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Abstract
The Internet of Things (IoT), Big Data and Machine Learning (ML) may represent the foundations for implementing the
concept of intelligent production, smart products, services, and predictive maintenance (PdM). The majority of the state-of-
the-art ML approaches for PdM use different condition monitoring data (e.g. vibrations, currents, temperature, etc.) and run
to failure data for predicting the Remaining Useful Lifetime of components. However, the annotation of the component wear
is not always easily identifiable, thus leading to the open issue of obtaining quality labeled data and interpreting it. This paper
aims to introduce and test a Decision Support System (DSS) for solving a PdM task by overcoming the above-mentioned
challenge while focusing on a real industrial use case, which includes advanced processing and measuring machines. In
particular, the proposed DSS is comprised of the following cornerstones: data collection, feature extraction, predictive model,
cloud storage, and data analysis. Differently from the related literature, our novel approach is based on a feature extraction
strategy andML predictionmodel powered by specific topics collected on the lower and upper levels of the production system.
Compared with respect to other state-of-the-art ML models, the experimental results demonstrated how our approach is the
best trade-off between predictive performance (MAE: 0.089, MSE: 0.018, R2 : 0.868), computation effort (average latency of
2.353s for learning from 400 new samples), and interpretability for the prediction of processing quality. These peculiarities,
together with the integration of our ML approach into the proposed cloud-based architecture, allow the optimization of the
machining quality processes by directly supporting the maintainer/operator. These advantages may impact to the optimization
of maintenance schedules and to get real-time warnings about operational risks by enabling manufacturers to reduce service
costs by maximizing uptime and improving productivity.

Keywords IoT · Decision support system · Predictive maintenance · Machine learning · Random Forest

Introduction

The Internet of Things (IoT) and cyber-physical system
(CPS) represent two fundamental pillars within the ubiq-
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uitous scenario of Industry 4.0. These technologies lay
the foundation for implementing the concept of intelligent
production, smart products, and services. A realistic applica-
tion of these technologies is predictive maintenance (PdM),
which aims to address and diagnose in advance maintenance
issues in order to minimize downtime and costs associated
with it. Until now, factory managers and machine opera-
tors have carried out scheduled maintenance and regularly
repaired machine parts to avoid downtime. In addition to
consuming unnecessary resources and causing productivity
losses, half of all preventive maintenance activities may be
ineffective. Accordingly, the lack of maintenance will lead
to more emergency breakdowns and downtime in production
lines which affect the production capability by increasing
operational cost, decreasing production rate, and reducing

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-01960-x&domain=pdf
http://orcid.org/0000-0003-3288-638X


108 Journal of Intelligent Manufacturing (2023) 34:107–121

the profit margin Burhanuddin et al. (2011). The downtime
in production lines has more negative effects than the cost of
repairing the failures. For example, if a fillingmachine fails in
a production line, the end products will spill over Burhanud-
din et al. (2011), thus leading to labour safety issues and
business losses. It is therefore not surprising that PdM has
quickly established itself as an industrial 4.0 use case and
IoT-enabled PdM is attracting considerable investment and
attention from industries and research Compare et al. (2019).

In this scenario, maintenance decision support systems
(DSS) empowered by IoT, Big Data and Machine Learn-
ing (ML) assume a salient role to ensure maintainability
and reliability of equipment in industries by transforming
large datasets into knowledge and actionable intelligence
Ayvaz and Alpay (2021); Chen et al. (2020); McArthur et al.
(2018); Schmitt et al. (2020). Implementing industrialDSS to
monitor the health of industrial processes, optimize mainte-
nance schedules andget real-timewarnings about operational
risks enables manufacturers to reduce service costs, maxi-
mize uptime and improve productivity Schwendemann et al.
(2021).

However, the application of PdM in production envi-
ronments involves overcoming several unsolved challenges.
These challenges include the need to aggregate several het-
erogeneous data gathered from sensors dealingwith dynamic
operating environments and the necessity of context-aware
information targeted to a specific industrial domain Compare
et al. (2019); Dalzochio et al. (2020). Therefore, one of the
main challenges in this scenario is the difficulty to retrieve
labeled training data of failure (i.e. annotated failure-related
datasets). This kind of data is relevant for training supervised
MLmodels to accurately and promptly identify problems and
alarms.

Challenges and limitation of state-of-the-art

The basic idea behind PdM is to extrapolate/predict knowl-
edge to determine the Remaining Useful Lifetime (RUL)
of components. The majority of the state-of-the-art ML
approaches for PdM (as reported in “Related work” section
use different condition monitoring data (e.g. vibrations, cur-
rents, temperature, etc.) and run to failure data for predicting
the RUL. However, the annotation of the component wear
is not always easily identifiable and traced across different
production cycles and operating conditions. Thus, the open
issues include the difficulty of obtaining quality labeled data
and interpreting it Vollert et al. (2021). A severe portion of
available data has no annotations, presents missing values,
and is poorly structured. This fact leads to the high demand
to have available a huge amount of annotated failure-related
datasets. The automatization, stability, and robustness of the
annotation procedure is a challenge that still remains open

and represents a key issue for designing ML or Deep Learn-
ing (DL) approaches for accurately solving a PdM task.

Main contributions

The main contributions of this work to the field of novel
applications and manufacturing support in Industry 4.0 are
related to Big Data registration, processes and analyses. In
particular, this paper aims to introduce a DSS for solving
a PdM task by overcoming the above-mentioned challenges
while focusing on a real industrial use case. The selected
PdM task originated from a specific company’s demand 1 and
the experimental setup (see Fig. 1) reflects a real industrial
use case which includes advanced processing and measuring
machines.

The proposed DSS comprised of five cornerstones by
combining fundamental aspects of IoT, Big Data and ML:
data collection, feature extraction, predictive model, cloud
storage, and data analytics. Differently from the related lit-
erature, our novel approach is based on a feature extraction
strategy and ML prediction model powered by specific top-
ics2 published in theMQTTbroker and collected on the lower
and upper levels of the production system. In particular, lower
level topics are used to extract salient KPI predictors that
are fed into a ML model while the upper-level topics reflect
the ground-truth variables that are closely related to process-
ing quality and thus to productivity losses and maintenance
issues.

Comparing the proposed ML approach with respect to
other state-of-the-art ML methods, the experimental results
demonstrated how this strategy allows improving the pre-
dictive performance (in terms of MAE, MSE, and R2) and at
the same time the interpretability of the PdM task. Moreover,
the lower computation effort allows to easily retrain the ML
model also in the cloud environment.

The overall IoT-based sensing strategies and cloud stor-
age architecture allow automatizing the annotation procedure
by collecting a huge annotated dataset for training the ML
model. On the other hand, the cloud storage framework lays
the foundation for integrating an incremental learning strat-
egyRebuffi et al. (2017),where theMLmodel is continuously
updated with new data, and it provides the data analytics for
promptly monitoring the maintenance procedures.

The paper is organised as follows. In “Related work” sec-
tion, we provide a review as well as themain differences with
respect to state-of-the-art approaches in the field of PdM and

1 Benelli Armi spa.
2 Each client that publishes a message to the MQTT broker, includes
a topic into the message. The topic is the routing information for the
broker. Each client thatwants to receivemessages subscribes to a certain
topic and the broker delivers all messages with the matching topic to the
client. Therefore the clients don’t have to know each other, they only
communicate over the topic.
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Fig. 1 Experimental setup in the real industrial use case: advanced
processing (a) and measuring (b) machines

ML. We describe the PdM task and the proposed real indus-
trial use case in “Real industrial use case PdM task”. The
description and implementation of the proposed DSS based
on ML strategy is reported in “Method” section. In “Exper-
imental procedure” section the evaluation procedure with
respect to the state-of-the-art ML models is reported. The
experimental results of our solution are reported in “Exper-
imental results” section. Finally, the conclusions and future
work are reported in “Experimental results” section.

Related work

The proposed approach is related to the general field of PdM.
The state-of-the-art work in this field poses different chal-
lenges related to the downtime andmaintenance-related costs
and different solutions for improving production efficiency.
According to the literature review proposed in Dalzochio
et al. (2020), the state-of-the-art solutions to deal with
this generic challenge can be divide into four groups: (i)
knowledge-based, (ii) Big Data analytics, (iii) Machine
Learningmodels and (iv)Ontology and reasoning. Different

from the knowledge-based approach, our strategy allows to
completely automatize the feature extraction and prediction
step for computing salient KPIs, which represent the input of
our ML predictive model. Despite meta-heuristic optimiza-
tion approaches (Abualigah, Yousri, et al., 2021; Abualigah,
Diabat, Mirjalili, et al., 2021 are being introduced for solv-
ing a large scale combinatorial optimization problem related
also to PdM tasks Shahbazi and Rahmati (2021); Shah et al.
(2021), the proposal of IoT sensing technologies together
with the designing of feature extraction stage and the deploy-
ing ofMLmodel ensure to directly learn fromdata for solving
the PdM task. This peculiarity allowsmonitoring, annotating,
and consequently processing a large amount of heteroge-
neous data thus leading our approach relevant for both the
ML and Big Data analytics area.

In the Big Data scenario, another open challenge is the
difficulty to ensure accurate predictive performance and high
interpretability at the same time Dalzochio et al. (2020). For
example, the solution proposed in Hegedűs et al. (2018) pro-
vides a pre-processing step so that data are usable for PdM.
Further work was done by Strauß et al. (2018), proposing a
frameworkbasedon IoTand low-cost sensors that enables the
monitoring and data acquisition on a heavy lift electricmono-
rail system. On the contrary, our approach aims to acquire
directly (i.e. without an additional pre-processing) a labeled
and structured dataset that can be representative of the PdM
task.

In the context of supervised learning, one important
limitation is the lack of data showing the annotation of
anomaly state behavior Adhikari et al. (2018); Dalzochio
et al. (2020); Xu et al. (2019). In Gatica et al. (2016), the
authors approached this problem by proposing a top-down
strategy consisting ofrst understanding machine operation
and then taking action to deal with the problem. On the
contrary, here we build a data-driven model that can learn
anomaly situations closely related to productivity losses. The
model is able to generalize across different production cycles
and operating conditions.

Starting from the fact that manufacturing plants are
dynamic environments, both the lack Nuñez and Borsato
(2018); Selcuk (2017) and the excess Gatica et al. (2016);
Sarazin et al. (2019) of data heterogeneity may negatively
affect the ML model. In this context, our approach tried to
reduce the high dimension of collected data, by introduc-
ing a feature extraction stage based on hand-crafted features.
Besides the fact that this step enhances the interpretability
and explainability of the data, experimental results demon-
strated how it increase the generalization power of the ML
model.

Generally, state-of-the-art work test different ML models
to evaluate which one is more suitable for a given situation.
For example in Schmidt and Wang (2018), the authors pre-
sented a classification model to predict failure using as input
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vibration limit value and used the accuracy of the models
as an evaluation metric. Differently in Xu et al. (2019) and
Nuñez and Borsato (2018), the computation cost for training
the ML models is considered as an important aspect to take
into account. In contrast with respect to the above-mentioned
literature, our employedMLmodel represents the best trade-
off between the accuracy prediction, computation effort and
model interpretability for optimizing the machining quality
processes in Industry 4.0 scenario.

In Peres et al. (2018) and Li et al. (2017), the artifi-
cial neural network model was employed for providing the
fault prediction and identifying abnormal behaviors. Another
work considers the implementationof auto-associative neural
networks for finding irregularity in railways Liu et al. (2018).
The recent advances of technology and the huge amount of
data have laid the foundations to applyDLmethodologies for
solvingPdMtask Jin et al. (2017);Khan andYairi (2018). The
application of these solutions includes the implementation of
a Recurrent Neural Network (RNN) and Long-Short-Term
Memory (LSTM) Cachada et al. (2018); Rivas et al. (2019)
for predicting failure by modeling spatio-temporal relation-
ship across historical data. In the context of our proposed
approach, the sequential DL approaches (such as RNN and
LSTM) may represent an affordable predictive model by
learning spatio-temporal features. However, the potential of
DL approaches may be limited by the interpretability of the
model Lipton (2018), which does not always allow to provide
clues on how and why the algorithm achieved the selected
prediction. Taking into account this consideration, aswe shall
see in the experimental section, our ML-based approach per-
forms favorably over other standard (Multi layer perceptron)
and sequential DL approaches (i.e. LSTM).

From ML perspective, most related to our work are the
papers of Calabrese et al. (2020), Adhikari et al. (2018),
Schmidt and Wang (2018), Zhou et al. (2018), Carbery et al.
(2018), Ansari et al. (2020), which proposed the application
of ML and DLmodel for predicting RUL and associated cost
using sensor and event log data.

Common ML approaches for solving PdM task Bilski
(2014); Calabrese et al. (2020); Schmidt and Wang (2018);
Zhou et al. (2018) include the application of standard clas-
sifiers such as k-Nearest Neighbor (K-NN), Decision Tree
(DT), Naive Bayes (NB), Support Vector Machine (SVM),
Random Forest (RF), Boosting and XGBoost. In particular,
the RUL prediction task was solved in Calabrese et al. (2020)
using log-based data andXGboost algorithm.An evolution of
ensemble learning (i.e. graph based ensemble learning) was
presented in Zhou et al. (2018) for modeling the behaviour of
different subsystems using different base learners. Graphical
models based on Bayesian network and dynamics Bayesian
network were also proposed in Carbery et al. (2018) and
Ansari et al. (2020) for learning causal relationships among
features and across time in terms of conditional probabili-

ties. In the latter, the graphical model is part of a framework
designed to predict failures and to measure the impact of
such a prediction on the quality of production planning pro-
cesses and maintenance costs. Another class of ML models
includes the application of auto-regressivemodels (e.g.Auto-
regressiveMovingAverage) for predicting future behavior by
using historical data. In Adhikari et al. (2018), the authors
apply the auto-regressive integrated moving average model
in a predictivemaintenance framework to predict the remain-
ing useful life of components.

Themain differenceswith the proposed approach lie in: (i)
the prediction of processing quality and anomaly situations
that are quantitatively annotated in our training dataset by a
3D coordinate measuring machine; (ii) the integration of the
proposed ML approach in our IoT platform that enables the
collection of a huge amount of data and provide actionable
decision recommendations for resolving productivity losses
and maintenance issue; (iii) the combination of a feature
extraction technique with a Random Forest (RF) regression
model for ensuring the best trade-off between the accuracy
prediction, computation effort, and model interpretability.

Real industrial use case PdM task

The proposed PdM task originated from a specific company’s
demand: the predictionof processingquality and anomaly sit-
uations during the machining of a tool. The input parameters
were represented by topic at level 0, i.e. processing param-
eters (e.g. acceleration, speed, position) collected from two
different machine centers (see Fig. 1a). The condition mon-
itoring data were represented by topic at level 2 acquired
by a robotic part loading system for coordinate measuring
machine (see Fig. 1b). The overall flexible integrated man-
ufacturing system includes two operator loading/unloading
stations, two robot loading/unloading stations, one auto-
mated vertical parts store and one parts washing unit.

Machining centers

The processing parameters were acquired by two different
machining centers (mc) (i.e. MCM3 clock 5-axis machining
centers). On a 5-axis mc, the cutting tool moves across the
X, Y and Z linear axes and rotates on the A and B axes to
approach the workpiece from any direction. The mc can be
configured for multitasking operations, such as milling, turn-
ing, grinding, boring, etc.Moreover, all mc can be configured
with a single pallet, pallet exchanger, multi-pallet systems or
integrated in a flexible manufacturing system (FMS). The
level of automation can be changed or increased during the
service life of the plant, providing considerable flexibility.

3 https://www.mcmspa.it.
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Coordinate measuringmachine for quality control
task

The condition monitoring data were acquired by a robotic
part loading system for coordinate measuring machine
(CMM) (i.e. Hexagon4 Manufacturing Intelligence Robotic
CMM part loading). The CMM system automatically iden-
tifies in real-time parts that are out of tolerance and triggers
alarm situations. The CMM can be easily used by opera-
tors with minimal training as a cost-effective automated part
loading system that increases the throughput of CMM and
maximizes operational capacity.

Method

The proposed ML-based strategy is conceived to solve the
above-mentioned PdM task by allowing the continuous col-
lection of an annotated dataset and the provision of a data
analytic interface for supporting the maintainer/operator.
Figure 2 describes the overall architecture of the proposed
DSS, which is comprised of five IoT and ML cornerstones:

• Data collection: the IoT sensing technology is based on
theMessage Queuing Telemetry Transport (MQTT) bro-
ker5 Andrew Banks Ed Briggs and Gupta (2019). The
central concept in MQTT dispatcher is topics that collect
processing parameters (e.g. acceleration, speed, posi-
tion) of the machining centers at a lower level (level 0).
Accordingly, the status and conditioning data collected
by the Hexagon machine represents the topic at a higher
level (level 2). All data are synchronized and are collected
in a SQL database and then in Azure Blob cloud storage.

• Feature extraction: the Trapezoidal Numerical Integra-
tion (TNI) is performed to compute a Key Performance
Indicator (KPI) for each processing parameter during
each MCM production cycle.

• Predictive model: a RF regression model is applied in
order to estimate the status and conditioning data using
the collected processing parameters as predictors.

• Cloud architecture: the ML model is deployed as a
docker container with an API endpoint for testing unseen
acquired data. Azure ML service is used for providing a
cloud-based environment for deploying and updatingML
model. Azure Blob storage is adopted to store the ML
model weights and the ML model outcomes (predicted
error %).

4 https://www.hexagonmi.com.
5 MQTT is a lightweight telemetry protocol, coming from the world of
M2M and now widely applied in IoT. The central communication point
is the MQTT broker, which is in charge of dispatching all messages
between the senders and the rightful receivers.

• Data analytics: the ML model outcomes are displayed
in a GUI-based data analytic interface for supporting the
maintainer/operator.

Data collection

The central sensing and communication point is the MQTT
broker (Mosquito), which is in charge of dispatching all mes-
sages between the senders and the rightful receivers. The
implementation of MQTT protocol in JFMX was performed
by using the Paho Java library. Each client that published a
message to the broker, includes a topic into the message, that
represents the routing information for the broker. Each client
that wants to receive messages subscribes to a certain topic
and the broker delivers all messages with the matching topic
to the client. Therefore the clients don’t have to know each
other, they only communicate over the topic. This architec-
ture enables highly scalable solutions without dependencies
between the data producers and the data consumers. The pay-
load of messages are just a sequence of bytes, up to 256Mb,
with no requirements placed on their format, andwithMQTT
protocol usually adding a fixed two bytes header tomostmes-
sages. Other clients can subscribe to these messages and get
updated by the broker when new messages arrive.

The central concept in MQTT to dispatch messages are
topics. A topic is a simple string that can havemore hierarchy
levels. For example, a topic for sending status data of mc2 of
anFMS is the following: JFMX/L1/fms/UNIT/mc1/STATUS.
On one hand, the client can subscribe to the exact topic or on
the other hand use a wildcard. The wildcard (+) allows arbi-
trary values for one hierarchy while the multilevel wildcard
(#) allows to subscribe to more than one level (e.g. the entire
subtree).

The MQTT topic organization allows to guarantee the
Quality of Service (QoS). The MQTT protocol handles
retransmission and ensures the delivery of the message,
regardless howunreliable the underlying transport is. In addi-
tion, the client is able to choose the QoS level depending on
its network reliability and application logic:

• QoS 0—atmost once it guarantees a best effort delivery.
A message won’t be acknowledged by the receiver or
stored and redelivered by the sender. This is often called
“fire and forget” and provides the same guarantee as the
underlying TCP protocol.

• QoS 1—at least once it is guaranteed that a message
will be delivered at least once to the receiver. The sender
will store themessage until it gets an acknowledgement in
form of a PUBACKcommandmessage from the receiver.

• QoS 2—exactly once it guarantees that each message is
received only once by the counterpart. It is the safest and
also the slowest QoS level. The guarantee is provided by
two flows there and back between sender and receiver.
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Fig. 2 Flowchart of the proposed approach: data collection, feature extraction, prediction phase based on Random Forest predictive model, cloud
storage and data analytics

Fig. 3 Flowchart of the data layer: jFMX MQTT Namespace

jFMX MQTT Namespace The MQTT topic namespace was
defined to manage interactions with the IoT application run-
ning on the jFMX gateway hierarchy. Figure 3 shows the
hierarchy of the jFMX MQTT Namespace.

Based on this criterion, our IoT application running on an
IoT gateway may be viewed in terms of the resources it owns
and manages as well as the unsolicited events it reports:

Table 1 Topics related to the working step analyzer application embed-
ded in the L0-Machine Agent

Field Type Description

ts Date Start date of the episode according to the
clock of the mc

l2mc String mc code

l2wa String workArea code

ordNo String Order number

ptType String Identifier of the part type

opNo String Operation number

dType String Identifier of the workingstep message type
(”wsEv”: in case of sensor coming from
mc, ”accTrace”: in case of sensor
coming from Accelerometer)

Slot Int Subsection as indicated by the part
program

pt String Identifier of the part machined

tl String Identifier of the tool formatted as
<tooltype>/<tool serial number>

Life Int Life of the tool at the beginning of the step

Sensor String Name of the sensor

Unit String Measure unit for the specifc sensor

Sampling Int Milliseconds sampling interval

dataObj Object Complex object containing two elements:
n[int] segment of the acquisition, data:
Array[Double] data acquired

mc String Machine name

wa String workArea name
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• account_name: Identifies a group of devices and users.
It can be seen as partition of theMQTT topic namespace.
For example, access control lists can be defined so that
users are only given access to the child topics of a given
account_name.

• client_id: Identifies a single gateway device within an
account (typically the MAC address of a gateway’s pri-
mary network interface). The client_idmaps to the Client
Identifier (Client ID) as defined in the MQTT specifica-
tions.

• app_id: Unique string identifier for application (e.g.,
”L0” for mc topics, ”L2” for CMM topics).

• resource_id: Identifies a resource(s) that is owned and
managed by a particular application. Management of
resources (e.g., sensors, actuators, local files, or con-
figuration options) includes listing them, reading the
latest value, or updating them to a new value. A
resource_id is a hierarchical topic, where, for example,
”fms/mc1/spindle/temp”may identify a temperature sen-
sor and”fms/sh/Y/pos” a position sensor.

L0 Machine Center Topic The jFMX MQTT publisher is
executed by the L0-Gateway (Flight Recorder) and deliv-
ers message related to different application included inside
the L0-MachineAgent. All the topics published by the L0
MachineAgent is related to the processing parameters of mc
and have an app_id defined as: JFMX/L0/workAreaName/
unitName where the workAreaName is the absolute unique
name of the workarea and the unitName is the name of the
unit inside the workarea.

For our PdM taskwe refer to the topics related to theWork-
ing Step Analyzer application embedded in the L0-Machine
Agent related to the two different mc (see Table 1)

The topics related to the dataObj field represent the con-
sidered processing parameters (see Table 2) acquired by mc
(i.e. computer numerical control [CNC] and accelerometer).
The CNC and accelerometer data were acquired by a sam-
pling frequency of 24 and 100 Hz respectively.

L2 CMMTopic The L2 CMM topics represents the condition
monitoring data that were acquired by a robotic part loading
system for coordinate measuring machine (see Table 3). The
condition monitoring data reflect the quality of processing
in terms of the measured deviation (deviation) with respect
to the optimal condition. The optimal condition highlighted
no deviation compared to the planning processing. The alarm
situation is triggered once themeasured deviation overcomes
the admitted tolerance.

All the L2 CMM Topic and L0 Machine Center Topic
were synchronized by considering the physical tool (tl,
identifier of the tool formatted as <tooltype>/<tool serial
number), the part machined (pt) and the type of processing
(frindex). Although the system could consider all the type
of processing we took into account the drilling procedure
(i.e. FRINDEX=10,20,30). This procedure has the intrinsic
advantage of being standard, i.e. independent of the tl. The
synchronized L2 CMM Topic together with the L0 Machine
Center Topic were saved in a SQL database.

Feature extraction

All the computed KPIs (speed, pow, pos, curr) represent the
predictors of the ML model for each observation/physical
tool (i.e. specific triplet tl, pt and frindex). The output of the
ML model was represented by the percentage measurement
error (error %).

Table 2 Topics related to the
dataObj field

Sensor (CNC) Unit Description

SP_SPEED rpm Spindle rotation speed

SP_POW W Spindle power consumption

X_AXIS_CURR A x-axis current consumption

Y_AXIS_CURR A y-axis current consumption

Z_AXIS_CURR A z-axis current consumption

B_AXIS_CURR A B-axis current consumption

A_AXIS_CURR A A-axis current consumption

X_AXIS_POS μm X-axis position

Y_AXIS_POS μm Y-axis position

Z_AXIS_POS μm Z-axis position

B_AXIS_POS μm B-axis position

A_AXIS_POS μm A-axis position

FRINDEX None Type of processing

Sensor (accelerometer) Unit Description

velMOD_RMS mm/s 3 directions vibratory speed module
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Table 3 L2 CMM topics Field Type Description

ts Date Start date of the episode according to the clock of the mc

pt String Identifier of the part machined

tl String Identifier of the tool formatted as <tooltype>/<tool serial number>

FRINDEX Int type of processing

Measured Double Measured value

Deviation Double Measured deviation

Tolerance Double Admitted tolerance

Notation We let a candidate univariate time series of a
specific sensor S collected from a CNC sensor as X =
{x0, x1, . . . , xT } where T denotes the number of observa-
tions. Notice how this time series is relative to the signal of
a specific sensor and relative to a specific triplet comprised
of physical tool (tl), the part machined (pt) and the type of
processing (frindex).We denote the error%as a direct quan-
titativemeasure about themachine quality and the deviation
and tolerance themeasured deviation and tolerance reported
in Table 3.

Our feature extraction strategy is based on a geomet-
ric area analysis (GAA) and trapezoidal area estimation
(TAE) procedure that is widely used for solving novelty and
anomaly detection task Bulirsch and Stoer (2002); Moustafa
et al. (2019). The relative KPI is computed by temporally
normalizing the TAE as follows:

K P I = 1

T

∫ T

1
xtdt

= 1

T

T∑
t=1

∫ t

t−1
xtdt

≈ 1

2

1

T

T∑
t=1

(t − (t − 1))[xt − xt−1] (1)

All the computedKPI for each specific sensor S is depicted
in Table 4. For the position and current a global KPI was
extracted by computing the euclidean distance of X,Y,Z axis.

For each observation, the error % was computed by con-
sidering the measured deviation and the associated tolerance

Table 4 Extracted KPIs for
specific sensor. KPIs are related
to rotation speed (speed), power
consumption (pow), position
(pos) and current consumption
(curr)

Sensor (CNC) KPI

SP_SPEED speed

SP_POW pow

X,Y,Z_AXIS_POS pos

X,Y,Z_AXIS_CURR curr

as follows:

error% = deviation

tolerance
× 100 (2)

In particular, an error % greater than 100 reflects an out of
tolerance machining while an error % lower than 100 cor-
respond to a machining that does not exceed the tolerance
limits.

The final dataset consist of 438 observations/physical
tools collected by two different mc from the 1st October
2019 to the 31st May 2020.

Predictive model

For solving the regression task we have taken into account
predictive performance, interpretability, and predictive accu-
racy. These factors represent also the three fundamental
requirements defined by the company for solving the PdM
task. For this reasonwe selected the RFmodel for solving the
regression task. RF represents a variant of bagging proposed
by Breiman (2001) and consists of an ensemble of regression
trees (RTs) (i.e., n◦ of RT) generated by independent identi-
cally distributed random vectors. RF is modeled by sampling
from the observations, from the features (i.e., n◦ of features
to be selected) and by changing two tree-parameters (i.e.,
max n◦ of splits and max n◦ of size) Kuncheva (2004). The
idea behind this sampling is tomaximize the diversity among
trees, by sampling from the features set and from the data set
as well. In particular, the random feature selection is carried
out at each node of the tree, by choosing the best feature to
split within a subset of the original feature set. In a standard
classification problem, the idea is to built an ensemble of DT
that aims to split the data into subsets that contain instances
with similar values (homogenous). Since we aim to solve a
regression problem, the best splitting features for each node
was computed according to the sum of squared error.

AlthoughRF allows learning a non-linear decision bound-
ary, the RF originated as ensemble tree based model ensures
an intuitive notion of interpretability: it allows providing a
direct interpretation of the most discriminative KPIs. How-
ever, the degree of interpretability depends on the model size
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(i.e., number ofweak learners/regression tree and depth of the
tree) Molnar et al. (2019). Hence, the interpretability of RF
was encouraged by constraining the number of weak learners
and the depth of the tree in the validation set. This lead also
to control the computation effort for the training phase.

The importance of a specific KPI in the RF model to
identify the percentage measurement error (error %) was
measured according to a permutation of out-of-bag feature
observation Boulesteix et al. (2012). AKPI is considered rel-
evant to identify the error %, if permuting its values should
affect the model error. On the other hand, if a KPI was not
relevant, then permuting its values should not affect sig-
nificantly the model error. The permutation importance of
each feature is computed as: 1 − error (after permuting the
feature values). Compared to the standard impurity-based
importance the permutation approach is unbiased towards
high cardinality features and measure directly the ability of
feature to be useful to make prediction Janitza et al. (2018).

Cloud architecture

Acontainer logic was adopted for packaging theML applica-
tion and all its dependencies, so the application runs reliably
from one computing environment to another. A docker image
is essentially a snapshot of a container. Microsoft Azure
IoT portal was adopted for providing a cloud-based environ-
ment based on virtualized containers. This environment can
ensure hardware and software isolation, flexibility, and inter-
dependencies between the IoT devices and data collection,
features extraction, and prediction phases. These properties
are suitable for our industrial use case since the proposedDSS
is currently designed to work with four operating machines
and it provides the capability to be scaled up to collect a huge
amount of data from different interconnected machines. This
advantage also lies the foundations to continuously update
the model, once a new machine is connected to the system.

Our architecture is depicted in Fig. 2 Cloud Architecture.
We used a Python ML library for training and testing our
feature extraction stage and RF model with respect to other
state-of-the-artMLapproaches.Afterward the feature extrac-
tion procedure and the containerized RF model was pushed
to Azure Container Registry. During this step, we included
the azureml-monitoring and azureml-defaults for enabling
respectively the data collection feature and the deployment
to Kubernetes. Consequently, theMLmodel was deployed to
AzureKubernetesService (AKS). For our purposeweconfig-
ured the AKSwith 3 agent nodes of type Standard_D3_v2 (4
vCores), thus leading to a total of 12 vCores. Additionally, in
our AKS configuration, we explicitly enable data collection
(input data and predictions outcome). The L2 CMM Topic
together with the L0 Machine Center Topic were exported
from SQL database to azure blob storage, by allowing a con-
tinuous testing and update/retraining of the ML model once,

for instance, a drift situation was detected. All the prediction
results together with the model weights (i.e. decision rule of
the ensemble trees) were stored in the Azure blob storage.

Data analytics

AGUI interface was created to display the predicted error %
over different tl, pt, frindex. In particular, the GUI was final-
ized to provide a timely indication to the machine operator
when the error % exceeds a certain tolerance threshold that
may be different for each tl, pt, frindex.

Additionally the Azure Application Insights instance was
enabled for providing a high level overview of the deployed
API in terms of featuring failed requests, response time, num-
ber of requests and availability. The log analytic feature of
the Application insights allows to view and inspect the logs
provided from our containerized model in terms of stdout
and stderr.

Experimental procedure

Experimental comparisons

We decided to compare our RF based PdM approach with
respect to other state-of-the-art ML approaches employed
for solving PdM task. In particular we have considered the
following models:

• Linear Regression with ridge penalty (LR ridge) Susto
et al. (2012);

• Linear Regression with elastic net penalty (LR elastic)
Susto et al. (2012);

• Regression Tree Romeo et al. (2020); Zhou et al. (2018);
• XGBoost Calabrese et al. (2020);
• SVM with Gaussian Kernel Bilski (2014)
• Multi layer perceptron (MLP) Jin et al. (2017); Khan and

Yairi (2018)
• LongShort TermMemory (LSTM)Cachada et al. (2018);
Rivas et al. (2019)

Experimental design

A 10-fold Cross Validation (10-CV) procedure was per-
formed in order to evaluate the performance of the RFmodel.
The hyperparameterswere optimized by implementing a grid
search in a nested 5-CV. Hence, each split of the outer CV
loop was trained with the optimal hyperparameters (in terms
of mean squared error) tuned in the inner CV loop. Despite
this model checking procedure is expensive in terms of com-
putation effort it allows to obtain an unbiased and robust
performance evaluation Cawley and Talbot (2010).
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Table 5 shows the different hyperparameters for the pro-
posed ML models and all competitors’ ML approaches, as
well as the grid-search set.

For the LR ridge theλ penalty controls the 2-norm regular-
ization. For the LR Elastic α = λ1 + λ2 and l1_ratio=

λ1
λ1+λ2

where λ1 and λ2 control separately the 1-norm and 2-norm
regularizations.

Evaluationmetrics

The following metrics are considered to evaluate the predic-
tive performance of the regression task:

• Mean Absolute Error (MAE): it measures the absolute
difference between the predicted and the ground truth
error %;

• Mean Squared Error (MSE): it measures the squared dif-
ference between the predicted and the ground truth error
%;

• R2 score (coefficient of determination): it is a proportion
between the variability of the data and the correctness of
the model used. It varies in range: [−∞; 1] Di Bucchi-
anico (2008).

The statistical significance of the R2 score was evaluated
at the 5%significance levelwith respect to the zero value. The
R2 score distribution over each CV fold was found to follow
a normality distribution according to the Anderson-Darling

Table 5 Predictive performance
and computation effort of ML
approaches

Model Hyp Range

RF n◦ of regression trees {5, 10, 15, 20, 25}
n◦ of features to select {1, 2, 4}

LR ridge λ {10−4, 10−3, 10−2, 10−1}
LR elastic α {10−4, 10−3, 10−2, 10−1}

l1_ratio {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4, 0.5}
RT Max depth {5, 10, 15, 20, 25}

Min n◦ of leaf size {5, 10, 20, 50, 100}
XGBoost Learning rate {0.001, 0.01, 0.10}

Max n◦ of estimators {5, 10, 15, 20, 25}
Max depth {5, 10, 15, 20, 25, 50, 75}
n◦ of features to select {1, 2, 4}

SVM Gaussian Box constraint {1, 5, 10, 50, 100, 500, 103, 5 × 103, 5 × 104, 104}
Kernel Scale {10−2, 0.1, 1, 10, 102, 103, 104}

MLP Learning rate {10−5, 10−4, 10−3, 10−2}
n◦ of hidden layers {1, 2, 4}
n◦ of units {4, 8, 16, 32}

LSTM Learning rate {10−5, 10−4, 10−3, 10−2}
n◦ of hidden layers {1, 2, 4}
n◦ of units {4, 8, 16}

Table 6 Predictive performance
and computation effort of ML
approaches

Model MAE MSE R2 Training + validation (s) Testing (s)

RF 0.089 0.018 0.868∗ 2.353 (0.328) < 10−3 (0)

LR ridge 0.166 0.054 0.591∗ 0.521 (0.007) < 10−3 (0)

LR elastic 0.166 0.054 0.591∗ 0.531 (0.058) < 10−3 (0)

RT 0.100 0.023 0.835∗ 0.310 (0.022) < 10−3 (0)

XGBoost 0.088 0.017 0.877∗ 80.740 (10.057) < 10−3 (0)

SVM Gaussian 0.151 0.047 0.648∗ 1.223 (0.101) < 10−3 (0)

MLP 0.161 0.051 0.618∗ 39.454 (0.651) 0.062 (0.002)

LSTM 0.156 0.044 0.667∗ 89.549 (2.618) 0.570 (0.023)

The best results for each metric are indicated in bold
∗Whether the R2 distribution over the 10-fold is significantly higher than 0
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test (A = 0.436, p = 0.246). Hence, we used the parametric
paired t-test (α = 0.05) to compare the performance of the
proposed approach with respect to state-of-the-art work.

Experimental results

In this section we show the experimental results for the the
proposedDSS specifically tailored for solving PdM task. The
prediction of the processing quality represents the main task
we aim to solve. All the results related to the predictive per-
formance and computation effort of the proposed approach
with respect to the state-of-the-art approaches are depicted
in “Predictive performance” and “Computation effort” sec-
tions, while the results related to the model interpretability,
i.e. the most relevant KPIs, are shown in “Interpretability”
section. More details on the implemented GUI for the pro-
posed DSS are reported in “Data analytics: GUI interfaces”
section.

Predictive performance

The predictive performance of the RF model is shown in
Table 6. It can be noted that the best prediction results were
obtained for our RF and XGboost model (R2 score 0.868 and
0.877 respectively), while the LR model achieved the lowest
predictive performance (R2 score 0.591). Accordingly the
RF and XGboost models show similar and competitive per-
formance in terms of MAE (0.089 and 0.088 respectively)
and MSE (0.018 and 0.017 respectively). R2 score distribu-
tion of RF is significantly higher (p < 0.05) than ML based
regression model (i.e. LR ridge, LR elastic net, RT, SVM
Gaussian) and DL based regression model MLP and LSTM.
In particular, the performance of sequential DL approaches
might be limited by the low presence of a huge amount of
annotated sequential data in this PdM scenario, in order to
learn spatio-temporal dependencies.

Figure 4 shows the comparison between the predicted
error % from RF and its real values obtained from the L2
CMM Topic. We focused on a subset of 42 testing samples
(one fold of CV-10 procedure).

Computation effort

Taking into account the high performance achieved by the
proposed approach, we decided to test the computation effort
with respect to other state-of-the-art ML approaches. Table 6
compares the time effort (test and training+validation stage)
of the proposed RF algorithm with respect to other state-of-
the-art algorithms. All the experimental comparisons were
performed on Intel Core i7-4790 CPU 3.60 GHz with 16 GB

Fig. 4 Predictive performance of RF for the estimation of the error %
over a subset of observations (tl, pt, frindex): red line ground truth, blue
line prediction (Color figure online)

Fig. 5 Feature/permutation importance of RF model(Color figure
online)

of RAM and NVIDIA GeForce GTX 970. Although the pre-
dictive performance of RF is similar to XGboost, the training
and validation of RF model are significantly (p < 0.05)
faster than XGboost with a gain of 34x. This peculiarity
ensures the possibility to retrain the ML model in the cloud
with an average latency of 2.353 s for learning from around
400 new samples. At the same time the RF prediction latency
may be neglected < 10−3 s and the RF model can give a
timely and consistent prediction.

Interpretability

The interpretability of the proposed RFmodel was measured
according to the feature/permutation importance (Figure 5).
The speedKPI achieved, on average, the highest permutation
importance score, thus highlighting the most discriminative
power of this KPI with respect to the other features. The fea-
ture importance together with the predicted error % values
are the salient ML outcomes of the proposed DSS for sup-
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Fig. 6 Examples of GUI
interface of the proposed DSS
for four different observations
(tl, pt, frindex): the predicted
error % is represented by blue
line and reported below the
gauge chart, the black line
represents the admissible
tolerance threshold that can
change across different triplets.
Notice how an error % greater
than the admissible threshold
(red bar) represents a significant
machining error (i.e. alarm
event), while an error % that
falls within the yellow bar
correspond to a potential risk
situation (i.e. machining error
below but close to tolerance
limits). The green bar reflect
how the machining is properly
executed within the tolerance
limit (Color figure online)

(a) (b)

(c) (d)

porting themaintainer/operator during themachining quality
task. For instance, taking into account the predicted error %,
the operator may exploit preventive action in order to avoid
future errors during the machine processing. At the same
time, the localization of the most discriminative KPI may
address the human operator to detect the source of the error,
while optimizing the overall equipment effectiveness, pro-
ductivity, and quality of production.

Data analytics: GUI interfaces

Figure 6 shows an examples of GUI interfaces of the pro-
posed DSS for four different observations (tl, pt, frindex).
We represent the predicted error % and the tolerance limits,
which can be different for each observation. In particular,
a predicted error % greater than the admissible threshold
(red bar) represents a significant machining error (i.e. alarm
event), while an error% that falls within the yellow bar corre-
spond to a potential risk situation (i.e. machining error below
but close to tolerance limits). The green bar reflect how the
machining is properly executed within the tolerance limit.

Taking into account the high predictive results and the
interpretability of the proposed approach, our GUI interface
is not limited to show only the predicted error % (i.e. Fig. 6).
In fact, we go further by supporting the operator by showing
the average value of the KPI predictors (see Fig. 7) for a spe-
cific tl across different pt and frindex. Additionally, the trend
of KPI predictors together with the life parameter (i.e. life of
the tool at the beginning of the step) is displayed for a spe-
cific tl and frindex across pt and across time in a separated
dashboard, as shown in Fig. 8. These GUI interfaces may
empower the overall machining quality process by support-

ing the operators to (i) predict alarm situation (i.e. significant
machining error) and (ii) interpret and localize the source of
the error by focusing on the average and temporal value of
the most discriminative KPI predictors (see Fig. 5).

Conclusions

We have shown that our DSS approach is effective in solv-
ing the machining quality and PdM task in a real industrial
use case. The main pillars of the proposed DSS consist of
data collection, feature extraction, predictive model, cloud
storage, and data analytics. The strict collaboration between
the company and University allowed to design, validate and
test the proposed approach in a real industrial PdM use
case task, by considering the dataset described in “Fea-
ture extraction” section. Taking into account the achieved
experimental results, we demonstrated the effectiveness of
our theoretical frameworks into a real industrial environ-
ment. In fact, our DSS approach was demonstrated to be
the best trade-off between predictive performance, computa-
tion effort, and interpretability. These peculiarities together
with the integration of our ML approach into the proposed
cloud-based architecture would allow the optimization of
the machining quality processes by directly supporting the
maintainer/operator. These advantages may impact to the
optimization of maintenance schedules and to get real-time
warnings about operational risks by enabling manufacturers
to reduce service costs bymaximizing uptime and improving
productivity.

A current limitation is represented by the employed ML
model, which is re-trained every time from scratch when a
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Fig. 7 Example of the proposed GUI interface displaying the average value of the KPI predictors for a specific tl across different pt and frindex

Fig. 8 Example of the proposed GUI interface displaying the trend of KPI predictors (blue line) together with the life parameter (red line) (i.e. life
of the tool at the beginning of the step) for a specific tl and frindex across pt (top graph) and across time (bottom graph)

certain amount of new data is stored. As future work, we
aim to integrate a fully-automated incremental learning pro-
cedure by updating continuously the model parameter Chai
and Zhao (2020). The new data continuously acquired and
stored over time in the proposed cloud framework can be
used to refine ML model and improve its predictive per-
formance according to an incremental learning procedure.
As a further limitation, the proposed model only works for
certain tools installed on the processing machines. How-
ever, as future work, for the proposed ML model we aim
to improve the generalization performance of the proposed
approach across different tools and types of processing. In
addition, meta-heuristic algorithms (Abualigah et al., 2022;

Abualigah, Diabat, Sumari, et al., 2021) could be imple-
mented to help in selecting the optimal hyperparameters for
ML model to improve the stability and the testing predictive
performance Shah et al. (2021); Zhang et al. (2020). For the
full applicability of PdM in all the company’s tasks, another
future work direction could be addressed to build integrated
cost-benefit models that include the impact and the benefit of
our approach on the entire asset management of the company
Compare et al. (2019).
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