcoming digitalized 84 

bioeconomy. As an example, if installed on wood chippers it would provide real-time information on fuel 85 

quality as currently is done with grain harvesters [34]. Deployed at different steps of the supply chain the 86 

sensor could monitor the quality changes of the produced and stored biomass as well as enhance fuel 87 

combustion if operated at the furnace inlet. Yet, such development requires adequate hardware solutions and 88 

reliable prediction models to convert the raw spectra in MC figures.  89 

Considering the above, the present study aimed to test the performance of a portable NIR spectrometer running 90 

three different MC prediction models, assessing its potential to determine fuel quality with heterogeneous 91 

industrial biomass. Quality assurance was based on three key performance indicators according to the 92 

guidelines suggested by Vardeman and Jobe [35]:   93 



- “Validity” is intended as the capacity to provide data that represent the quantity measured reliably, without 94 

the influence of factors other than the desired ones. In this case, due to the lack of information regarding the 95 

biomass quality, the unique factor considered was the influence of the extreme MC values;  96 

- “Precision” related to the range of variation observed measuring samples with the same or similar MC values, 97 

which should ideally result in minimum variations; 98 

- “Accuracy”, accomplished when the average of values estimated produces the true or correct values of MC 99 

as measured with the reference method; 100 

Considering the industrial focus of the test, an additional KPI was included in the study:  101 

- “Performance” of the analyzer, intended as the effective output of MC estimates per work hour in real work 102 

conditions.  103 

 104 

2. Materials and methods 105 

 106 

2.1 Woodchip samples collection and preparation  107 

The woodchip samples (n = 817) had been provided by a power plant located in Northern Italy from July to 108 

October 2020. The facility consumes a very wide range of fuels, including energy crops (medium rotation 109 

coppice of poplar clones), agricultural residues (mainly from uprooting of pear, apple and peach orchards), 110 

river banks maintenance (providing a mix of broadleaves dominated by willow, poplar and alder) and conifers 111 

from a large windthrown area of the Italian Alps (mainly spruce). All the woodchip samples had been delivered 112 

directly to the lab in hermetically sealed plastic bags to preserve their original characteristics. In order to 113 

maintain their representativeness, biomass was collected according to the sampling procedure defined by the 114 

technical standard ISO 18135:2017 – Sampling of solid biofuels. The samples had been prepared for the 115 

evaluation of MC according to the technical standard ISO 18134-1:2015.  116 

 117 

2.2 Near-infrared data acquisition  118 



NIR analysis was performed in laboratory by means of a portable MicroNIR™ OnSite sensor, which featuring 119 

no moving parts can be regarded as a “rugged” spectrometer (IP67). The instrument works in the spectral range 120 

between 950 and 1650 nm, it is equipped with two small vacuum tungsten lamps (ø ≈ 4 mm) as radiation 121 

source and a linear-variable filter (LVF) as dispersing element directly connected to a 128-pixel indium gallium 122 

arsenide (InGaAs) photodiode array detector. The acquisition was carried out in reflectance mode. Integration 123 

time was 6.7 ms and each spectrum was the average of 100 scans, thus with an acquisition time below 1 second. 124 

In order to remove the instrumental and environmental noise, a dark reference (0% transmittance) and a blank 125 

spectrum have been acquired every hour using a 99% reflectance reference standard (Spectralon). All spectra 126 

were collected by operating the sensor at a stable internal temperature (30 ± 1 °C).  127 

MC of samples was estimated as the average value of ten measurements (replicates For this purpose, the sample 128 

was carefully distributed on a tray where the NIR raw data was acquired on a matrix of 9 predefined spots plus 129 

a randomly-selected position as depicted in figure 1. The operation was performed manually by a unique 130 

operator throughout the whole study. After spectra acquisition the sample was oven-dried for MC measurement 131 

according to standard ISO 18134-1:2015.  132 

 133 

Figure 1: 3x3 matrix used for sampling NIR scans on the woodchip tray 134 

 135 

2.3 Test of precision 136 

The precision test aims at assessing the dispersion of measured values. Standard deviation is a good indicator 137 

of this performance, yet a more detailed analysis requires repeated measurements performed on a same group 138 

of samples. Therefore, 30 new woodchip samples provided by the same power plant were used to generate a 139 



dedicated dataset at the end of the main study. The NIR analysis was repeated 5 times on each sample following 140 

the protocol previously described in 2.2. Between each repeated measurement the biomass in the tray was 141 

carefully mixed. Finally, the reference MC of the biomass was determined by means of the oven-drying method 142 

(ISO 18134-1:2015).   143 

 144 

2.4 Prediction models  145 

The spectra acquired on the biomass samples were used to estimate MC by means of three different prediction 146 

models. These had been previously developed using the spectra acquired on different sets of industrial 147 

woodchip samples provided to the laboratory by several Italian power plants during the routine control of MC 148 

of the incoming feedstock. Although the specific characteristics of the biomass samples were unknown (e.g. 149 

tree species, storage time and conditions, etc.) a wide variability was expected, allowing for the development 150 

of robust models. All the computations have been performed in Matlab environment (ver. 7.10.0, The 151 

MathWorks) using in-house functions on existing algorithms.  152 

Each prediction model was selected as the best performing of a series of models computed on the averaged 153 

matrices with different pretreatments. The first prediction model (MOD1) was developed on the spectra of 642 154 

samples with a range of MC values between 4.3% and 49.1%.  A PLS regression model was used pretreating 155 

the spectra with the combination of first derivative (Savitzky-Golay filter, 5-points window, second-order 156 

polynomial) and Standard Normal Variate (SNV). The resulting model features R2=0.94 and RMSEP=2.40%. 157 

The second (MOD2) and the third (MOD3) prediction models have been developed on the spectra of 212 158 

samples with a range of MC values between 15.2% and 64.7%. MOD2 was developed pretreating the spectra 159 

with the second derivative (Savitzky-Golay filter, 5-points window, second-order polynomial) featuring 160 

R2=0.96 and RMSEP=1.99%. MOD3 was developed as the previous one, with additional SNV pretreatments 161 

resulting in R2=0.94 and RMSEP=2.44%. The RMSEP values of the three models are in line or superior to the 162 

results of other researches estimating MC with NIR spectroscopy in woody materials [36,37] and other 163 

biomasses [38,39].  164 

 165 



2.5 Data analysis 166 

To analyze the accuracy of the NIR analysis and the three models tested, the difference in moisture (bias) 167 

between the MC returned by the estimate (MC_nir) and the reference value (MC_ref) was calculated as 168 

follows:  169 

Bias = MC_nirim – MC_refi 170 

Where MC_nir is the value returned by the model m for the sample i and MC_ref is the value measured with 171 

oven dry method for the same sample i. 172 

Bias values were first checked with descriptive analysis (Box-Plot) for possible outliers (difference > 1.5 SD). 173 

The first round identified a large number of anomalous values: 87, 93 and 52 respectively for MOD1, MOD2 174 

and MOD3. Since the number of potential outliers was large and no clear pattern or cause of outlier generation 175 

could be identified, a second identification procedure was performed. This was based on the observation of 176 

normal probability plots of bias values: a single outlier was identified in MOD1 (difference > 10 SD) and 177 

removed from the following analysis. The resulting databases were used to assess the key performance 178 

indicators (KPI) of the NIR sensor with the three prediction models as described in the following sections.  179 

 180 

2.5.1 Validity 181 

A general statistical analysis was performed to compare the performance of the three prediction models based 182 

on average, standard deviation, minimum and maximum MC values. In order to better assess the validity of 183 

each model according to the MC level of the sample, the dataset was divided in homogeneous moisture classes, 184 

each with a range of 10 MC percentage points.  185 

Additionally, the validity of the three prediction models was verified through regression analysis, assessing 186 

the linearity of MC values estimated against the values returned by the standard oven-dry method. 187 

 188 

2.5.2 Accuracy 189 

This performance indicator was verified by means of two analyses:  190 



- calculating the Standard Error of Performance (SEP), as described by [40], which also allows for 191 

comparison of the tested NIR models with other MC analyzers:   192 

𝑆𝐸𝑃 = √
1

𝑁 − 1
∑(𝑒𝑖 − 𝑒)̅2
𝑁

𝑖=1

 193 

Where N is the number of samples; ei = (Mreference-Mi) and Mi is the MC measured by the analyzer for the ith sample and Mreference is 194 
the MC determined for the same sample according to the standard method; ē is the average of ei.  195 

 196 

- identifying the Statistical Tolerance Limits. For this analysis, a Shapiro-Wilk test was first performed 197 

for verifying the normal distribution of the bias datasets generated by the three prediction models. 198 

Since just MOD2 data showed a normal distribution, a non-parametric tolerance limit analysis was 199 

performed, considering a confidence level of 90% and capturing 91.5% of population proportion.  200 

 201 

2.5.3 Precision 202 

The precision of the three models was verified by running a Gage R&R test, ANOVA method. This technique 203 

is specifically designed for verifying the “Repeatibility” and “Reproducibility” of a measurement conducted 204 

with a specific gauging device (Instrument) operated by one or more operators (Appraiser) on one or more 205 

items (Part) [35]. The three prediction models were considered in the analysis as a different Appraiser, using 206 

a single Instrument for measuring 30 Parts (biomass samples) 5 times. With such design it was possible to 207 

verify the “Repeatibility” of the analysis (i.e. variation obtained by repeating a measure with the same 208 

instrument). The “Reproducibility” of the measurement, which is the variation due to different operators, was 209 

used to highlight the difference due to the three prediction models. The ANOVA method without interaction 210 

was chosen, as it is considered more robust than the Average and Range Method against possible interactions 211 

between samples and operators.  212 

2.5.3 Performance 213 

The time required for the analysis was measured for each sample (tray). Since a single operator was both 214 

carrying on the MC analysis and recording the time required, the accuracy of the timing was limited, thus a 215 

common desk watch was used to note starting and stopping time of each cycle/sample.    216 



3. Results and Discussion 217 

The average MC of the samples according to the standard method was 37.24%. The dataset had a very wide 218 

range, including very dry (~13%) and very wet (~70%) biomass. Comparing the average MC with the 219 

corresponding values returned by the three prediction models (table 1) differences appear very limited, 220 

confirming the general reliability of NIR sensor and an apparent superiority of MOD3. Yet, individual values, 221 

such as the maximum and minimum moisture levels reported show a high degree of variability.  222 

Table 1: General statistics to compare the MC estimate three prediction models 223 

Value (%) 
Standard 

Method 
MOD1 MOD2 MOD3 

Average 37.24 37.52 38.45 37.29 

SD 8.96 8.14 8.38 8.74 

Min 12.76 17.29 21.64 9.58 

Max 69.31 76.61 75.18 64.18 

Range 56.55 59.32 53.54 54.60 
SD: Standard Deviation; MIN: Minimum value; MAX: Maximum value. 224 

The percentage of overestimated and underestimated MC records are reported in table 2 for each prediction 225 

models. Considering absolute values, the average bias is around 2.5% for all models, while the maximum bias 226 

is produced by MOD1 (14.96%). All models show a higher frequency of overestimating occurrences compared 227 

to underestimated ones, but MOD2 is strongly asymmetric with 65.48% of estimations with a positive bias.  228 

Table 2: Resulted values of bias related with each prediction model and their estimation trend   229 

Value (%) MOD1 MOD2 MOD3 

Absolute mean bias 2,60 2,62 2,41 

Max bias 14.96 10.32 11.79 

Min bias 0.01 0.01 0.00 

Overestimated 55.08 65.48 54.59 

Underestimated 44.92 34.52 45.41 

 230 

 231 

3.1 Validity 232 



Considering the regressions of the three prediction models, the estimation capacity is satisfactory, with 233 

coefficient of determination values (R2) ranging from 0.86 to 0.88 (figure 2). Yet, this performance is inferior 234 

to that achieved with a NIR sensor on homogeneous pelletized biomass [41] and even to that of a magnetic 235 

resonance sensor tested with samples featuring a similar variability to the present study [42]. The bias in 236 

linearity confirms the presence of some disturbance in MC estimation, with MOD3 showing the minimum 237 

deviation from linearity (β = 0.9181) to a maximum in MOD1 (β = 0.8460).  238 

 239 
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 241 

Figure 2: Relation of MC values estimated by the NIR sensor for MOD1, MOD2 and MOD3 as compared to MC 242 
estimated with standard method.  243 

 244 

Before considering the influence of MC classes on the estimation bias returned by the models it is important 245 

to notice how the frequency of samples in each class is strongly unbalanced. As shown in table 3, 73.7% of 246 

samples are included in the two middle classes, with moisture ranging between 30 and 50%. This distribution 247 

can be considered as well representative of the actual biomass fuel used by the power plants, where extreme 248 

values tend to be exceptions.  249 

Table 3: distribution of samples according to the MC classes  250 

MC class 10-20 20-30 30-40 40-50 50-60 60-70 

Samples (n) 23 138 353 249 42 12 

Samples (%) 2.8 16.9 43.2 30.5 5.1 1.5 

Avg. MC (%) 17.58 25.62 35.55 43.8 54.02 63.69 

SD 1.96 2.80 2.88 2.61 2.67 2.35 

 251 

Although the general performance of the models is similar when the whole dataset is considered, its validity 252 

has a different pattern when individual MC classes are considered (figure 3).  253 

MOD1 has satisfactory reliability just for the two central MC classes, with an average bias below 0.5%, while 254 

strongly overestimates drier classes and underestimates samples falling in the two classes with higher MC.  255 

MOD2 highly overestimates (over 3%) for MC content lower than 30%, while shows a high reliability for all 256 

other MC levels, with a maximum average bias below 0.7%.  257 
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MOD3 has a reverse bias pattern compared to the previous one, with high reliability for lower and middle MC 258 

classes and strong underestimation for the two classes with higher MC.  259 

Considering the relative weight of each class (i.e. the percentage of samples falling in it), MOD3 results to be 260 

the most reliable with 93.4% of estimates with an average bias lower than 0.7%, while MOD2 achieves 80.3% 261 

of estimates within this threshold and MOD1 just 73.7%.  262 

Considering the above, MOD3 appears to provide the best performance, even if its capacity to predict MC of 263 

biomass is limited to woodchips with MC lower than 50%. Above this threshold, the analysis would return a 264 

result strongly underestimated. A practical solution to this issue would be to deploy two models for spectra 265 

interpretation: MOD3 could be used as default model, but for MC values >50% the estimated value of MOD2 266 

could be considered since it  has much higher reliability with high MC levels, and a similar one with average 267 

MC values.   268 

 269 

Figure 3: average error of estimate according to MC classes (as measured with standard method). Vertical bars 270 
represent the standard deviation.  271 

 272 

 273 

3.2 Accuracy 274 

The 30 samples used for accuracy determination had MC values ranging from 1 to 52%, thus covering most 275 

of the MC classes featured by the main database. The SEP values for the NIR sensor were 3.5%, 3.1% and 276 
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3.0% respectively for MOD1, MOD2 and MOD3. These values are in line with the average SEP reported for 277 

moisture meters based on NIR and Radio Frequency technologies, and are even similar to the SEP of the oven-278 

dry method operated with 100g samples [40]. Other non-portable technologies for MC estimation recently 279 

tested achieved lower SEP values either operated in-line in laboratory conditions [20] or with traditional 280 

sampling in the industrial environment [42], but being fixed equipment provide a lower sampling flexibility. 281 

Without assuming any particular distribution of the bias values, and with a confidence level of 90%, the 282 

statistical tolerance limits analysis reports that at least 91.5% of the distribution lies between limits with a span 283 

of 11.88, 11.13 and 10.54 percentage points respectively for MOD1, MOD2 and MOD3 (figure 4). This result 284 

further confirms the higher accuracy of MOD3, which also features a mean value of 0.05 against 0.32 and 1.2 285 

respectively for MOD1 and MOD2.  286 

 287 
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 289 

Figure 4: Tolerance plot for nonparametric statistical tolerance limits. Green lines report the limits where 91.5% of 290 
observation lie. Red dashed lines represent the desired value (0, central line) and the threshold set (±2.5 points, left and 291 

right lines) 292 

 293 

3.3 Precision 294 

The percent of total variation due to R&R is 24.87% (table 4). Although a threshold of 10% is generally 295 

recommended (in automotive industry measurements), in other conditions with higher expected variability, 296 

values within 30% are still considered acceptable. This is surely true for MC estimation of biomass where a 297 

plethora of uncontrollable factors contribute to reducing the degree of both reproducibility and repeatability of 298 

a measurement. The value achieved is comparable to what Aminti et al. [42] reported while assessing the 299 

influence of calibration on the repeatability of a magnetic resonance MC analyzer.   300 

Table 4: Gage Repeatability and Reproducibility Report 301 

Measurement Estimated Percent Estimated Percent Percent 

Unit Sigma Total Variation Variance Contribution of R&R 

Repeatability 2.98922 23.8036 8.93545 5.66612 91.63 

Reproducibility 0.903729 7.19653 0.816726 0.5179 8.37 

R & R 3.12285 24.8677 9.75218 6.18402 100.00 

Parts 12.1634 96.8586 147.947 93.816  

Total Variation 12.5579 100.0 157.7   

 302 

In the frame of this study, the R&R analysis highlights the differences among the prediction models in terms 303 

of repeatability, with MOD2 appearing to be the better performing in terms of deviation from average (figure 304 

5). Yet, just 8.37% of the total variance is due to the differences among the prediction models, being the 305 
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remaining 91.63% related to the instrument. This result was partially expected, as the specific layout of the 306 

sensor deployed is designed for material more homogeneous than woodchips. In fact, wood surface roughness 307 

is a critical factor influencing the quality and consistency of the NIR spectra even if acquired on solid timber 308 

and polished wood samples [43,44]. Thus, this aspect is magnified when measuring loose, coarse material as 309 

industrial woodchips, leading to a less predictable illumination and reflection geometry which reduces the 310 

overall precision [43].  311 

 312 

Figure 5: R&R plot for Deviation values. Points represents a single measurement and are grouped by prediction model 313 
(Appraiser). Horizontal red lines show the average measurement for each calibration. Vertical lines connect 314 

measurements made on the same item: the first line in each box represents the values recorded on sample 1, the second 315 
line for sample 2 and so on. 316 

 317 

3.3 Performance 318 

MC measurement with the three prediction models run together (thus requiring more elaboration time) took 319 

an average of 3 seconds per spectra. A whole sample, assessed with 10 replications, could be measure in about 320 

30 seconds. In the case of laboratory analysis, sample preparation required an additional minute to arrange the 321 

woodchips on the tray, note the ID of the sample and remove the biomass or place the tray in the oven. Overall, 322 

less than 2 minutes were sufficient to measure MC of a single sample, an analysis time comparable to that of 323 

magnetic resonance sensor [42]. Additionally, the portability of the instrument allows the operators to measure 324 

the biomass directly at the source (e.g. in the yard or on the transport unit), avoiding sampling time and 325 
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minimizing the risk of sampling errors. Finally, the real-time response of the portable sensor permits the 326 

adoption of an adaptive measurement approach [27], increasing the overall precision of MC estimate.   327 

 328 

  329 



 330 

 331 

4. CONCLUSION 332 

 333 

The study demonstrated the reliability of the portable NIR sensor for the determination of MC of industrial 334 

woody fuel. Among the tested prediction models, MOD3 provides the higher level of accuracy and precision. 335 

Yet, the validity of the estimate is lower when dealing with very dry or very wet samples. This drawback is 336 

probably due to the dataset used to build the prediction models: being industrial fuel, the majority of samples 337 

belonged to the average moisture classes, reducing the power of model-training in the underrepresented 338 

extreme classes. While new models based on datasets with more homogeneous distribution of MC should be 339 

developed, the tested prediction models could be still valuable in practical application. In fact, considering the 340 

different performance of the three models at the extreme values, a higher validity could be achieved by using 341 

the portable NIR spectrometer running two prediction models: MOD3 should be used as the main reference, 342 

but when both models return values above 50%, the result of MOD2 should be used, since this model features 343 

a higher validity at high moisture levels.  344 

The spectra acquisition is very fast, requiring about 3 seconds to return the moisture value. This performance 345 

is particularly relevant for in-field MC analysis, where the operator could gather a large quantity of spectra in 346 

a short time, reducing sampling costs and potentially applying adaptive sampling for a better estimate of the 347 

bulk quality. This latter aspect should be object of the future research, addressing the most appropriate 348 

sampling protocol for moisture content determination on stock piles and in transport units.  349 

 350 

 351 

 352 

 353 
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