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Abstract— The early diagnosis of diabetic neuropathy
(DN) is fundamental in order to enact timely therapeutic
strategies for limiting disease progression. In this work,
we explored the suitability of standing balance task for
identifying the presence of DN. Further, we proposed two
diagnosis pathways in order to succeed in distinguishing
between different stages of the disease. We considered a
cohort of non-neuropathic (NN), asymptomatic neuropathic
(AN), and symptomatic neuropathic (SN) diabetic patients.
From the center of pressure (COP), a series of features
belonging to different description domains were extracted.
In order to exploit the whole information retrievable from
COP, a majority voting ensemble was applied to the output
of classifiers trained separately on different COP compo-
nents. The ensemble of kNN classifiers provided over 86%
accuracy for the first diagnosis pathway, made by a 3-class
classification task for distinguishing between NN, AN, and
SN patients. The second pathway offered higher perfor-
mances, with over 97% accuracy in identifying patients with
symptomatic and asymptomatic neuropathy. Notably, in the
last case, no asymptomatic patient went undetected. This
work showed that properly leveraging all the information
that can be mined from COP trajectory recorded during
standing balance is effective for achieving reliable DN iden-
tification. This work is a step toward a clinical tool for neu-
ropathy diagnosis, also in the early stages of the disease.
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I. INTRODUCTION

D IABETES is a long-term pathological condition, affect-
ing more than 400 million people worldwide [1], [2],

[3], and with a substantial impact on healthcare systems [1],
having a rising prevalence on a global level that is estimated
to reach about 11% by 2045 [2]. Among possible chronic
complications, neuropathy is the most prevalent one, affecting
almost 50% of diabetic patients [1], [4]. Diabetic neuropathy
(DN) is a degenerative disease that refers to the impairment of
autonomic and peripheral nervous systems, targeting sensory,
autonomic, and motor axons [1].

The most common type of DN is the symmetric peripheral
polyneuropathy (PPN), that affects mainly the distal parts of
upper and lower limbs [1], [5]. The involvement of small
myelinated fibers can lead to pain in the form of burning
or stabbing sensations [6], whereas deterioration of large
nerve fibers gives raise to numbness, tingling, and sensory
loss [1], [6]. Such kind of symptoms has also a negative
impact on the patient quality of life, with detrimental effects
on daily activities, and physical and mental issues [1], [6].
Furthermore, PPN is a leading cause of foot ulceration, due
to loss of protective sensation that critically weakens the
capacity to perceive traumas and high pressure [7]. These late
complications can lead to even more serious consequences,
as limb amputation, and to an enhanced mortality
rate [2], [6].

Considering its degenerative nature, and the absence of spe-
cific treatments for nerve fibers impairment [1], [8], an early
diagnosis of PPN is paramount in order to enact available
options aimed at limiting disease progression [6]. The impor-
tance of such aspect is also strengthened by observing that
about 50% of PPN occur in an asymptomatic state [6], [7],
and thus timely diagnosis would make the patient aware
of its condition, easing the planning of anticipatory dis-
ease management, as enhanced glycemic control and lifestyle
modifications, that require active participation of the patients
themselves [1], [6].
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Currently, nerve conduction examination is still the most
reliable way for diagnosing PPN, also for an early stage of the
disease [9]. However, such methods require invasive or uncom-
fortable interventions, e.g. skin biopsy, laser Doppler scanning
of evoked flare, and corneal microscopy [1], that hamper their
deployment in clinical routine [1], [8]. Other examinations
may be used for assessing fiber functions, as 128-Hz tuning
fork and 10-gauge monofilament for vibratory and light-touch
perception [1], [6], [10]. Although valid, these simple tests
are suited for detecting severe sensory loss and advanced
neuropathy only [1], [6], and their usage for identifying mild
or initial stages of PPN is not recommended [6], [11]. These
aspects lead to a lack of general agreement about screening
and diagnosis procedures for clinical practice [4], [6], likely
contributing also to the impressive rate of PPN underdiagnosis,
in some cases even above 50% [11]. Hence, effective and non
invasive diagnostic tools would be valuable to complement
existing tests and improve prevention and treatment [1], [11].

Recently, the dramatic growth of computational resources
and healthcare data has driven many efforts towards
computer-aided solutions for supporting diabetes diagnosis.
Most of the studies investigated predictive models for diabetes
manifestation, but the learning schemes require clinical and
personal information or specific physiological measurements,
whose availability is not always guaranteed [12]. Relatively
few studies dealt with diabetes recognition and PPN identifica-
tion [3]. A 10 minutes-long heart rate recordings were needed
in [13] for diabetes diagnosis, whereas in [14] PPN detec-
tion was pursued by processing corneal confocal microscopy
images. Although promising, this kind of methods appear of
limited applicability in routine clinical practice, and in addition
learning algorithms has to be fed by a large amount of data,
whose collection can be challenging [8], [11].

The decline of sensory perception due to PPN, among
other complications, has a marked adverse impact on stance
stability, with a degraded balance regulation and unsteadi-
ness [10], [15], [16], with an increased risk of fall, recurrent
injuries, and fractures [6], [16]. Hence, some previous studies
proposed to address the problem of PPN identification by
investigating postural steadiness and stance control. Since PPN
is peripheral by definition, some attempts have been made
by applying image processing to plantar pressure distribution
maps, recorded during standing balance and gait, to recognize
diabetic subjects with and without PPN [17], [18].

Furthermore, in the past few years, the use of miniaturized,
wearable devices, such as inertial measurement units (IMUs),
became attractive for the assessment of human motion, due to
their portability, reduced dimensions, and affordability [19].
Such devices allow the direct measurement of the acceler-
ation and angular velocity of different body segments, with
the possibility to quantify also balance sway when placed
on body locations that approximate center of mass posi-
tion [19]. In particular, inertial sensors were leveraged also
for movement analysis of diabetic individuals under a variety
of conditions [20]. Only to mention a few, in [21] standing
balance of patients with and without PPN was assessed by
three bi-axial accelerometers placed on the sacrum and ankle
joints. In [22] a single IMU was used for extracting meaningful

descriptors of postural sway, and their association with the risk
of fall and neuropathy. Wearable inertial sensors were also
employed for unveiling differences in gait initiation dynamics
between diabetic patients with PPN and healthy elderly [23].

In spite of the validity of the previous technologies, the
gold-standard for upright stance maintenance analysis still
remains the instrumented posturography, mainly based on the
evaluation of the center of pressure (COP) [16], [24]. The
latter is the trajectory of the application point of the resultant
force exchanged with the ground, thus directly reflecting
the amount of postural sway. Also, COP is related to the
torque exerted at the lower limb joints, hence encompass-
ing significant information regarding neural and mechanical
regulation of balance [15], [24]. For these reasons, COP has
been extensively investigated for DN [25], [26], [27], but only
few works focused on automated screening solutions aimed at
neuropathy identification. The latter was faced in [8], where
linear discriminant analysis was fed by global and structural
COP parameters, with the former accounting for the magnitude
of the sway and the latter for motor control processes. More
recently, Villegas et al. [4] explored an aggregation method
where COP traces recorded from static and dynamic balance
tasks were pooled together for extracting temporal profiles able
to distinguish healthy, diabetic, and neuropathic individuals.

All the above mentioned studies gave encouraging results,
but none of them considered different degrees of neuropa-
thy severity, preventing their usage for the early recognition
of PPN, i.e. before symptoms development [6]. However,
findings about the association between COP-based measures,
diabetes, and PPN in both asymptomatic and symptomatic
stages have been yet reported [10], [25]. Further, due to the
non-stationary behavior of COP in quiet standing, classical
posturography measures, focused on amplitude and frequency
content of COP [24], have been sometimes dismissed in favor
of parameters related to nonlinear timeseries analysis. Indeed,
such techniques offer a wide range of attractive possibilities,
including the description of stochastic dynamics of sway [28],
the assessment of fractal and correlation properties [29], [30],
[31], and the evaluation of regularity and repeatability of pat-
terns within data [32], [33]. This kind of analyses can provide
insights about the neuro-mechanical control of balance [28],
[29], [33], and has been successfully exploited also on diabetic
patients, in order to explore postural regulation dynamics and
their modification due to PPN [15], [27], [34]. However, the
effectiveness of such measures in recognizing the presence of
PPN in diabetic patients and distinguishing between different
stages of the disease has not yet been investigated.

In this study we aimed to provide a computer-aided screen-
ing solution for the identification of PPN in diabetic subjects
from standing balance. The main contributions can be listed as
follows: we proposed to detect PPN by relying on a totally non
invasive task, such as upright stance, that was yet investigated
for exploring how the presence of diabetes and/or neuropathy
affects the neural regulation of balance, but not for achieving
an automatic identification of the neuropathic condition [10],
[25], [27]. We also tackled the problem of correctly recogniz-
ing asymptomatic and symptomatic neuropathy, thus allowing
the early recognition of the disease, whereas previous works
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pursued the identification of diabetic patients with respect to
healthy people [13], [14] or with respect to those affected by
neuropathy, but without distinguishing between symptomatic
and asymptomatic [4], [8], [17], [18]. For achieving these
goals, we leveraged all the information that can be mined
from COP time course, by an ensemble of different classifiers
trained on different COP components, without relying only
on a single component [25], [26], [29], since each of them
can add meaningful information without being redundant.
Finally, we explored different types of measures computed
from COP data, in order to assess whether a combination of
features belonging to different domains, i.e. accounting for
structural and recurrent pattern within the timeseries, enhances
classification performances and disease identification.

II. METHODOLOGY

A. Balance Data
Data belonging to a total of 104 subjects affected by type 2

diabetes were retrospectively analyzed [8], [34]: 36 without
PPN (NN group), 36 affected by asymptomatic PPN (AN), and
32 with symptomatic PPN (SN). Diagnosis of type 2 diabetes
was made by expert physicians of a specialized diabetes
outpatient department, according to the current criteria of
the American Diabetes Association, and reported in the elec-
tronic medical records of the outpatient clinic. No statistically
significant differences (ANOVA test) were detected for age,
weight, height, body mass index (BMI), and glycosylated
hemoglobin (HbA1c) among the three groups (p > 0.05,
Table I). The patients were selected as age-matched in order
to control the influence of the physiological degradation of
balance regulation due to aging, by limiting biased conclusions
due to the presence of significantly younger or older groups.

Neuropathic condition was assessed through motor and
sensory nerve conduction velocity analysis by using elec-
tromyography, according to the criteria of the American
Diabetes Association [8], [35]. The inclusion within the symp-
tomatic or asymptomatic group was done by expert clinicians
by the Diabetic Neuropathy Symptoms Score (DNSS), a clin-
ical questionnaire that provides a score from 0 to 4, and it is
considered positive with a value equal or greater than one [36].
Thus, DN patients with a score of 0 were included within
the AN group, whereas those who received a DNSS≥1 were
labeled as symptomatic (SN group). Subjects belonging to
the NN group had a DNSS of 0. The average DNSS of the
SN group was 2.55±0.49. Neurological disorders, peripheral
arterial disease, neurotoxic medications, vasculitis, B12 vita-
min deficiency, renal disease, alcohol abuse, and inflammatory
demyelinating neuropathy were ground for exclusion. From
an initial cohort of 152 patients, 31 were excluded following
the latter criteria. Further, each patient was checked for the
absence of factors that can affect balance, such as orthopedic
surgery, chronic knee pain or pathology, abnormal gait, active
foot ulcers, and retinopathy. On these basis, 17 patients were
excluded. None of the remaining ones declined to be enrolled.

Each subject performed the balance task by standing bare-
foot on a single dynamometric force plate (Kistler 9281),
representing currently the gold-standard for the measurement

TABLE I
AVERAGE (STANDARD DEVIATION) VALUES FOR ANTHROPOMETRIC

AND CLINICAL DATA. NO STATISTICALLY SIGNIFICANT DIFFERENCES

WERE FOUND AMONG THE GROUPS FOR ANY

OF THE PARAMETERS (p > 0.05)

of force exchanged with the ground, satisfying all the stan-
dards for medical equipment. The employed force plate has
a range of [−10, 10] kN for the planar axes and [−10, 20]

kN for the vertical one, a natural frequency of 1 kHz for
each axis, and a threshold <0.05 N. The COP trajectory in
anterior-posterior (APc) and medial-lateral (MLc) directions
was recorded at 100 Hz. To limit subject’s discomfort, the
width of the base of support was kept nearly equal to the
pelvis width, and feet were positioned in the same fashion in
all the trials, with an average feet-opening angle of 7 ± 4 deg.
Posture trials with feet closed together were avoided to not
narrowing the base of support, thus introducing additional
challenges for balance maintenance [8]. Each patient was able
to maintain static balance for at least 120 s. For this study,
we considered eyes closed data, due to their higher predictive
power, as demonstrated in [8].

B. Data Processing and Feature Extraction
Center of pressure data were low-pass filtered by a 4th order

Butterworth digital filter (cut-off frequency 10 Hz). In order
to enhance COP information, in addition to APc and MLc
we considered also the statokinesigram (STKc), i.e. the COP
planar displacement [33]. Hence, we computed a total of
21 features, separately from APc, MLc, and STKc.

Feature set included measures specifically proposed for
COP time course together with indices able to quantify
the repeatability and complexity of timeseries. More specif-
ically, features can be sorted into three main categories:
the first one encompasses the universal descriptors proposed
in [24], where an extensive analysis was performed to identify,
among 73 COP measures, those that are independent from
the individual biomechanics. For APc and MLc, two features
were selected by Yamamoto et al. [24] as representative of the
neural control of balance, i.e. the slope of the power spectrum
at low-frequency band (SL), and the frequency below which
is found the 50% of the power spectrum (PS50). From STKc
(Fig. 1(a)), we extracted two additional universal balance
descriptors [24], both based on the preliminary computation
of the ellipse that encloses the 95% of the statokinesigram: the
absolute angular deviation (ANG) between the 95% ellipse and
the APc direction, and the flattening (FLAT) of the ellipse [24].

The second category of features refers to the modeling of
COP fluctuations as a stochastic process. In their seminal
work [28], Collins and De Luca proposed a statistical mechan-
ical approach for the assessment of non stationarity in human
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Fig. 1. Statokinesigram with the 95% ellipse in red (a), stabilogram diffusion function (b), and cross recurrence plot (c) for a representative diabetic
patient.

balance sway. This methodology requires the construction of
the stabilogram diffusion function (SDF). The typical SDF
exhibits two regions (short-term and a long-term) identified by
different slopes and separated by a transition point (Fig. 1(b)),
where a shift from an open-loop to a closed-loop regulation
of balance was advocated [28]. From the transition point, two
measures can be extracted: the critical time (CRT), and the
mean square displacement (MSD), i.e. the magnitude of the
SDF in correspondence of the CRT. Furthermore, in order to
have a measure of the stochastic activity over the two SDF
regions, the diffusion coefficient can be computed for the
short-term (DS) and long-term (DL) regions. Eventually, the
persistent or antipersistent behavior of both SDF regions can
be quantified by their scaling exponents (HS and HL), which
represent the last two features we retrieved from the SDF.

In more recent years, the SDF was further refined in order to
account for possible different scaling regimes [37], by param-
eterizing the log-log SDF curve with a sigmoid-like shape,
instead of the originally proposed piecewise approach [28].
In this way, we extracted two additional features: the first one
is the variance of the displacement (K) for 1t = 1 s, that is
an estimate of the diffusion coefficient [37]. The other feature
is the time-lag (TL) where the nonlinear behavior passes from
being persistent to antipersistent, identified as the mid-point
of the fitting sigmoid [37]. All the 8 features related to the
SDF were extracted from APc, MLc, and STKc.

The last category of features refers to the repeatabil-
ity and complexity of the underlining structural patterns
of a timeseries. We considered two different tools: the
recurrence quantification analysis (RQA) and the sample
entropy. The RQA quantifies the deterministic structures and
non-stationarity of a timeseries in a reconstructed phase
space [38], without making a priori assumptions regarding
data distribution or stationarity. The RQA is based on the
construction of the recurrence plot (RP), which allows to visu-
alize the recurrent dynamics that characterize deterministic,
chaotic, and nonlinear systems [30], [38]. Given a N-length
timeseries x(n), its time-delay embedding is performed by
building (N − m + 1)τ vectors, in order to reconstruct the
phase space:

ym
i =

[
xi , xi+τ , . . . , xi+(m−1)τ

]
(1)

where xi is the i th sample of x(n), m is the embedding
dimension, and τ is a time lag. Then, the RP elements are

obtained by computing the geometrical distance Di j between
each pair of embedding vectors ym

i and ym
j :

Ri j = 2(ϵ − Di j ) (2)

where 2(·) denotes the Heaviside step function and ϵ is a
threshold value for establishing embedding vectors similarity.
For computing the distance Di j , we applied the Euclidean
norm metric. For the construction of the RP, we selected
the embedding dimension m = 10, based on the work
of Riley et al. [30], where the RQA was applied on COP
displacement recorded with the same sampling rate. Follow-
ing [29], we set the time delay τ = 15, as the lag value for
which COP data samples xi and xi+τ begin to be not strongly
correlated, and the threshold ϵ = 30% of the mean distance
between data points in the reconstructed space.

The RP can be constructed for a single data sequence, but
whether the dependencies between two timeseries has to be
assessed, as in the case of the STKc, a bivariate extension
of the RQA is needed. For this purpose, we relied on the
cross RQA (CRQA) [38]. This technique was introduced for
investigating the simultaneous development of two different
trajectories in the phase space, and is particularly suitable
when different outputs of a single system are available [38].
The entries of the cross recurrence plot (CRP) are obtained
by computing the pairwise distances between each couple of
phase vectors (ym

i and zm
j ) in the m-dimensional reconstructed

phase space:

C Ri j = 2(ϵ − ||ym
i − zm

j ||) (3)

Although visualizing RP and CRP can be useful for retriev-
ing qualitative information (Fig. 1(c)), most often quantitative
measures are extracted from their small- and large-scale tex-
ture [38]. In this study, we considered ten RQA-based features
for APc, MLc, and STKc. The first one is the recurrence
rate (RR), i.e. the number of recurrent points over the total
number of RP points, excluding the line of identity. The second
one is the determinism (DET), quantified by the number of
recurrent points that form a diagonal line, whereas the third
one is the ratio (RT) between RR and DET. The average
diagonal line length (AVDL) and the maximum diagonal line
length (MLL) were also computed. A further feature is the
Shannon entropy of the frequency distribution of the diagonal
line lengths (ENT), together with the trend (TND), i.e. the
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linear regression coefficient over the recurrence points forming
diagonals, as a function of the distance from the line of
identity. We considered also the laminarity (LAM), whose
definition is the same as the DET but considering vertical
lines instead of diagonals, the maximum vertical line length
(MVL), and the trapping time (TT), i.e. the average length of
the vertical lines. We set the minimum length of the diagonal
and vertical lines as 4 [29].

Finally, we computed also the sample entropy (SAEN), as a
statistics for assessing regularity [39]. The SAEN found an
extensive usage for investigating biological signals, including
COP time course [32], [34]. In brief, the SAEN is the condi-
tional probability that two m-length embedded vectors, which
are similar within a certain tolerance r , remain similar also in
a m + 1 dimensional space. After the embedding procedure,
as in (1), the correlation sum is computed:

Cm
i (r) =

1
N − m − 1

N−m∑
j=1, j ̸=i

2(r − Di j ) (4)

where Di j is the Chebyshev distance. Then, the N − m cor-
relation sums defined for each embedding vector are summed
up, obtaining 0m(r). The same procedure is then repeated
for m + 1 and the SAEN is finally computed as the negative
logarithm of the ratio between 0m(r) and 0m+1(r). Regarding
the computational parameters of SAEN, for the embedding
dimension mand time lag τ we selected the same values as
for the RQA. The matching tolerance was set as a fraction of
the standard deviation of the data, and we selected r = 0.3,
as in [32]. For the STKc, we computed the bivariate extension
of the SAEN, i.e. the cross sample entropy (CSAEN) [39].
The computation of CSAEN followed the same steps outlined
for the SAEN, with the sole difference that the Chebyshev
distance is computed between each couple of embedding
vectors belonging to the two timeseries [40]. We set the same
input parameters used for the SAEN.

In order to avoid dependency from anthropometry,
we checked for features having a significant correlation (ρ >

0.3 and p < 0.05) with at least one anthropometric factor
(height or weight), as suggested in [8]. None of the features
showed significant correlations.

C. Classification Task
We initially selected five classifiers: k-nearest neighbor

(kNN), linear discriminant analysis (LDA), support vector
machine (SVM), random forest (RF), and artificial neural
network (ANN). These algorithms represent common machine
learning models for biological signals classification [8], [37],
[41], effective also with low dimensionality datasets. The
number of nearest neighbors for kNN was k = 2, whereas
for SVM we employed a polynomial kernel of order 3. The
number of trees in the RF was set as 10 and the growing
algorithm was the CART method [42]. The ANN was a
feedforward, fully connected neural network, with a single
hidden layer. A rectified linear unit and softmax functions
were applied to the hidden and output layers respectively.The
number of hidden neurons was 5.

For each learning model and classification task, we adopted
the leave-one-subject-out (LOSO) validation, where data
belonging to one subject are used for testing whereas the
remaining data constitute the training set. This process is
iterated holding out one subject at a time during the training,
until data of each subject have been used once for testing.
This kind of cross validation is suited for small datasets
and was used in similar studies [8], [41]. Classification was
evaluated by using accuracy (AC), precision (PR), sensitivity
(SE), and specificity (SP). Feature extraction and classification
procedures were performed by using custom-made routines
developed with MATLAB R2022b software (Mathworks Inc.,
Natick, MA, USA). Statistical comparisons were made by
using the proprietary functions of the same software.

D. Experimental Setup
1) Experiment-I: In the first experiment we considered NN

and SN patients, and the goal was twofold: firstly we aimed
at assessing the effectiveness of a feature set that includes
metrics specifically designed for describing balance regula-
tion mechanics [24], [28] together with parameters from the
timeseries analysis field [38], [39]. The second objective was
to investigate which COP component (APc, MLc, and STKc)
provides the best information for classification purposes, and
whether one of them should be favored over the others. Our
hypothesis was that aggregating the whole information that
can be retrieved from the COP time course can be beneficial
for PPN identification.

We initially trained the five classifiers separately with the
feature set computed on APc, MLc, and STKc, comparing a
total of 15 learning models (5 classifiers × 3 COP compo-
nents). Then, we tried to enhance the information retrieved
from standing balance in two different ways: in the first one,
we augmented the feature space dimensionality, by construct-
ing a set (AUG) made of the single APc, MLc, and STKc
feature sets, initially employed in a separate fashion. In the
second way, we combined each learning model by a majority
voting ensemble (MVE), where the predictions for each class
label are summed up and the final prediction is the class
with the highest number of votes [42]. The classifiers used in
MVE were those of the same type trained on APc, MLc, and
STKc. Thus, a total of 5 ensemble models were evaluated. The
learning model and aggregation scheme which showed the best
performances were then retained for the second experiment.

2) Experiment-II: Here, we introduced also the last group,
i.e. AN patients, and we firstly considered the latter group
together with the SN one, establishing a diabetic neuropathic
group (AN+SN). Since AN population shares disease char-
acteristics with both NN (absence of symptoms) and SN
(presence of neuropathy), the aim was to investigate the
reliability of the solutions gathered during the first experiment
for identifying PPN, also when the asymptomatic state of the
disease is included. At this stage, four learning models were
compared for distinguishing between NN and AN+SN groups.
Classifiers were fed with APc, MLc, and STKc feature sets,
in addition to the best aggregation method preserved from the
first experiment. In passing, this classification scheme allows
comparison with similar works [8].
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TABLE II
CLASSIFICATION METRICS FOR THE KNN IN DISTINGUISHING

BETWEEN NN AND SN PATIENTS. FEATURE SETS COMPUTED ON APc ,
MLc , AND STKc WERE CONSIDERED. IN ADDITION, THE RESULTS FOR

THE AUGMENTED FEATURE SET (AUG) AND THE MAJORITY VOTING

ENSEMBLE (MVE) ARE ALSO REPORTED

Furthermore, we proposed two diagnosis pathways, which
have the potential to be used in actual clinical scenarios for
supporting PPN screening. The first diagnosis pathway (DP-
1) was developed to avoid multiple classification stages and
it relies on a single, multi-class, learning model for directly
identifying a patient as NN, AN, or SN. The second diag-
nosis pathway (DP-2) involved two binary learning phases:
the first one was devoted to the identification of the symp-
tomatic neuropathy. For this stage, we pooled together NN
and AN populations, forming a diabetic asymptomatic group
(NN+AN) and the classification involved NN+AN and SN
groups. The second step was then finalized to the classification
of a subject as non neuropathic or affected by asymptomatic
neuropathy.

For each classification mode, we applied a backward fea-
ture selection (B-FS) for finding reduced feature sets [41].
The B-FS is a wrapper method that iteratively builds a
series of candidate feature sets and the choice is made by
a greedy search. From a d-dimensional feature set � =

{ f1, f2, . . . , fd}, a 30 = � set is initialized. Then, d −1 sub-
sets are constructed, made by all the features in 30 except
for one. The feature not present within the subset with the
highest accuracy is removed from 30. This process is iterated
d − 1 times, until 30 includes one feature only. The final
feature subset is selected as that with the highest accuracy
and the lowest dimensionality. In order to limit the possible
bias due to this kind of strategy, B-FS was run 50 times by
using a random sub-sampling strategy, where the dataset was
randomly split in half, and then used for reducing the feature
set.

III. RESULTS

In the Experiment-I, the classification accuracy of the five
selected classifiers is reported in Fig. 2, where the kNN
showed the best outcomes for all the single COP components.
The classification metrics for the kNN are listed in Table II.
Both aggregation methods (AUG and MVE) boosted the
performances of kNN, with accuracy beyond 90%, but MVE
outperformed AUG also in terms of sensitivity (84.4% versus
90.6%), resulting overall the best aggregation method. On the
other hand, single COP components demonstrated comparable
results in identifying NN and SN patients (Table II).

Fig. 2. Classification accuracy for each learning model in distinguishing
between NN and SN patients. Feature sets computed on APc, MLc, and
STKc were considered. In addition, the results for the augmented feature
set (AUG) and the majority voting ensemble (MVE) are also reported.

Fig. 3. Classification accuracy of the kNN in distinguishing between
NN and AN+SN groups, with the original feature sets and the reduced
feature sets, computed on APc, MLc, and STKc. In addition, the results
for the majority voting ensemble (MVE) are also reported.

For what concerns Experiment-II, kNN was retained as clas-
sifier and MVE as aggregation method. The feature selection
boosted the performances of all the single COP components
and of the MVE in distinguishing between patients with
and without neuropathy (Fig. 3). Reduced feature sets and
detailed classification metrics values are reported in Table III.
The DP-1 provided fair results in identifying NN, AN, and
SN patients, in particular for the MVE method, but with
an accuracy well below 90% (Table IV). Conversely, DP-2
showed high performances for both steps, in terms of all
the classification metrics (Table V). The MVE confirmed its
value by improving the outcomes given by each single COP
component, providing an identification accuracy always above
97% (Table V), misidentifying only 2 out of 32 SN patients
in the first step, whereas in the second step none of the AN
patients went undetected.

IV. DISCUSSION

A. Experiment-I
The initial feature set, made by a combination of specific

descriptors of human balance and metrics related to time-
series analysis, proved its suitability for identifying PPN,
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and the kNN showed overall the best results in terms of
accuracy (Fig. 2), agreeing with other studies focused on the
computer-aided identification of pathology from movement
data, where kNN outperformed a number of different machine
learning models [41]. Further, features computed on STKc
(Fig. 1) resulted the most effective in terms of classification
accuracy (Fig. 2), matching with previous works aimed at
identifying PPN from balance data, where three out of the
five designated features require the STKc to be computed [8].

However, when dealing with pathological conditions, addi-
tional metrics are worth considering for a thorough appraisal of
a learning process, beyond classification accuracy. In this view,
none of the feature sets computed on APc, MLc, and STKc
gave fully satisfactory results (Table II). The STKc showed the
highest precision and specificity but with a low sensitivity, that
represents a fundamental property in clinical contexts, being
the goodness of the model in correctly identify a diseased indi-
vidual. Conversely, MLc showed a fair specificity, with 5 out
of 36 NN patients incorrectly classified as neuropathic but
the highest sensitivity (only 4 SN out of 32 went undetected).
This matches with previous studies where the transversal COP
component was found to be critically affected by PPN [15],
[26]. At this stage, none of the three COP components can
thus be favored for detecting PPN. This supported our efforts
for improving the classification performances, by combining
APc, MLc, and STKc feature sets.

Both the aggregation methods (AUG and MVE) proved to
be effective for enhancing the identification of PPN (Table II).
On one hand, this supports the hypothesis behind the first
experiment, that aggregating the whole information that can be
gained from COP time course would improve the neuropathy
identification. Indeed, the enhanced performances of AUG
or MVE methods likely indicate that even the same type
of features, when computed on different COP components,
provide complementary rather than redundant information.
However, the MVE showed a higher accuracy with respect
to AUG and, more importantly, a greater sensitivity, not only
with respect to the AUG method but also to each COP com-
ponent itself (Table II). Hence, for the purpose of this study,
a majority voting ensemble of different classifiers resulted a
better strategy with respect to a more straightforward increase
of the feature set dimensionality.

Although the proposed methodology gave promising results
(Table II), two points motivated the additional investigation
carried out in the second experiment. Firstly, the MVE of
the three kNN fed by different COP components showed a
sensitivity not higher with respect to previous studies dealing
with the same kind of problem (90.6% versus 92.0%) [8].
Further, within the neuropathy group, only SN patients were
considered. However, including also asymptomatic individuals
would strengthen the value of the proposed methodology as a
possible clinical screening tool, since AN identification based
on posturographic data can be a challenging task [8],

B. Experiment-II
The inclusion of the asymptomatic patients within the

neuropathic group (AN+SN) did not degrade the classification
performances with respect to the first experiment (Fig. 3),
thus supporting the validity of the proposed features for PPN

identification. In addition, the B-FS algorithm dramatically
enhanced the classification performances of each COP com-
ponent (Table III), being beneficial also for the MVE (Fig. 3).

More in detail, MVE confirmed to be a reliable strat-
egy for combining the classification outputs of single COP
components, with a significant improvement also in term of
sensitivity and specificity (Table III). In particular, the latter
showed limited values, not higher than 89%, when APc, MLc,
and STKc were considered individually (Table III). This aligns
with [8] where the SP had a lower value with respect to the
other classification metrics, with only 75% of the NN subjects
correctly identified. In this view, it is notable that the ensemble
of the three single COP components classifiers boosted the SP
beyond 94%, with only 2 out of 36 NN subjects mislabeled as
neuropathic (Table III), outperforming previous works [8] also
in terms of sensitivity (98.5% versus 92.0%). This suggests
that the pipeline proposed in experiment 2, where the feature
selection step was added before the MVE, was particularly
suitable for recognizing the presence of diabetic neuropathy,
irrespective of the symptomatic state of the disease.

For what concerns the feature selection phase, two main
points are worth noting. Firstly, each reduced set has very
few features shared with the other two (Table III), likely
indicating that each COP component has its own temporal and
spatial characteristics that can be properly mined by means of
different descriptors. Further, after the application of the B-
FS algorithm, two features resulted present in every reduced
set, i.e. HL, SAEN, and CSAEN. This matches with existing
literature, where the SDF parameters and entropy measures
proved to be effective for analyzing the COP time course [32],
[33], also in the case of DN patients [15], [27], [34]. This
also confirms the key role played by the long-term dynamics
of postural fluctuations for stance regulation, observed using
both SDF and entropy based methodologies [15], [27].

Besides, it deserves to be mentioned that RQA metrics
represent overall about half of the selected features for the
three COP component classifiers (Table III), agreeing well
with the value of this timeseries analysis tool for balance
investigation [29], [30], [43]. Further, we explored also the
bivariate extension of the RQA (Section II-B) for dealing with
COP planar path. This represents a novel aspect in the appli-
cation of RQA to posture data, given that in previous works
the most common procedure was to examine APc and MLc
separately, without investigating their joint recurrent temporal
patterns [31], [43]. Present outcomes support the CRQA for
static posture analysis, fostering its application when, and it’s
almost always the case, simultaneous readings of both COP
components are available. Although APc is sometimes favored
for balance modelling and assessment [44], temporal and
dynamical patterns of balance regulation manifest themselves
along both directions [15], [26], [27] and thus quantifying
their simultaneous evolution and couplings can add meaningful
information with respect to treat APc and MLc alone.

The ensemble solution we proposed in Experiment-II
enhanced the identification of PPN from posture data also
when different type of raw information was examined. The
map of the pressure distribution under the feet, treated by
image processing techniques, was considered in [18], with
performances dependent on the foot sole areas and an average
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TABLE III
CLASSIFICATION METRICS FOR THE KNN IN DISTINGUISHING

BETWEEN NN AND AN+SN PATIENTS. REDUCED FEATURE SETS

COMPUTED ON APc , MLc , AND STKc WERE CONSIDERED. MAJORITY

VOTING ENSEMBLE (MVE) RESULTS ARE ALSO REPORTED

accuracy of about 95%, and in [17] where a 93.7% accuracy
was joined to a relatively low specificity (below 85%).

Our binary pipeline remains valid also if compared with
existing solutions that leveraged deep learning. Convolutional
neural networks (CNN) fed by several health records provided
about 86% accuracy in predicting diabetes [45], whereas
incorporating knowledge extension to CNN achieved over 95%
accuracy [46], still slightly lower with respect to present results
(Table III). The same performances were showed also when
a CNN was combined with long short-term memory and a
SVM classifier, and applied to heart rate variability data [13].
Beyond their performances, it is remarkable that, in general,
the above mentioned methods require to collect a large amount
of clinical and non-clinical predictors from the patients [45],
[46], or they have to undergo to prolonged recording sessions
for collecting enough data [13]. Instead, the methodology we
proposed is based on a totally unobtrusive motor task that can
be easily performed by patients also outside clinical settings.
Also, the learning models we adopted are poorly demanding in
terms of computational burden, making the proposed solution
suitable also for contexts with limited resources.

C. Diagnosis Pathways
In Experiment-II we proposed two diagnosis pathways, with

the the final goal of refining further the neuropathy recognition
procedure described above, by distinguishing also between two
disease conditions, i.e. symptomatic and asymptomatic.

In DP-1 we attempted to achieve the identification of NN,
AN, and SN patients by applying a 3-class classification
procedure. Also in this case the MVE offered substantial
improvements, enhancing all the classification metrics in
comparison to the single COP components alone (Table IV).
However, alongside a good capability in recognizing symp-
tomatic neuropathy (87.5% of SN patients were correctly
identified), DP-1 failed in providing a reliable detection of
the asymptomatic neuropathy (almost 20% of AN patients
were misclassified), aligning with [8], where the incorrect
classification of neuropathic individuals involved AN subjects
only. Present results showed also that, out of 7 misclassified
AN patients, 4 were labeled as NN and 3 as SN, likely
indicating that ANs share postural attributes with both the

TABLE IV
PERFORMANCES OF THE FIRST DIAGNOSIS PATHWAY (DP-1), MADE

BY A SINGLE, MULTI-CLASS CLASSIFICATION STEP. THE LEARNING

MODEL IS THE KNN. REDUCED FEATURE SETS COMPUTED ON APc ,
MLc , AND STKc WERE CONSIDERED. MAJORITY VOTING ENSEMBLE

(MVE) RESULTS ARE ALSO REPORTED

other groups, and confirming that their identification based
on balance data can be challenging [8], [10]. In spite of
performances in line with previous works dealing with similar
multi-class problems [17], DP-1 resulted not fully satisfactory
with respect to the goal of producing a more powerful tool,
able to recognize also different stages of PPN.

Hence, we proposed a second diagnosis pathway made by
two binary classification steps. The objective of the first step
was to identify the presence of symptomatic neuropathy (SN
group) with respect to either asymptomatic or non neuropathic
patients (NN+AN group). The same architecture presented
before (B-FS followed by MVE) confirmed to be reliable
(Table V), with only 3 out of 104 patients being misclassified,
and only 2 out of 32 SN patients incorrectly recognized.
The good performances of this first classification step likely
mirror the substantial impact of PPN on balance regulation,
that affects sensory and motor nerves, with an impaired
somatosensory perception, leading to modified strategies for
upright stance maintenance and postural instability [16]. Thus,
PPN symptoms denote an advanced stage of the disease, where
balance deterioration is worsened not only in comparison to
NN subjects but also with respect to the AN ones, making the
identification of SN patients from static posture particularly
effective. This aligns well with the presence in each reduced
feature set of the universal balance descriptors, that account
for the active neuro-mechanical control of quiet standing [24].

The second step of DP-2 showed high performances already
for APc, MLc, and STKc (Table V), but also in this case the
MVE demonstrated to be an effective strategy: overall, only
2 out of 72 patients were mislabeled, and both of them were
NN individuals incorrectly identified as AN. Moreover, none
of the asymptomatic neuropathic patients went undetected,
leading to a 100% sensitivity that makes the proposed pro-
cedure with the potential to be a valid screening tool. Indeed,
the correct identification of asymptomatic PPN in a totally non
invasive way has a specific clinical value, given that it would
allow the early diagnosis of the disease, enabling to enact
timely therapeutic strategies aimed at avoiding symptoms
insurgence and the worsening of pathology.

In light of these observations, it is remarkable that this
outcomes were achieved by comparing AN patients with the
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TABLE V
PERFORMANCES OF THE SECOND DIAGNOSIS PATHWAY (DP-2). THE

FIRST STEP IS THE CLASSIFICATION BETWEEN ASYMPTOMATIC

(NN+AN) AND SYMPTOMATIC (SN) PATIENTS. THE SECOND STEP IS
THE IDENTIFICATION OF A PATIENT AS NN OR AN. THE LEARNING

MODEL IS THE KNN. REDUCED FEATURE SETS COMPUTED ON APc ,
MLc , AND STKc WERE CONSIDERED. MAJORITY VOTING ENSEMBLE

(MVE) RESULTS ARE ALSO REPORTED

NN ones. Indeed, these two groups showed similar levels of
postural stability when assessed by classical COP descriptors
related to its geometrical and spectral content, leading to a lack
of meaningful differences between groups [8], [10]. Unlike the
previous step of DP-2, here very few structural features were
preserved by the B-FS, i.e. only ANG for the STKc classifier
(Table V), supporting their lower effectiveness for recognizing
mild PPN. At the same time this could indicate that, for
the latter purpose, features accounting for COP nonlinear
dynamics should be favored, possibly because they reflect
subtle changes in postural regulation due to neuropathy, when
no functional signs of impairment are yet present [15], [34].

Finally, from the viewpoint of a practical application of the
DP-2, it should be noticed that both its steps can be used
independently from each other. In particular, if the absence of
symptoms has been proven by standard clinical procedures,
physician can exploit directly the second step of DP-2 in order
to assess the presence of neuropathy.

D. Limitations and Future Work
This work presents some limitations that merit discussion.

The three groups of patients were homogeneous in terms of
physical characteristics, age, and absence of comorbidities.
This was done for limiting as much as possible the undesired
influence of factors, other than DN, that could affect balance

capabilities. However, in this way the population cannot be
considered fully representative of what can be encountered in
a daily clinical examination. It is also worth mentioning that
postural tasks were performed in a rather standardized way,
avoiding configurations that could have introduced additional
challenges for upright stance stability, e.g. reducing the base of
support by imposing feet closed together. Thus, future works
should address these points by introducing a higher degree
of variability within the groups in terms of different clinical
conditions and balance maintenance configurations, in order
to test the robustness of the framework in a scenario closer to
what can be expected in real practice.

In this study we did not consider a description of postural
impairment by classical posturographic analysis, but enlarging
the population by selecting less homogeneous groups can
be beneficial also for assessing possible relations between
classical measures used for balance assessment and those used
in this work, and for exploring how the performances of
DN identification vary when including different degrees of
postural impairment. In passing, future work should also test
the validity of the proposed framework when applied to eyes
open data, since the latter represents a more viable balance
condition for elderly and impaired subjects.

Lastly, further studies are needed in order to exclude the
presence of overfitting or possible bias on the final results,
introduced by the strategies adopted for classifier selection and
feature reduction, by testing the robustness of the identification
framework on a new and independent dataset. This would
allow to strength the general validity of the methodology, fos-
tering its actual usage as an aiding tool for medical screening.

V. CONCLUSION

Outcomes of this work suggest static balance as a valu-
able source of information for the development of automated
screening solutions for DN identification. This favors the
practical applicability of the architecture we proposed, since
upright stance is a simple motor task, well-accepted by the
patients, and performed in clinical practice on daily basis. The
good results obtained by an ensemble of different classifiers
indicate that COP components provide complementary infor-
mation that can improve neuropathy recognition. Findings of
this study represent a first step toward the development of a
supporting diagnostic system, informed by balance data, for
recognizing DN at different severity levels.
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