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Abstract

The present paper proposes a novel kernel adaptive filtering algorithm, where each Gauss-

ian kernel is parameterized by a center vector and a symmetric positive definite (SPD)

precision matrix, which is regarded as a generalization of scalar width parameter. In fact,

different from conventional kernel adaptive systems, the proposed filter is structured as a

superposition of non-isotropic Gaussian kernels, whose non-isotropy makes the filter more

flexible. The adaptation algorithm will search for optimal parameters in a wider parameter

space. This generalization brings the need of special treatment of parameters that have a

geometric structure. In fact, the main contribution of this paper is to establish update rules

for precision matrices on the Lie group of SPD matrices in order to ensure their symmetry

and positive-definiteness. The parameters of this filter are adapted on the basis of a least-

squares criterion to minimize the filtering error, together with an ℓ1-type regularization

criterion to avoid overfitting and to prevent the increase of dimensionality of the dictionary.

Experimental results confirm the validity of the proposed method.

1 Introduction

Adaptive filtering is a technique to update the parameters of a signal/data processing structure

[1]. In this paper, we deal with kernel-based adaptive filtering. A kernel adaptive filter is a kind

of nonlinear filter that exploits a kernel method, which is a technique to construct effective

nonlinear systems [2]. Kernel adaptive filters found widespread applications in diverse fields,

ranging from stock market prediction [3] to acoustic echo cancellation [4] and visual object

tracking [5].

In kernel adaptive filtering, most kernels present the following form [6]:

kð�; c; gÞ≔ exp ð� gk � � ck2
Þ; ð1Þ

where parameters c 2 RL and γ> 0 represent the center and the width of a Gaussian kernel,

respectively. In other words, this kind of kernel presents only two parameters, namely, mean

and variance (also referred to as scalar precision).
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1.1 Related work

Several instances of nonlinear adaptive filtering have been reported in the scientific litera-

ture. Among them, kernel adaptive filtering developed in a reproducing kernel Hilbert space

(RKHS) is known as an efficient online nonlinear approximation approach [7, 8]. Well-

known kernel adaptive filtering algorithms are kernel least mean square (KLMS) [9–12],

kernel normalized least mean square (KNLMS), kernel affine projection algorithms (KAPA)

[13, 14], and kernel recursive least squares (KRLS) [15]. In this context, it is worth citing

fractional adaptive signal processing [16–20] as these modern filtering algorithms outper-

form their counterparts in terms of accuracy and convergence, for example in active noise

control systems.

A distinguishing feature of kernel-based adaptive filtering is the ability to adjust the values

of the parameters of each kernel so as to minimize the filtering error. To what concerns kernel

centers, research endeavors suggested to move all the center vectors in the dictionary to mini-

mize the squared filtering error [21–23]. To what concerns kernel widths, it is known that the

widths of the kernels are important parameters that contribute to improve the performance of

kernel machines [24–28] and some attempts to adaptively estimate the widths of the kernels

have been reported [27, 28]. Moreover, in a recent work [6], Wada et al. have proposed an

adaptive update method for both the Gaussian center and width concurrently. The above men-

tioned papers have addressed the problem of estimating a precision parameter of the Gaussian

model given as in (1). However, this is a special case of multivariate Gaussian kernel function.

The structure of most kernel adaptive filtering algorithms grows linearly with each new

input sample. A solution to cope with this problem is to build a dictionary. Well-known crite-

ria for dictionary learning are novelty [29], approximate linear dependency (ALD) [15], sur-

prise [30], and coherence-based criterion [31]. Another known criterion is ℓ1-regularization

[32, 33], which sets some coefficients to zero and discards the corresponding entries. In this

instance, a model dynamically changes, in that new members may be added to a dictionary

and old members may be suppressed from a dictionary.

1.2 Innovative contribution

It should be noted that a kernel of the form (1) implicitly assumes uncorrelatedness between

components in the sample vector, which implies that the kernel can be isotropic. However,

observed samples usually present some sort of mutual correlation [34, 35].

In this paper, we employ a generalized Gaussian kernel defined as

kð�; c;GÞ≔ exp ð� ð� � cÞ>Gð� � cÞÞ; ð2Þ

where G 2 RL�L is a symmetric positive definite (SPD) matrix. We refer to Γ as a precision

matrix, which has no constraint but positive definiteness, while the model of (1) can be

regarded as a special case where Γ = γI. In other words, in (1) the precision matrix is allowed

to be only isotropic. Unlike (1), this general form has more degrees of freedom and therefore it

is more flexible in modeling samples distributions; however, an adaptive method for finding

the precision matrix is not straightforward. We will establish a dictionary learning method for

generalized Gaussian kernel adaptive filtering. In a dictionary, each entry consists of a pair

formed by a center vector and a precision matrix. The main contributions of the proposed

method are (a) a model of the filter consisting of kernels with a different precision matrix

each (b) an update rule for each center vector, and (c) a learning rule for each precision matrix

on the SPD manifold in order to ensure their symmetry and positivity definiteness during

adaptation.
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1.3 Organization and list of abbreviations

Section 2 presents general concepts in kernel adaptive filtering. Section 3 proposes a dictionary

learning method for the generalized Gaussian kernel adaptive filtering. Section 4 shows the

results of numerical experiments to evaluate the efficacy of the proposed method. Section 5

concludes the paper. A list of abbreviations used within this paper is presented in Table 1.

2 Kernel adaptive filters

Kernel adaptive filters possess noteworthy features [8], such as universal approximation ability,

absence of local minima and moderate complexity in terms of computation burden and mem-

ory. In this section, we first discuss sample distributions modeling in the context of kernel

adaptive filtering and then we briefly review kernel adaptation algorithms.

In kernel adaptive filtering, an input sequence uðnÞ 2 U � RL is mapped to a RKHS

ðH; h�; �iÞ on U induced from a positive definite kernel kð�; �Þ : U � U ! R. Here, symbol U
denotes a multidimensional input space, while symbol h�; �i : H�H! R denotes an inner

product in the RKHS. A RKHS H can implicitly increase the dimensionality of a feature space

that enables us to represent non-linear signals, which are generated by a non-linear system

[36]. The short-term scalar output sequence of the filter is computed as

yðnÞ ¼ hφðuðnÞÞ; PðnÞi; ð3Þ

where PðnÞ 2 H denotes a filter weight vector at time n and � : U ! H denotes a nonlinear

mapping. In general, the inner product in a high dimensional space is not given in an explicit

form. Rather, the inner product in a RKHS can be calculated by using the properties of RKHS,

namely: (i) all elements in a RKHS are constructed by a kernel κ(�, �), (ii) it is convenient to

choose φ(u) = κ(�, u), (iii) it holds that hκ(�, ui), κ(�, uj)i = κ(ui, uj) [2, 31]. The Fig 1 shows a

schematic of the adaptive filter.

We consider the problem of adaptively estimating the weights P(n). It is known [31] that

P(n) can be written as

PðnÞ ¼
X

j2J ðnÞ

hðnÞj kð�; cjÞ; ð4Þ

where the hðnÞj 2 R are scalar weight coefficient for κ(�, cj). Here, fcjgj2J ðnÞ is a set of input sam-

ples, termed dictionary. The symbol J ðnÞ
denotes an index set of dictionary elements at time n.

Table 1. List of abbreviations and their meaning.

Abbreviation Explanation

ALD approximate linear dependency

KAPA kernel affine projection algorithms

KLMS kernel least mean square

KNLMS kernel normalized least mean square

KRLS kernel recursive least squares

LMS least mean squares

MEG matrix exponentiated gradient

MSE mean squared error

NMEG normalized matrix exponentiated gradient

RKHS reproducing kernel Hilbert space

SPD symmetric positive definite

https://doi.org/10.1371/journal.pone.0237654.t001
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From Eqs (3) and (4), the filter output is written as

yðnÞ ¼
X

j2J ðnÞ

hðnÞj kðuðnÞ; cjÞ ¼ hðnÞ
>

κðnÞ; ð5Þ

where

hðnÞ ≔ ½hðnÞ
jðnÞ
1

; hðnÞ
jðnÞ
2

; . . .�
>
; κðnÞ ≔ ½kðuðnÞ; cjðnÞ

1

Þ; kðuðnÞ; cjðnÞ
2

Þ; . . .�
>
: ð6Þ

Notice that, in the above equations, for the sake of notation conciseness the kernel functions

have been indicated without reference to the kernel width parameter γ that takes the same

value in each kernel.

In kernel adaptive filtering algorithms, obsolete kernel functions cannot be discarded,

which is a serious limitation of these algorithms, in particular in the presence of a non-station-

ary environment. In order to fix this issue, a dictionary may be constructed by means of ℓ1-reg-

ularization [32, 33] which promotes sparsity, hence improving the efficiency of the dictionary.

Let dðnÞ 2 R denotes a desired output signal at time n. The cost function for the adaptive kernel

algorithm is written as follows:

AðnÞ ≔ jdðnÞ � hðnÞ
>

κðnÞj2 þ m
X

j2J ðnÞ

wðnÞj jh
ðnÞ
j j

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≕bðnÞ

;

ð7Þ

where β(n) and μ play the role of a weighted ℓ1 norm and of a regularization parameter, respec-

tively. Here, the weights fwðnÞj gj2J ðnÞ are dynamically adjusted as wðnÞj ¼ 1=ðjhðnÞj j þ rÞ [33],

with a small constant ρ> 0 to prevent the denominator from vanishing.

It is worth noticing that a conventional stochastic gradient descent method would be inef-

fective to seek the minimum of the cost function (7) since the weighted ℓ1 norm is not smooth.

However, since the cost function A(n) is convex, a forward-backward splitting scheme [37]

may be applied. A forward-backward splitting scheme reads:

hðnþ1Þ
¼ prox

lmbðnÞ hðnÞ þ
mðdðnÞ � hðnÞ>kðnÞ ÞkðnÞ

sþ kkðnÞk
2

" #

; ð8Þ

where hðnÞ ≔ ½hðnÞ
>

; 0�
>

, kðnÞ ≔ ½kðnÞ>; kðuðnÞ; uðnÞÞ�>, the coefficient λ> 0 denotes a step size,

the coefficient σ denotes a stabilization parameter, and k�k denotes a standard vector 2-norm.

Fig 1. Schematic of a RKHS adaptive filter.

https://doi.org/10.1371/journal.pone.0237654.g001
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The symbol ‘prox’ denotes the proximal operator [37], which is defined as follows: given a vec-

tor q≔ ½q1; q2; . . . ; qr�
>
2 Rr, it holds that

ðprox
lmbðnÞ ðαÞÞj ≔ sgnfqjgmaxfjqjj � lmw

ðnÞ
j ; 0g: ð9Þ

For further details on this technique, interested readers might consult [6, 38, 39]. This learn-

ing rule promotes the sparsity of the hðnÞj ’s, which results in some coefficient hðnÞj approaching

zero and the corresponding center vector cj getting removed from the dictionary.

3 Model and dictionary learning for generalized Gaussian kernel

adaptive filtering

As recalled in the introduction, most kernel machines using Gaussian kernel functions implic-

itly assume uncorrelatedness within the sample-variables, even though observed samples usu-

ally present correlation. In the following, a flexible filtering structure based on a superposition

of generalized Gaussian functions is proposed and algorithms for learning its parameters are

established.

3.1 Adaptive kernel filter based on a superposition of generalized Gaussian

functions

The proposed model is structured as a superposition of generalized Gaussian kernels given as

in (2) with time-varying centers cðnÞj and precision matrices GðnÞj . The output sequence of one

such kernel adaptive filter is computed as

yðnÞ ¼
X

j2J ðnÞ

hj
ðnÞ
kðuðnÞ; cðnÞj ;GðnÞj Þ

¼
X

j2J ðnÞ

hj
ðnÞ exp ð� ðuðnÞ � cðnÞj Þ

>
GðnÞj ðu

ðnÞ � cðnÞj ÞÞ:
ð10Þ

The corresponding dictionary at time n is described by

DðnÞ ≔ fðcðnÞj1 ;G
ðnÞ
j1
Þ; ðcðnÞj2 ;G

ðnÞ
j2
Þ; . . . ; ðcðnÞj

rðnÞ
;GðnÞj

rðnÞ
Þg: ð11Þ

For the sake of completeness, let us discuss how a multikernel adaptive filter fits within the

general theory of RKHS. An extended discussion on multikernel adaptive filtering may be

found in [38, 40].

Let H1 and H2 denote two reproducing kernel Hilbert spaces and letH ≔ H1 �H2 denote

their direct sum. The norm of the direct sum of f1 2 H1 and f2 2 H2, f = (f1, f2)2H, is repre-

sented as [2]:

kf k2

H ≔ kf1k
2

H1
þ kf2k

2

H2
: ð12Þ

In particular, if the two Hilber spaces are non-overlapping, namely H1 \H2 ¼ f0g, the

sum space H ≔ ff ¼ f1 þ f2 j f1 2 H1; f2 2 H2g has the same structure of the spaceH [2].

Consequently, the norm in H may be defined as:

kf k2

H ≔ kf1k
2

H1
þ kf2k

2

H2
: ð13Þ
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Also, take a kernel k1 2 H1 and a kernel k2 2 H2. An element f 2 H can be evaluated by

the sum kernel κ≔ κ1+ κ2 [2]:

f ðuÞ ¼ hf ; kð�; uÞiH ¼ hf1; k1ð�; uÞiH1
þ hf2; k2ð�; uÞiH2

: ð14Þ

The above construction may be generalized to an arbitrary number of Hilbert spaces with-

out difficulty.

Assume now that M different kernels fkmð�; �Þg
M
m¼1

are available. Denote by Hm a RKHS

determined by them-th kernel and define H as the corresponding sum space. In analogy to

the simpler case (14), the output of the filter is obtained by combining a weight P 2 H and the

‘sum kernel’ k 2 H as

yðnÞ ¼ hP; kð�; uðnÞÞiH ¼
XM

m¼1

hPm; kmð�; u
ðnÞÞiHm

; ð15Þ

where each weight Pm 2 Hm and P is identified with the (direct) sum of the single weights Pm.

Since there is no need for the index set of the dictionary in each RKHS to equate each other

[38], the filter structure (10) may be identified as a multikernel adaptive filter with time-vary-

ing weights:

yðnÞ ¼ hPðnÞ; kð�; uðnÞÞiH ¼
X

j2J ðnÞ

hPðnÞj ; kð�; uðnÞ;G
ðnÞ
j ÞiHj

;
ð16Þ

with the convention that PðnÞj ≔ hðnÞj kð�; c
ðnÞ
j ;GðnÞj Þ.

3.2 Center vectors adaptation

In this subsection, a dictionary learning method for generalized Gaussian kernel adaptive fil-

tering is proposed. To update the center vectors, we chose the loss function:

FðnÞðDðnÞÞ ≔ jeðnÞj2 ¼ jdðnÞ � yðnÞj2

¼ dðnÞ �
X

j2J ðnÞ

hðnÞj exp ð� ðuðnÞ � cjÞ
>
GðnÞj ðu

ðnÞ � cjÞÞ

�
�
�
�
�
�

�
�
�
�
�
�

2

:
ð17Þ

Such criterion is a function of dictionary elements, namely, of center vectors as well as of

precision matrices.

The adaptation of each center vector may be achieved by a gradient steepest descent algo-

rithm:

cðnþ1Þ

j ¼ cðnÞj � Zc
@FðnÞðcjÞ
@cj

�
�
�
�
cj¼c

ðnÞ
j

ð18Þ

where ηc> 0 denotes a step size and

@FðnÞðcjÞ
@cj

�
�
�
�
cj¼c

ðnÞ
j

¼ � 4eðnÞhðnÞj k uðnÞ; c
ðnÞ
j ;GðnÞj

� �
GðnÞj uðnÞ � c

ðnÞ
j

� �

ð19Þ

Let us remark that adaptation rules to move center vectors for the standard Gaussian kernel

adaptive filters were also proposed in [21–23].
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3.3 Precision matrices adaptation

In order to update the precision matrices, we consider two types of data-driven adaptation

methods. One consists in applying the update rule for SPD matrices proposed in [41]. The

other is a novel update rule where an effective normalization is employed. The Fig 2 illustrates,

in a schematic way, these update rules. In order to update precision matrices, the same loss

function (17) may be invoked.

3.3.1 Matrix Exponentiated Gradient (MEG) adaptation. To update the precision matri-

ces in a dictionary fGjgj2J ðnÞ while preserving their SPD structure, a matrix exponentiated gra-

dient (MEG) update [41] may be applied. The update rule for Γj can be derived to minimize

the loss function in (17):

Gðnþ1Þ

j ¼ exp logGðnÞj � Zw sym
@FðnÞðGjÞ

@Gj

�
�
�
�
Gj¼G

ðnÞ
j

0

@

1

A

0

@

1

A; ð20Þ

Fig 2. Conceptual diagrams of (a) MEG and (b) NMEG.

https://doi.org/10.1371/journal.pone.0237654.g002

PLOS ONE Anisotropic Gaussian kernel adaptive filtering by Lie-group dictionary learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0237654 August 14, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0237654.g002
https://doi.org/10.1371/journal.pone.0237654


where ηw > 0 denotes a step size and

@FðnÞðGjÞ

@Gj

�
�
�
�
Gj¼G

ðnÞ
j

¼ GðnÞj ¼ 2eðnÞhðnÞj kðuðnÞ; c
ðnÞ
j ;GðnÞj Þðu

ðnÞ � cjÞðu
ðnÞ � cjÞ

>
:

For a square matrix X, symðXÞ≔ 1
2
ðX þ X>Þ denotes the symmetric part of X, while exp

(X) and log(X) denote matrix exponential and principal matrix logarithm, respectively [41].

It is interesting to observe that the adaptation rule (20) may be re-interpreted in the frame-

work of manifold calculus. In fact, let us define a retraction [42] as RX(V) ≔ exp(logX + V) in

the SPD space, where X denotes any positive-definite symmetric matrix and V denotes any

symmetric matrix of the same size. Also, let us definerXF ≔ sym @F
@X

� �
as the Riemannian gra-

dient of a loss function F with respect to the SPD matrix X [43]. Then, the adaptation rule (20)

may be re-framed as Gðnþ1Þ

j ¼ R
G
ðnÞ
j
ð� ZwrG

ðnÞ
j
FðnÞÞ.

3.3.2 Normalized Matrix Exponentiated Gradient (NMEG) adaptation. Even though

matrix exponentiated gradient updates each precision matrix Γ while preserving its SPD struc-

ture, the computation of logΓ can be unstable when the eigenvalues of Γ are too close to zero.

A symmetric positive-definite matrix Γ with L all-distinct eigenvalues may be decomposed

as W diag(λ1, λ2, . . ., λL)W>, with W orthogonal. Therefore, logΓ = W diag(logλ1, logλ2, . . .,

logλL)W>: If an eigenvalue lays too close to zero, matrix logarithm becomes numerically

unstable. In general, a matrix logarithm is well-defined only in a neighbor of the identity

matrix I. To overcome this problem, the following normalizing function by the current value

GðnÞj is proposed:

LðnÞj ðXÞ≔ ðGðnÞj Þ
� 1=2XðGðnÞj Þ

� 1=2
; ð21Þ

where X denotes any symmetric positive-definite matrix and (�)−1/2 denotes a combination of

matrix inversion and symmetric square-rooting. On the basis of the observations recalled in

the footnote 1, the inverse symmetric square root of a SPD matrix G may be computed rather

inexpensively by Wdiagðl� 1=2

1
; l
� 1=2

2
; . . . ; l

� 1=2

L ÞW>. Since a precision matrix GðnÞj is symmetric

and positive-definite, its inverse always exists and its matrix square root always returns a sym-

metric, real-valued matrix. Let us remark how the introduced normalization keeps both sym-

metry and positive-definiteness of its argument, in fact, to what concerns symmetry:

ðLðnÞj ðXÞÞ
>
¼ ððGðnÞj Þ

� 1=2XðGðnÞj Þ
� 1=2
Þ
>
¼ ðGðnÞj Þ

� >=2X>ðGðnÞj Þ
� >=2

¼ ðGðnÞj Þ
� 1=2XðGðnÞj Þ

� 1=2
¼ LðnÞj ðXÞ;

ð22Þ

and, to what concerns positive-definiteness:

det ðLðnÞj ðXÞÞ ¼ det 2ððGðnÞj Þ
� 1=2
Þdet ðXÞ ¼ det ðXÞ=det ðGðnÞj Þ > 0: ð23Þ

The inverse (de-normalizing) function associated to (21) reads:

ðLðnÞj Þ
� 1
ðXÞ≔ ðGðnÞj Þ

1=2XðGðnÞj Þ
1=2
: ð24Þ

Define a precision matrix Γ normalized by (21) as ~G ≔ LðnÞj ðGÞ. If we apply the MEG update

to ~G
ðnÞ
j instead of GðnÞj , we get the adaptation rule

~G
ðnþ1Þ

j ¼ exp log ~G
ðnÞ
j � Zwsym

@FðnÞðGjÞ

@ ~G j

�
�
�
�

~G j¼~G j
ðnÞ

 ! !

; ð25Þ
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where Gj ¼ Gjð
~G jÞ is to be thought of as a compound function, in fact, it holds that

Gjð
~G jÞ≔ ðL

ðnÞ
j Þ

� 1
ð~G jÞ. Notice that ~G

ðnÞ
j can be written as

~G
ðnÞ
j ¼ L

ðnÞ
j ðG

ðnÞ
j Þ ¼ ðG

ðnÞ
j Þ

� 1=2
GðnÞj ðG

ðnÞ
j Þ

� 1=2
¼ I; ð26Þ

where I 2 RL�L is an identity matrix. Since logI = 0, the adaptation rule (25) simplifies to

~G
ðnþ1Þ

j ¼ exp � Zwsym
@FðnÞðGjð

~G jÞÞ

@ ~G j

�
�
�
�

~G j¼~G j
ðnÞ

0

@

1

A

0

@

1

A; ð27Þ

To find the derivative of function F(n)(Γj) with respect to ~G j, the following chain rule [44] is

used:

@FðnÞðGjð
~G jÞÞ

@ ~G j

 !

kl

¼ Tr
@FðnÞðGjÞ

@Gj

 !>
@Gj

@ð~G jÞkl

" #

¼ Tr
@FðnÞðGjÞ

@Gj

 !>

ðGðnÞj Þ
1=2

@ ~G j

@ð~G jÞkl
ðGðnÞj Þ

1=2

" #

¼ Tr
@FðnÞðGjÞ

@Gj

 !>

ðGðnÞj Þ
1=2SklðG

ðnÞ
j Þ

1=2

" #

¼

 

ðGðnÞj Þ
1=2

@FðnÞðGjÞ

@Gj

 !>

GðnÞj

� �
1=2

!

lk

;

ð28Þ

where the notation (X)kl indicates the (k, l)-th entry of matrix X, Tr(�) denotes matrix trace,

and Skl is the single-entry matrix [44], whose (k, l)-th entry is 1 and each other entry takes the

value 0. From the property (28), we get

@FðnÞðGjð
~G jÞÞ

@ ~G j

¼ ðGðnÞj Þ
1=2

@FðnÞðGjÞ

@Gj

 !>

ðGðnÞj Þ
1=2

 !>

¼ ðGðnÞj Þ
1=2
@FðnÞðGjÞ

@Gj
ðGðnÞj Þ

1=2
;

ð29Þ

thanks to the symmetry of the involved matrices and expressions. Using the formula (29), the

adaptation rule (27) can be written as

~G
ðnþ1Þ

j ¼ exp � Zw sym ðLðnÞj Þ
� 1

@FðnÞðGjÞ

@Gj

�
�
�
�
Gj¼Gj

ðnÞ

 ! ! !

¼ exp � Zw ðL
ðnÞ
j Þ

� 1 sym
@FðnÞðGjÞ

@Gj

�
�
�
�
Gj¼Gj

ðnÞ

 ! ! !

:

ð30Þ

Thanks to the normalizing function, we can update the precision matrices stably. Then,

the (n + 1)-th precision matrix is obtained by applying the inverse normalizing function.
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Therefore, the following update rule is derived:

Gðnþ1Þ

j ¼ ðLðnÞj Þ
� 1
ð~G
ðnþ1Þ

j Þ ¼ ðGðnÞj Þ
1=2 ~G

ðnþ1Þ

j ðGðnÞj Þ
1=2

¼ ðGðnÞj Þ
1=2 exp � Zw ðG

ðnÞ
j Þ

1=2sym
@FðnÞðGjÞ

@Gj

�
�
�
�
Gj¼Gj

ðnÞ

 !

ðGðnÞj Þ
1=2

 !

ðGðnÞj Þ
1=2
:

ð31Þ

From (31), we can see that unlike (20), this adaptation rule dose not require the computa-

tion of logΓ. We call this adaptation rule normalized matrix exponentiated gradient (NMEG).

As a special instance, let us consider the case L = 1. The NMEG update rule in the case of

L = 1 can be derived by replacing each precision matrix Γ with a scalar parameter γ> 0 in

(31):

g
ðnþ1Þ

j ¼ g
ðnÞ
j exp � Zwg

ðnÞ
j

@FðnÞðgjÞ
@gj

�
�
�
�
gj¼g

ðnÞ
j

0

@

1

A; ð32Þ

which apparently keeps each parameter γj in the positive half-line during adaptation. The par-

tial derivative of the cost function, in this case, reads

@FðnÞðgjÞ
@gj

�
�
�
�
gj¼g

ðnÞ
j

¼ � 2g
ðnÞ
j eðnÞh

ðnÞ
j kðuðnÞ; c

ðnÞ
j ; g

ðnÞ
j ÞkuðnÞ � cðnÞj k

2
: ð33Þ

Such special case was proposed and discussed in the contributions [6, 28].

The adaptation rule (31) was derived on the basis of matrix normalization, therefore, it is

legitimate to wonder if it constitutes a valid algorithm to update a matrix in the space of SPD

tensors. The answer is positive, indeed, since the rule (31) may be regarded as an application of

a general geodesic-based stepping rule on the manifold of symmetric positive-definite matrices

endowed with the canonical metric, namely

Gðnþ1Þ

j ¼ g
G
ðnÞ
j
� Zw G

ðnÞ
j sym

@FðnÞðGjÞ

@Gj

�
�
�
�
Gj¼Gj

ðnÞ

 !

GðnÞj

 !

; ð34Þ

where the function gX(V) denotes a geodesic arc in the SPD space departing from a point X in

the direction V and is given by

gXðVÞ≔ X1=2 exp ðX� 1=2VX� 1=2ÞX1=2; ð35Þ

as explained, for example, in [43] and [45]. Notice, in addition, that the argument of the func-

tion g in (34) is proportional to the Riemannian gradient of the criterion function F with

respect to the canonical metric, as defined in the previous Subsection 3.3.1.

3.4 Sparse KNLMS incorporated with generalized Gaussian kernel

parameters

To avoid overfitting and to prevent monotonic growth of a dictionary, the proposed adapta-

tion rules for the generalized Gaussian parameters are applied jointly with an ℓ1-regularization

[33]. The proposed method is summarized in Algorithm 1.

Algorithm 1 Dictionary Learning for Generalized Gaussian Kernel Adaptive Filtering
1: Set precision matrices of kernels Γinit.
2: Set the initial center vector c(0)  u(0)

3: Add (c(0), Γinit) into the dictionary as the 1st member,
Dð0Þ  fðcð0Þ;GinitÞg.
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4: for n > 1 do
5: Set the n-th center vector c(n)  u(n)

6: Add (c(n), Γinit) to the dictionary as a new member,
DðnÞ  Dðn� 1Þ

[ fðcðnÞ;GinitÞg.
7: for j  0 to size of DðnÞ � 1 do
8: Update the center vectors cðnÞj using (18).

9: Update the precision matrices GðnÞj using MEG (20) or NMEG (31).
10: Update the filter coefficients hj according to a forward-back-

ward splitting scheme (8).
11: end for
12: for j such that hj = 0 do
13: Remove the j-th element from the dictionary DðnÞ.
14: end for
15: n  n + 1
16: end for

4 Numerical experiments

In this section, we compare the KNLMS-ℓ1 [33], the NMEG (L = 1) [6, 28] in (32), the MEG in

(20), and the NMEG in (31) through three types of simulations. The first simulation is a time

series prediction in a toy model defined by Gaussian functions with scalar widths. The second

simulation is an online prediction in a toy model defined by Gaussian functions with precision

matrices. The last simulation consists in an online prediction of the state of a Lorenz chaotic

system. In these simulations, mean squared error (MSE) and mean dictionary size were

adopted as the evaluation criteria. Both indices were averaged over 200 independent trials to

compensate for statistical fluctuations in each single trial.

4.1 Time series prediction in a toy signal model constructed by standard

Gaussian functions

Consider the following synthetic signal model:

dðnÞ ≔ 10 exp ð� 5kuðnÞ � ½3; 3�>k2
Þ þ 10 exp ð� 0:2kuðnÞ � ½7; 7�>k2

Þ; ð36Þ

corrupted by an additive zero-mean white Gaussian noise with standard deviation equal to 0.3.

The input samples u(n) are drawn from a 2-dimensional uniform distribution with support

[0, 10] × [0, 10]. The parameters values for the learning schemes utilized in this experiment are

given in Table 2. In addition, the parameters values for the forward-backward splitting scheme

are λ = 0.09 and σ = 0.03.

Figs 3 and 4 show the mean squared error and mean dictionary size of filters at each itera-

tion, respectively. In Fig 3, the NMEG (L = 1), the MEG, and the NMEG show lower MSE than

the KNLMS-ℓ1. This confirms the efficacy of updating the scalar widths γ and the precision

Table 2. Values of learning parameters in the experiment described in Subsection 4.1.

Learning algorithm Parameters values

KNLMS-ℓ1 γ = 1.0, μ = 1.0 × 10−3, ρ = 0.1

NMEG (L = 1) γinit. = 1.0, μ = 1.0 × 10−3

ρ = 0.1, ηc = 1.0 × 10−3, ηw = 0.05

MEG Γinit = I, μ = 1.0 × 10−3

ρ = 0.1, ηc = 1.0 × 10−3, ηw = 0.05, L = 2

NMEG Γinit = I, μ = 1.0 × 10−3

ρ = 0.1, ηc = 1.0 × 10−3, ηw = 0.05, L = 2

https://doi.org/10.1371/journal.pone.0237654.t002
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Fig 3. Convergence curves of filters in the experiment described in the Section 4.1. These results were obtained as

averages over 200 independent trials.

https://doi.org/10.1371/journal.pone.0237654.g003

Fig 4. Dictionary size evolution in experiment described in the Section 4.2. These results were obtained as averages

over 200 independent trials.

https://doi.org/10.1371/journal.pone.0237654.g004
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matrices Γ. The NMEG (L = 1) converges faster than the other algorithms in this comparison.

However, when the iteration index n reaches about 100, 000, the NMEG (L = 1) and NMEG

exhibit almost the same mean MSE even though the NMEG uses generalized Gaussian kernels.

The Fig 4 shows that the NMEG (L = 1), the MEG, and the NMEG are able to keep a small dic-

tionary size.

4.2 Time series prediction in a toy signal model constructed by generalized

Gaussian functions

Further, consider the following synthetic signal model:

dðnÞ ≔ 10 exp ð� ðuðnÞ � ½3; 3�>Þ>LðuðnÞ � ½3; 3�>ÞÞþ

10 exp ð� ðuðnÞ � ½7; 7�>Þ>LðuðnÞ � ½7; 7�>ÞÞ;
ð37Þ

corrupted by the same kind of noise, and driven by the same input sequence, as in the previous

experiment. Parameters values pertaining to learning schemes utilized in this experiment are

given in Table 3. In addition, the parameters values for the forward-backward splitting scheme

are λ = 0.09 and σ = 0.03.

We tested the behavior of the proposed adaptive kernel filter theory on two different cases

characterized by two instances of Λ:

5 0:5

0:5 0:2

 !

;
5 0:5

0:5 10

 !

; ð38Þ

which have, as smallest eigenvalues, 0.148 and 4.95, respectively. The Fig 5 shows the mean

MSE and mean dictionary size of filters at each iteration. In Fig 5a and 5b, the MEG and the

NMEG show lower MSE than the KNLMS-ℓ1 and NMEG (L = 1).

The obtained results confirm the efficacy of using (adaptive) generalized Gaussian kernels.

Comparing the MSE curves of the MEG and of the NMEG, it is immediate to see how the per-

formance of the MEG algorithm degrades when the matrix Λ is close to singularity, namely

when L ¼
5 0:5

0:5 0:2

 !

, which implies that the term logGðnÞj in (20) is difficult to compute,

while the NMEG is able to perform well in both cases. The Fig 5c and 5d confirm that the

NMEG produces the smallest dictionary. The above results clearly confirm the efficacy of the

proposed normalization method for updating precision matrices.

Table 3. Values of learning parameters in the experiment described in Subection 4.2.

Learning algorithm Parameters values

KNLMS-ℓ1 ρ = 0.03, γ = 1.0, μ = 1.0 × 10−3, β = 0.1

NMEG (L = 1) ρ = 0.03, γinit = 1.0, μ = 1.0 × 10 −3

β = 0.1, ηc = 1.0 × 10−3, ηw = 0.05

MEG ρ = 0.03, Γinit = I, μ = 1.0 × 10 −3

β = 0.1, ηc = 1.0 × 10−3, ηw = 0.05, L = 2

NMEG ρ = 0.03, Γinit = I, μ = 1.0 × 10 −3

β = 0.1, ηc = 1.0 × 10−3, ηw = 0.05, L = 2

https://doi.org/10.1371/journal.pone.0237654.t003
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4.3 Modeling of a Lorenz chaotic system

Adaptive kernel filters are widely used in time-series prediction [46]. We tested the devised

algorithm to model a Lorentz chaotic system [30]:

dx
dt ¼ � axþ yz

dy
dt ¼ � dðy � zÞ

dz
dt ¼ � xyþ yy � z;

8
>>><

>>>:

ð39Þ

where α = 8/3, δ = 10, and θ = 28 [11]. The continuous-time equations were sampled by subdi-

viding each unitary interval in 100 sub-intervals. The x component was used to test the algo-

rithm’s prediction ability. The x time series was normalized to zero-mean and unit variance. A

segment of such time series is displayed in Fig 6.

The input signal to the modeling algorithm was constructed as u(n) = [x(n−5), x(n−4), . . ., x(n−1)]>

and the current value x(n) was taken as the desired response. The values of the learning parameters

in this experiment are given in the Table 4. In addition, the parameters for the forward-backward

splitting scheme are λ = 0.5 and σ = 0.05.

The Figs 7 and 8 show the MSE and the mean dictionary size at each iteration, respectively.

Fig 5. Performance comparison in experiment described in the Section 4.1. The learning curves of MSE ((a) and

(b)) and mean dictionary size ((c) and (d)) for two different matrices Λ. These results were obtained as averages over

200 independent trials.

https://doi.org/10.1371/journal.pone.0237654.g005
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Simulation results indicate that the proposed MEG and NMEG exhibit much better perfor-

mances, namely, they achieve much smaller mean dictionary size and much smaller MSE val-

ues than the other algorithms used for comparison. Comparing the MEG algorithm with the

NMEG, the NMEG exhibits better performance in terms of both MSE and mean dictionary

size although their parameters are set to the same values. The Fig 9 shows a result of short-

term prediction of the Lorenz time series. It can be seen that the NMEG has higher tracking

ability than the NMEG (L = 1). This result confirms the validity of the proposed model in the

case that the components of the input signals are mutually correlated.

5 Conclusions

This paper proposed a flexible dictionary learning strategy in the context of generalized Gauss-

ian kernel adaptive filtering, where the kernel parameters are all adaptive and data driven. We

introduced a novel update rule for precision matrices, which allows one to update each preci-

sion matrix stably thanks to an effective normalization. The main advantage of the proposed

approach is that the number of parameters in the proposed generalized Gaussian kernels is

larger than the number of parameters in the conventional kernel functions. The adaptation

rule of kernel parameters are successfully established within a Lie-group theoretic setting. In

addition, together with the ℓ1 regularized least squares, the overall kernel adaptive filtering

algorithms can avoid overfitting and monotonic inflation of a dictionary. Numerical tests

Table 4. Values of the parameters in the experiment explained in Section 4.3.

Learning algorithm Parameters values

KNLMS-ℓ1 μ = 0.5, ρ = 0.05, γ = 1.0, β = 0.1

NMEG (L = 1) μ = 0.5, ρ = 0.05, γinit = 1.0

β = 0.1, ηc = 0.5, ηw = 0.1

MEG μ = 0.5, ρ = 0.05, Γinit = I
β = 0.1, ηc = 0.5, ηw = 0.1, L = 5

NMEG μ = 0.5, ρ = 0.05, Γinit = I
β = 0.1, ηc = 0.5, ηw = 0.1, L = 5

https://doi.org/10.1371/journal.pone.0237654.t004

Fig 6. Segment of the processed Lorenz time series (x-component of the flow of the system (39)).

https://doi.org/10.1371/journal.pone.0237654.g006
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Fig 8. Dictionary size evolution in the experiment described in the Section 4.3. These results were obtained as the

average over 200 independent trials with different segments of the Lorenz time series.

https://doi.org/10.1371/journal.pone.0237654.g008

Fig 7. Convergence curves in the experiment described in the Section 4.3. These results were obtained as the average over 200

independent trials with different segments of the Lorenz time series.

https://doi.org/10.1371/journal.pone.0237654.g007
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confirmed that the proposed algorithm entails lesser mean squared error and dictionary size in

modeling nonlinear systems.
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