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Abstract

Background and objectives: The use of deep learning for preterm infant’s
movement monitoring has the potential to support clinicians in early recog-
nizing motor and behavioural disorders. The development of deep learning
algorithms is, however, hampered by the lack of publicly available annotated
datasets. Methods: To mitigate the issue, this paper presents a Generative
Adversarial Network-based framework to generate images of preterm infants
in a given pose. The framework consists of a bibranch encoder and a con-
ditional Generative Adversarial Network, to generate a rough image and a
refined version of it, respectively. Results: Evaluation was performed on
the Moving INfants In RGB-D dataset which has 12000 depth frames from
12 preterm infants. A low Fréchet inception distance (142.9) and an incep-
tion score (2.8) close to that of real-image distribution (2.6) are obtained.
The results achieved show the potentiality of the framework in generating
realistic depth images of preterm infants in a given pose. Conclusions:
Pursuing research on the generation of new data may enable researchers to
propose increasingly advanced and effective deep learning-based monitoring
systems.
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1. Introduction

Preterm birth is defined by the World Health Organisation (WHO) as
a birth occurring before the end of the 37th gestational week. This event
affects 15 million newborns each year and its incidence tends to increase.
Preterm birth occurs for a variety of reasons (the pregnant woman’s Sars-
Cov-2 infection is one of the major implications of preterm birth to date) and
its consequences are the leading cause of death for children under 5 years of
age [1].

Preterm birth, particularly extremely one, entails organs’ immaturity,
which causes infants’ difficulties in coping with the extra-uterine environ-
ment and possible impairment of neurodevelopmental functioning. Timely
identifying preterm infants at risk of developing severe neurological disor-
ders is still an open challenge in clinics. The assessment of preterm infants’
spontaneous movements, i.e., general movements, has a crucial diagnostic
and prognostic role [2]. However, despite its clinical relevance, movement
evaluation is sporadic and qualitative, as it mostly relies on rating scales
following observation of infants’ by clinicians in neonatal intensive care units
(NICUs) [3].

To support NICU clinicians, over the years several computer-aided move-
ment monitoring systems have been proposed in the literature [4]. Recently,
vision systems have drawn the attention of the researchers [5], [6], [7], [8].
Indeed, these contactless systems do not influence infant’s free movement nei-
ther cause discomfort. At the same time, they leave clinicians and parents
free to interact with the infants [4].

These movement monitoring systems rely on deep learning (DL) to predict
infants’ pose or silhouette, tackling challenges such as high intra- and inter-
infant variability in terms of body size and movement patterns [9].

The deployment of these DL methodologies for multimedia data analysis
in the actual clinical practice is, however, hampered by the lack of large pub-
licly available datasets for algorithm training. This data shortage may be
explained considering that image collection in NICUs is hard -particularly
during the pandemic period- and labelling is a tedious procedure that re-
quires the supervision of expert clinicians require the supervision of experi-
enced clinicians, whose efforts are currently deployed in the fight against the
pandemic [10]. Furthermore, collecting videos of infants exhibiting patho-
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logical movement patterns is not trivial: clinicians should review hours of
recordings, select frames with general movements of interest and categorise
them [11].

Over the years, we worked on implementing DL algorithms to preterm
infants’ limb-movement monitoring [12], [6], [5], [7], and often faced issues
relevant to datasets that are not fully representative of the variability of
preterm infants’ movement. To attenuate this issue, in this work we present
a generative adversarial network (GAN)-based framework to generate depth
images depicting preterm infants in given poses. With our framework, is-
sues relevant to image acquisition and labeling may be, at least partially,
mitigated. The contribution of this work may be summarized as follows:

1. Generation of depth images of preterm infants in given poses for sup-
porting research in the field of DL monitoring systems for movement
assessment. Development of a novel GAN-based framework trained to
generate depth images of infants in a given pose. Depth images are
analyzed to attenuate privacy concerns (Sec. 2).

2. Validation on a publicly available dataset. A comprehensive study is
conducted using 12000 depth frames acquired in the actual clinical
practice to experimentally investigate our method. The dataset used
is public to ensure fair comparisons (Sec. 3).

To foster research in the field, the code of the proposed GAN-based frame-
work is available online1.

1.1. State of the art

Extensive literature on GANs today exists [13] but few efforts were spent
in the field of preterm infants. In [14], GANs are used to generate labeled
RGB images for pedestrian-detection task. This is a two-steps methodology:
(i) given an RGB image, pedestrians are localized and their bounding boxes
are replaced by random noise, (ii) the new image is fed to a generator trained
to replace the noise with a new pedestrian.

The work in [15] proposes a pedestrians’ movements generation approach
using GANs. A first network generates poses from input noise in the form of
pedestrians’ skeletons. A second generator is fed with these poses to output
a realistic sequence of movements. A discriminator recognises whether the

1https://vrai-group.github.io/guided-infant-generation
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produced sequence is realistic or not. The approach is tested on publicly
available datasets (i.e., the Caltech Pedestrian dataset [16], Joint Attention
in Autonomus Driving dataset [17] the Daimler dataset [18]).

A relevant approach is proposed in [19]. The authors explore the use
of generative models to generate RGB images of pedestrians in given poses.
An autoencoder generates rough images that are then refined and enriched in
details via a conditional Deep Convolutional GAN (cDCGAN). The approach
is validated on two publicly available datasets: the Market-1501 [20] and
DeepFashion [21].

The only approach in the literature to infants’ images generation is pre-
sented in [22]. The approach is mainly conceived for adult-image generation
using the Human 3.6 dataset [23] and only preliminary results for infants
are shown. The authors proposes an autoencoder architecture that, from
an RGB image depicting a person and a target-pose image, generates a new
RGB image of the same person in the target pose. Here, a main limitation
lies in the low quality of the generated infants’ images, which are poor in
those details that are needed for monitoring application in clinical scenarios.
Examples include limb extremities (hands and feet), which are blurred.

To tackle the limitation in [22] and inspired by [19], in this work we
propose a GAN-based framework for generating depth images of infants in
desired poses. Our approach shares a framework similar to the one proposed
in [19] to ensure images rich in fine details. It should be noted that we chose
to generate depth images because they preserve privacy compared to RGB
ones, as each pixel in the depth image encodes the distance from the camera.

2. Methods

Figure 1 shows our GAN-based framework, which consists of a double-
branch convolutional autoencoder (G1) and a cDCGAN. As shown in [19],
using such a framework, instead of a single autoencoder as in [22], allows to
generate more realistic images.

Our GAN-based framework is fed with: (i) a depth input image of a
preterm infant (IC), which acts as condition image, and (ii) a target pose
(PT ). PT is a stack of N images, where each image is a keypoint mask built,
as explained in Sec. 2.1, from a depth image (IT ) of a different infant. The
purpose of our framework is to translate the infant depicted in IC into the
target pose PT .
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Figure 1: Workflow of the proposed generative adversarial network (GAN)-based frame-
work to generate depth images of preterm infants with a given poses. Acronyms are
reported in Table 1.

Table 1: Acronyms used in Sec. 2.

cDCGAN Conditional deep convolutional GAN
D Discriminator
G1 Double branch convolutional autoencoder
G2 Double branch convolutional autoencoder in cDCGAN
GAN Generative adversarial network
H Height of IC
IC Input conditional depth image
ID Difference map in output from G2

ˆIPT1
Output of G1

ˆIPT2
Output of the proposed GAN-based framework

IT Depth image from a different infant
PT Target pose
N Number of keypoints
W Width of IC
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Figure 2: Top-view depth image with 14 infants’ keypoints annotation is shown.

The choice of having two different infants for IC and IT is driven by the
need of maximising data variability both in terms of movement patterns and
infants’ sizes.

In our framework, G1 generates a rough image ( ˆIPT1
) of the infant in IC

with the desired pose PT .
The output ofG1 is fed to the cDCGAN, which consists of a double-branch

autoencoder generator (G2) and a discriminator (D), where D is used during
the training phase only.

G2 and D are trained jointly to obtain a refined version ( ˆIPT2
) of ˆIPT1

. In
detail, G2 outputs a difference map (ID) with infant’s fine details. The ID is
added to ˆIPT1

as to obtain ˆIPT2
.

D is trained to classify the pairs (IT , IC) as real and ( ˆIPT2
, IC) as fake,

respectively. For D to recognise ( ˆIPT2
, IC) as real, G2 tries to produce an ID

as rich as possible in terms of infant’s details.
Opposite to [19], we chose a double-branch architecture for G1 and G2

inspired by our previous work on infants’ pose estimation [5], where the
double-branch architecture allowed parallel processing of joints and joint con-
nections, improving pose-estimation performance.

2.1. Data Preparation

Following our previous work [5], we modeled infant’s pose as a set of 12
connected keypoints for limbs’ joints, and 2 keypoints for neck and head, as
shown in Fig. 2, for a total of N = 14 keypoints. Starting from this keypoint
model, PT was made of 14 binary masks with size HxW . Each mask refers
to a single keypoint and was obtained masking all the pixels lying in a circle
of a defined radius (rk) centered at the keypoint.
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Figure 3: The G1 architecture.

Figure 4: The cDCGAN architecture.
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Table 2: G1 architecture specification.

Name Kernel (Size / Stride) Channels
Downsampling path

Input – 15
Block 1 - Conv. layer 3x3 / 1 128
Block 1 - Branch 1 3x3 / 1 64

3x3 / 1 64
Block 1 - Branch 2 3x3 / 1 64

3x3 / 1 64
Block 1 - Concatenation – 128
Block 2 - Conv. layer 2x2 / 2 256
Block 2 - Branch 1 3x3 / 1 128

3x3 / 1 128
Block 2 - Branch 2 3x3 / 1 128

3x3 / 1 128
Block 2 - Concatenation – 256
Block 3 - Conv. layer 2x2 / 2 384
Block 3 - Branch 1 3x3 / 1 192

3x3 / 1 192
Block 3 - Branch 2 3x3 / 1 192

3x3 / 1 192
Block 2 - Concatenation – 384
Block 4 - Conv. layer 2x2 / 2 512
Block 4 - Branch 1 3x3 / 1 256

3x3 / 1 256
Block 4 - Branch 2 3x3 / 1 256

3x3 / 1 256
Block 2 - Concatenation – 512

Bridge
Fully - connected 1 – 64
Fully - connected 2 – 12x16x128

Upsampling path
Block 5 - Branch 1 3x3 / 1 320

3x3 / 1 320
Block 5 - Branch 2 3x3 / 1 320

3x3 / 1 320
Block 5 - Concatenation – 640

Block 5 - Upsampling layer – 640
Block 6 - Conv. layer 1x1/1 384
Block 6 - Branch 1 3x3 / 1 384

3x3 / 1 384
Block 6 - Branch 2 3x3 / 1 384

3x3 / 1 384
Block 6 - Concatenation – 768

Block 6 - Upsampling layer – 768
Block 7 - Conv. layer 1x1/1 256
Block 7 - Branch 1 3x3 / 1 256

3x3 / 1 256
Block 7 - Branch 2 3x3 / 1 256

3x3 / 1 256
Block 7 - Concatenation – 512

Block 7 - Upsampling layer – 512
Block 8 - Conv. layer 1x1 / 1 128
Block 8 - Branch 1 3x3 / 1 128

3x3 / 1 128
Block 8 - Branch 2 3x3 / 1 128

3x3 / 1 128
Block 8 - Concatenation – 256

Output 1x1/1 1
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2.2. G1: the first double-branch autoencoder

The architecture of G1 is shown in Fig. 3 and described in details in
Table 2.

The down-sampling path (encoder) of G1 consists of 4 consecutive double-
branch blocks. Apart from the first block where the first convolutional layer
has kernel size 3x3 and stride 1, the subsequent blocks are built as follows:

1. One convolutional layer with Fi kernels, each with size 2x2, with a
stride of 2.

2. Two branches with two convolutional layers with Fi/2 filters, kernel
size 3x3 and stride 1.

3. A layer to concatenate the features maps in output from each branch.

The output of each convolutional layers is activated with the Rectified Linear
Unit (ReLU) activation function. The Fi for each block is reported in details
in Table 2.

As in [19], the encoder ends with two fully-connected layers aimed at
empowering information exchange between distant body parts.

The number of blocks in the up-sampling path (decoder) is equal to that
of the encoder, but each double-branch, except for the first block, has twice
as many kernels as the corresponding block in the encoder. This provides the
network with boosted generalisation This provides the network with boosted
generalisation power [19].

2.3. cDCGAN: Conditional Deep Convolutional Generative Adversarial Net-
work

G2 shares the same architecture of G1 except for the 2 fully-connected
layers and the last two double-branch blocks of G1. This architectural sim-
plification is driven by the fact that G2 needs to produce an image with only
high-frequency details [19].

The architecture of D in Table 4 is made of 4 convolutional blocks fol-
lowed by a fully-connected layer. The blocks are made of 2 convolutional
layers with an increasing number of filters, from 64 to 512. The last layer
is a binary classification layer with a neuron. Following standard guidelines
for GANs [24], each convolutional kernel has size 5x5 and strides of 2, to
reduce the feature-map size. Batch normalization is applied at the end of
each convolutional block and LeakyReLU activation function with a value of
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Table 3: G2 architecture specification.

Name Kernel (Size / Stride) Channels
Downsampling path

Input – 15
Block 1 - Conv. layer 3x3 / 1 128
Block 1 - Branch 1 3x3 / 1 64

3x3 / 1 64
Block 1 - Branch 2 3x3 / 1 64

3x3 / 1 64
Block 1 - Concatenation – 128
Block 2 - Conv. layer 2x2 / 2 256
Block 2 - Branch 1 3x3 / 1 128

3x3 / 1 128
Block 2 - Branch 2 3x3 / 1 128

3x3 / 1 128
Block 2 - Concatenation – 256

Conv. layer 2x2 / 2 384
Conv. layer 3x3 / 1 384
Conv. layer 3x3 / 1 384

Upsampling layer – 384
Upsampling path

Block 3 - Conv. layer – 128
Block 3 - Branch 1 3x3 / 1 192

3x3 / 1 192
Block 3 - Branch 2 3x3 / 1 192

3x3 / 1 192
Block 3 - Concatenation – 384

Block 3 - Upsampling layer – 384
Block 4 - Conv. layer – 128
Block 4 - Branch 1 3x3 / 1 128

3x3 / 1 128
Block 4 - Branch 2 3x3 / 1 128

3x3 / 1 128
Block 4 - Concatenation – 256

Output 1x1/1 1

Table 4: D architecture specification.

Name Kernel (Size / Stride) Channels
Input – 1

Block 1 - Conv. layer 5x5 / 2 64
Block 1 - Batch Norm. layer

Block 2 - Conv. layer 5x5 / 2 128
Block 2 - Batch Norm. layer

Block 3 - Conv. layer 5x5 / 2 256
Block 3 - Batch Norm. layer

Block 4 - Conv. layer 5x5 / 2 512
Block 4 - Batch Norm. layer

Output 1
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Figure 5: To compute the PoseMask Loss (LG1

PoseMask), infant’s rough segmentation mask
(MT ) is obtained from IT using morphological operators.

negative slope coefficient equal to 0.2 is used. The neuron in the last layer is
activated with a linear function.

While conducting our experiments we realized that G2 produced a com-
pletely black ID. This happened because the discriminator immediately clas-
sified ( ˆIPT2

, IC) as a real pair, inducing, as a consequence, G2 to not produce

any refinement. However, the quality of ˆIPT1
was still too poor.

Thus, to facilitate D in recognizing ( ˆIPT2
, IC) as fake, we added noise to

ˆIPT1
. This was done on-the-fly during the cDCGAN training adding random

noise to each PT for each batch.

2.4. Training protocol

To train G1, we implemented a custom loss, i.e. the PoseMask Loss
(LG1

PoseMask):

LG1
PoseMask = ||( ˆIPT1

− IT )⊙ (1 +MT )||1 (1)

where ⊙ and MT refers to pixel-wise multiplication and infant-body rough
segmentation, respectively.

The LG1
PoseMask is an L1 loss aimed at capturing global information of the

target image IT focusing on the infant’s body, identified by MT . With a view
to obtain MT , as shown in Fig. 5, all the PT masks were joined together in a
single image using the boolean OR operation. The radius (rh) for the head
keypoint mask was dilated to overlay the whole head. Each keypoint was
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linked to its neighbours and morphological operations (dilation and erosion)
were applied.

D was trained to output 1 and 0 for the real (IC , IT ) and fake (IC , ˆIPT2
)

pair, respectively, minimizing the adversarial loss (LD
adv):

LD
adv = Lbce(D(IT , IC), 1) + Lbce(D( ˆIPT2

, IC), 0) (2)

where Lbce is the binary cross-entropy loss.
G2 was trained to cheat D by improving the ˆIPT2

output minimizing the
loss:

LG2
adv = Lbce(D( ˆIPT2

, IC), 1) + λ||( ˆIPT2
− IT )⊙ (1 +MT )||1 (3)

where λ is a constant parameter that was set experimentally. For training
the proposed GAN-based framework, Adam was used as optimizer.

3. Experimental Protocol

3.1. Dataset

The dataset used in this study was the Moving INfants In RGB-D (MINI-
RGBD) [25], a publicly available dataset of videos from 12 infants recorded in
top-view mode. The dataset consists of 12000 depth frames (i.e., 1000 frames
for infant) with resolution 480x640 pixels. To improve data variability by re-
ducing the amount of similar movements, downsampling was performed every
5 frames, resulting in a total of 200 frames per infant. Such a downsampling
procedure is in line with the infants’ movement rate [26]. All frames were:
(i) resized, with a nearest-neighbor interpolation technique, from 480x640 to
96x128 pixels to reduce the training time and amount of memory required
and (ii) normalized to the intensity range [-1,1]. PT was obtained considering
rk equal to 2 pixels.

The dataset was split using 10 infants to train and validate the framework
and the remaining 2 for testing purposes. Each pair (IC , IT ) was obtained
without mixing infants from training, validation and test set to avoid possible
biases [19]. The total number of pairs was 11.600 for training and validation
and 400 for testing.
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3.2. Training settings

For MT , we set rh equal to 40 pixels to fully overlay the head surface.
We set the learning rate equal to 2e-5 for G1, G2 and D. The decay of the
learning rate was used only for G1, setting a step decay equal to 0.5 at each
epoch.

We chose a batch size of 16, as a trade-off between training speed and
memory constraints, and set the number of training epochs equal to 10 and
200 for G1 and cDCGAN, respectively. The higher number of epochs for
the cDCGAN was required due to the more complex architecture. After
extensive tuning, we set λ equal to 10. To attenuate vanishing-gradient
issues, the training of G2 occurred during all multiple iterations of 3, while
the training of D occurred during the remaining iterations [19].

In order to increase the variability of the training set, particularly in terms
of infants’ positions with respect to the camera field of view, on-the-fly data
augmentation was performed. (i) Affine (rotation in range [-90,90] degrees,
vertical shift in [-30,30] pixels and horizontal shift in [-10,10] pixels) and (ii)
structural transformations, were applied during G1 training.

3.3. Performance assessment and ablation study

Assessing the performance of GANs is still an open challenge in the liter-
ature [27]. In this work, we decided to compute the Inception Score (IS) [28]
and Fréchet Inception Distance (FID) [29]. Lower values of FID mean bet-
ter results. These metrics capture the quality (FID) and diversity (IS) of
the generated images, and are widely used in the literature for evaluation of
generated images [19, 30]. For the IS score on the generated distribution, we
considered a value close to the IS score on the real distribution to be good.

These aforementioned metrics rely upon the Inception network pretrained
on ImageNet. Considering that ImageNet dataset has RGB images, we repli-
cated for 3 times the depth frame, obtaining a 3-channel image. We further
resized it to 299x299 pixels (in line with pretraining), removed image mean
and normalized by the standard deviation.

To focus the evaluation only on infants without considering the back-
ground, we further designed the Mask-FID and the Mask-IS score, which are
computed from the generated image multiplied by the corresponding MT .

Quantitative performance with the t-distributed stochastic neighbor em-
bedding (t-sne) plot was computed too. This plot maps high-dimensional
data by assigning each point a position in a two-dimensional map. To get
the t-sne plot, each real and generated image was embedded with a feature
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Table 5: Performed experiments, where mono refers to the implementation of monobranch
blocks.

Gmono
1 G1 Gmono

2 G2

E1 - Monobranch autoencoder ✓
E2 - Bibranch autoencoder ✓
E3 - Monobranch GAN-based framework [19] ✓ ✓
Proposed GAN-based framework ✓ ✓

vector of size 512, obtained from the Global Average Pooling layer of VGG-16
pretrained on ImageNet. Principal Component Analysis (PCA) was applied
on the 512 features retaining the first 50 principal components. For the t-
sne plot we considered a perplexity and number of iteration of 50 and 6000,
respectively, as done in [31].

We conducted ablation studies as shown in Table 5. The first experiment
tested the performance of an autoencoder, as the one proposed in [22]. The
architecture was the same presented in Sec. 2.2 but with monobranch blocks
(i.e., each block of convolutions in consists of a single branch). We further
considered the bibranch version of the autoencoder in E2 (i.e., G1). In E3,
we implemented the monobranch version of our GAN-based framework which
is the one proposed in [19].

4. Results

Table 6 shows the quantitative results in terms of IS and FID on test set
for E1, E2, E3 and the proposed GAN-based framework. E1 achieved the
IS value (2.79) closest to that of the real dataset, followed by our framework
(2.85), E3 (2.88), and E2 (2.99). When considering Mask-IS, E3 achieved the
best score (2.67), followed by E1 (2.65), the proposed framework (2.54) and
E2 (2.47). The E1 (165.77) and E2 (179.20) achieved the highest values for
FID, highlighting the benefit of the cDCGAN framework. The same trend
was seen for Mask-FID. Particularly, the proposed GAN-based framework
achieved a MASK-FID similar to that of [19], with a difference of 4.79.

Figure 6 shows the qualitative results for all the conducted experiments.
When observing the figure our GAN-proposed framework generates images
closest to the real ones and is able to reproduce the infant’s upper and lower
limbs with finer details with respect to the architectures of the other experi-
ments.
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Table 6: Quantitative metrics obtained with E2 and by the proposed GAN-based frame-
work, where real and generated refer to the metrics computed on the real and generated
images of the test set, respectively.

IS (real) IS (generated) Mask-IS (real) Mask-IS (generated) FID Mask-FID
E1 2.67 2.79 3.26 2.65 165.77 152.02
E2 2.67 2.99 3.26 2.47 179.20 148.23
E3 2.67 2.88 3.26 2.67 126.45 125.39

Proposed 2.67 2.85 3.26 2.54 142.94 130.18

Figure 6: Qualitative results for input IC . Results are shown for E1, E3, E2, and for the
proposed framework in columns 3,4,5,6, respectively. In rows 1, 2, 3, arrows highlight main
difference in the generation of lower- (blue) and upper-limb (red) details. Samples on rows
5 and 6 show that the depth information is more realistic for the bibranch implementation.
IT in column 2 is shown too as to clarify in which desired pose PT the infant depicted in
IC should be translated.
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Figure 7: Comparison of real (red) and generated (blue) embeddings for the (a) mono-
branch (E3) and (b) the proposed GAN-based framework using the 2D t-sne plot. x1

and x2 are the two principal components. The embeddings of a sample IT image and the
generated ˆIPT2

in the same pose are highlighted, too.

In Fig. 7, the distribution for the generated and real embedded features is
shown for both proposed GAN-based framework and E3. The embeddings of
a sample IT image are shown, too, along with the corresponding embeddings
of ˆIPT2

. For t-sne plot we selected a challenging body pose and assessed
the Euclidean distance between the embedded features from our GAN-based
framework and E3. The pose reflected a crouched infant and his/her legs are
closer to the camera so the framework must be able to generate an image in
which the lower limbs have a different pixels’ values (e.g., appearing darker)
with respect to the other body portions. The Euclidean distance in the
feature space was equal to 0.28 for the proposed GAN framework while for
the monobranch (i.e., E3) was equal to 0.44.

5. Discussion

Monitoring preterm infants’ movement in NICU is crucial to early detect
motor and behavioural disorders. For supporting clinicians a number of
computer-assisted approaches for RGB-D image analysis based on supervised
DL methodologies were proposed in literature [4]. All the approaches mainly
rely upon annotated datasets which are limited in size and variability (e.g.,
infants’ gestational weeks and clinical conditions).

Dealing with limited datasets may pose issues relevant to the reliability
of such DL-based monitoring systems [32, 33, 34]. Biases such as (i) label
bias, when a training set is not fully representative of the infants’ movement-
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pattern variability [35] and (ii) cohort and minority bias, when, due to the
small dataset size, DL algorithms cannot generalise when deployed in the
actual clinical practice [36], may hamper the robustness of DL-based moni-
toring system [37].

To mitigate the issue, in this work we proposed a framework for the
generation of infants’ depth images in desired poses. We worked with depth
images over RGB ones to fully respect ward and infants’ privacy.

The quantitative analysis (Table 6) we performed, despite being exten-
sively used for evaluating GANs, may give misleading results for models
trained on datasets other than ImageNet, and this is particularly true in our
case where we work with one-channel images [27].

This aspect mainly involves the IS score which, unlike the FID and the
t-sne, does not compare the generated distribution with the real one but
relies only upon features extracted from a network pretrained on ImageNet.
This, as stated in [19], may not highlight the actual quality of the generated
images, as the network (i.e., Inception, in the case of IS) may be unsuitable
to extract consistent features for our task. Therefore, we decided to support
quantitative results with qualitative ones (Figure 6).

As showed in Table 6 (FID and Mask-FID columns) and Figure 6, in-
cluding the cDCGAN (E3 and proposed framework) over using a single au-
toencoder improved the performance of image generation. This supports the
considerations made in [19] in which the authors argued that the addition of
the cDCGAN guarantees more realistic images.

Considering the t-sne plot in Fig. 7, both the monobranch (E3) and the
proposed GAN-based framework generated embedded features lying in the
same domain space of the real embedded features. When assessing the Eu-
clidean distance in the features domain our GAN-based framework achieves
the highest performance (i.e., the shortest Euclidean distance) meaning that
its generated images are closer to real ones than that of the monobranch
framework. This is further confirmed by observing Figure 6 rows 1, 2, 3, 4.
As visible, the generated images with the proposed framework were richer
in details than the ones from E3 and the other experiments, particularly for
limbs. This ability to finely generate infants’ limbs is relevant with the view
to develop DL-based support systems for clinicians in NICUs. Indeed, the
early diagnosis of neuromotor disorders depends on the assessment of infants’
limbs movement [4].

A limitation of the proposed framework may be seen in the fact that we
did not consider pathological poses since the dataset we used did not have
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any. However, the purpose of this work was to investigate the feasibility of
generating depth images of infants in given poses as a way to provide new
data for training DL-based movement-monitoring systems for NICUs.

6. Conclusion

This paper proposed a GAN-based framework for generating depth im-
ages in a given pose, showing promising results on the publicly-available
MINI-RGBD dataset [25]. Future research directions of the presented work
include: the generation of temporal sequences over still frames and the subse-
quent clinical validation of the generated images and videos. We will develop
a web application for enabling clinicians to draw custom poses (both patho-
logical and non-pathological) as a prior to generate realistic depth images,
similar to what is done with GauGAN2. These generated data will be used
to test the performance of existing DL-based systems for preterm infants’
movement monitoring [38].
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