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Human-in-the-loop approaches can greatly enhance the human–robot

interaction by making the user an active part of the control loop, who can

provide a feedback to the robot in order to augment its capabilities. Such

feedback becomes evenmore important in all those situationswhere safety is of

utmost concern, such as in assistive robotics. This study aims to realize a

human-in-the-loop approach, where the human can provide a feedback to a

specific robot, namely, a smart wheelchair, to augment its artificial sensory set,

extending and improving its capabilities to detect and avoid obstacles. The

feedback is provided by both a keyboard and a brain–computer interface: with

this scope, the work has also included a protocol design phase to elicit and

evoke human brain event–related potentials. The whole architecture has been

validatedwithin a simulated robotic environment, with electroencephalography

signals acquired from different test subjects.
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1 Introduction

An emerging requirement in the human–robot interaction (HRI) is that of effectively

using the feedback from the human operator to modify the robot behavior. In cooperative

tasks, such feedback allows indeed to handle factors which may negatively affect the

cooperative performance and possibly mitigate their effects as investigated in the

literature (Iturrate et al., 2010; Iturrate et al., 2012; Zhang et al., 2015; Salazar-Gomez

et al., 2017). Human feedback becomes even more important in all those situations where

it can increase safety. Among the robotic fields in which safety is of utmost concern, the

assistive one plays an important role: in assistive robots, the interaction between the robot
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and user is close and recurrent, and the user relies on the robot to

achieve tasks that he/she could not perform on his/her own. This

is especially the case of physically assistive robots, which provide

mobility to the user, such as smart wheelchairs or walkers, which

are specialized types of mobile robots, whose main goal is to

reach a target safely and accurately together with the user (Aljalal

et al., 2020). In order to reach the target, the mobile robot relies

on a navigation stack which exploits available maps and the

information provided by proprioceptive and exteroceptive

sensors (Patle et al., 2019), required at a local level to avoid

obstacles. Common errors during navigation are indeed

represented by unexpected environmental conditions,

algorithmic errors, or wrong sensor readings, such as in the

case of “negative obstacles”, namely, obstacles represented by

holes in the ground or regions that lay below the ground surface

(Herghelegiu et al., 2017). In order to enhance the HRI, the user

can become an active part of the control loop by providing a

feedback to the robot in order to augment its artificial sensory set,

thus extending its capabilities to detect specific obstacles.

There are several devices which can be used to provide

feedback to a robotic platform. Especially in the last years,

HRI supported by the brain–computer interface (BCI) has

emerged as a research topic to allow the user to supervise

different robot tasks providing direct feedback (Millán et al.,

2010), (Krishnan et al., 2016; Rashid et al., 2020; Mridha et al.,

2021). An EEG-based robot control has been addressed in several

works in the literature (Tariq et al., 2018; Kim et al., 2020),

including mobile robots, according to the so-called shared

control paradigm (Aljalal et al., 2020). Most of the time, the

mobile robot is directly controlled via the BCI, such as in Choi

(2012), where a smart wheelchair is proposed that turns to the

left, to the right, or moves forward according to what the user

imagines. This approach is also used to directly navigate the

wheelchair around an obstacle, but without interaction with the

robotic navigation system. In order to reduce the control effort

from the user side, the brain-controlled mobile robot can also

exploit part of the autonomous navigation capabilities. In Satti

et al. (2011), the user controls the robot by the BCI, and the

autonomous navigation is triggered only in the situations of

obstacle avoidance and corridor following. Nevertheless, only a

few works do address the problem of augmenting the obstacle

avoidance capabilities of a mobile robot via the BCI (Bi et al.,

2013). In Tonin et al. (2010), a service robot is presented, whose

default behavior is to move forward at a constant speed, and

upon the reception of a mental command, it turns left or right by

30°. To avoid obstacles, the robot employs infrared sensors and

applies one of two policies, namely, to use the BCI for direct

navigation or demand the obstacle avoidance task to the

navigation module, thus not being robust against negative

obstacles. To address this problem, Puanhvuan et al. (2017)

proposed a brain-controlled wheelchair (BCW) with an

advanced obstacle sensing technology, namely, a main laser

scanner for long distances together with a rotating laser

scanner for short distances in 3D. This solution has, however,

increased costs (with respect to the commonly used 2D laser

scanners) and does not work with transparent objects, such as

glass, acrylic, and clear plastics.

To the best of the authors’ knowledge, the problem of

obstacle avoidance via EEG signals during navigation of a

mobile robot is thus still open (Lopes-Dias et al., 2019) and

remains a challenging one (Rashid et al., 2020). Indeed, the

proposed paper would contribute to the literature by proposing a

method to integrate the navigation stack of a mobile robot with

an external trigger, in order to deal with obstacles which are not

correctly detected by the mobile robot. More in detail, this work

contributes to the literature by proposing

• a human-in-the-loop approach, where the human can

provide a feedback to the robot in order to augment its

artificial sensory set and extend its capabilities to detect

specific obstacles, such as negative obstacles (e.g., a hole in

the ground);

• a method to update the robot navigation stack, commonly

used in robotic navigation, when the human feedback is

received, in order to avoid obstacles detected in such a way;

• a preliminary way to generate human feedback bymeans of

a BCI, based on a protocol to elicit the event-related

potentials (ERPs) when an obstacle, invisible to the

robot sensory set, and thus not detected, is instead

sensed by the human operator (Salazar-Gomez et al.,

2017).

More in detail, the mobile robot object of the study is a smart

wheelchair, which can navigate indoors, while avoiding possible

obstacles without any human intervention, by using only the

available sensors and intelligence mounted on board. A feedback

from the human operator is triggered whenever he/she senses an

obstacle which is not detected by the robot sensory set. The robot

navigation stack is then modified in order to receive human

feedback and generate a virtual obstacle, the effect of which is to

change the local trajectory planner of the robot, in order to avoid

the obstacle. Then, a BCI is introduced as a feedback interface,

and the related protocol to elicit the ERP signal in the presence of

obstacles is presented. The overall architecture has been first

tested by using a keyboard to generate the feedback, with the aim

to validate the baseline performances. Then, the performances

achieved with the BCI classifier are presented.

The paper is structured as follows: Section 2 presents

materials and methods, introducing the proposed approach

for the human-in-the-loop solution, with the description of

the hardware and software implemented and the simulation

environment. In detail, the section describes how path

planning and obstacle detection have been implemented

together with the realized BCI protocol and the EEG signal

pre-processing. In Section 3, the authors present the

experimental results with respect to the proposed task about
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the robot navigation around and through the obstacles and the

ERP classification. Finally, Section 4 provides a discussion and

conclusion about the study.

2 Materials and methods

In this section, the authors present the proposed human-in-

the-loop approach, implemented in the simulation environment,

describing the path planning and the obstacle detection, which is

realized through the sensors equipped with the smart wheelchair

and supported by the user estimation of the position of the

obstacle, detected or undetected by the onboard sensors.

Moreover, the BCI protocol, designed to generate the BCI

feedback, is introduced. Finally, the integration of such

feedback into the ROS framework to change the path

planning and avoid the obstacle is presented.

2.1 The proposed human-in-the-loop
approach

The proposed approach aims to engage the user in the robot

navigation loop. First, the approach proposes how to use the

human feedback to augment the robot artificial sensory set and

extend its capabilities to detect specific obstacles. In order to use

this feedback for improving the robot navigation, it is important

that the user can provide an estimation of the position of possible

undetected obstacles in an effective way. Then, such feedback is

used to create a virtual obstacle within the virtual representation

built by the robot through its sensory set. In this way, the local

trajectory planner of the robot, which cannot distinguish between

the real and virtual obstacle, modifies the robot trajectory to

avoid it: this approach is effective as long as the position of the

virtual obstacle is close to that of the real one. Finally, the

feedback is physically generated through a BCI system

interface, and a designed protocol that can evoke ERPs is

presented.

For the proposed approach to work, it is important that the

user can provide an estimation of the position of a real obstacle

for the generation of a consistent virtual obstacle, and obstacles

not seen by the robot sensory set but detected by the user are

perceived as “errors.” As such, the following three tasks were

defined, where the first two are focused on robot navigation and

the last one is focused on ERP detection.

1 The first task involves the user watching the screen where the

smart wheelchair navigates around 10 holes placed in a virtual

environment representing a laboratory, namely, along the

corridor, in a passage forward, from the laboratory door to

the end of the corridor, and backward, for five times in total.

The user was asked to press a keyboard key whenever he/she

recognized the presence of a hole.

2 The second task involves the user watching the mobile robot

that randomly crosses the obstacles from different starting

points around the hole for 32 times. Also, in this case, the user

was asked to press a keyboard key whenever the obstacle was

identified.

3 The third task involves the user being asked to equip the BCI

system and press a keyboard key whenever he/she perceives

that the wheelchair is passing through a hole or is avoiding the

obstacle. The recorded EEG signals were expected to show

slow brain waves, either error-related potentials (ErrPs) or in

general event-related potentials (ERPs) as a cognitive response

of the human brain when observing the robot in a risk

situation (Qin and Han, 2009). These signals could be

exploited as triggers for the navigation system.

The first two tasks were designed to evaluate the accuracy in

estimating the positions of the real obstacles. The estimated

FIGURE 1
Flowchart of the implemented algorithm from receiving a
trigger to the obstacles’ coordinate estimation and ending with
new path-planning.
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coordinates are indeed used to place virtual obstacles on the

virtual map reconstructed by the robot sensory set and modify its

trajectory accordingly. As a consequence, the error between the

actual and estimated obstacle positions must be limited in order

for the proposed approach to work. The human feedback can be

generated with any common input device (e.g., keyboard,

joystick, sip-and-puff, and touchscreen): the addition of the

third task permits validating the feasibility of the proposed

human-in-the-loop approach when a BCI is adopted as an

input device as well. The third task was thus realized for

training the classifier of the BCI system interface in order to

recognize the ERP as a trigger to the adopted framework, where

the errors are related to the presence of undetected obstacles on

the robot path.

From a software point of view, the EEG signal has been

processed in the MATLAB environment and the detected trigger

sent to an ROS (robotic operation system) node, specifically

created to publish an ROS topic through the Simulink

MATLAB–ROS toolbox that produces a Boolean trigger value

(i.e., 1 or 0) based on the classification of raw EEG data. Then, the

cloud connection was established between MATLAB and ROS.

At the same time, in the ROS environment (Quigley et al., 2009),

a different node was created that receives the trigger (from the

BCI or another input device such as a keyboard) and requests the

robot pose in order to eventually create a virtual representation of

the obstacle within 2 m on the map. This information was sent to

an ROS package designed for robot navigation that manages the

wheelchair approach to the obstacle, reducing the velocity and

changing the path planning: obstacle avoidance can then be

achieved as long as the position of the real obstacle is close to

that of the virtual one. The overall flowchart is described in

Figure 1.

2.2 Hardware, software, and simulation
environment description

Environmental data acquired for the robot navigation and

path planning are managed by the ROS packages. The proposed

algorithms and the methodologies have been developed and

improved through different works (Ciabattoni et al., 2019;

Ciabattoni et al., 2021; Ferracuti et al., 2021), and experiments

were all conducted in simulation to test the communication

among the different algorithms and the involved systems.

The ROS includes all packages for robot control and

autonomous navigation. The simulated tests have been

realized in Gazebo, where a virtual environment for the

simulation of the smart wheelchair movement and the

acquisition of all the sensors has been recreated. Gazebo is a

3D simulator developed by Open-Source Robotics Foundation by

which it is possible to create a 3D scenario with robot obstacles

and many other objects. In Gazebo, it is possible to configure the

robot as links and joints, and all the equipped sensors are

virtualized in order to be used by ROS packages and nodes. It

also uses a physical engine for illumination, gravity, inertia, etc.

Gazebo was designed to evaluate algorithms for many

applications; in fact, it is essential to test the developed robot

applications, like error handling, battery life, localization,

navigation, and grasping [see Freddi et al. (2021)].

The mobile robot is able to navigate autonomously acquiring

environmental data for path planning, by means of external

sensors such as the Hokuyo URG-04LX Laser Rangefinder, IMU

unit, and two cameras: one camera for localization through QR

codes that are positioned on the roof and a second camera that

points in front of the robot with an orientation of 30° downward

in order to have a camera view of the environment within 2 m, far

from the mobile robot. The smart wheelchair navigates in a 3D

reconstruction of the Information Engineering Department

corridor at Università Politecnica delle Marche. The proposed

simulated task consists in navigating in the 3D corridor of the

department, avoiding or passing through different holes

positioned in the floor that cannot be detected by the sensory

set of the robot. The corridor reconstruction was modified by

creating 10 holes in the walkway, with a diameter of 20 cm each

and separated by 3 m each, as illustrated in Figure 2. The user

perspective view during real-time navigation is illustrated in

Figure 2.

The ROS package, dedicated to visualize the robot sensors

and state, is Rviz, which also provides a user interface to give

robot commands and to monitor the robot, while it is realizing

different tasks. Figure 3 shows the ROS structure of the different

robot nodes and topics created to record and share the data in the

proposed approach. The red connection represents the human

feedback flow from the BCI system to the move_based package,

which is responsible for the path planning modifications. It

should be noted that different triggers (e.g., from a keyboard)

can be similarly passed to move_based by adjusting the node

specific to the input device.

The monitor used during the training acquisitions with the

BCI system had a 38.1 cm diagonal screen and was positioned in

a comfortable visual perspective for the user where he/she can see

what happens in front of the camera view of the smart

wheelchair.

2.3 Path planning and obstacle detection

In the ROS, it is possible to modify the robot’s path planning

at any time by fusing the sensor’s data. With this aim, an ROS

structure is developed allowing working at the level of local path

planning in order to update the local map when an obstacle is

detected. So, in order to communicate the presence of any

detected obstacles to the planner (as described in Figure 4), it

is necessary to send information to the local planner. Authors

have designed a node that estimates the obstacle coordinate on

themap, representing it as a virtual object and converting it into a
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FIGURE 2
Virtual simulation environment. (A) Top-view: the holes are placed along the corridor, separated by 3 m each. (B) First-person view: the hole
appears in the center of the view when the user gets close to it. (C) Two possible visualizations of the directional cues to advise left or right turning
task, as visualized in the video streaming in the first-person view as detailed in Section 2.4.

FIGURE 3
ROS packages and nodes that communicate through topics to exchange information.
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point cloud. The node that publishes the estimated obstacle

coordinates requires two pieces of information: the robot

position by listening, all the time, to the odometry data and

the received trigger message that has been published through

ROS topic with the name/trigger. Once the trigger is true (i.e., 1),

the node immediately retrieves the current robot pose and

extracts the X and Y coordinates, as well as the orientation

angle θ, and estimates the obstacle position (based on the nature

of the trigger event and robot pose) within 2 m. The estimated

coordinates of the hole are calculated based on the robot pose on

the map through Eqs 1, 2:

X.holes � X.robot + S × cos θ( ), (1)
Y.holes � Y.robot + S × sin θ( ), (2)

where X. robot, Y. robot, and θ are obtained from listening to the

robot pose, which returns in form of quaternions (Cooke et al.,

1994), and S refers to the hole distance since the camera has been

oriented to be centered exactly 2 m away in the space in front of

the wheelchair. The θ value is calculated as in Eqs 3, 4:

θ � 2 · atan2
����������
q2i + q2j + q2k

√
, qr( ), (3)

q � qr + qii + qjj + qkk, (4)

where the quantities qr, qi, qj, and qj, are real numbers and i, j, k

are unit-vectors pointing along the three spatial axes in the map

frame. The (X, Y) data, used as the center for the obstacle position

(i.e., the hole), are then sent to the function that uses ROS point

cloud library (PCL) to create a virtual 3D cylinder. Once this

virtual object has been created, it is then published by the ROS

topic as it was acquired by the vision sensor of the smart

wheelchair. The information about the created virtual obstacle

is used for two purposes by two different packages: one package

visualizes the point cloud creating a virtual object in Rviz, while

the other, the ROS navigation stack, receives the virtual obstacle

information through point-cloud sensor data and uses this to

update the map in order to correct the navigation.

While the navigation task is realized, all the acquired data, the

coordinates of the robot and the obtained holes coordinates in

the global reference system, are elaborated. When a trigger (e.g.,

from the keyboard) is received, the coordinates of the holes are

estimated as in Eqs 1, 2. As will be later shown in Section 3.1, the

estimated positions can be compared with the real coordinates of

the holes located on the map in order to evaluate the accuracy of

the estimation. Then, a 3D cylinder is created, converted in a

point cloud representation, and placed on the estimated position

within the virtual map. The point cloud conversion is required in

order to present the data as ROS sensor data, which is the format

accepted by the navigation stack (the virtual obstacle is seen as if

it were detected by an RGB-D camera sensor). The approach of

using a point cloud image of the virtual object provides a fast

representation, allowing a temporary modification both of the

map and of the path planning of the mobile robot, which is also

useful when there are different robots that operate in the same

environment and that can share this information.

The robot path planning is executed in the ROS by the

package called ROS navigation stack. It receives information

from odometry and sensors to process this data and then

executes commands on mobile base. As a pre-requisite for the

navigation stack use, the mobile robot should have an ROS tf

FIGURE 4
ROS mobile-based navigation stack node with the trigger source [modified from ROS.org (2018)]: the virtual obstacle PointCloud node
publishes a topic which has a sensor message for the robot cost map.
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transformation package transform tree in place and be able to

publish sensor data using the correct ROS message types. The

navigation stack needs to be configured for the dynamics of the

single mobile robot as reported in Figure 4. Before the robot starts

to move, the global planner creates a path from the current robot

position to the destination point by using a static map. Then, the

local planner tries to match the global path with the provided

robot kinematics information and all the available sensor

readings in order to achieve the goal.

2.4 BCI protocol

The designed protocol aims to evoke ERPs defined as

cognitive responses, elicited when the user reacts to

unexpected sensory stimuli. The ERPs, detected mainly in the

central region of the scalp, present a latency time of appearance

(delay after stimulus presentation) that can vary accordingly to

the complexity of the cognitive task, performed by the individual.

In literature Fu et al. (2019), the ERPs were also used to

investigate the neural correlates of deception when the

participants completed a hazard judgment task, while in Qin

and Han, 2009, these EEG potentials were recorded from human

adults while they identified risky and safe environmental events.

The ERP elicited after a user’s recognition of a task error is called

error-related potential (ErrP) (Tang et al., 2021). The ErrP is

generated when a subject commits or observes an error

(Rousseau et al., 2012), and this aspect has interested many

authors for its integration in a control loop for BCI systems. In

literature, the ErrP can be defined by two main components: the

first one is the error-related negativity (ERN or Ne), which is a

negative potential peaking 0–200 ms after an erroneous response,

and a second component, an error-related positive potential,

called error-related positivity (Pe), that may follow the ERN

depending on the task realized, with a latency of 200–500 ms

after the error (Koban et al., 2010). Previous studies showed that

ERN and Pe are specifically linked to error monitoring. In

particular, the ERN is a defined event-related potential that is

associated with performance monitoring at the response

processing stage of goal-directed behavior, indexing early

error monitoring (Overmeyer et al., 2021). Error-related

negativity is triggered when a user either makes a mistake or

the application behaves differently from the expectation. It can

also appear while observing another user making a mistake (Vi

et al., 2014).

The proposed protocol is designed based on the “oddball

paradigm” (Wolpaw andWolpaw, 2012) with the aim of evoking

ERPs, connected with error performance activities and presented

as different visual stimuli with the presence or not of obstacles on

the robot path planning. In this paradigm, a sequence of events,

which can be classified into two categories, is shown to the

subject. One of the categories presents events that can be

considered “target stimuli” and should have a lower frequency

of occurrence with respect to the other. So, the overall task is

consisting of 200 trials of short videos of robot navigation in

indoor environments in presence of obstacles. The 80% of these

trials show the robot smoothly navigating (i.e., no problem with

obstacle occurrence), successfully avoiding a correctly detected

obstacle by turning left or right. The remaining 20% of the trials

represents when the robot collides with an obstacle (e.g., a small

hole on the floor). The 200 trials are divided into four groups,

each group contains 50 trials presented in a video of 7 min, for a

maximum session duration of 30 min, including pauses

presented among the event group presentation. The user,

while seeing the video stream, is asked to press a specific key

on the keyboard whenever he/she recognizes that the robot is

going to pass through the hole or not. The scenario represents a

mobile robot navigating autonomously in a simulation

environment with a first-person camera view (FPV), like the

person is sitting on a smart wheelchair. The obstacle (i.e., holes in

the floor) appearing in the scene can be detected or not within

2 m by the sensory equipment from the smart wheelchair

(Ehrlich and Cheng, 2018; Zhou et al., 2021). In each video

clip, there is a directional cue, a simple arrow pointing left or

right, as a prediction of the next mobile robot direction as

presented in Figure 2. At this point, the simulated wheelchair

may respect the directional cue, turning left (or right), thus

avoiding the hole (correct trial, “Turn”), or it may go straight,

ignoring directional cues and passing over the hole (non-correct

trial, “Pass”).

All recorded data and events are time-locked around an event

marker synchronization, namely, “Time 0”, which is the moment

the subject has pressed the key. Then, the signals have been

epoched around this marker in a time window of 2 seconds,

before and after the marker. In Figure 5 an evoked signal has been

reported during the training phase, and while the robot is

approaching the hole and passing through, the evoked

potential has been obtained by filtering the epoched signal by

keeping only theta-band through the band-pass filter in the range

3–8 Hz.

2.5 Brain computer interface system and
EEG signal pre-processing

The study population is composed of 10 healthy subjects

whose mean age is 28 years (standard deviation (STD) ± 3 years).

The used laptop is HP Pavilion with 16 Gb ram and 10 G CPU,

for recording the EEG brain signals. The BCI2000 software with

G. Tec g. MobilabPlus DAQ and an actiCAP system have been

used for the EEG signal acquisition Sawangjai et al. (2020). Eight

channels were placed on the subject’s scalp, and the electrodes

were arranged according to the international 10/20 system and

placed at Fz Cz Po7 P3 Pz P4 Po8 AF8. The data were recorded

with a sampling rate of 256 Hz, and band-pass filtering is applied

between 0.5 and 30 Hz. Afterward, EEG data have been filtered
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again by a bandpass forward–backward filtering between 1 and

10 Hz (Butterworth second-order filter) was applied followed

by decimation of a factor 8, introducing downsampling from

256 Hz to 32 Hz. The signals are further filtered in different

bandwidths, and the best bandwidth in terms of classification

accuracy, 2–5 Hz, is selected for ERP detection (Spüler and

Niethammer, 2015). A Bayesian linear discriminant analysis

(BLDA)–based classifier is considered to predict two groups,

i.e., “Turn” or “Pass”. Among the proposed classifiers for ERP

detection in the literature, BLDA was chosen since it is

efficient and fully automatic (i.e., no hyperparameters to

adjust), and due to its regularization, it can avoid the

problem of overfitting of high-dimensional data or noise

interference (MacKay, 1992; Hoffmann et al., 2008). The

data collected from each subject have been divided into

60% for training and 40% for testing.

The implemented algorithm to identify the target task (when

the robot does not detect present obstacles) works on time

windows of 1 s during which the EEG potentials could be

detected. As soon as the interested target event of committing

an error is identified by the classifier, it will rise a flag to

MATLAB Simulink, which will send a trigger to the ROS node.

3 Experimental results

As detailed in Sections 1 and 2, the robot navigation stack has

been modified to receive the feedback from the user through an

input device (e.g., keyboard and BCI). When the trigger is

received, a virtual obstacle is generated and placed on the

virtual map of the robot, centered on the coordinates

estimated via Eqs 1–4. The effect of the virtual obstacle is that

of affecting the local trajectory planner of the robot, which avoids

the real obstacle as long as its position is close to the

estimated one.

In Section 3.1, we present the results obtained for estimating

the obstacles’ positions in a simulation environment, when the

trigger is generated by pressing a key on a keyboard. The aim of

the experiments is to validate the proposed human-in-the-loop

approach, while providing the baseline performances, which can

be obtained by means of simple but effective input devices.

Section 3.2, instead, reports the results obtained by using the

BCI protocol as of Section 2.4 in terms of classification of the

ERP, where the error event is represented by an obstacle along the

robot path, which is observed by the user but not detected by the

robot sensory set.

3.1 Robot navigation simulation results

The data collected during the proposed robot navigation

trials are those described in the tasks 1) and 2) presented in

Section 2.1.

The users sit in front of the screen, and they see the robot

simulation during real-time navigation, as illustrated in Figure 2.

Users have to press a keyboard key in case they see an obstacle

centered on the screen.

3.1.1 Results of task 1: Navigation between the
obstacles

Figure 6 shows the results related to the five trials of the first

task. In particular, it shows the distribution of the estimation

errors of the obstacles’ positions, i.e., real position minus

estimated position. The estimated position is calculated by Eqs

1–4 when the user generates the trigger with the keyboard. In

Table 1, the main statistical indexes related to the estimation

FIGURE 5
EEG signal averaged over the Fz channel when the robot is approaching the hole that occurs 40 times, that is the 20% target trials of all those
proposed.
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errors are reported. It should be noted that in robotics, obstacle

avoidance is commonly performed by considering the obstacle

area increased by a safety threshold, namely, the inflation radius,

which depends on the robot in use. If the error between the

estimated position of the obstacle and the real one is less than the

inflation radius, then the center of the virtual obstacle will fall

within the inflated area of the real one and vice versa. As such, the

inflation radius is considered the maximum acceptable error. In

the specific case of the wheelchair in use, the inflation radius is set

to 0.5 m.

3.1.2 Results of task 2: Navigation through the
obstacles

Different from the previous case, this time the wheelchair

randomly crosses a single obstacle from 32 different starting

points. Depending on the approaching direction, the trigger from

the user can be generated before or after the hole is actually

shown at the center of the screen (Figure 2). As a consequence,

the virtual obstacle can be centered before or after the real one. In

order to preserve the sign of the estimation error, Figure 7 now

shows both the error and the relative robot distance for each trial,

namely, the distance between the robot and the obstacle at the

moment in which the trigger is generated. Table 2 presents the

main statistical indexes related to the estimation errors.

Resuming the presented data, it is possible to notice that in

Table 1, referring to the first proposed task, the maximum error

reported is 0.64 m, while in Table 2, the maximum error

estimated is of 0.75 m. The two values are both greater than

the accepted error threshold of 0.50 m. Moreover, the average

error is 0.21 m for the first task and 0.30 for the second one: both

are small and represent an estimation accuracy which falls within

the threshold of the inflation radius. The minimum error

FIGURE 6
Task 1: estimation errors of the positions of each hole during five trials (one color per trial, errors in meters).

TABLE 1 Task 1: Statistical indexes of the estimation errors in the
positions of the obstacles.

Error Value Unit

Average 0.21 m

Minimum 0.03 m

Maximum 0.64 m

Standard deviation 0.12 m

Variance 0.02 m2
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reported in the two tables is of 0.03 m in Table 1 and of 0.02 m in

Table 2. The precision can be evaluated by considering the

standard deviations, namely, 0.12 m for the first and 0.178 m

for the second. This aspect can be expected because any time the

robot does not realize the correct path planning, it can move

randomly around the obstacle as can be observed in Figures 6, 7.

3.2 ERP classification results

The results presented in this subsection are related to the ERP

detection for the human-in-the-loop control feedback, namely,

task 3) as of Section 2.1. The BLDA classifier is considered for

binary classification because features are classified into two

groups (“Turn” and “Pass”). The area under the curve (AUC)

of the receiver operating characteristic (ROC) curve is considered

FIGURE 7
Task 2: estimation errors of the position of a single hole (orange) and relative robot distances (blue) during 32 trials (values in meters).

TABLE 2 Task 2: Statistical indexes of the estimation errors in the
positions of the obstacles.

Error Value Unit

Average 0.30 m

Minimum 0.02 m

Maximum 0.75 m

Standard deviation 0.178 m

Variance 0.02 m2

TABLE 3 AUC index of ERP detection obtained from 10 healthy
subjects.

Subject AUCtrain AUCtest

S001 0.85 0.61

S002 0.96 0.72

S003 0.73 0.53

S004 0.63 0.51

S005 0.64 0.54

S006 0.61 0.55

S007 0.73 0.66

S008 0.73 0.62

S009 0.69 0.53

S010 0.55 0.45

Mean 0.73 0.59

Standard deviation 0.11 0.07
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FIGURE 8
ERPs of subject S002. (A) Fz channel for the “Turn” group (i.e., the robot successfully avoid the obstacles). (B) Fz channel for the “Pass” group
(i.e., the robot failed to avoid the obstacles). (C) Grand average over the Fz channel for two conditions, “Pass” and “Turn”.
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to evaluate the performance of ERP detection (Dubitzky et al.,

2013). Good AUC values range from 0.5 to 1; the latter meaning

perfect classification of elements belonging to both positive and

negative classes. Table 3 shows the results of offline ERP

detection. The results are obtained considering a time window

of 1 s (i.e., 1 s from “Time 0” and all channels for classification).

The EEG signals are filtered considering the bandwidth of

2–5 Hz. The bandwidth 2–5 Hz has been exploited for

classification due to its best performance in terms of AUC.

Subject 2 shows the best result in terms of AUC both for

training and testing. Figures 8A,B show the ERPs of subject

S002 over the Fz electrode for “Turn” and “Pass” groups. Each

line along the y-axis is related to one trial, while on the x-axis, the

single time instants are represented. The black line denotes the

time the trigger is received by the user to synchronize the signals.

Finally, in the bottom part of the figures, the grand average ERP

has been shown.

In Figure 8C, the grand average ERPs have been analyzed to

highlight the differences between the two different conditions

“Pass” and “Turn”. The figure reveals the grand average

morphology that has the appearance of an error-related

potential when the user recognizes that the robot is going to

pass through the hole (non-correcting trial).

4 Conclusion and discussion

The proposed study has presented a method to integrate the

navigation realized by a mobile robot, equipped with onboard

sensors, and a human feedback to deal with possible obstacles

that are not correctly detected by the mobile robot. The feedback

is provided by both a keyboard and a brain–computer interface,

and for this purpose, the work includes also a protocol design

phase to elicit ERP potentials. Moreover, the proposed approach

can be suitable for any mobile robot that navigates indoor or in

ambient assisted living (AAL) scenarios, trying to overcome all

the issues related to the erroneous sensor reading in an indoor

environment (Silva et al., 2018; Cojocaru et al., 2021).

The proposed architecture has been first tested using a

keyboard to generate the feedback in order to validate the

baseline performance, showing suitable results for the aim of

involving the user in the control loop. The obtained results

support the strategy of the proposed approach of using virtual

obstacles for mobile robot trajectory correction through visible

and applicable point cloud objects, giving good accuracy and

precision about the exact negative obstacle’s position (i.e., holes

in the ground). Among the advantages of this approach, there is a

reduced computational request that is advantageous for a real-

time application.

The human feedback can be generated with any common

input device, as well as with a BCI. In detail, a protocol to elicit

the ERP signals has been proposed. The ERPs elicited after the

user recognizes a task error are defined as ErrPs. Through a

BLDA classifier, considered for the binary classification, it has

been possible to classify the evoked signals into two groups

(“Turn” and “Pass”). The obtained results have highlighted

the differences between the two conditions with a signal

morphology obtained by the signals’ grand average that

presents the appearance of an error-related potential,

particularly when the mobile robot is approaching the hole

going through it.

The method is independent of using a specific mobile robot,

but the accuracy can vary with respect to robot speed and the

positions of the obstacles. In the proposed work, the realized case

study plans the wheelchair top speed as relatively low for people

with special needs, and the mobile robot has set a value of 0.5 m

inflation radius in the navigation stack. In case of motion speeds

greater than 1 m/s, the algorithm should consider a

compensation in order to account for possible delays between

the moment in which the obstacle is seen by the user and that in

which the trigger is received by the navigation stack. A limitation

of this concept is the obstacle estimation, which occurs in a fixed

position of 2 m in front of the wheelchair, so it only informs the

robot if there is an obstacle or not within this distance. Moreover,

by default, it creates a virtual obstacle of fixed size, regardless of

the size of the detected real obstacle, and this will require further

improvements in the future to detect and provide the robot with

information of different sizes and distances. Some disadvantages

of the proposed approach are related to the detection of ERP,

which is not quite good for some subjects; then, for them, it is not

possible to perfectly detect all obstacles. Moreover, the training of

the data analysis algorithm is time-demanding and is subject-

dependent. The proposed BCI protocol is synchronous; thus, a

possible future research direction could be the investigation and

the introduction of asynchronous protocols in the framework in

order to test more realistic scenarios.
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