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Abstract—In this paper an application of Advanced 
Process Control techniques to an Italian water distribution 
network is presented. Several in-depth hydraulic studies 
had previously been conducted in order to perform 
hardware modifications through sectorization procedures. 
In order to further improve performance, both pressure 
management of the water distribution system and 
optimization of pump scheduling problems have been 
addressed. Net pressure has been minimized through two-
layer Model Predictive Control techniques, while advanced 
logics have been designed for the pumps scheduling. The 
developed Advanced Process Control system has been 
successfully installed allowing to reduce water losses and 
to achieve a significant reduction of operational costs in 
terms of electric energy and fault rates. 

Index Terms—Water Distribution Network, Pump 
Scheduling, Pressure Predictive Control, Energy Efficiency. 

I. INTRODUCTION

ATER Distribution Networks (WDNs) are complex 

systems generally composed of a large number of 

interconnected elements such as reservoirs, pipes, pumps, 

valves and other hydraulic elements. The presence of different 

conflicting objectives, e.g. fulfilling customers’ water demand 

versus the minimization of energy consumption and water 

losses/leakages, represents an interesting challenge in the 

management of WDNs. The development of Advanced Process 

Control (APC) systems applied to WDNs is clearly within the 

scope of smart cities, a concept that has become more and more 

popular in scientific literature and international policies [1]; in 

[2], a smart city is defined as a city that by monitoring and 

integrating the conditions of all of its critical infrastructures, 

including roads, airports, seaports, water, energy power, can 

better optimize its resources, plan its preventive maintenance 

activities, and monitor security aspects maximizing also 

services to its citizens.    

Typically, a considerable number of pumps are used to 

convey water into elevated reservoirs from which the consumer 

demand is supplied. The high consumption of electrical energy 

associated with pumping activities, constitutes the largest 

expense for water utilities. In order to reduce costs and save 

energy consumption many researchers have focused on the 

problem of improving the pump scheduling for water 

distribution systems (WDS).  

Manuscript submitted on March 2021. 
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The pump scheduling problem has been tackled with many 

different approaches: in [3], a linear programming (LP) 

optimization problem is formulated and solved for a single tank 

system for optimal pump scheduling in order to minimize 

energy cost while in [4] a nonlinear programming-based branch 

and bound method, and a mixed integer linear relaxation of the 

original nonconvex formulation is considered. A geometric 

programming (GP)-based model predictive control (MPC) 

algorithm, designed to solve the water flow equations and 

obtain WDN controls, i.e., pump/valve schedules alongside 

heads and flows is proposed in [5] while in [6] optimal water 

flow task is formulated as a mixed-integer non-convex problem 

incorporating flow and pressure constraints, critical for the 

operation of fixed-speed pumps, tanks, reservoirs, and pipes. 

Another significant problem that often has to be dealt in 

WDNs is represented by water loss: this phenomenon has non-

negligible social and economic impacts [7]. For this reason, the 

detection, prevention and prediction of water losses are topics 

under the attention of the research community aiming at their 

avoidance or at least their reduction. Water losses are total 

losses and comprise real losses and apparent losses. Real losses 

are losses caused by leakages from bursts in pipes, at network 

fitting and joints, leakage through service reservoir floors and 

walls as well as from reservoir overflows whereas apparent 

losses are mainly due to illegal water consumption and metering 

errors [8], [9], [10]. Real losses are usually the major part of the 

water losses. 

A leakage detection and isolation method is proposed in [11]: 

exploiting Barcelona network calibrated model, the resulted 

pressure estimations are compared to the real measurements, 

detecting the significant discrepancies. An optimal sensor 

placement methodology has been applied based on the pressure 

sensitivity matrix to the leakage presence in the network; the 

obtained optimization problems are solved through a genetic 

algorithm. An approach for the localization of leaks is proposed 

in [12]: pressure sensors alongside a calibrated hydraulic model 

are used and a differential evolution algorithm solves the 

leakage localization.  

The tied relationship between water losses and operational 

pressure in WDNs has been proven in different research works 

[13], [14]. In [15], it was addressed the modelling of leakage 

and pressure management. It has been shown that high pressure 

leads to increased water loss and to pipe damages. A real time 

pressure control methodology for leakage reduction by pressure 
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control valves is presented in [16], [17]. 

The potential of Model Predictive Control (MPC)-based 

approaches in WDNs has been proven in different research 

works. In particular, in [18] a distributed MPC approach 

designed to work in a cooperative manner for controlling flow-

based networks showing periodic behaviors is proposed. Local 

controllers cooperate in order to enhance the performance of the 

entire flow network avoiding the use of a coordination layer; 

this approach has been tested on Barcelona case study. A 

health-aware MPC that includes an additional goal to extend the 

components and system reliability has been proposed in [19]: 

the MPC model uses an extra parameter varying equation that 

considers the control action as a scheduling variable. A small 

part of a real water network is used as a case study for 

illustrating the performance of the proposed approach. Non-

linear economic MPC of WDNs is proposed in [20]: a nonlinear 

hydraulic model is exploited and a simulator is used for online 

simulation experiments. A new model predictive control 

strategy based on Gaussian Process for propagating the 

disturbance forecast uncertainty into the system states is 

presented in [21]. 

From literature it is now largely recognized that an effective 

pressure management of water distribution network is a key 

point to achieving minimization of the system leaks while 

maintaining the levels of service required to provide water to 

the consumers [7]. The pressure management aims at 

minimizing unnecessary excessive pressure in some areas and 

at certain times without having to resort to costly replacement 

work on the network. In this way the problem is not eliminated 

but its effects are contained to acceptable values with the result 

of lengthening the average lifetime of the infrastructures. 

Furthermore, the application of pressure management policies 

has been demonstrated to pursue additional benefits, such as 

extending infrastructure life through reduction of the frequency 

of burst pipes and possibly saving water through reduction of 

consumption by users in case of pressure dependent demand 

[22], [23]. 

This paper describes a project aimed at the optimization of a 

subnet of a WDN located in Trento (Italy). Two distinct phases 

have characterized the project: the first phase has been focused 

on the creation of District Metered Areas (DMAs) within the 

WDN while the design and installation of an Advanced Process 

Control (APC) system have been performed in the second 

phase. The APC system aims to improve the energy efficiency 

of the subnet through an automatic and smart management of 

the pumping stations involved, while minimizing the average 

pressure of the DMA under consideration. The paper focuses 

mainly on the advanced control aspect. The proposed average 

pressure minimization strategy is based on a two-layer MPC 

scheme that handles model uncertainties through a deadbeat 

Kalman filter. According to the authors’ knowledge, this 

approach is innovative in WDNs field. In addition, tailored 

control strategies (“move suppression” factors and smart 

policies for process constraints handling) have been applied for 

the proposed pump stations scheduling algorithm which result 

innovative in WDNs pump scheduling applications. The paper 

extends the results presented in [24]. An in-depth literature 

review has been added and the developed theoretical 

formulation has been detailed highlighting the innovation of the 

proposed methodological approach. New field results have 

been provided and certified energy savings are shown. The 

benefits of the recent results achieved in terms of losses and 

reduction of faults are reported. The paper is organized as 

follows: Section II describes the APC formulation together with 

the methodological approach and the innovative contributions 

with respect to the literature. Section III describes the 

considered WDN, the network sectorization focusing on the 

subnet that has been optimized. The algorithm for automatic 

and smart management of the pumping stations is reported in 

Section IV, while Section V describes the developed MPC 

scheme that minimizes the DMA pressure. Field results are 

reported in Section VI and conclusions are summarized in 

Section VII.  

II. PROBLEM STATEMENT

In the present section, the controllers’ formulation has been 

reported. The overall Advanced Process Control (APC) 

architecture is described together with the methodological 

approach adopted and its innovative contributions with respect 

to the literature.  

The water subnet (see Fig. 1) consists of various tanks 

managed by pumps located in different pumping stations and 

an urban (valley) district that generates water demand. The flow 

of water to the district is regulated through a valve (Section III). 

The main goals of the APC system are the optimal scheduling 

of the switching on and off of the water pumps and the 

minimization of the valley floor pressure. Being a multivariable 

and constrained control task, for a human operator, to ensure 

the correct pressure behavior at critical nodes and inside the 

pipes, maintaining the level of the tanks at the desired values 

also exploiting natural energy sources (e.g. photovoltaic 

energy), and smartly switching the pumps of each pumping 

station, is a non-trivial task. 

Pressure management is mainly intended to the water 

leakages reduction (see Section V) while pumping operations 

should preferably be concentrated during the daytime hours in 

order to make the most profit from the electricity produced by 

the photovoltaic field (see Section IV). Two main control 

modules characterize the APC system: a pump scheduling 

module (red rectangle in Fig. 1) and a pressure management 

MPC module (light blue rectangle in Fig. 1). The dynamic 

behavior of the overall process consisting of the pumping 

stations and the urban (valley) district allowed the control 

problem to be split.  

A. Pump scheduling module

As shown in Fig. 1, the water subnet is characterized by

different pumping stations. In order to optimize each pumping 

station, an ad hoc scheduling algorithm for each pumping 

station has been designed. In this section the basic concepts and 

ideas are reported. Section IV describes the details of the case 

study together with two examples of customization. 

The algorithm is not formulated as a classical optimization 

problem, but it is characterized by an advanced rule-based 

multivariable formulation. The algorithm must compute the 

number of pumps to be switched on/off and select the specific 

pumps. The target of the algorithm is the maximization of the 

pumps’ lifetime, the minimization of the pumps’ maintenance 

costs, while maximizing the use of natural energy sources (e.g. 

photovoltaic energy) and minimizing the electricity demand. 
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The optimality in the process conduction is ensured by the 

algorithm formulation which finds the most profitable solution 

taking into account all the significant process variables and all 

the critical process constraints. This is also made possible by 

the introduction of "move suppression" factors, specifications 

ranking, and online calculation of pumps’ on/off priorities. The 

electricity saved represents an example of optimality metric that 

is exploited to prove the quality of each derived schedule (see 

Subsection VI.D).  

The pump scheduling module has been equipped with 

suitable minimum and maximum number of switched on pumps 

to be guaranteed in order to avoid high pressure on the pipes. 

Together with the fulfilling of the minimum and maximum 

number of switched on pumps, this module has to preserve from 

the violation of the maximum value admitted for the lifting 

pressure (related to the pipes that link each pumping station 

with the related tank/tanks). The pump scheduling module must 

manage the switched-on pumps of each pump station in order 

to respect the upper constraint related to the lifting pressure. 

Furthermore, the module must guarantee that the level of each 

tank violates, as little as possible, the imposed safety 

constraints. Together with the level safety constraints, a set of 

constraints have been defined which are contained within the 

safety constraints: they have been named tube-constraints, due 

to the shape of the constraints. Their use will be clarified in 

Section IV. All physical specifications have been obtained 

through extended process studies and InfoWorks WS [25] 

software simulations. 

 A set of ad hoc specifications has been added to the 

previously cited specifications in order to increase the pumps’ 

lifetime and to minimize the pumps’ maintenance costs. A 

constraint strictly imposes that a pump switches on can be 

performed only if a minimum time since last switch on has been 

elapsed. 

In order to increase the robustness of the proposed scheduling 

algorithms, a set of “move suppression” factors (from an 

optimal control theory point of view) has been defined for each 

pumping station. These parameters aid to contain the controller 

moves and act on the activation of the level tube-constraints. 

The tuning of these parameters has been optimized based on the 

tanks geometry and on the mean in/out flow rates. 

Considering the previously described specifications, the 

generic pumping stations algorithm, at each control instant, is 

based on the following steps: 

• Acquire plant measurements related to the pumping

station (e.g. levels, pressures, pumps status, valves

status, in/out tank flow rates) through the SCADA

(Supervisory Control And Data Acquisition) system.

• Perform bad detection procedures on the acquired plant

signals, in order to detect validity limits violation,

freezing/rate of change conditions; if bad detection gives 

positive results, no move is performed by the algorithm 

at the current control instant (the next steps are skipped) 

and an alarm is provided. 

• Update the uptime (time since last switch on) and the

total uptime (total switch on time since algorithm start

up) of each pump with an on status.

• Update the downtime (time since last switch off) and the

total downtime (total switch off time since algorithm

start up) of each pump with an off status. Increase the

counter of failed switch on attempts of each pump for

which the algorithm requires a switch on (since the

previous instant/instants, 𝐹) without success, e.g. due to

communication problems or to an undetected anomaly.

• Compute, for each pump, a switch on/off priority (𝑆𝑤𝑂𝑁,

𝑆𝑤𝑂𝐹𝐹), based on the following formulas:

𝑆𝑤𝑂𝑁 =  𝑆𝑤𝑂𝑁0
+  𝑅 − (𝐹 𝑚𝑜𝑑 𝑆)   (1) 

𝑆𝑤𝑂𝐹𝐹 =  𝑆𝑤𝑂𝐹𝐹0
−  𝑅   (2) 

𝑅 =  𝑓𝑖𝑥(
𝑀 − 𝑇

𝑈
)   (3) 

where 𝑆𝑤𝑂𝑁0
 and 𝑆𝑤𝑂𝐹𝐹0

 represent the default on/off

priorities of each pump (default value equal to 1, see 

Subsection IV.A for a customization example), 𝐹 is the 

counter previously cited and 𝑆 is a scaling factor. 𝑚𝑜𝑑 

computes the remainder of the division between 𝐹 and 

𝑆. 𝑀 represents the maximum value among the pumps 

total uptime at current control instant, 𝑇 is the current 

total uptime of the considered pump, 𝑈 is the uptime 

upper constraint (see Section IV) and 𝑓𝑖𝑥 is the 

operation that rounds the considered number to the 

nearest integer smaller than or equal to it. 

• Compute the number of pumps to be switched on/off,

based on the specifications ranking (see Section IV), on

pumps uptime upper constraints (see Section IV) and

respecting the minimum time since last switch on. In

some cases, in addition, it could be needed that a pump

switches off because its uptime violates the uptime upper

constraint and it must be replaced by another pump (see

Section IV).

• Select which pumps to be switched on/off. The

algorithm searches in descending switch on/off priority

order. For the definition of the pumps to be switched off,

the algorithm first evaluates the uptime upper constraints

and then the uptime lower constraints.

According to the authors’ knowledge, the proposed pumping 

stations algorithm is innovative in many aspects. The 

introduction of “move suppression” factors and of the tube-

constraints policy was never proposed in the WDNs pump 

scheduling algorithms. In Section IV, the positioning of the 

designed algorithms with respect to the classification 

formulated in [26] on real time controllers for speed pumps 

used for tank filling has been reported. 

B. Pressure management MPC module

For the pressure management, a tailored MPC module has

been designed. With respect to the classification formulated in 

[26] on real time controllers for service pressure regulation, the

proposed solution has been applied on field through a remote-

control implementation. A cross-fertilization procedure from

Fig. 1. Scheme of APC system. 
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the industrial world to the WDNs has been attempted i.e. the 

synthesis of a two-layer MPC scheme [27], [28], [29] based on 

linear models that exploits process variables feedback possibly 

through a deadbeat Kalman filter [30], [31], [32], [33]. This 

approach, according to the authors’ knowledge, was never 

proposed in the WDNs field. 

MPC strategy is based on the knowledge of process model 

[34]. The proposed MPC module exploits empirical data-based 

input-output linear models which explain the relationship 

between the process outputs (Controlled Variables (CVs), 𝑦 ∈
R𝑚𝑦x1) and inputs. According to MPC theory, inputs have been 

split in two groups: the Manipulated Variables (MVs, 𝑢 ∈
R𝑙𝑢x1) and the Disturbance Variables (DVs, 𝑑 ∈ R𝑙𝑑x1). MVs 

are the measured process inputs that the MPC module can 

exploit for the satisfaction of the control/optimization 

specifications. DVs are the measured process inputs that affect 

the CVs behavior but, according to process specifications, they 

cannot be manipulated by the MPC module. In Section V the 

correspondence between CVs, MVs, DVs groups and physical 

variables of the considered water network will be specified. 

The adopted MPC linear model is characterized by the 

following discrete-time state space formulation: 

[
𝑥(𝑘 + 1)
𝑚(𝑘 + 1)

] = [
𝐴 𝐵𝑚

0𝑚𝑦x𝑛 𝐼𝑚𝑦x𝑚𝑦

] [
𝑥(𝑘)
𝑚(𝑘)

] + [
𝐵𝑢

0𝑚𝑦x𝑙𝑢

] 𝑢(𝑘)

+ [
𝐵𝑑

0𝑚𝑦x𝑙𝑑

] 𝑑(𝑘) + [
𝑤(𝑘)

𝑤𝑚(𝑘)
] 

(4) 

𝑦(𝑘) = [𝐶𝑦 𝐶𝑚] [
𝑥(𝑘)
𝑚(𝑘)

] + 𝑣(𝑘)  

In (4), 𝑥 ∈ R𝑛x1is the state vector, 𝐴 ∈ R𝑛x𝑛 is the process 

state dynamic matrix, 𝐵𝑢 ∈ R𝑛x𝑙𝑢  is the process MVs-to-state 

matrix, 𝐵𝑑  ∈ R𝑛x𝑙𝑑  is the process DVs-to-state matrix, 𝐶𝑦 ∈

R𝑚𝑦x𝑛 is the process state-to-output matrix. In Section V, the 

procedure to determine the process matrices 𝐴, 𝐵𝑢, 𝐵𝑑 , 𝐶𝑦 will 

be detailed.  

In order to face with model uncertainties and sensors 

noise/errors, in the MPC linear model additional state 𝑚 ∈
R𝑚𝑦x1 and unmeasured disturbance variables terms 𝑤 ∈ R𝑛x1, 

𝑣 ∈ R𝑚𝑦x1 and 𝑤𝑚 ∈ R𝑚𝑦x1 have been included (see (4)). In 

this way, an offset-free controller is obtained [32], [33]. The 

terms just described have been included in (4) through suitable 

matrices 𝐵𝑚 ∈ R𝑛x𝑚𝑦 and 𝐶𝑚 ∈ R𝑚𝑦x𝑚𝑦 . Finally, 𝐼𝑎x𝑎 

represents a (𝑎 x 𝑎) identity matrix while 0𝑎x𝑏 represents a 

(𝑎 x 𝑏) zero matrix. 

To deal with possible partially unmeasured state, model 

uncertainties and sensors noise/errors, a state estimation 

problem has to be solved [32]. Assuming that the defined 

(𝐵𝑚, 𝐶𝑚) guarantees the observability of the augmented system 

(4), a 𝐿 = [𝐿𝑥 𝐿𝑚]𝑇 such that  

([
𝐴 𝐵𝑚

0𝑚𝑦x𝑛 𝐼𝑚𝑦x𝑚𝑦

] − [
𝐴 𝐵𝑚

0𝑚𝑦x𝑛 𝐼𝑚𝑦x𝑚𝑦

] [
𝐿𝑥

𝐿𝑚
] [𝐶𝑦 𝐶𝑚]) (5) 

is strictly Hurwitz can be achieved. The estimator equation is: 

[
𝑥(𝑘|𝑘)
�̂�(𝑘|𝑘)

] = [
𝑥(𝑘|𝑘 − 1)
�̂�(𝑘|𝑘 − 1)

] + [
𝐿𝑥

𝐿𝑚
] (𝑦(𝑘) − [𝐶𝑦 𝐶𝑚] [

𝑥(𝑘|𝑘 − 1)
�̂�(𝑘|𝑘 − 1)

])   (6) 

Assuming that 𝐴 is strictly Hurwitz, the following design 

choices have been performed: 

𝐵𝑚 = 0𝑛x𝑚𝑦
  𝐶𝑚 = 𝐼𝑚𝑦x𝑚𝑦

  𝐿𝑥 = 0𝑛x𝑚𝑦
  𝐿𝑚 = 𝐼𝑚𝑦x𝑚𝑦

 (7) 

The filtered disturbance estimate is  

�̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + (𝑦(𝑘) − 𝐶𝑦�̂�(𝑘|𝑘 − 1) − �̂�(𝑘|𝑘 − 1)) =

= 𝑦(𝑘) − 𝐶𝑦𝑥(𝑘|𝑘 − 1) 
(8) 

This design assumes that any error 𝑦(𝑘) − 𝐶𝑦�̂�(𝑘|𝑘 − 1) is 

caused by a constant disturbance acting on the output. If 𝑤, 𝑤𝑚 

and 𝑣 are assumed as zero-mean white-noise disturbances, the 

designed estimator corresponds to a deadbeat Kalman Filter 

([32], [33]) where: 

𝑄𝑤 = 0𝑛xn  𝑄𝑤𝑚
= 𝐼𝑚𝑦x𝑚𝑦

  𝑅𝑣 → 0𝑚𝑦x𝑚𝑦
 (9) 

 

Based on the described linear model ((4)-(9)), a two-layer 

MPC strategy has been formulated. At the lower layer, a 

Dynamic Optimizer (DO) sub-module performs a constrained 

optimization, computing the MVs value u(k) to be supplied to 

the plant at each control instant k. In the quadratic optimization 

problem that characterizes this sub-module, constraints over the 

prediction and control horizons and steady state optimal targets 

need to be properly set. At this purpose, at the upper layer a 

Targets Optimizing and Constraints Softening (TOCS) sub-

module performs a steady-state constrained optimization, 

searching pressure minimization directions. As a result, TOCS 

provides to the DO sub-module a steady-state configuration 

represented by targets and constraints [27].  

TOCS and DO formulation approach makes use of the plant 

dynamics to eliminate the states from the decision variables by 

expressing them as an explicit function of the current state and 

future control input (see [34] for details). 

TOCS sub-module performs the first constrained 

optimization, based on a Quadratic Programing (QP) problem. 

The formulated cost function is: 
𝑉𝑇𝑂𝐶𝑆(𝑘) = 𝑐𝑢

𝑇 ∙ 𝛥�̂�𝑇𝑂𝐶𝑆(𝑘) + ‖𝛥�̂�𝑇𝑂𝐶𝑆(𝑘)‖ℛ𝑇𝑂𝐶𝑆

2

+ ‖𝜀𝑦_𝑇𝑂𝐶𝑆(𝑘)‖
𝜌𝑦_𝑇𝑂𝐶𝑆

2
 (10) 

which has to be minimized with respect to steady state MV 

moves vector 𝛥�̂�𝑇𝑂𝐶𝑆 and slack variables vector 𝜀𝑦_𝑇𝑂𝐶𝑆, 

subject to 
i. 𝑙𝑏𝑑𝑢_𝑇𝑂𝐶𝑆 ≤ 𝛥�̂�𝑇𝑂𝐶𝑆(𝑘) ≤ 𝑢𝑏𝑑𝑢_𝑇𝑂𝐶𝑆 

 

(11) 

ii. 𝑙𝑏𝑢_𝑇𝑂𝐶𝑆 ≤ �̂�𝑇𝑂𝐶𝑆(𝑘) ≤ 𝑢𝑏𝑢_𝑇𝑂𝐶𝑆 
iii. 𝑙𝑏𝑦_𝑇𝑂𝐶𝑆 − 𝛾𝑙𝑏𝑦_𝑇𝑂𝐶𝑆 ∙  𝜀𝑦_𝑇𝑂𝐶𝑆(𝑘) ≤ �̂�𝑇𝑂𝐶𝑆(𝑘) ≤

                              ≤ 𝑢𝑏𝑦_𝑇𝑂𝐶𝑆 + 𝛾𝑢𝑏𝑦_𝑇𝑂𝐶𝑆 ∙  𝜀𝑦_𝑇𝑂𝐶𝑆(𝑘) 

iv. 𝜀𝑦_𝑇𝑂𝐶𝑆(𝑘) ≥ 0 
 

DO sub-module solves a QP problem, based on the following 

cost function: 

𝑉𝐷𝑂(𝑘) = ∑ ∑ (𝑄(𝑗,𝑗)(𝑖) ∙ (�̂�𝑗(𝑘 + 𝑖|𝑘) − 𝑟𝑗(𝑘 + 𝑖|𝑘))
2

)

𝐻𝑝

𝑖=𝐻𝑤𝑗

𝑚𝑦

𝑗=1

+ ∑‖�̂�(𝑘 + 𝑖 − 1|𝑘) −𝑢𝑟(𝑘 + 𝑖 − 1|𝑘)‖𝑆(𝑖)
2

𝐻𝑝

𝑖=1

+ ∑‖𝛥�̂�(𝑘 + 𝑖 − 1|𝑘)‖ℛ(𝑖)
2 +

𝐻𝑢

𝑖=1

‖𝜀𝐷𝑂(𝑘)‖𝜌𝐷𝑂

2  

(12) 

which has to be minimized with respect to MV moves vector 

𝛥�̂� and slack variables vector 𝜀𝐷𝑂, subject to 
i. 𝑙𝑏𝑑𝑢_𝐷𝑂(𝑖) ≤ 𝛥�̂�(𝑘 + 𝑖 − 1|𝑘) ≤ 𝑢𝑏𝑑𝑢_𝐷𝑂(𝑖), 𝑖 = 1, … , 𝐻𝑢 

  

(13) 

ii. 𝑙𝑏𝑢_𝐷𝑂(𝑖) ≤ �̂�(𝑘 + 𝑖 − 1|𝑘) ≤ 𝑢𝑏𝑢_𝐷𝑂(𝑖), 𝑖 = 1, … , 𝐻𝑢 
iii. 𝑙𝑏𝑦_𝐷𝑂𝑗

(𝑖) − 𝛾𝑙𝑏𝑦_𝐷𝑂𝑗
(𝑖) ∙ 𝜀𝐷𝑂(𝑘) ≤ �̂�𝑗(𝑘 + 𝑖|𝑘) ≤ 𝑢𝑏𝑦_𝐷𝑂𝑗

(𝑖) +

        +𝛾𝑢𝑏𝑦_𝐷𝑂𝑗
(𝑖) ∙ 𝜀𝐷𝑂(𝑘),       𝑗 = 1, … , 𝑚𝑦,   𝑖 = 𝐻𝑤𝑗

, … , 𝐻𝑝 

iv. 𝜀𝐷𝑂(𝑘) ≥ 0 
 

In (10) and (12), ℛ𝑇𝑂𝐶𝑆 and ℛ weight the magnitude of the 

MV moves 𝛥�̂�𝑇𝑂𝐶𝑆(𝑘) and 𝛥�̂�(𝑘 + 𝑖 − 1|𝑘). DO MV moves 

are computed over a control horizon Hu (in this work Hu=Hp). 

Pressure minimization directions are guaranteed through 𝑐𝑢 

positive weight in (10). Hard constraints on MV moves and 
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values are imposed in (11) and (13) through lower and upper 

bounds terms 𝑙𝑏𝑑𝑢_𝑇𝑂𝐶𝑆, 𝑢𝑏𝑑𝑢_𝑇𝑂𝐶𝑆, 𝑙𝑏𝑢_𝑇𝑂𝐶𝑆, 𝑢𝑏𝑢_𝑇𝑂𝐶𝑆, 

𝑙𝑏𝑑𝑢_𝐷𝑂, 𝑢𝑏𝑑𝑢_𝐷𝑂, 𝑙𝑏𝑢_𝐷𝑂, 𝑢𝑏𝑢_𝐷𝑂 terms. CVs constraints in 

(11.iii) and (13.iii) have been considered as soft constraints, and 

their possible violations are made possible through the 

introduction of 𝜀𝑦_𝑇𝑂𝐶𝑆 and 𝜀𝐷𝑂 slack variables vectors. Within 

these vectors, a set of slack variables has been defined for each 

CV; the importance of CVs constraints has been defined through 

𝛾𝑙𝑏𝑦_𝑇𝑂𝐶𝑆, 𝛾𝑢𝑏𝑦_𝑇𝑂𝐶𝑆, 𝛾𝑙𝑏𝑦_𝐷𝑂, 𝛾𝑢𝑏𝑦_𝐷𝑂 in (11.iii) and (13.iii) and 

through 𝜌𝑦_𝑇𝑂𝐶𝑆 and 𝜌𝐷𝑂 in (10) and (12).  

In (12), 𝑟 and  𝑢𝑟 represents the targets that are provided to 

DO by TOCS sub-module. In fact, these optimal targets are not 

a priori known by engineers/technicians of the considered water 

network: this has motivated the introduction of the described 

two-layer MPC architecture. 

III. WATER DISTRIBUTION NETWORK DESCRIPTION 

The considered WDN refers to Trento, a city located in the 

north of Italy. The water distribution network spreads in a wide 

area, forming a total of 676 km of main pipes; it serves local 

residential users and includes 92 sources, 21 underground 

aquifers, 65 water tanks and reservoirs. The whole network 

counts approximately 8000 pipes, 15000 nodes, 69 pumps and 

400 valves. Approximately 63% of the water sources are 

underground aquifers located in the valley floor.  

The WDN extends for more than 600 km and it is 

characterized by freshwater sources, underground aquifers, 

water tanks and reservoirs. Before designing and installing the 

APC system, hardware modifications on the WDN have been 

performed, aimed at the creation of District Metered Areas 

(DMAs) [35], [36], [37]. Fig. 2 reports the previous WDN 

pressure distribution, simulated through InfoWorks WS 

software [25]. Areas characterized by a pressure lower than 2.5 

bar (yellow, light-red and red) can be noted, together with areas 

with a pressure greater than 4 bar (blue, dark blue and purple). 

The conducted simulations have certified that the WDN was 

characterized by an excessive pressure in most of its valley floor 

extension, but essential to serve utilities located at higher 

altitudes. This called for a sectorization study which at the time 

of the present project had already been completed, resulting in 

the creation of separate districts. In Fig. 3 the hydraulic model 

of the considered DMA is presented together with the Google 

maps of the corresponding geographic zone. The blue circle 

shows the geographical location of the principal district uphill 

reservoir; the main water supplies are located within the red 

circle while the residential user are within the green circle.  

Among the many benefits achievable through sectorization, the 

most interesting effects are the contribution offered to the 

mitigation of the water losses and the reduction of the 

maintenance costs [38], [39]. The present paper refers to a 

subnet that is characterized by one DMA (Fig. 1: DMA1) and 

by three pumping stations (Fig. 1: PS1, PS2, PS3). DMA1 

represents the bottom of the valley of Trento. The tank that is 

filled by PS1 supplies water to DMA1 and the regulation of the 

pressure of the pipes between the tank and DMA1 is performed 

by a PRV (Pressure Reducing Valve). Furthermore, the tank 

filled by PS1 supplies also the tank that supplies PS2 and PS3. 

PS2 supplies a single tank while PS3 supplies two tanks located 

at different altitudes; PS3 water flow is regulated by an on/off  

 
 

valve (see Fig. 1). 

Plant measurements (e.g. water level inside each tank, 

pressures at critical nodes, flow rates…) are available through 

remote terminal units which are interrogated with sampling 

periods characterized by a lower bound. For example, all 

measurements related to the PRV and to the bottom of the 

valley of Trento (pressures at critical nodes) are refreshed with 

a period greater than or equal to 15 minutes. In turn, 

measurements related to the pumping stations (e.g. water level 

inside each tank) are refreshed with a period greater than or 

equal to 2 minutes. As it will be detailed in the next sections, 

the pump scheduling module runs with a sampling time equal 

to 2 minutes for all pumping stations while the pressure 

management MPC module runs with a sampling time of 15 

minutes. These settings were based on the previous 

considerations on measurement refresh and on the physical 

behavior of the process. In fact, due to the characteristics of the 

process, and particularly the fact that the tank filled by PS1 

(which supplies water to DMA1) has slow dynamics, the 

timescale difference between the two modules is well-posed. 

The developed APC system acquires plant measurements 

through a SCADA system and bad conditions detection routines 

(i.e. validity limits, freezing, rate of change) have been 

implemented in both control problems described below. Thanks 

to the implemented bad detection procedures, robustness of the 

overall APC system is ensured with respect to the refreshing of 

the measurements by the remote terminal units. 

IV. PUMPING STATIONS SCHEDULING ALGORITHM 

The case study of the present paper is characterized by three 

pumping stations (Fig. 1: PS1, PS2, PS3). In this section the 

algorithm described in Subsection II.A is focused on the case 

study. Subsections IV.A and IV.B describe two examples of 

customization (PS1, PS2). 

 
Fig. 2. WDN pressure distribution: the high pressure at 

the bottom valley called for the creation of DMAs. 

 
Fig. 3. Google Maps detail of the DMA (left). Hydraulic 

model of the DMA (right): consumers (green circle), 

main reservoir (blue circle), water supplies (red circle). 
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The main features of the pumping stations have been reported 

in Table 1; the minimum and maximum number of switched on 

pumps to be guaranteed by the APC system have been reported 

in the third column. The sampling time related to the algorithm 

of each pumping station has been reported on the fifth column. 

The sampling time setting has been based on the assigned 

control specifications and taking into account the time that each 

pump/valve requires for a switch on/off. 

The main features of the tanks supplied by the pumping 

stations have been reported in Table 2: PSn (1) (n=1,2) are the 

tanks supplied by PS1 and PS2, while PS3 (1) and PS3 (2) are 

the tanks supplied by PS3. 

The maximum value admitted for the lifting pressure (related 

to the pipes that link each pumping station with the related 

tank/tanks) has been reported in Table 2. Furthermore, as 

described in Section II, the following concepts are preferable: 

• A pump is switched on only if at least 12 hours (720 

minutes) have passed since its last switch off. 

• If a pump has been switched on, it is preferable that at least 

two hours (120 minutes) elapse before switching it off. 

• A pump that is switched on remains in the on status 

(continuously) no more than seven days (10080 minutes). 

Table 4 reports the “move suppression” factors that have 

been defined for each pumping station. Considering PS1, the 

next pump switch on action can only be performed if 30 minutes 

have passed since last pump switch on action. The counter 

resets to zero if an isolated pump switch off is performed. The 

same scheme applies to switch off procedures. The setting 

parameters for the present pumping station are reported in 

Tables 1-4 (see algorithm in Subsection II.A). 

Considering formulas (1)-(3), 𝑈 is the uptime upper 

constraint reported in Table 3. The specification ranking used 

for the computation of the number of pumps to be switched 

on/off is reported in Table 5 (a lower ranking number represents 

a higher priority). Note that the specifications reported in Table 

5 require either a switch on action or a switch off action. In 

some cases, in addition, a pump may need to be switched off 

because its uptime violates the imposed uptime upper constraint 

and must be replaced by another pump. 

With respect to the classification formulated in [26] on real 

time controllers for speed pumps used for tank filling, a two-

point control logic based on multiple fixed trigger levels has 
 

Table 1.  Pumping stations main features. 

Pumping 

Station 

Pumps 

Available 

Min-Max Switched 

On Pumps 

Valves 

Number 

APC Sampling 

Time [min] 

PS1 6 1-4 0 2 

PS2 3 0-2 0 2 

PS3 3 0-1 1 2 

Table 2.  Tanks main features. 

Tank 
Safety Constraints 

[m] 

Tube Constraints 

[m] 

Pressure 

Constraints [bar] 

PS1 (1) 2.5-5 see III.A not defined 

PS2 (1) 2.5-3.1 2.7-2.8 0-25 

PS3 (1) 2.9-3.3 3-3.1 
0-60 

PS3 (2) 1.5-3.25 2.7-2.7 

Table 3.  Pumps time constraints. 

Pumping 

Station 

Downtime Lower 

Constraint [min] 

Uptime Lower 

Constraint [min] 

Uptime Upper 

Constraint [min] 

PS1 720 120 10080 

PS2 10 10 1440 

PS3 10 10 1440 

Table 4.  Pumps “move suppression” time constraints (min). 

Pumping Station PS1 [min] PS2 [min] PS3 [min] 

Tube Sw. 

On/Off 
30/90 

45/not 

defined 
not defined 

Table 5.  Specifications ranking. 

Specification Ranking 

Min-Max Switched On Pumps 1 

Pressure Constraints 2 

Safety Constraints 3 

Photovoltaic power Saturation 4 

Tube-Constraints 5 

been designed for PS3 (see level safety constraints and level 

tube-constraints in Table 2). PS1 control algorithm exploits a 

two-point control logic with fixed trigger levels (see level safety 

constraints in Table 2) and variable trigger levels (see level 

tube-constraints in Subsection IV.A). Finally, PS2 control 

algorithm replicates the PS3 controller extending it to variable 

speed pumps (see Subsection IV.B). 

A. PS1 scheduling customization 

PS1 is characterized by six pumps (1, 2, 3, 5, 6, 7) as shown 

in Table 1. Underground aquifers supply water to these pumps 

and each pump requires 75 kW power. During the project, a 

photovoltaic field (253 kW) has been assembled: the presence 

of a photovoltaic field represents an important feature that 

creates a conflict with the common management of a pumping 

station. In fact, if a photovoltaic field is not present, the only 

economic aspect to be taken into account is represented by the 

energy price in the different hours of a day: often, it is 

preferable to fill the tanks during the night. In order to preserve 

this feature, tube-constraints have been suitably defined for the 

different days of each week within each season, taking into 

account water scheduling demand. Due to the presence of the 

photovoltaic field, the algorithm tries to guarantee that the 

overall energy provided by the field is always saturated (see 

Table 5). Pumps #2 and #7 are characterized by automatic 

discharge. For this reason, it is preferable to have a greater 

number of switch on/off action on these pumps, in order to limit 

the side effects of a pump status switch. In order to guarantee 

this important aspect, 𝑆𝑤𝑂𝑁0
 and 𝑆𝑤𝑂𝐹𝐹0

 parameters (see (1), 

(2)) related to pumps #2 and #7 have been set greater with 

respect to the other pumps.   

B. PS2 scheduling customization 

As can be noted in Table 1, PS2 is characterized by three 

pumps (4, 5, 6). Pumps #4-5 are equipped with an on/off 

command and only one at a time can be in an on status. When 

either pump #4 or pump #5 is in an on status, a level PID 

controller acts (the related set-point is about 3 m and it is not 

managed by PS2 module). Pumps #4-5 are equipped with an 

inverter and the related current motor speed (Hz) is a known 

information. Pump #6 is an on/off pump and it can be switched 

on if necessary, to maintain the tank within admissible bounds. 

Pump #6 can be switched on only if also either pump #4 or 

pump #5 already is in an on status. In order to smartly manage 

the pump station, ad hoc safety and tube-constraints have been 

defined (see Table 2). Furthermore, a zone of inverter normal 

operation has been identified when either pump #4 or pump #5 

is in an on status (e.g. 44 Hz-47 Hz). When either pump #4 or 

pump #5 is in an on status and the related inverter is in the cited 

operating zone, the tube-constraints are not considered by PS2 
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module. The tube-constraints activation takes place when the 

inverter violates the upper/lower bound of the normal operation 

zone; in this case, PS2 module can switch on/off pump #6 

accordingly to the tube-constraints. When pump #6 is switched 

on, the inverter lower bound is automatically changed to 60 Hz 

in order to always enable its switch off in case of tube upper 

constraint violation. 

V. PRESSURE MPC STRATEGY 

As reported in Section III, the regulation of the pressure of 

the pipes between the PS1 tank and DMA1 is performed by a 

PRV (Pressure Reducing Valve). The PRV pressure set-point 

represents the MV of the proposed MPC strategy. The main 

CVs are pressures at critical nodes of DMA1. The DVs are the 

flow rates toward and from DMA1 with respect to other DMAs, 

since the MPC module cannot modify them (see Subsection 

II.B): other external control units manipulate them.  

A data-based modelling approach has been adopted, as the 

available physical model was not suitable for real-time pressure 

control. An ad hoc data collection phase was designed in order 

to capture the most significant dynamics on the pressure at 

critical nodes of the DMA1 district; step test procedures have 

been executed on the process, suitably acting on inputs (u, d). 

Exploiting step test data, for each input-output pair (i.e. for each 

MV-CV and DV-CV pair), a first-order plus deadtime model 

(asymptotically stable) has been considered and suitable 

parameters’ values have been identified [40]; in equation (14) 

the parametric expression of each model in Laplace domain is 

reported.  

𝑀(𝑠) =  
𝐾

𝑇𝑠 + 1
𝑒−𝑇𝑑𝑠                  (14) 

 

where K is the steady state gain, T is the time constant and Td 

is the dead time (or delay) of the input-output channel. Table 6 

reports the gain values 𝐾 of some of the models obtained in the 

identification phase. Note the different signs in Table 6: for 

example, DV4 represents a water lift toward another DMA that 

decreases the pressure at critical nodes and this is explained by 

the negative value. The linear model represented by the Multi-

Input Multi-Output (MIMO) transfer function matrix, obtained 

from the identification phase (see (14)), has been validated 

based on typical metrics (e.g. goodness of fit statistics, residual 

analysis and confidence and prediction bounds). Considering 

the MIMO transfer function matrix, a continuous-time state 

space realization [41] has been firstly computed. The state 

vector resulting from a state space realization procedure has not 

a physical meaning. The state-space description provides the 

dynamics as a set of coupled first-order differential equations 

in a set of internal variables (state variables), together with a set 

of algebraic equations that combine the state variables into 

physical output variables [41]. Successively a discretization 

procedure has been performed, using a zero-order hold and a 
 

Table 6.  u-y and d-y transfer function gain signs. 

Process Var 
MV1 
[bar] 

DV1   
[l·s-1] 

DV2   
[l·s-1] 

DV3   
[l·s-1] 

DV4   
[l·s-1] 

DV5   
[l·s-1] 

CV1 [bar] + 0.8000 + 0.0057 + 0.0001 + 0.0097 - 0.0130  

CV2 [bar] + 0.5000 + 0.0057 + 0.0001 + 0.0097 - 0.0300  

CV3 [bar] + 0.4800    - 0.013 + 0.0079 

CV4 [bar] + 0.7000 + 0.0031  + 0.0031 - 0.015  

CV5 [bar] + 0.9978      

CV6 [bar] + 0.5500 + 0.0057 + 0.0003 + 0.0019 - 0.015  

Table 7.  Grouping policy for CVs constraints relaxation. 

Constraints group rank Process Variables 

1 {CV4, CV6} 

2 {CV1, CV2, CV3, CV5} 
 

suitable sample time; the input-output delays have been 

included in to system dynamics [42]. Finally, the process 

matrices 𝐴, 𝐵𝑢, 𝐵𝑑 , 𝐶𝑦 of equation (4) have been obtained. The 

predictions provided by the linear model (4), enriched with 

estimator (6) under the assumptions (5), (7) and (9), provided 

adequate performances. The proposed deadbeat Kalman filter, 

tailored for handling model uncertainties, guarantees suitable 

feedback exploitation. Furthermore, in order to deal with the 

process nonlinearities and to preserve the controller 

performances, the models are periodically revised during the 

project maintenance. 

As described in Section III, plant measurements related to the 

PRV and to the bottom of the valley of Trento are refreshed 

with a period greater or equal to 15 minutes. For this reason, the 

MPC algorithm sampling time has been set to 15 minutes. The 

prediction horizon Hp has been set to 5 steps (75 minutes) based 

on the system dynamics. 

PRV pressure set-point constraints (i.e. MV constraints in 

(11) and (13)) are set based on physical manufacturing 

limitations of the valve and on its dynamics. The constraints of 

the pressures at critical nodes of DMA1 (i.e. CV constraints in 

(11) and (13)) are set considering the sectorization works and 

the insights gained by the InfoWorks WS [25] software 

simulations. 

Table 7 reports the adopted policies for constraints 

relaxations (see 12.iii) and 14.iii)): CVs have been classified in 

two different groups. Group 1 includes variables that are more 

crucial with respect to group 2 variables. The two controlled 

pressure CV4 and CV6 (see Table 6) share the same rank and 

have been defined as the most important CVs, because they 

represent the most critical pressure nodes in the considered 

DMA. 

VI. RESULTS 

Fig. 4 and Fig. 5 show the Graphical User Interface (GUI) of 

the PS1 module and of the pressure MPC module, respectively. 

It can be noted the presence of on-off buttons which allow 

disabling the APC control on each pump and each pressure 

MV-CV. Furthermore, in order to guarantee a smart 

monitoring, all anomalies and bad conditions are notified to 

plant operators. From GUI, operators can monitor the uptime, 

downtime, total uptime and total downtime of each pump, 

together with the total number of switching on/off. In addition, 

an online explanation of the algorithm’ decision logics is 

provided. This feature is greatly appreciated by the operators.  

In Subsections VI.A-C significant examples of the APC 

performance are reported. Subsection VI.D reports energy 

saving and benefits results. 

A. PS1 examples 

In this section various interesting situations related to the PS1 

pumping station are analyzed and the PS1 module 

performances are commented. In Fig. 6, it can be noted that, in 

the morning, the water level (blue line) is within the safety 

constraints (red dashed lines) but is violating the tube upper 

constraint (green dashed line). There are three pumps with on 
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status (light green line) and the photovoltaic power (dark green 

line) is greater than 150 kW. Note that in Fig. 6 and in all the 

following, the photovoltaic power is normalized by a factor of 

75 for a better graphical representation. Remember that, as 

described in Subsection IV.A, each pump of PS1 station 

requires a nominal power of 75 kW. A conflict between the 

tube-constraints (soft constraints) and the saturation of the 

photovoltaic power (see Table 5) occurs: the tube upper 

constraint requires one pump to be switched off, while the 

photovoltaic power, in order to remain saturated, requires to 

keep the status of the pumps unchanged. Due to the higher 

priority of the photovoltaic power over the tube-constraints, the 

PS1 module does not perform any control action thus keeping 

the status of each pump unchanged. Another interesting 

situation is depicted in Fig. 7. The tank level (blue line) on June 

1st 2020 at 05:42 am, is respecting the safety constraints (red 

dashed lines) and starts violating the tube upper constraint 

(green dashed line). At this time instant, there are four pumps 

on (light green line) and the photovoltaic power production 

(dark green line) is about zero. Since no other control 

specification (see Table 5) ranked with a higher priority is 

active, in this situation, the PS1 module decides to switch off a 

pump in order to satisfy the tube upper constraint. Since at the 

analyzed instant, all the pumps have the same switch-off 

priority values, the PS1 module switches off pump #5 (see Fig. 

8) as it has been active for longer (see Fig. 9). In Fig. 8 (and in 

the following Fig. 15 and Fig. 19) nonzero values indicate 

pumps that are switched-on. Then, at 11:40 am of the same day, 

the tank level while respecting the safety constraints, starts 

violating the tube lower constraint. At this time, there are three 

pumps that have on status (light green line) and the photovoltaic 

power (dark green line) is greater than 150 kW. In this situation, 

the PS1 module switches on one pump in order to satisfy the 

tube lower constraint specification, and given that no other 

control specification (see Table 5) ranked with a higher priority 

is active. PS1 module switches on pump #1 (see Fig. 8), based 

on the computed switch-on priority. Since at the analyzed 

instant all switch-on priority values of the pumps are the same, 

PS1 module selects pump #1 given its longer downtime status 

(see Fig. 10). Then, on June 2nd 2020 at 07:12 am, the tank level  
 

 

 

 

 

 

 

is respecting the safety constraints and starts violating the tube 

upper constraint. At this moment, there are four pumps with on 

status and the photovoltaic power is lower than 75 kW. In this 

situation, PS1 module decides to switch off one pump, i.e. 

pump #6, in order to satisfy the tube upper constraint, the choice 

been based on the same logics discussed previously (Fig. 8-9). 

It can be noted that the tank level is still violating its tube upper 

constraint but no further action is undertaken before 08:44 am. 

At this moment, the “move suppression” factors specification 

(see Table 4) is no longer active, since at least 90 minutes have 

been passed from the last pump switch off action; furthermore, 

at this time, the photovoltaic power is lower than 150 kW, so 

PS1 module can reduce the number of switched on pumps up to 

two. PS1 module switches off pump #2, based on the same 

logics previously described (see Fig. 8-9). Finally, at 09:50 am,  

 
Fig. 4. GUI of PS1 module (main page). 

Pumping Station Management Status

MV Mode

MV Remote Control Enable and Bad Flag

Pumping Station Management Activation

Plant Overall Bad Flag

Algorithm Bad Flag and 
Notifications

 
Fig. 5. GUI of pressure MPC module. 

 
Fig. 6. PS1 example: saturating the photovoltaic power. 

 
Fig. 7. PS1 example: controlling the tube-constraints and 

saturating the photovoltaic power (level and photovoltaic 

power). 

Fig. 8. PS1 example: controlling the tube-constraints and 

saturating the photovoltaic power (pump status). 

 
Fig. 9. PS1 example: controlling the tube-constraints and 

saturating the photovoltaic power (pump uptime). 

 
Fig. 10. PS1 example: controlling the tube-constraints and 

saturating the photovoltaic power (pump downtime). 
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Table 8.  PS1 example: long time performance (pump total 

uptime detail). 
PS1 Pump #1 #2 #3 #5 #6 #7 

Total Uptime [day] 146 145 148 153 156 146 
 

the photovoltaic power exceeds 150 kW: three pumps with on 

status are possibly required, so PS1 module switches on one 

pump. According to the same logics previously described (Fig. 

8, Fig. 10) pump #3 is switched on.  

Fig. 11-12 report an example of monthly performance related 

to the tank level. As can be noted in Fig. 11, PS1 module drives 

the pump scheduling to optimized conditions, thanks to an 

intelligent variable tube-constraints set-up (Fig. 12). The tank 

level (Fig. 11, blue line) never violates the safety upper 

constraint and the relaxations of the safety lower constraint are 

negligible. Fig. 13 reports the total pump uptime performance 

related to nine months of activity of PS1 module. As can be 

noted, the pumps utilization is adequately balanced. Table 8 

reports the detailed data. 

B. PS2 examples 

In this section various interesting situations related to the PS2 

pumping station are analyzed and the PS2 module 

performances are commented. In Fig. 14 it can be noted that, on 

June 22nd 2020 at 06:24 am, the level (blue line) is respecting 

the constraints (red dashed lines) but is violating the tube lower 

constraint (green dashed line). At that instant, there is no pump 

with an on status (light green line). In this situation, PS2 module 

decides to switch on one pump in order to satisfy the tube lower 

constraint, given the current inactivity of the specifications (see 

Table 5) that are ranked with higher priority. When no pump is 

in on status, PS2 module can only switch on either pump #4 or 

pump #5 (i.e. motorized pump). PS2 module decides to switch 

on pump #4 (see Fig. 15), based on the computed switch-on 

priority. Since at the analyzed instant, all switch-on priority 

values are the same, PS2 module selects pump #4 because its 

downtime is longer (see Fig. 16). When pump #4 is switched 

on, its PID level controller starts to regulate the level to a set-

point equal to 3 m (Fig. 17). In the time period 06:24 am-07:10 

am the tank level is violating its tube lower constraint and the 

pump #4 inverter (Fig. 17, pink line) is violating the upper 

bound of its normal operation zone (Fig. 17, ochre line). At 

07:10 am, the “move suppression” factors specification is 

satisfied (see Table 4), i.e. at least 45 minutes have been passed 

from the last pump switch on action. Thus, in order to support 

the level PID controller action of pump #4, PS2 module decides 

to switch on pump #6 (i.e. the only available pump in this 

condition). When pump #6 is switched on, the pump #4 inverter 

lower bound is automatically changed to 60 Hz (Fig. 17, green 

line) in order to always enable its switch off in case of tube 

upper constraint violation. This violation takes place at 07:56 

am (Fig. 14): PS2 module switches off the pump #6 (Fig. 15). 

At 11:54 am (Fig. 14) the tank level, is still violating its tube 

upper constraint and the pump #4 inverter (Fig. 17, pink line) is 

violating the lower bound of its normal operation zone (Fig. 17, 

green line): PS2 module decides to switch off pump #4 (Fig. 

15). Fig. 18 reports total pump uptime performance related to 

one month of PS2 module activity. Pumps #4 and #5 utilization 

is balanced and pump #6 has a very low total uptime since it has 

been defined “auxiliary pump”. Table 9 reports pump total 

uptime over a period of nine months.  

 

 

 

 
Fig. 11. PS1 example: monthly performance (level). 

 
Fig. 12. PS1 example: monthly performance (constraints). 

 
Fig. 13. PS1 example: long time performance (pump total 

uptime). 

 
Fig. 14. PS2 example: controlling the tube-constraints 

(level). 

 
Fig. 15. PS2 example: controlling the tube-constraints 

(pump status). 

 
Fig. 16. PS2 example: controlling the tube-constraints 

(pump downtime). 

 
Fig. 17. PS2 example: controlling the tube-constraints 

(pump motor speed). 
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Table 9.  PS2 example: long time performance (pump total 

uptime detail). 

PS2 Pump #4 #5 #6 

Total Uptime [day] 89 90 17 

C. DMA1 pressure MPC examples 

Fig. 19-21 represents two operational days of the DMA1 

District Metered Areas controlled by the MPC module. The 

most critical process variables (CV4 and CV6, Fig. 19-20) are 

shown, together with the MV (PRV pressure set-point, Fig. 21).  

As can be seen, the controller performs differentiated actions 

during daytime periods versus nighttime periods, based on the 

behavior of the CVs. On daytime periods (see cyan circles in 

Fig. 19-21) the controller moves the PRV pressure set-point 

(Fig. 21) in order to keep the CVs within the assigned 

constraints (Fig. 19-20, red dashed lines) and often the MV 

saturates its upper constraint (Fig. 21). On night periods (see 

black circles in Fig. 19-21), due to the increase of the pressures 

at critical nodes, the controller decreases the MV. 

Fig. 22-23 show an example of the robustness and safety of 

the proposed MPC scheme with respect to signal bad  
 

 

 

 

 
conditions. For a period of about one hour, plant measurements 

related to the pressure at critical nodes (see, for example, CV6 

in Fig. 22) do not update (freezing condition): the MV (see Fig. 

23) safely does not move remaining at a value equal to 4 bar. 
 

D. Global results 

The project described in the present paper began in 2017. The 

sectorization works were completed in December 2018 and the 

overall APC system has been installed on the real plant in 

March 2019. The control design choice that motivated the 

proposal of the described APC system as a substitute of human 

operated control or basic decoupled Single-Input Single-Output 

(SISO) process controllers, proved successful in dealing with 

the WDN multivariable and constrained subnet. Furthermore, 

the need to anticipate critical control actions, has called for 

predictive control approaches. The APC system has obtained 

the Industry 4.0 compliance certification. Up to now, the 

service factor of the APC system is greater than 95%. Table 10 

reports 2019-2020 saving and benefits related to DMA1 project. 

BAC (Billed Authorized Consumption) represents the billed 

water related to DMA1 (about 63% of the total water). Thanks 

to the developed project, a significant reduction of the average 

pressure with respect to the defined baseline (about 5.2 bar) has 

been achieved, as can be noted also in Fig. 24. In particular, 

2.75% (2019) and 4.67% (2020) pressure reduction has been 

obtained. The obtained pressure reduction led to a significant 

loss reduction, as shown in Fig. 25. The overall pressure 

reduction allowed to reduce the load stress of the DMA1: this 

fact has been proven by additional significant fault reduction  
 

Table 10.  Global results: 2019-2020 savings and benefits. 

 2019 2020 

BAC (Billed Authorized Consumption) [m3] 6700000 

Water saved [m3] 81474.46 136875.29 

Electricity saved [kWh] 28480.26 52842.49 

kg CO2 equivalents avoided [kgCO2] 8770 16280 

tep [tep] 5.33 9.88 

Pressure reduction [%] 2.75 4.67 

Loss reduction [%] 5.43 9.13 
 

 

 
 

 
Fig. 18. PS2 example: long time performance (pump total 

uptime). 

 
Fig. 19. DMA1 pressure MPC (CV4). 

 
Fig. 20. DMA1 pressure MPC (CV6). 

 
Fig. 21. DMA1 pressure MPC (MV1). 

 
Fig. 22. DMA1 pressure MPC, CVs freezing (CV6). 

 
Fig. 23. DMA1 pressure MPC, CVs freezing (MV1). 

 
Fig. 24. Global results: 2019 average monthly pressure. 

 
Fig. 25. Global results: 2019 fault ad loss reduction. 
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that has been registered in 2019 and 2020. Fig. 25 depicts 2019 

faults and losses monthly report. Thanks to this result, the 

maintenance interventions have been significantly reduced. 

Finally, it is worth to note the significant water saving achieved, 

along with a substantial reduction in electricity demand. 

VII. CONCLUSIONS 

In the present paper, a project aimed at optimizing a subnet 

of a Water Distribution Network located in Trento (north of 

Italy) has been described. The project consisted of two main 

parts: hardware modifications and Advanced Process Control 

design. Hardware modifications, represented by sectorization 

and creation of District Metered Areas, were necessary to 

achieve the physical conditions for lowering the average net 

pressure. Among the created districts, the area represented by 

the bottom of the valley of Trento has been chosen as starting 

point for the optimization procedure. The Pressure Reducing 

Valve (pressure) set-point is modulated through an innovative 

method: a two-layer Model Predictive Control scheme that 

exploits the pressure measured at critical nodes; model 

uncertainties are handled through a deadbeat Kalman filter. In 

addition, three pumping stations of the subnet have been 

optimized through the creation of a smart and fully automatic 

scheduling algorithm: the algorithm defines the pumps to be 

switched on/off based on level constraints and taking into 

account the price of energy along with free energy sources 

(photovoltaic field). The selection of the pumps to be switched 

on/off takes into account the uptime and downtime of pump in 

order to maximize the pumps’ lifetime.  

The introduction of “move suppression” factors and of the 

tube-constraints policy represents an innovative aspect in the 

WDNs pump scheduling algorithms. The overall Advanced 

Process Control system, composed by the Model Predictive 

Control and the scheduling algorithm modules, has been 

successfully installed on the real plant on March 2019. Industry 

4.0 compliance certification and a service factor greater than 

95% have been obtained. Significant energy efficiency results 

and benefits have been achieved. Future work will focus on 

improving process modellization and extending the controller 

to other districts. 
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