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Abstract

Purpose – The research approach is based on the concept that a failure event is rarely random and is often
generated by a chain of previous events connected by a sort of domino effect. Thus, the purpose of this study is
the optimal selection of the components to predictively maintain on the basis of their failure probability, under
budget and time constraints.
Design/methodology/approach –Assetsmaintenance is amajor challenge for any process industry. Thanks
to the development ofBigDataAnalytics techniques and tools, data producedby such systems can be analyzed in
order to predict their behavior. Considering the asset as a social system composed of several interacting
components, in this work, a framework is developed to identify the relationships between component failures and
to avoid them through the predictive replacement of critical ones: such relationships are identified through the
Association Rule Mining (ARM), while their interaction is studied through the Social Network Analysis (SNA).
Findings – A case example of a process industry is presented to explain and test the proposed model and to
discuss its applicability. The proposed framework provides an approach to expand upon previous work in the
areas of prediction of fault events and monitoring strategy of critical components.
Originality/value – The novel combined adoption of ARM and SNA is proposed to identify the hidden
interaction among events and to define the nature of such interactions and communities of nodes in order to
analyze local and global paths and define the most influential entities.

Keywords Association rules, Social network analysis, Predictive analytics, Predictive maintenance,

Decision making, Big data analytics

Paper type Research paper

1. Introduction
Operations and processes are continuously under the control of the decision-makers in order
to improve organizational performance (Komljenovic et al., 2016; Bhattacharjee et al., 2020).
Typically, the asset maintenance activities help to guide the physical performance of
maintenance equipment and tasks efficiently, trying to maximize the Return on Investment
(ROI) of the asset (VanHorenbeek and Pintelon, 2014). Assetmanagers have to select themost
appropriatemaintenance policy for company plants; moreover, every day, they need to decide
when to maintain each asset, what tasks need to be done and which parts need to be replaced
at each maintenance interval (Madu, 2000). The European Committee for Standardization, in
BS EN 13306:2017, defined the following maintenance policy for an industrial environment:
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(1) Corrective maintenance: an intervention is carried out after the occurrence of a failure
in order to restore the normal system functioning;

(2) Preventivemaintenance: maintenance is carried out at predefined intervals or conditions;

(3) Predictive maintenance: maintenance is carried out according to a forecast of the
significant parameters of a component based on a thorough analysis of known
characteristics.

In literature, there are many models of data-driven decision support systems for predictive
maintenance. Some of thesemodels are used to implement condition-basedmaintenance (CBM)
solutions (Benanne and Yacout, 2012; Lin and Tseng, 2005), others are used to implement
modeled or simulated predictive maintenance (statistically predictive) (Gerum et al., 2019;
Antomarioni et al., 2019). In the assetmaintenance field, themain research focus is on predicting
the occurrence of component failures to reduce unexpected events and the consequent
interruption of the production processes (Chuang et al., 2019). Less attention has been
concentrated on developing a framework for the decision-making process to achieve satisfying
levels of reliability and to avoid wasting resources using huge piles of unstructured data.
Existing research is valuable, but quantitative methods to structurally analyze and predict
relationships between component failures and avoid them through the predictive replacement
of critical ones, to the best of the authors’ knowledge, are not present in the literature.

For this reason, the asset maintenance framework proposed in this work aims to address
this research gap through the introduction of an innovative decision-making tool based on a
data-driven methodology, using data collected through sensors and management systems in
order to look for ways to give support to maintenance managers in predictive and
prescriptive analytics. In particular, the framework proposed in this work is based on the
concept that a failure event is rarely random and is often generated by a chain of previous
events connected by a sort of domino effect (Bubbico et al., 2018). Hence, the data-driven relies
on the joint adoption of Association Rule Mining (ARM) and Social Network Analysis (SNA)
to define the hidden interactions between components that lead to a domino effect between
failures. The conjunction of these twomethodologies is helpful because the ARMwill be used
to identify the interaction among events and the SNA to define the nature of such interactions.
In comparison to previous works, this framework allows researchers to identify communities
of nodes in order to analyze local and global paths and define the most influential entities.

This framework will be explained and tested through a case study of a medium-sized oil
refinery. Above all, in the process industry, the various components (pumps, valves, pipes,
tanks, . . .) are physically connected to each other, and a fault or simply a maintenance or a
revamping on a component can trigger a series of events in other components (malfunctions,
maintenance or failures). It is, therefore, necessary to have a tool capable of connecting these
events and these entities, avoiding, in this way, disruptions causing delays, bottlenecks or
accidents (Ishizaka and Nemery, 2014), mainly focusing on the components having a high
influence on the plant (Gupta et al., 2013).

The rest of the paper is as follows. This introduction is followed by a literature review that
analyses the methods and objectives of data-driven decision support systems (Section 2).
Section 3 presents our framework and data-driven decision support system, while the case
study and the data set are described in Section 4. The discussion about theoretical
contribution and practical implications are described in Section 5. To conclude, Section 6
summarizes the paper and outlines future research directions.

2. Literature review
Different data-driven methods for predictive maintenance have been proposed in the
literature. Most of these methods implement CBM solutions, while others are used to
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implement modeled or simulated predictive maintenance (statistically predictive). Both these
approaches aim to define critical assets for which a physical plant owner should allocate
maintenance resources. The condition-based methods focus on time and/or condition
monitoring data (often providedwith sensors) and statistical trending (Yam et al., 2001), while
the latter is focused on a prediction or simulation based on an expected potential for failure
(Kaparthi and Bumblauskas, 2020); for instance, in Bumblauskas et al. (2017), a predictive
perspective is adopted to anticipate faults and an improve equipment reliability and
availability through Markov models. L�etourneau et al. (1999), instead, focus on defining a
predictive maintenance policy through the implementation of several techniques (i.e.
instance-based learning, Naive Bayesian classifier and decision trees).

Another important classification that can be made on data-driven models is related to the
objectives that these models seek to achieve. For example, some models aimed at predicting
the remaining useful life of an asset (e.g. Liu et al., 2019; Wu et al., 2019; Baptista et al., 2016),
even considering the lifespan of a part and the lifetimemaintenance cost (Kim et al., 2019), and
others again attempt to predict failures or their causes (e.g. Baptista et al., 2018; Kumar et al.,
2019; Tang et al., 2019). Different techniques can be integrated to reach the proposed
objectives. In this regard, Langone et al. (2015) integrate three different techniques to address
the maintenance of industrial machines, namely, clustering, non-linear autoregressive model
and least squares support vector machines (SVM). Similarly, Saravanan et al. (2010) and
Kankar et al. (2011) use both the SVM and artificial neural networks for fault diagnosis in
gearboxes, while Salahshoor et al. (2010) fuse SVM and adaptive neuro-fuzzy inference for
detecting and diagnosing failures in industrial steam turbines.

According to this classification, Table 1 describes the main literature contributions proposed
in the field of the maintenance policy regarding data-driven predictive maintenance techniques
and the objectives of the papers. Six main objectives have been identified in analyzing such
contributions: fault prediction, fault detection and diagnosis, optimal maintenance schedule
definition, equipment reliability andavailability, normal behaviormodeling and, lastly, remaining
useful life (RUL) estimation. Regarding the data-driven techniques, instead, 17 of them have been
taken into account. As presented in Table 1, neural networks are widely applied in all the fields
describedby the six objectives. Indeed, for their versatility inmodeling all kinds of processes, they
can be applied for modeling several classes of problems. For instance, Gerum et al. (2019) apply a
recurrent neural network to study rail and geometry defects in order to schedule maintenance
interventions. The artificial neural network deployed byBangalore andTjernberg (2015), instead,
serves as a fault detector, aswell as the radial basis functionneural network employed inGharoun
et al. (2019), that also compare its performance with the adaptive neuro-fuzzy inference. Kusiak
and Verma (2012), though a neural network, address both the fault prediction and the normal
behavior modeling of wind turbines’ bearings. Izquierdo et al. (2019) focus on the adoption of an
artificial neural network to monitor and improve the reliability of assets, aiming to integrate the
operational context information collected from them, while both Li et al. (2013) and Mazhar et al.
(2007) focus on the RUL prediction using the same construct.

Among the other techniques, the SVM and Markov models were widely used in several
applications. More in detail, according to this literature review, authors mostly use SVM to
address fault prediction, diagnosis and detection problems. For example, Datong et al. (2009)
propose an online time-series fault prediction, while Purarjomandlangrudi et al. (2014)
compare SVM and anomaly detection algorithms to diagnose failures in rolling element
bearings. Baptista et al. (2016) applied SVM to predict the RUL in the aeronautic field, while
Medjaher et al. (2012) pursued the same objective through Gaussian Hidden Markov models
in studying bearings’ useful life. Chen et al. (2019), instead, used Hidden Markov models for
RUL estimation as well as to schedule maintenance interventions.

The application of other techniques like, for instance, ARM is more limited in the
maintenance field. Indeed, applications can be found for predicting component failures
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(Antomarioni et al., 2019) or for diagnosis (Cunha et al., 2006). Other authors, like Crespo
M�arquez et al. (2019), use ARM to explain the results obtained through an artificial neural
network and compare the performances with a random forest and an SVM.

According to this literature review in the asset maintenance research field, the research focus is
mainly on predicting the occurrence of component failures in order to reduce unexpected events
and the consequent stoppage of the production processes. Thus, awareness in the decision-making
process is mandatory for achieving satisfying levels of reliability and avoiding the waste of
resources (Sattari et al., 2021). The SNA is even rarer in this field of research: to the best of the
authors’ knowledge, only Kim et al. (2019) apply such technique to define the optimal maintenance
schedule in a cost reduction perspective, even though they do not employ the ARM, neither
optimize the component selection taking into account time, budget and personnel constraints.
Integrating these techniques can provide a valuable methodology for having a deeper
understanding of the relations among events through graphic representation. Indeed, as shown
in other application fields (e.g. human factor risk management and environmental risk
management), they resulted in being successful (Ciarapica et al., 2019; Bevilacqua and Ciarapica,
2018). In this context, the proposed framework, combining different BigDataAnalytics techniques,
provides an approach to expand upon previous work in the areas of prediction of fault events and
monitoring strategy of critical components. Among the identified contributions, the work by
Romanoski and Nagi (2001), by applying the decision tree algorithm to identify the critical
subsystem and define the optimal maintenance schedule, addresses the same objectives as the
proposedwork. Remarkably, bothmethodologies ensure a graphical representation of the solution,
even though the techniques employed are different. However, from the author’s perspective, the
main advantage in the proposed work is the ability to take into account operative constraints (e.g.
time and budget), instead of only highlighting the critical subsystems. Also, the graphical
representationprovided in thisworksupports immediatelynoticing themost critical components in
thenetwork,while in theworkbyRomanoski andNagi (2001)– even though the logical path canbe
followed – the criticality of the subsystems analyzed is not immediately identifiable.

3. Asset maintenance framework
The emerging techniques in the Big Data Analytics field can provide valid support for the
decision-making process since they allow the simultaneous analysis of several data sources
and a wide amount of data. In this context, this paper proposes an asset maintenance
framework based on a three-layer model. Each layer is devoted to a specific activity, namely,
data collection, data management and, lastly, a data-driven decision support system. The
framework, reported in Figure 1, will be described in the following paragraphs. It is created
considering data belonging to the process industry, but it can also be generalized and applied
to different industrial fields by adapting the data sources.

3.1 Data collection layer
The data collection layer represents the first layer of the model, being the aim of the
framework – the development of data-driven support for the decisional process. In this sense,
the quality of the entire framework relies on appropriate data collection. In this approach,
three different macro-categories of data sources are considered.

On-field reports: monitoring the operations of an industrial plant is fundamental to
controlling it; maintenance department supervisors have to check the sub-plants in order to
notice and register any possible malfunctioning affecting its performance. During each
inspection, the supervisor has to record all the relevant information and create a report; in
case of abnormal events, there are procedures to follow and, possibly, immediate corrective
interventions to perform, annotating these details too. Usually, such reports follow
unstructured or semi-structured paths since they are often characterized by free-text
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annotations, making their computerization non-univocal or, at least, complex. However, these
data contain useful information due to supervisors’ broad knowledge of the process.

Existing information systems: data coming from the on-field reports are integrated with
the information systems of the company. Information on both the normal operating
conditions and on adverse events are stored in such systems, like:

(1) EIS: it collects the administrative data, work orders type (e.g. specific replacement of a
component, lubrication . . .) and the related costs, purchasing orders, corrective
interventions, their details and costs;

(2) ERP (Enterprise Resource Planning): it stores information regarding resource and
inventory management;

(3) Plant technical data system: data regarding product and process characteristics in
terms of design and functioning;

(4) Asset maintenance management system: data stored in this information system
regards all the maintenance activities carried out in the plant (corrective, preventive
or predictive), highlighting the date, the kind of intervention, the broken component
(or set of components), the team in charge of the intervention, the duration of the
intervention, etc.

(5) Supply chainmanagement system: it records the data from suppliers and customers –
in both cases regarding their general data, order data, real-time status and quality
rate.

Plant monitoring system: the functioning of the plant is monitored by a series of sensors
measuring the production process data, like flow, pressure and density. Besides, some of the

Figure 1.
Asset maintenance
framework
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components are equipped with embedded sensors so that their state is currently monitored,
generating a large amount of data to analyze. Each of them has its own IP address and
communicates with a cloud-based application. Hence it is fundamental that cloud resources
are allocated efficiently (Ergu et al., 2013). This information integrates the systemsmentioned
above, giving a complete overview of the process.

Data coming from the aforementioned sources have to be integrated in order to extract
information and knowledge for making informed decisions. Thus, in the second layer, the
management of the collected data is performed.

3.2 Data management layer
The data management layer that is the second layer of the framework aims at integrating
data coming from different data sources into a unique one. More specifically, the information
contained in the company’s server and cloud-based applications have to be merged, cleaned
and transformed, in order to create a unique source to perform the analysis in the last step.

In this process, all the possible problems affecting the data have to be solved in order to
analyze only a consistent set of data. For example, errors in recording the measures (e.g.
misreading, repetitions) have to be removed or replacedwith valid ones, while heterogeneities
generated by different terminologies used in each source have to be standardized. In addition,
some data could be filtered, selecting only the attributes considered relevant for the study.
The Extraction, Transformation and Loading (ETL) process is carried out to integrate data
from the original sources to a data warehouse, the computerized maintenance management
system (CMMS). Specifically, the plant monitoring and supply chain management data are
extracted from a Cloud Application, while the other ones come from the company’s server.
The use of a CMMS ensures a global view of a company’s operations since it allows the
collection of clean data from all the sources, integrating them and providing an aggregation of
historical and real-time conditions. This technology is particularly useful in the case of an
elevated number of components to monitor and maintain (Marquez and Gupta, 2006). In this
way, the predictive analysis can be performed relying on a reliable, integrated data
warehouse.

3.3 Data-driven decision support system layer
The data-driven decision support system developed in this study aims at defining the optimal
set of components to predictively be maintained in order to achieve high-reliability levels,
avoiding the occurrence of failures. The analysis carried out in this layer is organized in three
steps, capitalizing on two predictive analytics techniques, ARM and SNA and on the
optimization of an Integer Linear Programming (ILP) model.

Specifically, through the ARM, the failure analysis is carried out: from the data stored in
the CMMS, information on the failures which occurred on the analyzed asset is extracted to
identify the sets of components frequently failing together and the corresponding failure
probability. Indeed, ARM aims at individuating the attribute-value pairs that frequently
occur together (Buddhakulsomsiri et al., 2006). In this way, the knowledge of the asset
behavior is deepened by extracting previously unknown patterns from the data. The SNA is
then used for relating the components frequently failing together and identifying the possible
failure propagations among the related components. In this context, the use of the graph
theory underlying the SNA facilitates the understanding of the association among
component failures. It provides a global view of the interactions among the components
frequently failing together. Finally, considering the Out Degree (OD) and the Betweenness
Centrality (BC) metrics extracted from the SNA, two different strategies are defined: first, the
components deserving particular monitoring are identified through the definition of a
minimumOD threshold; then, when a failure on a component occurs, an ILPmodel is solved to
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define the optimal set of components to be predictively replaced. In this case, the BC is used in
the objective function. By optimizing the ILP model, the decision-maker is completely guided
by the information extracted from the data analytics.

In the following sub-paragraphs, the description of the three phases of the analysis is
developed, together with a formal definition of the techniques applied and the ILP model
formulation.

3.3.1 Preliminary failure analysis. Considering the data collected, prepared and stored in
the CMMS, a study of the failures occurring on the asset object of the analysis is required.
This step is important for the identification of both critical components and their
relationships: that is, it is important to identify the sets of components frequently failing
together (within a given time interval). In this sense, the methodology selected to study such
relationships is the ARM.

Before mining the Association Rules (ARs), two aspects have to be taken into account:

(1) The components included in the study: depending on the characteristics of the asset,
it is important to define whether all the components are relevant for the analysis or
only some of them. Indeed, the study aims to create an interrelation among the critical
components: the components whose replacement does not impact the working
conditions of the industrial plant might be excluded from the analysis in order not to
lose the focus on the critical ones.

(2) The limit for the time interval: since it is stated that the aim of the framework is to
identify the relations among components frequently failing together (i.e. within a
given time interval), the temporal dimension has to be limited in order to provide
interesting results. Indeed, considering a time interval that is too short, does not
provide any significant connection, while having an overly long interval does not
provide any connection in the opposite sense, which presents false relations among
failures. Again, even in this case, the expertise of the decision-makers is crucial.

3.3.2 Association rule.The aimofARM is the identification of hidden and previously unknown
relations in a wide amount of data, supporting the decision-makers in their processes. In the
following, a formal definition of the ARs and the procedure to mine them is explained.

LetK5 {k1, k2, . . ., kn} be a set of n binary attributes named items andT5 {t1, t2, . . ., tm}
be a set of m transactions. Each transaction ti is unique and contains a subset of the items
(itemsets) selected from K. In our framework, an item is a component of the analyzed asset,
while a transaction is a set of components failing within a defined time interval. As defined by
Agrawal et al. (1993), an AR is an implication α→ β, such that α and ß are itemsets (α, β ⊆ K)
having no common items (α∩ β5∅). In otherwords, given a time interval of oneweek, the rule
α→ ß is defined if and only if component ß fails within one week from the failure of component
α. The strength of the rule can be defined through several metrics, among which, we recall:

(1) supp(α, β) 5 countfα U βg
m

; the support of the rule, that is defined as the set of
transactions containing both α and β. Remarkably, this measure represents the joint
probability of having α and ß in a transaction (P(α, β));

(2) conf(α → β) 5 suppfα;βg
suppfαg ; the confidence of the rule, instead, is the set of transactions

containing α, which also contain β. In this sense, the confidence can be seen as the
conditional probability P(β jα), so it provides a measure of the rule’s strength.

The ARM is performed according to the following roadmap:

(1) Define the frequent itemsets, namely, the itemsets appearing in T more frequently
than user-specified minimum support; the algorithm selected in this study is the FP-
growth (Han et al., 2007);
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(2) Considering each itemset IS defined in the previous step, all the ARs A → B are
generated such that A U B 5 IS.

According to the aim of the study, we are interested in creating the relations among
components frequently failing together so that the Social Network (SN) describing such
relationships can be created and analyzed.

3.3.3 Social network analysis. As defined by Otte and Rousseau (2002), an SN is the
representation of a social structure. It can be described by an ordered pair of vertices (or
nodes) and connected by edges (E), G5 (V, E). The classical application of SNA regards the
analysis of social structures and of the interactions among a set of actors: the actors are
the nodes of the network, while the interactions are the edges. An SN is generated considering
the associations among components extracted in the previous step of the analysis. In the
current approach, the SNA is used to represent and analyze the relations among components
frequently failing together, which is for representing the ARs mined.

Specifically, in theproposed framework, the actors, thus the nodes, are the components, while
the interactions (arcs) are the concurrent failures: that is, if node i is directly connected to node
j (i→ j), itmeans that the rule i→ j ismined in the previous step, indicating thatwhen component
i fails, usually components j fails as well. The probability of such a conditional event is given by
the confidence of the rule. The confidence value of the rule represents the weight of the arc.

In order to define which nodes might be more critical in terms of failure probability, two
SN metrics are applied for the analysis:

(1) OD: is calculated as the weighted sum of the arcs outgoing from a node (Knoke and
Yang, 2008). Specifically, OD represents a measure of how much a node is connected
to another: the higher the OD, the higher the probability that one of the following
components fails.

(2) BC: is determined as follows: the shortest weighted paths between all couple of nodes
are determined; the BC value equals the sum of the shortest weighted paths on which
the node appears (Brandes, 2001). In other words, the BC measures how much a node
is influent across the network (Scott and Carrington, 2011) since a node having a high
BC value can be considered as a bridge among separate portions of the network.
Thus, if a component fails, the right candidate for predictive maintenance would be a
component characterized by a high BC value.

In the current framework, the OD (1) is considered as an indicator of the risk of failure of
subsequent components: indeed, the OD is calculated for each node, sorting them in
descending order. The components at the top of the list should be carefully monitored since
they represent the most critical ones. The BC (2), instead, is considered when a failure on a
component occurs: the failed component is definitely replaced but also a predictive
intervention on the consequent ones could be performed, with the aim of avoiding the
propagation of a failure chain across the network. In defining the best set of components to be
predictively replaced, the decision-maker is supported by an ILP model, whose formulation
can be interpreted as follows:

max
X

j

BCjxj (1)

X

j

cjxj ≤Bmax (2)

X

j

tjxj ≤Tmax (3)
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X

j

Rjxj ≤Rmax (4)

xj ∈ 0; 1 ∀ jgf (5)

where the decision variable xj represents the j components of the assets. It can assume a value
of 1 if component j is selected for the predictive maintenance, or 0, otherwise, as expressed in
constraint (5). The objective function (1), to maximize, assures that the components having
the highest BC are selected. Constraint (2) requires that the selection is performed according
to a predefined maximum budget (Bmax), considering the cost of each component (cj).
Constraints (3) and (4), similarly, require the selected components to respect a maximum
amount of time (Tmax) and resources (Rmax) to perform the intervention. Indeed, among the
data, the time required to replace a component (tj) and the number of operators necessary for
replacing the component (rj) is known.

3.3.4 Predictive maintenance strategy. The following bullet list aims at summarizing the
main stages of the predictive maintenance strategy explained in the previous sections,
providing a useful roadmap to be followed by the maintenance department.

During the normal operating conditions of the asset, the procedure proposed in this
framework is the following:

(1) Monitor the components having high values of OD, specifically all the components j
such that ODj > ODmax in order to detect failures early;

(2) When a failure on component i is detected:

(2.1) Perform a corrective intervention on i;

(2.2) Extract the set of consequent components using the ARM (all components j such
that i → j);

(2.3) Create the SN graph and calculate the BCj for all j components;

(2.4) Solve the ILP model (1)–(5);

(2.5) Perform a predictive maintenance intervention on the optimal set of components
identified in 2.4.

(3) Return to 1.

In the next paragraph, an application of the presented framework is proposed, in order to
clarify its explanation.

4. Research approach application
In the following, an application of the research approach proposed is deployed. The data
belong to a medium-sized Italian oil refinery plant. The refinery was established in 1950 and
has an extension of about 700,000m2. It currently has a processing capacity of 3,900,000 tons/
year (equivalent to 85,000 barrels/day). It is equipped with a land shipment system for a
potential of about 12,000 tons/day and a sea reception system through marine terminals for
tankers up to 400,000 tons. The direct employees are about 500, while the induced personnel is
about 2,000 people, representingmainly electromechanical, engineering, instrumentation and
software, transport companies. Its production process is certified for what concerning quality
procedures (ISO 9001), environmental management (ISO 14001) and safety (OHSAS, 18001).

The focus of the study is on the topping sub-plant. The time interval of reference for the
analysis regards a period of three years, during which operational data (e.g. flows, density
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and pressures) have been monitored: in the case of missing data, the mean value of the
previous working day has been used to replace them, as well as in the case of anomalous
measurement reported (e.g. out of scale values). In addition, the work orders andmaintenance
activities required for the components of the plants have been considered, compared and
integrated with the notes taken by the supervisors of the plant, in order to define whether all
the activities performed on the plant have been inserted into the information system and to
ensure consistency among the two information sources. As required by the first layer of the
decision support system, the integrated data are taken from the CMMS of the refinery.

Considering the data of the CMMS, the preliminary failure analysis is carried out: in all, 82
components are monitored in the sub-plant. Statistically, 46 of them have been considered for
the analysis since they caused 615 failures over the 767 failures that occurred in three years,
which is more than 80%. In order to define the time interval to consider the failures
“concurrent,” the maintenance department members have been interviewed to understand,
based on their experience, which interval could be suitable for searching related failures.
According to the interviewees, the maximum interval is set to two weeks: this means that the
relations searched in the data concern component failures taking place at a distance of
maximum two weeks. Then, the association rules describing such relations are mined. An
excerpt from the rules extracted is reported inTable 2. The rules can be interpreted as follows:
a failure of component C15 is followed by the failure of C2 within a two-week time interval
with the confidence of 0.866, hence in 88.6% of the cases. Remarkably, when C2 fails, also C15
fails as well in the following two weeks.

In Appendix, the list of the components’ ID and their related name is reported.
Taking into account all the ARs mined, the graph is built (Figure 2) and the SNA is

performed. The 46 components represent the nodes of the SN, while their relations are the AR
identified in the previous step. In all, 724 arcs connect the 46 nodes. As noted before, the
weights assigned to the arcs are the respective confidence values of the corresponding rule.
The thickness of each arc is proportional to the confidence of the relationship represented. For
example, according to the representation, the confidence of the rule C41 → C15
(confidence 5 1.000) is higher than the one of C41 → C25 (confidence 5 0.375). For the
sake of clarity, the weights are not reported in Figure 2.

The size of the nodes, instead, is proportional to the OD of the node itself; even its color is
furtherly indicative of the OD: in particular, pink nodes are characterized by a high level of
OD, while green ones by a lower level and the more intense the corresponding color, the
higher the OD.

At this stage of the analysis, the calculation of SNA is required, and hence, for each node,
the OD is determined and reported in Table 3. Then theODmax threshold has to be defined in

α → B Confidence

C15 → C2 0.866
C2 → C15 1
C15 → C40 0.657
C15 → C13 0.657
C40 → C15 0.92
C13 → C15 0.958
C2 → C40 0.677
C2 → C13 0.677
C40 → C2 0.84
C13 → C2 0.875
. . . . . .

Table 2.
Excerpt of the

association rules
mined
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order to identify the components that need to be carefully monitored by the operators: as
explained before, the higher the OD, the higher the probability of failure of one of the
consequent components.

Undoubtedly, the selection of the ODmax threshold has an impact on the operations of
the maintenance department members: the higher the threshold value, the lower the
number of components to be monitored. At the same time, it corresponds to a higher risk
of failure. On the contrary, if the threshold is too low, there would be a high number of
components to be carefully monitored, and the effort may not be repaid by the benefit.
Considering the values reported in Table 3, an ODmax 5 14.00 has been identified by
company maintenance managers as a good compromise since it would require the careful
monitoring of five components (C33, C28, C46, C20 and C45). Lowering the threshold, for
instance, to 12 would imply the double of the components (C33, C28, C46, C20, C45, C19,
C4, C25, C18 and C1) to be monitored, making this activity more onerous in terms of
person-hours.

When a failure on a component occurs, on the other hand, it is necessary to decide whether
to perform a predictive intervention on the consequent ones. For this purpose, the ILP model
presented in the previous section is used. For instance, let us consider the failure and the
replacement of component C15 (this component presents the highest value of BC). According
to the association rules mined and the consequent SN created, 40 components (the ones
highlighted in yellow in Figure 3) are related to C15. Hence, it would not be realistic to replace
all of them in advance.

Figure 2.
Representation of the
Social Network
characterized by 46
nodes and 724 arcs
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Therefore, the BC value for all the components is calculated and given as the objective function
of the ILP model, as well as the other data reported in Table 4, ranking them in descending BC.
Such ranking allows us to visualize the most influential among the network, i.e. the ones that
have a higher criticality, at the top of the table; while, as we descend along the table, the
remaining components will gradually become less influential and, therefore, less troublesome.

4.1 Prioritization strategy and what-if scenarios
The parameters of the work are set in collaboration with the maintenance department of the
topping sub-plant, considering that a participatory approach allows a larger view of the entire
contest (Marinakis et al., 2017). In addition, this decision enables the decision-makers to be
consistent with their actual policies. Specifically, the maximum budget allowed for predictive
maintenance of this plant (Bmax) is set to 3,000V per day, while the maximum time (Tmax) is
350 min. In addition, a maximum of five operators (Rmax) can take part in predictive
maintenance activities. Considering these parameters and the data provided in Table 4, after
the failure of C15, the results obtained recommend the replacement of components C2, C25 and
C18, obtaining a total BCvalue of 252.22 (seeExperiment 1 inTable 5).As presented inFigure 4,
the items C15, C2, C25 and C18 are closely connected to each other and are characterized by a
wide number of ingoing and outgoing edges, making them critical in terms of influence among
the network. The available time is saturated, aswell as the number of operators employed in the
operations. The budget needed to satisfy the requirement of such a solution, on the other hand,
is lower than the Bmax (2,109 V out of 3,000 V).

Hence, a sensitivity analysis is performed to understand whether, adjusting the
parameters, a relevant improvement could be obtained. Indeed, budget, time and human
resources allocation is a critical activity for decision-makers, especially in large
organizations (Li et al., 2019). Thus it is important to verify the impact of their decision
and, possibly, adjust them.

Component OD Component OD

C33 15.83 C43 10.67
C28 15.83 C29 10.67
C46 15.43 C14 10.67
C20 15.43 C15 10.61
C45 14.13 C40 10.44
C19 13.67 C30 10.29
C4 12.71 C26 10.28
C25 12.44 C32 10.13
C18 12.42 C42 10.00
C1 12.07 C39 10.00
C3 11.79 C41 9.75
C5 11.67 C31 9.67
C13 11.50 C6 9.40
C24 11.50 C35 9.25
C37 11.40 C16 9.22
C2 11.26 C10 9.00
C7 11.00 C12 8.80
C44 11.00 C27 8.08
C11 11.00 C17 7.00
C7 11.00 C38 6.00
C36 10.80 C23 6.00
C9 10.71 C22 6.00
C34 10.69 C21 3.00

Table 3.
Out degree values of

the social
network’s nodes
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Increasing the Rmax, without modifying the other parameters, has no impact on the
solution found, as presented in Experiment 2 of Table 5; while, increasing the Tmax by
25% – hence, extending it to 437.5 min – allows an improvement of the selected
components: C2, C25, and C39 are selected for predictive maintenance (Experiment 3 in
Table 5). Even in this case, the constraint on Rmax is saturated, while budget and time
ones are not. Leaving Tmax unchanged while increasing Rmax provides the same
solution; hence, it is decided to furtherly increase both the Tmax up to 525 min and the
Rmax up to 10. The solution provided by this scenario recommends the replacement of
four components (C2, C25, C27 and C39) as reported in Table 5 (Experiment 4).
Introducing a further increment on the budget, hence increasing theBmax by 25 and 50%,
assures the selection of 5 (C2, C25, C4, C18 and C39) and 6 (C2, C25, C4, C18, C32 and C39)
components, respectively. As shown in lines with Experiments 5 and 6 of Table 5, there is
no relevant increment in terms of objective function: this is justified by the fact that the
further selected component (C32) has a low value in BC (0.09). Hence, in this case, it may
not be convenient to increase the budget so much.

To summarize the results reported in Table 5, it can be said that the current parameter
setting allows the execution of some predictive replacements. Hence, it is acceptable.
According to Experiments 1 and 2, the scarce resource is time: there is no need to increase
budget availability and human resources if no adjustment is made in terms of time. This
should be the first modification to be made should the company decide to make more
investment in the asset maintenance perspective.

Figure 3.
Social Network
representation
highlighting C15’s
consequent
components
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4.2 Results analysis
According to the ARs mined, several relationships among component failures have been
identified. Such failures might not be the ones expected by the technicians of the plant, even
though they have a large experience in the field. Indeed, one of the main theoretical

Component cj [V] tj [min] Rj BC

C40 5,931 600 2 192.79
C2 1,184 250 1 188
C13 2,300 750 1 104.53
C42 1,311 286 1 74.66
C39 1,274 175 1 74.66
C25 80 10 3 55.79
C41 235 299 1 54.17
C26 289 300 1 51.66
C5 2,881 223 1 32.58
C27 190 60 2 30.22
C3 4,094 255 1 20.66
C34 650 300 1 17.95
C4 1,009 120 2 13.88
C37 2,100 150 3 13.88
C35 1,627 495 1 9.1
C18 845 90 1 8.43
C19 2,103 66 1 7.81
C45 735 300 1 7.43
C1 3,074 146 1 6.88
C9 1,281 423 1 5.65
C36 3,288 248 1 5.13
C16 2,500 800 1 4.29
C6 1,010 206 1 1.75
C12 2,118 357 1 1.66
C43 2,950 386 1 0.18
C29 577 529 1 0.18
C14 207 299 1 0.18
C31 1,233 607 1 0.09
C32 402 68 1 0.09
C30 4,063 333 1 0.09
C46 2,930 329 1 0
C20 5,041 122 1 0
C33 2061 212 1 0
C28 2,302 340 2 0

Selected components BC Tmax P
j

tjxj Bmax P
j

cjxj Rmax P
j

rjxj

Experiment 1 C2, C25, C18 252.22 350 350 3,000 2,109 5 5
Experiment 2 C2, C25, C18 252.22 350 350 3,000 2,109 10 5
Experiment 3 C2, C25, C39 318.45 437.5 435 3,000 2,538 5 5
Experiment 4 C2, C25, C27, C39 348.67 525 495 3,000 2,728 10 7
Experiment 5 C2, C25, C4, C18, C39 362.55 700 615 3,750 3,737 10 9
Experiment 6 C2, C25, C4, C18, C32, C39 362.65 700 683 4,650 4,139 10 10

Table 4.
List of C15’s
consequent

components and their
associated repair cost
(cj), time (tj), number of
operators required (Rj)

and Betweenness
Centrality (BCj)

Table 5.
Summary of the
what-if scenarios
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contributions proposed in this work is that it is data-driven. Hence, the driver followed to
define the components to be replaced is the information extracted by the data rather than the
technical and physical structure of the process. For instance, rule C15 → C2 indicates that
when a failure occurs on component C15, that is, a controller, the coupling C2 also requires a
replacement within two weeks, quite likely since the confidence is 0.886. This means that the
controller C15 and the coupling C2 are likely to be replaced concurrently in a two-week time
interval. Similarly, the ARs C15→ C40 (confidence5 0.657) indicates that in more than 65%
of cases after the failure of the controller C15, even the sealing device C40 has to be replaced.
The explication of such relationships is evident from the data since the application of the
proposed approach relies on a solid dataset and a relevant amount of data, which is
fundamental to deploying a data-driven framework.

Considering the prioritization of the components to be replaced, results show that the
rationale is similar to the mining of the association rules. Indeed, the objective function of
the ILP model takes into account the influence of each component across the SNA since it
aims at selecting those having the highest BC, respecting the constraints. Recalling the
example proposed in Section 4, we can say that when the failure of the controller C15
occurs, the most critical successors according to their BC value would be C40, C2, C13,
C42, C39 and C25, that are, respectively, the sealing device, the coupling, the insulation,
the transmitting device, the measurement instrumentation and the lighting. In all the
what-if scenarios tested, the coupling and the lighting systems are selected, the
instrumentation is selected in Experiments 3–4–5–6, while the other ones are excluded to

Figure 4.
Social Network
representation
highlighting the
components selected in
Experiment 1
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respect the constraints imposed by the company policies in favor of components
characterized by lower BC, as well as lower resource requirement. For instance, in the
“case-base,” i.e. Experiment 1, the drainer (C18) is replaced or maintained together with
the controller (that is the one effectively experiencing the failure), the coupling (C2) and
the lighting (C25). As previously stated, data provide the support for the execution of such
interventions, even though there might not seem to be any actual relations, furtherly
highlighting the benefits driven by the implementation of the approach. Indeed, the
reliability of the plant is ensured through the adoption of the proposed framework since
the domino effect among failures frequently occurring together is limited by anticipating
the maintenance of critical components.

4.3 Discussion
Aspresented in previous sections, the aim of thiswork is to extract information fromdata and
apply them to identify the relationships between component failures so that they can be
avoided through predictive replacements. In this way, their impact on the process can be
eliminated or, at least, limited. A data-driven approach is selected in this work that is based on
a process industry case study. Indeed, in this sector, it is important to have complete control
andmonitoring policies due to the hazard related to the operations (Ciarapica et al., 2019). The
proposed asset maintenance framework does not entirely modify the current procedure in
place in the case study: they should be considered as an addition to the present one. Therefore,
they have to be used both for online and off-line asset maintenance activities to ensure the
resilience of the system, i.e. the ability of a system to absorb and resist adverse occurrences.
For example, Failure Modes Effects and Criticality Analysis (FMECA) should also be carried
out, in order to identify the possible failure modes and prioritize them by the risk priority
number. It is specifically useful to build a baseline of the potential failure modes and effects
but also has some criticalities that can be overcome by the introduction of specific predictive
maintenance policies. Indeed, as pointed out by Ahmed et al. (2021), FMECA does not take
into account coexisting failures and mutual relationships among them and it is also
reasonably vulnerable to human error.

The implementation of quality management systems (e.g. ISO 9001) represents an
opportunity to achieve benefits in terms of business process optimization and advantages
like rationalization and cost reduction. In relation to the maintenance aspects, thanks to
quality management systems, it is possible to reduce internal errors, resulting in less waste
and more production efficiency. Considering the refinery sector in which the proposed case
study is situated, fewer errors are related to lower risk and higher safety levels. It is worth
noticing that component failures are somewhat intrinsic in the process, so they cannot be
totally eliminated by the introduction of data-drivenmaintenance policies. However, they can
be sensibly reduced and, thanks to the joint adoption of quality management systems and
maintenance policies, they can be addressed and efficiently treated in a formal manner
(Maleti�c et al., 2014). As previously mentioned, the case study is proposed basing on an oil
refinery plant. However, the same problem can be addressed in the process industry and also
in massive production lines. Indeed, the specific parameters can be adjusted accordingly, and
total monitoring of the plant can be performed.

5. Contribution and implications
The proposed framework aims at helping maintenance managers come to better, more
informed decisions in the day-to-day business practices in order to maximize availability,
minimize failures and optimize costs of asset maintenance. From this framework, both
theoretical contributions and managerial implications can be extracted.
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5.1 Theoretical contribution
The theoretical contribution provided in this work is essential of a twofold nature: in the
problem addressed and in the methodology used.

The problem addressed regards a research gap in the literature: the prediction of the
domino effect between component failures. It is important to underline the importance of
using the proposed framework in all companies where there is this domino effect between
failures or malfunctions of components. The results obtained have shown that this
phenomenon often occurs in the analyzed plant. It is easy to predict that this behavior is
present in many process industries, where the various components (pumps, valves, pipes,
tanks, . . .) are physically connected to each other.

In addition, this work adopts a data-driven perspective. Hence, the decision-maker
implementing such a framework on the process industry relies on the information extracted
by the data rather than on the technical and physical structure of the system – that is, instead,
the rationale followed by the model-driven paradigm. This vision expands the body of
knowledge of the plant technicians by integrating it with the insights derived from the data
analytics.

From a methodological point of view, different techniques have been combined in the
proposed framework providing complementary contributions from a theoretical point of
view. In particular, the ARM method provided researchers with tools to solve the problems
related to the use of statistical analysis like the elevated number of variables, the
independence assumptions and the distribution of collected data. The intrinsic organization
and complexity of the data collected might jeopardize the use of traditional tools for analysis
since the variables showed some critical features. The method based on ARs offers many
readable patterns (rules) explaining the interactions between two or more variables. In
addition, it eliminates the need to formulate a research hypothesis for each failure event
before doing a formal evaluation that may become practically infeasible even for a
moderately sized set of variables (Antomarioni et al., 2021).

The key contribution of the SNA concerns the possibility of identifying nodes
communities in the network created through the ARs and defining the nature of such
connections. Furthermore, it allows asset managers to verify the existence of missing or false
links in the network, eliminating errors in the data collection process that would have been
unnoticed. In existing literary contributions, as shown in Section 2, only Kim et al. (2019)
proposed the implementation of an SNA for the synchronous replacement of components.
The main difference with their work resides both in the application area and in the definition
of the relations among components: indeed, the application area is the construction industry,
while the relationships among components to be replaced are model-driven. The approach
proposed in this work, on the other hand, is data-driven since the relationships among failures
are derived from the records of previous breakages. Considering other existing contributions,
as shown in the literature review, one can mention the study by Antomarioni et al. (2019),
where the optimal selection of the components to be repaired in an oil refinery is proposed.
The present application goes beyond the approach proposed in the other work in which we
consider not only the probability of failure of individual components but also the connections
between different components.

5.2 Implications for practitioners
The proposed framework – developing tools for monitoring critical components and
predicting fault events – can help different refinery departments, as well as other process
industries. The proposed data-driven decision support system enables asset managers to
turn predictive analytics insight into prescriptive analytics action by converting information
on what is likely to happen in maintenance activities, transforming the raw data into useful
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and applicable knowledge. In particular, the framework aims to be useful for themaintenance
planner, who needs to decide when to maintain each asset, what tasks need to be done and
which parts need to be replaced at each maintenance interval in order to meet reliability
targets at an optimal cost. The combined use of ARM and SNA highlights the domino effect
among events, with both a visual perspective of the network and the relations existing among
the components being determined through a data-driven technique.

Moreover, the integration of ILP helps the maintenance planner to schedule maintenance
activities. It is valid to support the definition of the components to be prioritized for
maintenance, taking into account the resource constraints (e.g. time, budget and number of
employees) actually existing in the company.

These tools are also important for the parts planner, who needs to decide how many of
each of the spare parts are needed in which locations and when so that they can maximize
first-time fix rates and reduce spare parts acquisition and holding costs.

Finally, the maintenance technicians of the refinery, who need to determine the root cause
of failures, decide on the best fix and determine whether an asset should be repaired or
replaced, in order to minimize turn time, reduce repair cost and eliminate rework. These
decisions must be made for each asset, although each asset has a unique configuration,
history, usage, environment, conditions and parameters, which begins with the
commissioning and start-up steps. In this context, the importance of data analytics tools to
determine the best decision option and action plan for each asset becomes evident. Indeed, the
proposed framework aims at integrating the analysis of large amounts of data in everyday
processes in order to support real-time decision-making. Decisions in real-time that drive
efficient maintenance operations, increase equipment reliability, uptime, safety and reduce
overall costs.

6. Conclusions
This article provides a data-driven system based on a combination of ARs and directed
weighted SN to identify and analyze the relationships among component maintenance
activities and predict the domino effect among component failures. Through the metrics
provided by the SNA and ILP, the decision-making process for the selection of the component
to predictively maintain is supported. The reliability of the asset is addressed in three ways:
(1) having better control of the critical components, enabling more rapid interventions on
faults; (2) anticipating the substitution of probable failing components to avoid further
interruptions in the production flow in the future, with a positive impact on the availability of
the plant and on the reduction of downtimes; and (3) the root causes of failure chains can be
identified after the introduction of the proposed methodologies, due to possibility of
visualizing the relationships between failures.

The main advantages resulting in a data analytics approach to asset maintenance can be
summarized as follows: (1) the data management process is clearly defined through the
layered framework presenting the roadmap from the collection of Big Data, ETL process,
integration and analysis and, finally, decision-making; (2) remarkable cause–effect
relationships in the refinery processes can be identified during the asset maintenance
activities; and (3) the bias deriving from basing the technical management of the refinery only
on the technicians’ knowledge is overcome through the implementation of objective decision-
making tools.

The idea of usingARMand SNA for assetmaintenance is should not be seen as an attempt
to replace the traditional maintenance procedure but as a complementary method to be
integrated into these types of activities: indeed, the operations performance should benefit
from the innovation performance (Hong et al., 2019).
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The main limitation of this work regards the data collection phase. Indeed, in general,
there might be a lag between the occurrence of the event and the recording of its consequence,
complicating the understanding of the relationship between the event and the maintenance
activities. Furthermore, the refinery piping systems consist of kilometers of pipes operating
at different conditions, mostly underground and therefore real-time monitoring of their
condition is rather costly. For this reason, there is sometimes not a complete panorama of
their data.

Further development of this work may regard the extension of the testing case to the
whole refinery plant, aggregating all data, as well as the integration of the current approach
with multi-objective optimization models or with multi-criteria decision-making approaches,
taking into account other risk categories and decision criteria.
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ID Component name ID Component name

C1 Undefined component C24 Joint
C2 Coupling C25 Lighting
C3 Alarm C26 Indicator
C4 Ammeter C27 Liquid-level indicator
C5 Area C28 Level switch
C6 Auxiliary C29 Lubrication
C7 Shovel C30 Engine
C8 Keg C31 Shovels
C9 Battery C32 Oil Seal
C10 Burner C33 Flooring
C11 Bypass C34 Sampling valve
C12 Strap C35 Button panel
C13 Insulation C36 Refrigerant
C14 Condensation indicator C37 Detector
C15 Controller C38 Blower
C16 Bearing C39 Instrumentation
C17 Caliber disc C40 Sealing device
C18 Drainer C41 Tracing
C19 Ecos C42 Transmitting device
C20 Electrode C43 Overfilling indicator
C21 Tube bundle C44 Pipeline
C22 Filter C45 Valve
C23 Fittings C46 Shifter

Table A1.
List of the components’
ID and the
corresponding name
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