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A B S T R A C T   

The assessment of the occupants’ thermal sensation (TS) in a living environment is fundamental to enhance well- 
being and optimize building energy consumption. Machine Learning (ML)-based approaches can be adopted for 
TS prediction exploiting physiological and environmental parameters, but identifying an optimal features subset 
is fundamental. This work aims at assessing the correlation between physiological parameters and TS, hence 
selecting the optimal feature subset for ML-based TS prediction. A dedicated experimental campaign was 
designed to gather signals through wearable sensors; the actual TS was collected via a specific questionnaire. The 
results prove the weight of physiological features on the TS determination; ML classifiers achieved an accuracy of 
up to ≈90% by using physiological and environmental parameters. The strategic potential of personalized 
comfort systems enables the optimization of both comfort and energy efficiency of a building according to a 
human-centric approach.   

1. Introduction 

The measurement of thermal sensation (TS) can provide very rele-
vant information on buildings occupants’ well-being; in fact, the sub-
jective perception of thermal conditions leads to changes in vital 
parameters, hence modifying the human’s status and reflecting into her/ 
his comfort and, more in general, well-being. Thermal comfort is a 
crucial aspect of the built environment, due to its effect on the occu-
pants’ health [1], well-being, and work efficiency [2], as well as on 
buildings energy consumption [3]. This can be observed from a twofold 
perspective: on the one side, a subject’s physiological status is affected 
(among others) by indoor thermal conditions, hence changes in thermal 
perception of the surrounding environment and the related TS are 
correlated with changes in physiological responses [4]; on the other 
side, the individual response to certain ambient conditions can be 
interpreted and exploited for control purposes, in particular in the 
context of Personal Comfort Models (PCMs) [5,6]. At present, PCMs are 
being studied to actually take account of the real needs of a building 
occupant, and they generally outperform conventional models [7,8]. For 

example, Williamson et al. [9] investigated the relationship between 
thermal comfort and well-being of elderly occupants in order to provide 
some recommendations for policymakers as well as guidelines for living 
environments design, given that the built environment affects also the 
health outcomes [10]. Moreover, it should be considered that such 
models can be beneficial to optimize the buildings energy demand (with 
energy savings from 4% to 60% [11]), which has a huge impact on the 
environment (the building and construction sector accounts for the 36% 
of the total energy consumption and for the 37% of energy-related CO2 
emissions [3]). 

At present, the literature encompasses different methods for the 
assessment of TS. Survey-based investigations are performed very often 
[12,13], without complementing them with sensor-based assessments; 
indeed, subjectivity plays a dominant role in these procedures, leading 
to non-fully reliable results. Both physical and mental state can affect the 
results from survey-based investigations; the discrepancy observed be-
tween the perceived and the observed sensation could come from psy-
chological adaptation processes, so depending on previous thermal 
experiences [14]. Moreover, the survey-based methods can be used only 
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with a-posteriori control, without having the possibility to anticipate the 
upcoming change of TS. Also the Predictive Mean Vote (PMV) scale is 
commonly exploited for the assessment of indoor pleasantness, but its 
accuracy is not always so high [15] in environments different from air- 
conditioned rooms (e.g., workspaces), with limited metabolic activity 
and no personal control. Furthermore, its validity is often questioned 
[16], representing a mean vote of a large sample of subjects, and not 
individual perceptions. Actually, most of literature studies (>62%) deal 
with group-based comfort models [7], showing limited applicability in 
the real comfort-building management because of their aggregate model 
nature. 

Hence, objective measurements should be considered in combination 
with surveys (still representing a pivotal means in thermal comfort 
assessment), to better contextualize the subject’s perceptions. Physio-
logical parameters can be considered for this aim, being influenced by 
the subject’s thermal sensation (as well as thermal comfort) and not 
suffering significantly from the subject’s mental state. Jung et al. [17] 
evidenced that the inclusion of vital parameters in comfort models en-
hances their accuracy by up to 97%. This is particularly relevant in many 
applications, since thermal comfort affects, among others, productivity 
and efficiency in occupational and educational environments. For 
example, Li et al. [18] found that thermal discomfort reduces perfor-
mance and intensifies the sick-building syndrome symptoms. Fang et al. 
[19] underlined that both physical and mental conditions of workers are 
significantly affected by environmental conditions, impacting on effi-
ciency; these results are useful in terms of actions to implement for 
occupational safety and risks management. Concerning the measure-
ment of thermal comfort, literature presents a large amount of research 
conducted through the measurement of environmental parameters. 
However, such procedures often involve quite cumbersome instruments, 
making the assessment not practical in everyday life environments. 
Contrarily, wearable devices are constantly spreading thanks to multiple 
advantages, from being minimally intrusive to their relatively low-cost, 
through user-friendly functioning and interface. They can acquire a 
plethora of physiological quantities: from heart rate (HR) and its vari-
ability (HRV) to energy expenditure and activity, as well as indirectly 
estimated quantities, such as blood pressure (BP) or respiration rate. 
Currently there are also wearable sensors to measure environmental 
parameters, such as pollutants, contaminant, dangerous gases, etc; they 
are particularly useful both to contextualize physiological monitoring 
and to monitor hazardous situations [20]. Also, this type of sensors 
could result useful for thermal comfort determination. 

Concerning surveys dispensed to the participants of an experimental 
campaign, there is a still open issue on their reliability and on the pos-
sibility of a perceptual bias in the responses. In fact, collecting the oc-
cupants’ perception via survey fulfilment implies people’s evaluation 
that may be affected by personal understating of the task, inaccurate 
questions or explanation of investigated quantities, or other personal 
bias in interpreting the scale. The uncertainty related to subjective 
measures of the occupants’ comfort could be limited through the 
application of good practices in survey design and experimental pro-
cedures. Wang et al. [21] identified repeated-measures (longitudinal) 
research design and discrete scales of multiple points (Likert scale) as the 
best choices for reducing uncertainties in subjective estimation of 
thermal comfort. Moreover, Raccuglia et al. [22] defined the “anchoring 
bias” as that bias occurring in environmental judgment when subjects 
repeatedly express their sensorial scores in a single experimental ses-
sion: subsequent votes may be given based on previous ones, resulting in 
a higher magnitude of sensation as compared to votes given one time 
under the same environmental conditions. In the same study, the au-
thors provided insights to identify, quantify, and mitigate the anchoring 
bias, thus improving the quality of the personal comfort investigation 
including transient conditions and repeated measures. In line with 
previous contribution, Wang et al. [23] proposed a method for cleaning 
a dataset of subjective measures of environmental comfort from outliers, 
defined as “those thermal comfort votes that are substantially and 

illegitimately different from others that are comparable”. Here identi-
fied outliers differ from inter-individual variabilities in preferences and 
thermal demand that, conversely, must be accounted in the develop-
ment of PCMs [24]. Indeed, both physiological and psychological factors 
have been recognized as drivers of diversity in thermal perception [25]; 
these differences may be pivotal for the achievement of optimal comfort 
conditions at minimum energy expenditure through personalized sys-
tems. Nevertheless, in view of the development of personalized models, 
the reliability of perceptual responses needs to be verified through 
objective measures (e.g., the physiological ones), which can be collected 
through wearable sensors. These devices are very user-friendly, 
considering that the most diffuse type is represented by the so-called 
smartwatches, seeming just as common watches; hence, people wear 
them almost without perceiving of being monitored. This results in more 
reliable results, since no “white coat” effect is present. Their growth is 
exponential, with an attended Compound Annual Growth Rate (CAGR) 
of 11.8% between 2019 and 2026 [26]. Furthermore, using wearable 
sensors can make the user aware of different aspects: her/his own health 
status, environmental conditions, mental well-being, and also thermal 
comfort, enabling a better management of the energy demand and also 
an improved productivity [27]. 

In recent years the use of both Internet of Things (IoT) and Artificial 
Intelligence (AI) technologies has spread in multiple fields, finding a 
particularly fertile ground in the analysis of “big data” acquired 24 h a 
day, 7 days a week by wearable sensors. In literature the occupants’ TS 
has already been modelled [28] and ML-based algorithms have been 
exploited with the objective of predicting a subject’s thermal comfort; 
for example, Chaudhuri et al. [29] fed Random Forest model with 
gender-specific physiological features to predict thermal comfort, 
evidencing the great potential of wearable sensors in this field. Simi-
larly, Liu et al. [30] exploited the Support Vector Classifier to predict TS, 
but their features were focused on environmental parameters, clothing 
insulation, and metabolic rate. Wearable sensors were combined to ML 
algorithms also by Lee and Ham [31], who defined personal thermal 
comfort models considering diverse human activities. Also deep learning 
algorithms have been exploited to this aim; Somu et al. [32] used a CNN- 
LSTM model for modelling thermal comfort, highlighting the better 
accuracy of data-driven models with respect to PMV-based assessment. 

Diverse physiological signals have been correlated to the subject’s 
comfort state [33]. Electroencephalographic (EEG) data have been used 
for the real-time classification of thermal comfort [34]; in particular, the 
EEG power spectrum density (PSD) has been demonstrated to be 
correlated to the subjects’ TS [35]. For example, gamma waves (>30 Hz) 
amplitude seems to increase with negative emotions [36,37]. Also, skin 
temperature (ST) is surely affected by the environmental conditions; for 
this reason, it can be exploited for the realization of models predicting 
TS. This parameter is correlated also to productivity and cognitive 
performance, both varying with the thermal conditions of the environ-
ment [38]. Furthermore, the signals related to cardiovascular activity 
are definitely correlated with TS; in fact, temperature conditions have a 
direct effect on vasoconstriction and vasodilation phenomena, which 
reflect into photoplethysmography (PPG) signal, depending on the 
blood volume pulse measured underneath the PPG-based sensor. The 
environmental conditions affect the activity of the Autonomic Nervous 
System (ANS), which can be investigated through the analysis of HRV, 
thus reflecting somehow the subject’s TS [39,40]; also, thermal 
discomfort can cause stress, which is another aspect that can be analysed 
through HRV analysis [41]. Indeed, some of the present authors have 
already proved the relevance of HRV in the human thermal comfort 
assessment and thermal sensation vote (TSV) prediction (with predic-
tion accuracy up to 92% [42,43]). 

Many features can be extracted from multimodal signals; however, to 
optimize the classification performance of ML-based models, it is 
generally recommended to select a proper subset of features [44]. In 
fact, even if we can think that the more input parameters are ingested by 
the ML classifier, the better the classification performance will be, this is 
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not always the case. Indeed, increasing the input group size will enhance 
the correlation with the class to be predicted, but it is unlikely to have 
variables not correlated with the others [45]. When there is redundant 
information, or similarly when data are very noisy, the training process 
of the model is hard and the learning approach can be compromised 
[46], also with possible overfitting issues [47]. Hence, it is very advis-
able to limit the number of inputs, preferring those attributes showing a 
greater correlation to the class to be predicted, along with being un-
correlated with the other parameters to be ingested by the algorithm. To 
this aim, a “feature subset selection” method was used to reduce the data 
size and to facilitate a faster and more efficient learning phase. In this 
way, non-justifiable complex models can be avoided, for the sake of 
reduced computational load (which is also beneficial for portable ap-
plications, such an in wearable sensors). 

The main aims of this paper are summarized hereafter: 

• To evaluate the correlation between features extracted from physi-
ological signals acquired through wearable sensors and TS; 

• To identify an optimal physiological features subset for TS predic-
tion, exploiting the correlation feature selection approach; 

• To combine the selected physiological features to a few environ-
mental quantities and boundary conditions to feed ML classifiers for 
TS prediction, considering the questionnaire results as the ground 
truth. 

Indeed, this paves the way to the development and exploitation of 
measurement systems for thermal comfort assessment. 

The analysis was performed on 24 subjects exposed to three fixed 
ambient temperatures (supposed to be cold, neutral, and warm) in a 
controlled environment. Wearable sensors were used to acquire physi-
ological data and surveys were administered to the participants to 
address their perception of the environmental boundaries in terms of 
thermal comfort and sensation. Data were analysed in terms of corre-
lation between physiological parameters and TS and different ML al-
gorithms were tested for classification purposes. 

The paper is organized as follows: Section 2 presents the study ma-
terials and methods, describing the test protocol, the data processing 
techniques, the feature selection method, and the classification of TS 
based on ML models. The results are reported in Section 3, whereas in 
Section 4 the authors make their final considerations and propose future 
advancements. 

2. Materials and methods 

2.1. Experimental equipment and environment 

The experimental campaign took place in the NEXT.ROOM [48,49], 
a human comfort test environment located at the Environmental Applied 
Physics Lab (www.eaplab.net) at the University of Perugia in Italy 
(Fig. 1). This laboratory features a realistic, full-scale room measuring 4 
m × 4 m × 2.7 m, which allows for the analysis of personal responses 
from real building occupants under multidomain stimuli. The sensors 
installed in the room enable the monitoring and control of various 
environmental parameters, which are outlined in Table 1, along with the 
technical specifications and positions of the sensors. 

2.2. Physiological measurement devices 

Two distinct wearable sensors were used to measure physiological 
parameters, namely MUSE Interaxon headband [50] and Empatica E4 
[51] (see Fig. 2(a) and (b), respectively). 

MUSE Interaxon headband allows to measure the EEG signal (sam-
pling frequency: 256 Hz) through 4 input electrodes, 2 silver-made on 
the forehead (AF7 and AF8, on the right and on the left, respectively) 
and 2 in conductive rubber above ears (TP9 and TP10); the reference 
electrode is placed on the forehead (FPz). 

Empatica E4 (classified as a medical device, Class IIA, according to 
93/42/EEC Directive) is equipped with four different sensors: a PPG 
sensor for cardiac activities parameters (e.g., heart rate and related 
variability; sampling frequency: 64 Hz, resolution: 0.9 nW/digit), a 
sensor for electrodermal activity (EDA; measurement range: 0.01–100 

Fig. 1. NEXT.ROOM outdoors (left) and indoors (right).  

Table 1 
Sensors for environmental data monitoring.  

Sensor Measured 
parameters 

Technical 
specification 

Position 

Thermal- 
hygrometer 

Air temperature 
Relative 
humidity 

Accuracy: 
± 0.1 ◦C  

Accuracy: ± 1.5% 

Height: 0.10/0.60/ 
1.10/1.60 m  

Height: 1.10 m 
Hotwire 

anemometer 
Air velocity Accuracy: 

± 0.2 m/s 
Height: 1.10 m 

CO2 sensor CO2 

concentration 
Accuracy: 
± 50 ppm 

Height: 1.10 m 

Luxmeter Illuminance Range: 
20 ÷ 2000 lx 

On the desk surface  
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µS; resolution: 900 pS; electric current applied: 100 µA max, 8 Hz), an IR 
thermometer for skin temperature (ST, measurement range: 
− 40–115 ◦C; accuracy: ±0.2 ◦C in the range 36–39 ◦C), and a 3-axial 
MEMS accelerometer (sampling frequency: 32 Hz; measurement 
range: ±2 g). 

2.3. Experimental procedure 

The experimental campaign was carried out in accordance with the 
WMA Declaration of Helsinki – Ethical Principles for Medical Research 
Involving Human Subjects [52] and in compliance with the statute of the 
Ethics Committee of the University of Perugia. Regarding the test pop-
ulation, the investigated sample included 24 healthy subjects (10 fe-
males and 14 males, aged 24.0 ± 1.8 years – reported as mean ±
standard deviation). Before starting the acquisitions, personal data were 
provided just after entering the NEXT.ROOM by filling in a first ques-
tionnaire, where they also confirmed to have no specific clinical his-
tories potentially influencing (and biasing) the results. Furthermore, all 
the subjects were made sign an informed consent module. The General 
Data Protection Regulation (GDPR) was considered for data privacy and 
confidentiality and all the gathered information was managed according 
to it; moreover, all the data were anonymised before their processing. 
The tests (entirely conducted in springtime) were designed with three 
pre-determined temperatures, as follows: (i) (24.3 ± 0.9, reported as 
mean ± standard deviation) ◦C as representative of the thermally 
neutral scenario in accordance with ISO 7730:2005 [53] by assuming a 
clothing resistance level equal to 0.6 clo, and a low metabolic rate (i.e., 
equal to 58 W/m2 for sedentary activities); (ii) (19.4 ± 0.9) ◦C repre-
sentative of the cold environment; (iii) (32.2 ± 0.6) ◦C representative of 
the warm thermal environment. Moreover, lighting conditions were 
modified throughout the tests, providing three different lighting scenes 
for each thermal environment. RGB reflectors were used to characterize 
three different lighting scenes in terms of Correlated Colour 

Temperature (CCT); CCT was measured on the vertical plane at the sight 
height with a portable spectroradiometer (JETI specbos 1211-2), as 
follows: whitish (4114 K), bluish (178,000 K), and reddish (2,010 K). 
The test setup in the three different lightning conditions is reported in 
Fig. 3. The whitish light was always the first to which the subject was 
exposed, whereas the other two were randomized in the order of 
exposure. The other environmental parameters were kept constant as 
reported in Table 2. 

The tests were scheduled from 10:00 a.m. to 1:00 p.m. and from 3:00 
p.m. to 6:30 p.m. All the participants were instructed to not smoke, 
perform physical activity, and not eat or drink anything at least one hour 
before their test, to avoid the metabolic process alteration. Subjects were 
asked to sit down and keep relaxed; no activity was allowed to reduce 
artifact movements in the physiological measurements. Each test lasted 
at least 20 min; a minimum of 15 min was considered for thermal 
adaptation (until the achievement of the target TS) and the subsequent 5 
for data recording. At the end of each session, they filled out a second 
questionnaire. The details about the survey are discussed in the next 
section. 

2.4. Survey structure and submission 

All study participants were required to complete two surveys. The 
first survey was designed to gather personal information, including 
gender, age, height, weight (and subsequently Body Mass Index, BMI), 
and clothing, which could affect thermal sensation according to previ-
ous literature. Participants completed this survey at the beginning of the 
test, once they had entered the NEXT.ROOM. After at least 20 min of 
exposure to the designed environmental conditions, the second survey 
was presented to the subjects to collect their evaluation of the sur-
roundings in terms of perceived thermal sensation and comfort, 
following ISO 10551 [54]. 

The judgment scales were designed as follows: 
• Thermal sensation (TS): the scale ranged from − 2 (cold) to +2 

(warm) with intermediate ratings of − 1 (slightly cold), 0 (neutral), and 
+1 (slightly warm); 

• Thermal comfort (TC): the scale ranged from − 2 (very uncom-
fortable) to +2 (very comfortable) with intermediate ratings of − 1 
(slightly uncomfortable), 0 (neutral), and +1 (slightly comfortable). 

We used 5-point scales as our study aimed to distinguish between hot 
and cold thermal sensation without focusing on intensity details. 

2.5. Data processing 

Data processing was performed in Python environment (as fully 
described in [33]), whereas the feature selection and the ML-based 
classification were conducted through the WEKA toolbox [55]. 

The first step of the processing pipeline consisted in synchronising 
the signals (considering the timestamps provided by the two acquisition 
devices) and dividing them according to the different testing conditions. 
Hence, signals were properly filtered before proceeding with the 
computation of the features of interest. In particular, in order to remove 
the contribution of noise sources (e.g., eye blink and jaw clench), the 
EEG signal was filtered with a band-pass filter (0.1–45.0 Hz); this pro-
cedure was made exploiting an onboard digital signal processing module 
[56]. Then, the Fast Fourier Transform (FFT) algorithm was employed to 
compute the power in the different frequency bands of interest, namely:  

• Delta (δ) band (0.1–4.0 Hz): these are the slowest but highest brain 
waves; in some studies, delta waves were reported to be dominant in 
warm conditions [35].  

• Theta (ϑ) band (4.0–7.5 Hz): these are slow waves and are not 
common in adults, even if sometimes they have been reported to 
decrease in a warm environment [57]. 

• Alpha (α) band (7.5–12.0 Hz): these waves prevail in relaxed con-
ditions [58], whereas disappear in case of concentration [59]. 

Fig. 2. Physiological monitoring - acquisition devices: (a) MUSE Interaxon 
headband and (b) Empatica E4. 
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• Beta (β) band (12–30 Hz): these waves are common in alert/anxious 
people. Their content is higher in cold/warm conditions than in 
neutral thermal environment [60].  

• Gamma (γ) band (>30 Hz): these waves increase in complex and high 
attention-demanding tasks [61]. 

Regarding the cardiac related activity, the HRV analysis was con-
ducted on the basis of the inter-beat intervals (IBIs) signal provided by 
Empatica E4 (after having cleaned up artefacts); the “hrvanalysis” Py-
thon module [62] was exploited, considering both time and frequency 
domain parameters. 

Concerning EDA signal, after having removed the artefacts (EDA 
toolkit 11), tonic and phasic components were discriminated (cvxEDA 
tool 13 [63]). 

A total of 110 features were extracted from the acquired physiolog-
ical signals, averaging each of them on the whole test duration, i.e., 5 
min). A dedicated code, developed in Python programming language, 
was exploited and specific features were extracted from each signal 
channel, namely:  

• EEG: average relative power in delta, theta, alpha, beta, and gamma 
bands for each channel, power ratios, and frontal and temporal 
asymmetry;  

• PPG: HRV parameters in both time and frequency domains;  
• EDA: tonic and phasic components. 

A detailed description of the extracted features and calculation 
procedures is reported in [33]. 

The obtained dataset was composed by 149 instances, each one 
containing the 110 physiological features extracted from EEG, PPG, and 
EDA signals, plus environmental parameters and test conditions. It is 

worthy to underline that only the instances with a hot or cold reported 
TS were considered, since the final aim was the binary classification 
between hot and cold perceptions. 

The dataset with features was then subjected to an attribute selection 
process in order to extract an optimal features subset to be exploited for 
ML-based classification purposes. 

2.6. Features correlation and subset selection 

The WEKA toolbox developed by the University of Waikato [55] was 
used to analyse the correlation between thermal sensation and physio-
logical parameters and to understand which parameters lead to the 
perception of thermal conditions. 

In particular, the attribute selection procedure was used with a dual 
purpose: i) to evaluate the correlation of physiological features with the 
thermal condition to which the subject was exposed and ii) to identify a 
features subset to be used for the ML-based classification of TS. The 
authors exploited the CfsSubsetEval tool; it is a correlation-based 
approach, based on the Correlation-based Feature Selection (CFS) al-
gorithm, able to quickly identify irrelevant and redundant features 
(which could degrade the classifier performance), as well as distinguish 
relevant features not related to each other [64]. A well-performing 
features subset is constituted by features highly correlated with the 
class to predict, but uncorrelated to each other. The measurement of the 
“merit” of a features subset can be performed through the Pearson’s 
correlation coefficient; considering a heuristic evaluation function based 
on correlation, a CFS algorithm can rank feature subsets. The evaluation 
function is reported in Eq. (1) [65]: 

Ms =
k • rcf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k + k(k − 1)rff

√ (1)  

where k is the number of features, rcf is the mean feature-class corre-
lation, and rff is the average feature-feature inter-correlation. This 
means that Ms increases with the subset predictivity power (numerator), 
whereas decreases with redundancy (denominator). Three heuristic 
search strategies are available:  

• Forward selection: starting from an empty subset, one feature at a 
time is added, until no higher evaluation is obtained; 

Fig. 3. Test setup with (A) reddish light, (B) bluish light, and (C) whitish light.  

Table 2 
Mean values ± SD of the environmental parameters monitored during experi-
mental sessions.  

Measured Parameters Cold Neutral Warm 

Relative humidity [%] 52.4 ± 8.1 44.2 ± 4.4 28.7 ± 3.9 
Air velocity [m/s] 0.20 ± 0.07 0.10 ± 0.03 0.10 ± 0.02 
CO2 concentration [ppm] 450.8 ± 9.8 490 ± 8.7 509.0 ± 7.6 
Illuminance [lx] 490 ± 19 488 ± 18 501 ± 17  
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• Backward elimination: starting from the whole set, one feature at a 
time is removed, until the evaluation does not degrade;  

• Best first: it can start both from a full or an empty subset and moves 
backward or forward, respectively. The search terminates when 5 
consecutive subsets do not show improvement. 

The subset with the highest merit is used to limit the feature set size 
and can be used for training a ML model, as it will be described in detail 
in the next subsection. 

The CfsSubsetEval attribute evaluator was used, exploiting the 
GreedyStepwise search method (with forward selection). The ranking 
was generated and the authors selected the first 10 physiological fea-
tures that was coherent with the findings of previous studies on physi-
ological signals for thermal comfort assessment (but conducted with 
diverse test protocol and methodology [33]). This new subset (formed 
by relevant features in the TS classification, whose relevance does not 
depend on other features) was exploited for the ML-based classification 
part, performed again within the WEKA toolbox. The same subset was 
used as input for all the considered ML classifiers. 

2.7. Thermal sensation prediction with Machine learning 

Different ML algorithms were considered to predict the TS value 
from the computed features. The TS scores were considered as labels for 
a binary classification between the following classes related to the 
thermal sensation:  

• Hot (TS > 0): this class includes both warm (TS = +1) and hot (TS =
+2) scores;  

• Cold (TS < 0): this class includes both slightly cold (TS = − 1) and 
cold (TS = − 2) scores. 

Neutral TS was not considered, as mentioned above. 
The pipeline of the procedure is reported in Fig. 4. 
The following supervised classifiers were considered, being suitable 

for a binary classification as well as being widely employed in literature:  

• Gaussian Naïve Bayes (GNB): it models continuous features through 
Gaussian distribution.  

• Logistic regression (LR): given a variable of input, it derives the 
probability of a certain output. It results particularly suitable for 
dichotomic variables.  

• Simple logistic (SL): this classifier builds a linear logistic regression 
model and can be used to fit logistic models. It can be used to predict 
a single binary variable or to determine the relationship between two 
variables.  

• Support Vector Machine (SVM): it is based on statistical learning 
frameworks to build a non-probabilistic binary classifier.  

• Bagging (BAG): this method generates more predictor versions to 
obtain an aggregated predictor. It is suitable both for classification 
and regression.  

• Decision Table (DT): it is a classification model based on a concise 
visual representation, which foresees actions based on given 
conditions.  

• J48: it generates a decision tree, able to analyse data in a continuous 
and categorical manner.  

• Random Forest (RF): it uses decision trees for both classification and 
prediction purposes. Both the majority and the average are 
considered. 

10-fold cross-validation method was adopted; in particular, valida-
tion was carried out dividing the dataset into 10 subsets: 9 for training, 1 
for validation (hence, with a ratio of 90:10 for training and validation). 
With 10 iterations each of the subset was considered alternatively for 
testing, exploiting the remaining 9 for training, and the results from the 
10 iterations were averaged to obtain the metrics related to the algo-
rithm classification performance. 

Standard metrics [66] were computed in order to evaluate the clas-
sification performance of the tested ML classifiers, namely Accuracy (Eq. 
(1)), Recall (or Sensitivity, Eq. (2)), Precision (Eq. (3)), and F-measure 
(Eq. (4)). 

Accuracy =

(

1 −
|Ncci − Nti|

Nti

)

• 100 (1)  

Ncci is the number of the correctly classified instances, whereas Nti is the 
number of the total instances. 

Recall is the ratio between the number of true positive (TP) and the 
total instances number (i.e., the sum of TP and false negatives, FN). 

Recall =
TP

TP + FN
(2) 

Precision is the ratio between the number of true positive (TP) and 
the total positives number (i.e., the sum of TP and false positives, FP). 

Fig. 4. Pipeline of data processing for ML-based classification of thermal sensation.  
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Precision =
TP

TP + FP
(3) 

F-measure is the harmonic mean of Recall and Precision, with a 
weight coefficient (β, which in Weka toolbox is considered equal to 1). 

F − measure =
(1 + β)2

• Sensitivity • Precision
β2 • Sensitivity + Precision

(4)  

3. Results and discussion 

The acquired signals reflect the different thermal sensations 
perceived in hot/cold conditions. Concerning the IBIs signal, in Fig. 5 it 
is possible to observe the RR duration decrease at higher temperatures 
(TS > 0), equivalent to a HR increase aimed at dissipating thermal en-
ergy (increasing skin blood flow [67]), whereas HR is lower in a cold 
environment [68]. EDA signal (Fig. 6) intensity increases with TS > 0, 
since the thermoregulation systems tries to dissipate energy through 
sweat production, resulting in a higher tonic component [33] (EDA is 
correlated to skin electrical conductivity [69]). This happens also with 
ST signal (Fig. 7), which directly follows the ambient temperature var-
iations. Regarding EEG signals, Fig. 8 shows the differences between hot 
and cold thermal conditions; in particular, when TS < 0 PSDs values 
generally increase in HF band and this is attributable to the higher 
attention level [33]. 

The application of the features selection procedure based on corre-
lation feature selection method, applied on features extracted from 
physiological signals and integrated with previous findings, gave the 
results reported in Table 3. It can be noticed that different types of 
physiological signals are involved, namely:  

• Skin temperature, in particular the mean value (mean_temp); it 
seems the most relevant feature according to ranking.  

• EDA signal: tonic_quartdev and tonic_std; the tonic component, as 
said in literature, results to be relevant in terms of TS.  

• EEG signal: temporal_asym_alpha and gamma_af7. Previous works 
demonstrated that gamma waves are correlated with the anxiousness 
level [70], which surely impacts on the perceived thermal sensation. 
Alpha waves are considered as indicative of attention level and also 
correlated to discomfort due to cool environment [71].  

• Cardiac signal: the values of heart rate and the features extracted 
from HRV analysis (both in time and frequency domain) turned to be 
significant. In particular, the selected features are the following ones: 
cvsd, pnni20, RMSSD, std_HR, and LF/HF. 

The obtained subset is composed by 149 instances as the original 
dataset, but the number of features is reduced (10 physiological 

features) according to the results from the feature selection approach. In 
particular, it is possible to distinguish among thermal conditions (i.e., 
neutral, hot, and cold) and lightning conditions (i.e., reddish, bluish, and 
whitish). Some characteristics of the dataset can be summarized as 
follows:  

• Neutral thermal condition: a total of 24 instances are present. The 
mean TS from questionnaires is equal to 0.10 ± 1.20, − 0.5 ± 1.31, 
0.83 ± 0.98 in case of whitish, reddish, and bluish lights. The illu-
minance mean value is equal to 129, 137, and 79 lx in case of 
whitish, reddish, and bluish lights;  

• Hot thermal condition: a total of 65 instances are present. The mean 
TS from questionnaires is equal to 2.38 ± 0.74, 1.73 ± 1.03, 2.27 ±
0.70 in case of whitish, reddish, and bluish lights. The illuminance 
mean value is equal to 126, 127, and 126 lx in case of whitish, red-
dish, and bluish lights;  

• Cold thermal condition: a total of 60 instances are present. The TS 
from questionnaires is equal to − 1.85 ± 0.88, − 1.70 ± 1.02, − 1.71 
± 0.60 in case of whitish, reddish, and bluish lights. The illuminance 
mean value is equal to 128, 127, and 127 lx in case of whitish, red-
dish, and bluish lights. 

Hence, this optimal subset was used as input to different ML models 
for classification purposes, together with a limited number of environ-
mental features (i.e., air temperature and velocity) and other test con-
ditions (i.e., gender, light colour, and order of exposition). 

The results obtained from classification procedures are reported in 
Tables 4 and 5 for the identification of hot (TS > 0) and cold (TS < 0) 
thermal sensations, respectively; the average performance metrics are 
reported in Table 6. The best results were globally achieved by the 
Random Forest classifier, which shows an average accuracy of 89.93% 
when fed with the identified subset of physiological features together 
with environmental variables and test conditions. It is followed by the SL 
classifier, which reports an accuracy of 88.59%. On the contrary, J48 
reports the worst (even if still very good) results, providing an average 
accuracy of 81.21% with the same feature subset as input. Looking at the 
detailed information on accuracy, it is possible to observe how the 
classifiers performance differentiates between the two classes (i.e., hot 
thermal sensations, TS > 0 – Table 4 – and cold one, TS < 0, Table 5 –). 
Nevertheless, the RF classifier confirms the best one also in the detection 
of both hot thermal sensation (with a Recall of 0.896, a Precision of 
0.908, a F-measure of 0.902, and an AUC of 0.938 – only in terms if 
Recall it is outperformed by the GNB model, with a Recall of 0.909) and 
cold one (with a Recall of 0.903, a Precision of 0.890, a F-measure of 
0.897, and an AUC of 0.938). 

It is worth to mention that the performance results did not improve if 

Fig. 5. Example of IBIs signal in correspondence of hot (TS > 0, red line) and cold (TS < 0, blue line) – sampling frequency: 64 Hz. Mean and standard deviation 
values are reported in the two thermal conditions. 
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further environmental parameters (e.g., air CO2 concentration or illu-
minance) were added as input. This means that in a real application 
environment a well-performing model could be obtained limiting the 
measurement to physiological signals, air temperature/velocity, and 
CCT. Also gender seems to have a relevant weight on the outcome. 
However, these results are probably linked to the fact that air temper-
ature and air velocity were the quantities most changed in order to 
achieve the desired TS in the tests. 

4. Conclusions 

In this paper, the authors evaluated the relationship between phys-
iological parameters measured through wearable sensors (namely a 
smartband, Empatica E4, and a headband, Interaxon MUSE) and the 
subject’s thermal sensation (TS). In this framework, while TS is 
commonly assessed through survey-based investigations, some objective 
parameters should be added to better depict the effective status of a 
subject and obtain more robust results, going beyond possible percep-
tual bias. Given that the literature highlights the influence of 

Fig. 6. Example of EDA signal in correspondence of hot (TS > 0, red line) and cold (TS < 0, blue line) – sampling frequency: 4 Hz. Mean and standard deviation 
values are reported (dash-dot and dashed lines, respectively) in the two thermal conditions. 

Fig. 7. Example of ST signal in correspondence of hot (TS > 0, red line) and cold (TS < 0, blue line) – sampling frequency: 4 Hz. Mean and standard deviation values 
are reported (dash-dot and dashed lines, respectively) in the two thermal conditions. 

Fig. 8. Example of EEG signal in correspondence of (a) hot (TS > 0) and cold (TS < 0) environment. PSD values are reported for the different electrodes.  
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physiological parameters on the subject’s thermal sensation, since 
thermal comfort conditions mirror in the subject’s physiological con-
ditions, the authors have investigated the strength of the correlation 
between physiological variables and the TS itself. Identifying an optimal 
subset of features, the authors fed a few ML-based classifiers (i.e., 
Gaussian Naïve Bayes, Logistic Regression, Simple Logistic, Support 
Vector Machine, Bagging, Decision table, J48, and Random Forest) with 
those features plus environmental quantities and test boundary 

conditions, to have a wider depiction of the thermal conditions 
perceived by the subject under test. As ground truth, the authors 
considered the TS value declared by the subjects in a dedicated survey 
filled in the experimental campaign. 

Results from the features selection process (performed according to 
the Correlation-based Feature Selection algorithm, coupled with the 
Greedy Stepwise search method) show that all the considered physio-
logical signals from the different domains (i.e., ST, EEG, PPG, and EDA 
signals) provide relevant features in the classification between hot and 
cold thermal sensation. Concerning ML-based models, the best accuracy 
in classification between hot and cold TS was achieved by the RF clas-
sifier (89.93%), followed by SL (88.59%). The same model maintained 
the best performance also considering separately the two conditions (i. 
e., hot and cold TS). These results are in line with literature (e.g., Fayyaz 
et al. reported an accuracy of 86.08% [72]). 

The findings of this study emphasize the importance of integrating 
subjective surveys on thermal sensation with objective measurements of 
physiological parameters (e.g., ECG, PPG, EDA, EEG, and ST) to reduce 
the subjectivity of questionnaires and mitigate perceptual bias. Physio-
logical features offer a more accurate and objective assessment of the 
subject’s response to their living environment, while subjective surveys 
can be influenced by personal factors and mental state. Hence, the 
measurement of physiological signals is an objective tool that can 
contribute to assess thermal sensation in living environments in a more 
accurate way, going beyond the perception bias that could affect survey- 
based evaluations. The results from this study can inform the develop-
ment of personalized comfort systems that optimize both occupants’ 
well-being and building energy consumption. In Fig. 9 a potential 
application of the proposed strategy is illustrated. Both physiological 
and environmental quantities are measured (from subjects and living 
environment, respectively) and the gathered data are fed to a controller 
based on dedicated ML algorithms (i.e., personal comfort models). In 
this way, information relevant in terms of personal thermal sensation is 
provided, hence being exploitable by Heating, Ventilation and Air 
Conditioning (HVAC) systems for automated control purposes. 

Future research should explore the effect of non-thermal parameters 
on thermal comfort models to evaluate potential cross-modal effects that 
could further enhance the dwellers’ comfort and the energy efficiency of 
the living environment. This approach aligns with the multi-domain 
comfort theory [73], which seeks to maximize comfort across different 
domains while minimizing energy consumption. Additionally, the pro-
posed methodology can be adapted to assess outdoor comfort using 
portable and wearable sensing techniques. As wearable technology ad-
vances and measurement procedures become optimized, this approach 
holds great potential for improving our understanding of multi-domain 
physiological responses and enhancing occupant comfort. Moreover, the 
features selection performed in this study can route future studies on 
specific parameters, also analysing them in terms of measurement un-
certainty, in order to always meet the specific requirements for a certain 
target application. In this context, the metrological performance of the 
employed sensors undoubtedly plays a pivotal role. 

Finally, predictive models could be developed for TS, hence going 
beyond classification purposes. 

Table 3 
Results from features selection process (CfsSubsetEval) performed on physio-
logical features, after comparison with previous results [33]. Note: results are 
reported according to decreasing rank.  

Feature Type 
of 
signal 

Description Average 
merit 

Average 
rank 

mean_temp ST Mean skin 
temperature  

0.500 1 

tonic_quartdev EDA Quartile deviation of 
tonic component  

0.522 2.2 

tonic_STD EDA Standard deviation 
of tonic component  

0.536 4.5 

cvsd PPG Coefficient of 
variation of 
successive 
differences between 
RR intervals  

0.536 8.1 

pnni_20 PPG Percentage of 
successive RR 
intervals exceeding 
20 ms  

0.534 8.6 

RMSSD PPG Beat-to-beat variance  0.526 11.1 
std_HR PPG Standard deviation 

of heart rate  
0.528 12.4 

LF/HF PPG Ratio between low 
and high frequency 
components  

0.500 12.5 

temporal_asym_alpha EEG Alpha band power 
difference between 
left and right 
hemispheres  

0.492 14 

gamma_af7 EEG Gamma waves of left 
frontal electrode  

0.460 22.6  

Table 4 
Average Recall, Precision, F-measure, and ROC area achieved by each combi-
nation of physiological signals and ML classifier (TS > 0).  

ML classifier Recall Precision F-Measure ROC area 

GNB  0.909  0.833  0.870  0.927 
LR  0.896  0.852  0.873  0.919 
SL  0.896  0.885  0.890  0.931 
SVM  0.870  0.882  0.786  0.873 
BAG  0.896  0.863  0.879  0.902 
DT  0.805  0.838  0.821  0.876 
J48  0.831  0.810  0.821  0.813 
RF  0.896  0.908  0.902  0.938  

Table 5 
Average Recall, Precision, F-measure, and ROC area achieved by each combi-
nation of physiological signals and ML classifier (TS < 0).  

ML classifier Recall Precision F-Measure ROC area 

GNB  0.806  0.892  0.847  0.927 
LR  0.833  0.882  0.857  0.919 
SL  0.875  0.887  0.881  0.931 
SVM  0.875  0.863  0.869  0.873 
BAG  0.847  0.884  0.865  0.902 
DT  0.833  0.800  0.816  0.876 
J48  0.792  0.814  0.803  0.813 
RF  0.903  0.890  0.897  0.938  

Table 6 
Average Accuracy, Recall, Precision, F-measure, and ROC area achieved by each 
combination of physiological signals and ML classifier (all).  

ML classifier Accuracy Recall Precision F-Measure ROC area 

GNB  0.859  0.859  0.862  0.859  0.927 
LR  0.866  0.866  0.867  0.866  0.919 
SL  0.886  0.886  0.886  0.886  0.931 
SVM  0.872  0.872  0.873  0.873  0.873 
BAG  0.872  0.872  0.873  0.872  0.902 
DT  0.819  0.819  0.820  0.819  0.876 
J48  0.812  0.812  0.812  0.812  0.813 
RF  0.899  0.899  0.899  0.899  0.938  
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