
27 August 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Girth analysis and design of periodically time-varying SC-LDPC codes / Battaglioni, Massimo; Chiaraluce,
Franco; Baldi, Marco; Lentmaier, Michael. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN
0018-9448. - ELETTRONICO. - 67:4(2021), pp. 2217-2235. [10.1109/TIT.2021.3059414]

Original

Girth analysis and design of periodically time-varying SC-LDPC codes

Publisher:

Published
DOI:10.1109/TIT.2021.3059414

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/287763 since: 2024-04-26T08:02:42Z

This is the peer reviewd version of the followng article:

note finali coverpage

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

1

Girth analysis and design of periodically
time-varying SC-LDPC codes

Massimo Battaglioni, Member, IEEE, Franco Chiaraluce, Senior Member, IEEE, Marco Baldi, Senior Member,
IEEE and Michael Lentmaier, Senior Member, IEEE

Abstract—Time-varying spatially coupled low-density parity-
check (SC-LDPC) codes with very large period are characterized
by significantly better error rate performance and girth prop-
erties than their time-invariant counterparts, but the number of
parameters they require to be described is usually very large
and unpractical. Time-invariant SC-LDPC codes, which can be
seen as periodically time-varying codes with unitary period,
are represented through a small number of parameters and
designed exploiting few degrees of freedom, but their error rate
performance and girth properties are sub-optimal. In this paper,
we show that the limits of time-invariant SC-LDPC codes can
be overcome by transforming them into time-varying SC-LDPC
codes with very small period.

In particular, we show that periodically time-varying SC-
LDPC codes with small period may exhibit significantly better
girth properties than the corresponding time-invariant codes by
exploiting a larger number of degrees of freedom in the code
design, which however scale at most linearly with the product of
the code period and the size of the considered base matrix.

Index Terms—Convolutional codes, girth, LDPC codes, spa-
tially coupled codes, time-invariant codes, time-varying codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are state-of-the-art
error-correcting codes. It has been demonstrated that a sub-
class of LDPC codes, named spatially coupled low-density
parity-check (SC-LDPC) codes, are capable of achieving the
channel capacity for a large number of channels, thanks
to the so-called threshold saturation phenomenon [2]. SC-
LDPC codes are obtained by coupling together L disjoint
LDPC code protographs; if L → ∞, spatially coupled low-
density parity-check convolutional codes (SC-LDPC-CCs) are
obtained; otherwise, block codes are obtained for finite values
of L.

SC-LDPC-CCs were first proposed in [3] under the name
of low-density parity-check convolutional codes (LDPC-CCs),
as the convolutional counterparts of low-density parity-check
block codes (LDPC-BCs). As shown, for example, in [4,
Theorem 1], many properties of an LDPC-CC, such as its

The material in this paper has been presented in part at the 2019 IEEE
International Symposium on Information Theory, Paris (France) [1].

M. Battaglioni, F. Chiaraluce and M. Baldi are with the Department of
Information Engineering, Polytechnic University of Marche, Ancona, Italy (e-
mail: {m.battaglioni,f.chiaraluce,m.baldi}@univpm.it).

Michael Lentmaier is with the Department of Electrical and
Information Technology, Lund University, Lund, Sweden (e-mail:
Michael.Lentmaier@eit.lth.se).

0018-9448 (c) 2021 IEEE. Personal use is permitted,
but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html
for more information.

free distance and girth, are at least as good as those of the
underlying LDPC-BC. The decoding latency and complexity
of these codes under pipeline or sliding window decoding
[3], [5], [6] are proportional to their constraint length that,
in turn, is proportional to the product between the code block
length a, that is, the number of rows of the syndrome former
matrices forming the parity-check matrix, and its memory ms

(see [7], [8], and the references therein). For this reason,
either one of these parameters is usually kept small. In [3],
time-varying SC-LDPC-CCs with excellent properties were
designed by considering a small block length and letting
the period T increase with the memory of the code. This
approach was later generalized in [9], [10], where codes with
the same constraint length as those in [3] were designed, but
performance improvements were achieved. Unfortunately, for
the same block length, the number of parameters required
to describe a code increases with the period and makes the
theoretical analysis and the code design quite problematic.

For this reason, time-invariant SC-LDPC-CCs, introduced
in [11], have recently received a great deal of attention. In
fact, they are time-varying SC-LDPC-CCs with unitary period
and a small number of parameters is thus needed for their
description, if the block length is kept small. For the binary
erasure channel it was observed in [12] that time-invariant
codes with small block length can achieve excellent error rate
performance as the memory increases.

The error rate performance of an SC-LDPC code, as that
of all LDPC codes, is adversely affected by the presence of
cycles in their Tanner graph. Therefore, design approaches
often aim at maximizing the minimum length of the cycles
in the code Tanner graph, also known as girth of the graph.
Actually, more subtle harmful objects exist that may cause the
failure of iterative decoders: they are known as stopping sets
[13], trapping sets [14], or absorbing sets [15], depending on
the considered transmission channel and decoder. However,
many harmful trapping sets originate from short cycles in
the code Tanner graph (see [16], [17] and the references
therein for an overview of the connection between cycles and
trapping sets). A punctual removal of the cycles forming the
most harmful objects is usually a sufficient condition for a
significant improvement of the performance of LDPC codes, as
shown in [18]–[20]. So, in order to have good performance in
the high SNR region, a possible approach consists in removing
all the cycles with a given short length [21]. Such an approach,
which has been shown to achieve good results [22], [23], is
also adopted in this work.

Many recent works have dealt with the girth properties of

2

time-invariant SC-LDPC-CCs [23]–[30]. A time-invariant SC-
LDPC-CC can be represented by a symbolic matrix H(D).
Each entry of H(D) is a polynomial in the variable D with
binary coefficients. According to the well-known isomorphism
between M ×M circulant matrices and polynomials modulo
xM − 1, quasi-cyclic low-density parity-check (QC-LDPC)
codes also admit the same polynomial representation. Thus,
the two worlds can be joined by assuming that an SC-
LDPC-CC admits a parity-check matrix in quasi-cyclic form,
considering M → ∞ [11]. Furthermore, even if M is finite,
the parity-check matrix of a QC-LDPC code has an equivalent
representation as that of a time-invariant SC-LDPC-CC with
tail-biting termination [31], which can be obtained by applying
a proper row and column reordering. The above considerations
permit us to take advantage of a number of results that were
proven for QC-LDPC codes and apply them to the case of
convolutional codes. In particular, we use and extend some
results from [4], [32], [33], where QC-LDPC codes with very
large girth are analyzed and designed.

We prove that, for a given block length, just increasing the
value of the memory is not sufficient to improve the girth of
time-invariant codes. However, we show that even allowing
a period which is (slightly) larger than 1 permits to achieve
larger girths than in the time-invariant case. This was also ob-
served in [34], for a particular family of QC-SC-LDPC codes
with period 2 and 3. QC-SC-LDPC codes are obtained by
applying a further lifting procedure, using circulant matrices,
on the parity-check matrix of an SC-LDPC code. Therefore,
the initial SC-LDPC code, which can be obtained by lifting
a protograph, acts as a protograph in its turn, thus yielding
a code which is both quasi-cyclic (QC) and spatially coupled
(SC). However, our analysis is not restricted to the QC case,
so it is quite different from that in [34] and our results are
more general than those in [34]. We derive a lower bound on
the period required to overcome the upper bound on the girth
of time-invariant fully-connected monomial codes, which is
12, and through numerical examples we show that our bound
is tight, at least for codes that are (3, a)-regular. In the time-
varying scenario, the degrees of freedom in the code design
grow linearly with the period, with respect to the time-invariant
setting. The price for this improvement is a larger number of
parameters needed for the code representation but, if the period
is kept small, the additional number of parameters is also small
and the theoretical analysis is still feasible. In particular, we are
able to provide explicit expressions to describe the relationship
between the degrees of freedom in the code design and the
period of the code. Moreover, we take advantage of a new
and convenient representation of periodically time-varying SC-
LDPC-CCs to design codes with the same block length as the
time-invariant ones, but with larger girth (and memory). An
intermediate step in this direction is made in [35], where the
authors propose to design QC-LDPC codes based on pre-lifted
protographs. Other works in which double or multi-step lifting
procedures are considered are [22], [36]. We show here that
the intermediate step of pre-lifting the initial protograph can
be avoided, as long as “periodically” circulant matrices are
used in a single comprehensive lifting procedure.

The paper is organized as follows. In Section II, we

introduce the notation and describe the various types of
LDPC codes considered in our study. In Section III, we
find equivalent descriptions for time-invariant and periodi-
cally time-varying codes showing that both they allow a QC
representation. In Section IV, the girth properties of SC-
LDPC-CCs are discussed. In Section V, using the theoretical
results derived in the previous sections, we demonstrate that
suitably designed time-varying SC-LDPC-CCs may exhibit
girth values significantly larger than those of the corresponding
time-invariant codes. In Section VI, we provide methods for
designing periodically time-varying codes with large girth.
In Section VII we assess the error rate performance of the
newly designed codes by considering some examples. Finally,
Section VIII concludes the paper.

II. BACKGROUND AND NOTATION

In this section we provide a quick overview of the tech-
niques commonly used to design LDPC codes and introduce
the definitions and notation used throughout the paper.

A. LDPC Block Codes

An LDPC-BC with block length n and dimension k is
defined as the null space of a sparse parity-check matrix H
with size r × n and rank n− k, with r ≥ n− k. The rate of
such a code is R = k

n . The parity-check matrix of a binary
LDPC-BC is the bi-adjacency matrix of the so-called Tanner
graph [37]. A protograph is a small Tanner graph described by
a c× a biadjacency matrix B, known as a base matrix. Each
entry bi,j indicates the number of edges between two nodes
in the protograph. A protograph-based code can be obtained
by “lifting” a protograph1. Such a code is described by an
Mc × Ma parity-check matrix obtained by replacing each
non-zero entry bi,j of the base matrix by a sum of bi,j non-
overlapping permutation matrices of size M and each zero
entry by an M ×M zero matrix. An ensemble of codes is
defined as the collection of all codes sharing the same base
matrix and having the same block length.

The parity-check matrix H of QC-LDPC codes can be
obtained from B by applying a circulant lifting, that is,
replacing each non-zero entry of the base matrix by the
sum of bi,j non-overlapping circulant matrices of size M .
The rate of such a code is not smaller than 1 − c

a . Its
minimum distance is denoted as dmin. It is well-known that,
if we consider M →∞, we obtain time-invariant SC-LDPC-
CCs [11]. Due to the highly redundant structure of H, a
common alternative representation which is often used in the
literature to describe QC-LDPC codes exploits polynomials
in F2[x]/(x

M − 1), where F2[x]/(x
M − 1) is the ring of

polynomials with coefficients in the Galois field F2 modulo
xM − 1. In this case, the code is described by a c× a matrix
with polynomial entries, that is

H(x) ,

 h0,0(x) . . . h0,a−1(x)
...

. . .
...

hc−1,0(x) . . . hc−1,a−1(x)

 , (1)

1With a slight abuse of notation, throughout the paper we will also state
that the base matrices corresponding to a given protograph can be lifted.

3

where each hi,j(x), i = 0, 1, 2, . . . , c−1, j = 0, 1, 2, . . . , a−1,
is a polynomial ∈ F2[x]/(x

M − 1). According to the well-
known isomorphism between M ×M circulant matrices and
polynomials modulo xM − 1, any polynomial hi,j(x) unam-
biguously describes an M ×M circulant matrix. In particular,
the exponents of hi,j(x) represent the positions of the non-
zero elements of the first column (or row) of the corresponding
circulant matrix.

B. SC-LDPC Convolutional Codes

Let us briefly recall the concept of time-invariant, periodi-
cally time-varying and time-varying codes. Time-varying SC-
LDPC-CCs with asymptotic rate R∞ = a−c

a are characterized
by a parity-check matrix

HT =

.
HT

0 (0) . . . HT
ms(ms) 0

. . .
...

. . .
0 HT

0 (t) . . . HT
ms(t+ms) 0

.

,

(2)
where T denotes transposition and each block Hi(t), i =
0, 1, 2, . . . ,ms, is a binary matrix with size c× a, as in

Hi(t) =

h
(0,0)
i (t) . . . h

(0,a−1)
i (t)

...
. . .

...
h
(c−1,0)
i (t) . . . h

(c−1,a−1)
i (t)

 , (3)

where a is defined as the block length of the code.
The parity-check matrix H is said to be (dv, dc)-regular if

all its rows have Hamming weight dc and all its columns have
Hamming weight dv . We also define

Hs(t) ,
[
HT
ms(t)|H

T
ms−1(t)| . . . |H

T
0 (t)

]
as the t-th syndrome former matrix. The variable ms is the
syndrome former memory order (sometimes simply addressed
to as memory) of the code and νs = (ms+1)a is its syndrome
former constraint length. Since these codes are convolutional,
M → ∞. If Hi(t) = Hi(t + T) for a finite value of T ,
the corresponding code is said to be periodically time-varying
with period T . When T = 1, we say that the code is time-
invariant. Time-invariant codes are characterized by a unique
Hs.

The first approaches to the design of SC-LDPC-CCs showed
that the parity-check matrix of these codes can be directly
obtained from that of LDPC-BCs by applying suitable un-
wrapping techniques [3], [9], [11], without the need of in-
troducing a protograph-based design. In particular, a cut-and-
paste technique was proposed in [3], and later generalized in
[9], [10], which permits to obtain time-varying SC-LDPC-CCs
starting from LDPC-BCs. Another approach, proposed in [11],
allows to construct time-invariant SC-LDPC-CCs by applying
an M−lifting procedure, with M →∞, to the graph of QC-
LDPC codes.

Fig. 1. Submatrix with a stair-like structure.

Remark 1 Periodically time-varying codes with period T > 1
can be seen as time-invariant codes, whose Hs is obtained as
the concatenation of the first T syndrome former matrices of
the periodically time-varying code. The block length of the
time-invariant code is aT , and the number of parity symbols
per time instant is cT . Notice that the converse, in general, is
not necessarily true. Indeed, given T > 1, not all the time-
invariant codes with block length aT and cT parity symbols
per time instant can be seen as periodically time-varying codes
with block length a and c parity symbols per time instant.
More precisely, a time-invariant code with block length aT
and cT parity symbols per time instant can be represented as
a periodically time-varying code with period T , block length
a and c parity symbols per time instant if and only if its H0

is as in Fig. 1.

The symbolic representation of the syndrome former ma-
trix of time-invariant SC-LDPC-CCs exploits polynomials in
F2[D], where F2[D] is the ring of polynomials with coeffi-
cients in the Galois field F2. As in the QC-LDPC case, the
code is described by a c×a symbolic matrix having polynomial
entries, that is

H(D) ,

 h0,0(D) . . . h0,a−1(D)
...

. . .
...

hc−1,0(D) . . . hc−1,a−1(D)

 , (4)

where each hi,j(D), i = 0, 1, 2, . . . , c−1, j = 0, 1, 2, . . . , a−
1, is a polynomial in F2[D]. If H(D) contains only monomial
entries, the code is said a fully-connected monomial code. The
code representation based on Hs can be converted into that
based on H(D) as follows

hi,j(D) =

ms∑
m=0

h(i,j)m ·Dm. (5)

The symbolic representation can also be used if the code is
periodically time-varying with period T , by placing T suitably
shifted symbolic matrices side-by-side, as in

H(D) ,
[
H0(D) D ·H1(D) . . . DT−1 ·HT−1(D)

]
(6)

where each Hi(D) is the symbolic matrix of Hs(i). Notice
that the size of (6), which is a c× aT matrix, is reduced by a
factor T with respect to that of the equivalent time-invariant

4

code which, according to Remark 1 and (4), is a cT × aT
matrix.

We define the exponent matrix P as the matrix containing
the exponents of the entries of H(D), which has the following
form

P ,

 p0,0 . . . p0,a−1
...

. . .
...

pc−1,0 . . . pc−1,a−1

 . (7)

In particular, any pi,j is a vector containing different entries,
and its zth entry pi,j,z is obtained as the logD of the zth
monomial in Hi(D). We can assume without loss of generality
that the entries of pi,j are in ascending order, that is, pi,j,z0 <
pi,j,z1 when z0 < z1.

We defineW(·) as the Hamming weight function, extended
to the case of inputs in the form of matrices or vectors
with polynomial entries (in which case it returns a weight
matrix or vector). The matrix W(H(D)) corresponds to the
base matrix of the code; so, in the rest of the paper we
denote W(H(D)) as B. Similarly to block codes, we define
an ensemble of codes E(B) as the collection of all codes
characterized by the same B. In the time-varying case, if
W(Hi(D)) = W(Hj(D)), ∀i 6= j, we assume without loss
of generality that B =W(H0(D)).

Example 1 Let us consider the following symbolic matrix,
representing a time-varying SC-LDPC-CC with period T = 2,
block length a = 3, c = 2 parity symbols per period, memory
ms = 2, constraint length νs = (ms+1)a = 9 and asymptotic
rate R∞ = 1

3 :

H(D) =

[
1 1 1 D D D
1 D D2 D D3 D2

]
. (8)

According to (5), we have that

H0(0) =

[
1 1 1
1 0 0

]
,

H1(1) =

[
0 0 0
0 1 0

]
,

H2(2) =

[
0 0 0
0 0 1

]
,

and H0(1) = H0(0), H1(2) = H2(2) and H2(3) = H1(1).
The resulting binary parity-check matrix is

HT =

. . .
1 1 0 0 0 0
1 0 0 1 0 0
1 0 0 0 0 1

1 1 0 0 0 0
1 0 0 0 0 1
1 0 0 1 0 0

. . .

,

Notice that the considered code is fully-connected monomial,
and can be compactly represented by the following exponent
matrix

P =

[
0 0 0 1 1 1
0 1 2 1 3 2

]
.

Finally, applying the Hamming weight function to (8) we
notice that W(H0(D)) = W(H1(D)) and thus the base
matrix can be written as

B =W(H0(D)) =W(H1(D)) =

[
1 1 1
1 1 1

]
.

Remark 2 Notice that, in principle, the passage from a peri-
odically time-varying code with period T to a time-invariant
code with larger block length may have significant drawbacks
in terms of decoding latency and complexity. These two quan-
tities, for belief propagation (BP)-based sliding window (SW)
decoders [3], [5], [6] depend on the window size, which is
usually chosen as an integer multiple of the syndrome former
constraint length [7]. Indeed, on the one hand, the time-varying
version of the code has syndrome former constraint length
νT.V.s = (ms+1)a, which does not depend on the period. On
the other hand, the time-invariant code has syndrome former
constraint length νT.I.s = Ta(dmsT e + 1) which, differently
from νT.V.s , has a linear dependence on the period. This is a
crucial difference with respect to previous works focusing on
the design of QC-LDPC codes with large girth and symbolic
matrix with size Tc × Ta [4], [22], [33], [35]. Indeed, even
though the c × Ta symbolic matrix of a time-varying code
can also be written as a Tc × Ta symbolic matrix, the latter
guarantees that a stair-like structure as in Fig. 1 is maintained
in H0. In other words, the Tc × Ta symbolic matrix of the
time-invariant code corresponding to a time-varying code with
period T has to satisfy certain constraints.

Clearly, the design of a time-invariant code described by
an “unconstrained” Tc× Ta symbolic matrix is more general
than that just described in Remark 2, which has to ensure that
a stair-like structure in H0 is maintained. However, for the
reasons explained above, it would results in a less compact
description and in a larger syndrome former constraint length.
The use of pre-lifted protographs [22], [35], [36] helps in
this direction, as it reduces the number of possible Tc × Ta
symbolic matrices. Still, the number of symbolic matrices
obtainable using pre-lifting increases more than linearly with
the block length. Moreover, in the general case, the block
length increases linearly with the pre-lifting size. In our case,
exploiting time-varying codes, the block length is fixed and
the number of parameters required for description grows at
most linearly with the period T .

C. Tail Biting SC-LDPC Convolutional Codes

For practical reasons, SC-LDPC-CCs need to be terminated
at some point. Let us consider the following section of the
semi-infinite parity-check matrix (2)

HT
[0,L] =

H
T
0 (0) . . . HT

ms(ms)
. . .

...
. . .

HT
0 (L) . . . HT

ms(L+ms)

 .
(9)

An SC-LDPC-CC terminated in tail-biting fashion, or
briefly a tail-biting SC-LDPC-CC, with coupling length L >

5

H̃T
[0,L] =

HT
0 (0) HT

1 (1) . . . HT
ms(ms) 0

0 HT
0 (1) HT

ms(ms + 1) 0
. . .

...
. . .

HT
ms(L+ 1) 0 HT

0 (L−ms + 1) . . . HT
ms−1(L)

HT
ms−1(L+ 1) HT

ms(L+ 2) 0
. . .

...
... HT

0 (L− 1) HT
1 (L)

HT
1 (L+ 1) . . . HT

ms(L+ms) 0 HT
0 (L)

(10)

ms, is obtained by wrapping back the last msc columns of (9)
after L times instants. The corresponding matrix is as in (10).

Note that the rate of the corresponding code is the same as
the asymptotic rate of the initial time-varying SC-LDPC-CC.

D. Cycles

Each symbol 1 in the parity-check matrix corresponds to a
segment in the code Tanner graph. Thus, we define a walk in H
as a sequence of alternating horizontal and vertical segments
between symbols 1 in the same row and columns, respectively.
A path in H is a walk in which all the symbols 1 are distinct.
A cycle of length λ in H is defined by
• a path of length λ−1, in which the starting and the ending

symbols 1 are in the same row (or in the same column)
of H

• an additional horizontal (or vertical) segment connecting
the starting and the ending symbols 1.

A simple cycle in H is a cycle which does not contain any
other cycle. Simple cycles are formed by a single vertical
segment and a single horizontal segment in each column and
row of H they involve. The girth g of a code is defined as the
length of its shortest cycle. In general, cycles can be grouped
in two categories: the avoidable cycles and the unavoidable
cycles. The avoidable cycles can be indeed avoided with a
proper choice of the entries of P, whereas unavoidable cycles
only depend on B.

It is shown in [38], and later generalized in [39] for codes
characterized by H(D) including generic polynomial entries,
that a necessary and sufficient condition for the existence of
a cycle with length 2k in the Tanner graph of a QC-LDPC
block code is

k−1∑
i=0

(
pmi,ni,li − pmi,ni+1,l′i

)
= 0 mod M, (11)

where nk = n0, li 6= l′i if ni = ni+1 and l′i 6= li+1 if mi =
mi+1.

III. A BRIDGE BETWEEN BLOCK AND CONVOLUTIONAL
LDPC CODES

As mentioned in the previous sections, both QC-LDPC
codes and time-invariant SC-LDPC-CCs admit the same sym-
bolic representation. In this section we show that the same con-
nection exists between periodically time-varying SC-LDPC-
CCs and a class of block codes based on periodically circulant
matrices. We begin our analysis recalling the two well-known

alternative representations of the parity-check matrix of a
QC-LDPC block code, and establishing some relationships
between these codes and SC-LDPC-CCs.2

A. Time-Invariant Codes

Remark 3 The parity-check matrix of a QC-LDPC code with
rate R = a−c

a , expressed as a circulants block matrix, has an
equivalent form, characterizing a tail-biting time-invariant SC-
LDPC convolutional code.

The two representations, are:

HQC =

 Q(0,0) . . . Q(0,a−1)

...
. . .

...
Q(c−1,0) . . . Q(c−1,a−1)

 , (12)

Htb =

H0 HM−1 . . . H1

H1 H0
. . . H2

...
.

...
HM−1 HM−2 . . . H0

 , (13)

respectively. We must note that each Q(i,j) is a square
circulant matrix with size M , whereas each Hi is a c × a
matrix; so, HQC and Htb have the same size.

The parity-check matrix as in (13) was first described in
[40], which is the first work dealing with QC-LDPC codes.
The equivalent circulants block form has been introduced,
instead, in [41]. In order to switch from one form to the other
a reordering of the rows and the columns of the parity-check
matrix is required. The procedure to pass from the blocks
circulant form to the circulants block form, addressed to as
Procedure 1 in the rest of the paper, is as follows

1) Apply a permutation π1 : {0, 1, . . . , aM − 1} →
{0, 1, . . . , aM − 1} to the columns of Htb such that,
for the j-th column, π1(j) = b jM c + (j mod M)a,
j = 0, 1, . . . , aM − 1

2) Apply a permutation π2 : {0, 1, . . . , cM − 1} →
{0, 1, . . . , cM − 1} to the rows of the parity-check
matrix obtained in step 1) such that, for the i-th row,
π2(i) = b iM c+ (i mod M)c, i = 0, 1, . . . , cM − 1.

The following lemma also holds.

2For the sake of brevity, the most straightforward proofs are omitted in this
section.

6

Lemma 1 Given a QC-LDPC code described by (12), the
elements of any circulant matrix Q(i′,j′), i′ = 0, . . . , c − 1,
j′ = 0, . . . , a− 1, must satisfy

q
(i′,j′)
i,0 = 0 ∀i > ms,

where ms is the syndrome former memory order of the
underlying tail-biting SC-LDPC-CC.

In conclusion, by applying a circular lifting to a given
base matrix, we can either obtain a QC-LDPC code or a
tail-biting time-invariant SC-LDPC-CC. Let us now generalize
this representation to periodically time-varying SC-LDPC-CCs
with period T .

B. Periodically Time-Varying Codes

In order to generalize the above considerations to periodi-
cally time-varying codes with period T , we need to introduce
the concept of periodically circulant matrix with period T .

An M × M periodically circulant permutation matrix
P with period T is a permutation matrix such that
p[(i+T) mod M,(j+T) mod M] = pi,j , for all 0 ≤ i, j ≤M−1.
In order to describe unambiguously a periodically circulant
permutation matrix, at most T integers are needed, corre-
sponding to the positions of the T symbols 1 in the first T
columns. If a matrix can be obtained as a sum of periodically
circulant permutation matrices with non-overlapping support,
we generically define it as a periodically circulant matrix.

Example 2 The following periodically circulant permutation
matrix of size 6 and period 2

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

is unambiguously described by its first two columns. The other
columns can be obtained by progressively shifting the first two
columns by T = 2 positions downward. Since this matrix is
also a permutation matrix, two integers (the supports of the
first and of the second column, i.e., 0 and 3 in this example,
respectively) are enough to represent it.

Let us consider a tail-biting periodically time-varying SC-
LDPC convolutional code with period T and block length n =
aM , where M is an integer multiple of T . The following
lemmas hold.

Lemma 2 Let us consider a parity-check matrix having the
following form

Htb =

H0(0) HM−1(0) . . . H1(0)

H1(1) H0(1)
. . . H2(1)

...
.

...
HM−1(T − 1) HM−2(T − 1) . . . H0(T − 1)

(14)

describing a tail-biting periodically time-varying SC-LDPC
convolutional code with period T and block length n = aM ,
such that M = kT , k > 1. By properly reordering its rows and
columns with Procedure 1, the following parity-check matrix
can be obtained

HPM =

 P(0,0) . . . P(0,a−1)

...
. . .

...
P(c−1,0) . . . P(c−1,a−1)

 , (15)

where each P(i′,j′) is an M×M periodically circulant matrix
with period T . Furthermore, the following condition holds for
the elements of each of the ac periodically circulant matrices
with period T :

p
(i′,j′)
i,j = 0,∀i < j, i > j +ms with j < T.

Lemma 3 Given a parity-check matrix as in (14), with block
length n = aM , being M = kT , k > 1, by properly
reordering its rows and columns, a parity-check matrix in form

HQC =

 Q(0,0) . . . Q(0,T (a−1))

...
. . .

...
Q(T (c−1),0) . . . Q(T (c−1),T (a−1))

 (16)

can always be obtained, where each Q(i′,j′) is an M
T ×

M
T

circulant matrix.

Proof: As discussed in Remark 1, any periodically time-
varying code with period T and asymptotic rate R = a−c

a can
be seen as a time-invariant code with block length Ta and Tc
parity symbols per time instant. Given this, the above lemma
easily follows from Remark 3.

It follows from Lemmas 2 and 3 that a tail-biting time-
varying SC-LDPC-CC with period T and R∞ = a−c

a can be
obtained by either lifting a smaller base matrix with size c×a
with relatively large periodically circulant matrices, or lifting
a larger base matrix with size Tc × Ta with relatively small
circulant matrices.

Example 3 Let us consider the parity-check matrix of a
periodically time-varying code with T = 2, a = 3, c = 2,
M = 6 in tail-biting form, as in (17).

According to Remark 1, (17) is also the parity-check matrix of
a time-invariant code with a = 6, c = 4 and M = 3. Applying
the reordering procedure to these two different versions, we
obtain (18) and (19), respectively.

Summarizing, (17) can be obtained by either lifting

B =

[
1 1 1
1 1 1

]
with periodic permutation matrices of size 6, obtaining (18),
or by lifting

B =

[
1 1 1 1 1 1
1 1 1 1 1 1

]
(20)

7

Htb =

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

(17)

HPM =

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

(18)

HQC =

0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0

(19)

with circulant permutation matrices of size 3, obtaining (19).
Finally, we remark that (18) can be represented with 10
integers (in general, at most 12 integers are required to repre-
sent a periodically time-varying code in tail-biting form with
a = 3, c = 2 and T = 2, obtained by lifting (20)). Instead,
a time-invariant code in tail-biting form with blocklength
a′ = Ta = 6, same code rate (that, is, c′ = Tc = 4) would in
general require twice as many integers for representation, i.e.,
24 integers, as indicated by the number of circulant matrices
in (19).

So, we have shown that both time-invariant and time-
varying codes terminated in tail-biting fashion, for a finite
value of M , or unterminated, for M → ∞, allow a QC
representation. This permits us to derive theoretical results
taking advantage of many previous results that were proven for

QC-LDPC codes and that, according to the above discussion,
can be easily extended to our scenario. Furthermore, as we
will show in Section VI, the analysis in this section permits
us to extend the design methods we also provide to the block
codes scenario.

IV. GIRTH PROPERTIES OF SC-LDPC-CCS

In this section we first show how the girth properties of QC-
LDPC codes and SC-LDPC-CCs are related. We derive suf-
ficient conditions to guarantee that the girth of well-designed
SC-LDPC-CCs is maintained in the underlying block code.
Then, we discuss the limits of time-invariant codes.

A. Girth and free girth

The following result was given in [4, Theorem 1].

8

Lemma 4 The girth of a time-invariant SC-LDPC-CC, de-
noted as gfree, is lower bounded by the girth of the underlying
QC-LDPC code, denoted as gQC, that is,

gQC ≤ gfree.

In the following theorem we provide and prove a sufficient
condition on the block length of any QC-LDPC code such that
its girth is the same as that of the overlying SC-LDPC-CC.

Theorem 1 Given a QC-LDPC code, whose H is a c × a
array of M ×M circulant matrices, with girth gQC and its
convolutional counterpart with girth gfree, if

M >
gfree − 2

2
ms, (21)

then gQC = gfree.

Proof: See Appendix A.
Equation (21) only represents a sufficient condition and

therefore it does not always provide the smallest value of M
such that gQC = gfree. However, assuming we have designed
a time-invariant code with girth gfree, satisfying (21) allows to
obtain a QC-LDPC code with the same girth. This permits us
to design block and convolutional codes with the same girth
simultaneously. In order to evaluate the tightness of (21) to
the actual minimum values of M , denoted as Mmin, which
are required to achieve gQC = gfree, ∀M > Mmin − 1 , we
have considered some codes from [42] and obtained the results
shown in Table I.

TABLE I
MINIMUM VALUES OF THE CIRCULANT SIZE M SUCH THAT gQC = gfree ,

COMPARED TO THE SUFFICIENT VALUE GIVEN BY (21).

R gfree
gfree−2

2
ms + 1 Mmin

1
4

8 10 9
2
5

8 19 17
3
6

8 22 18
1
4

10 45 45
2
5

10 77 75
3
6

10 125 123
1
4

12 101 97
2
5

12 211 195
3
6

12 541 466

We remark that (21) is independent of the code rate and the
content of the parity-check matrix. So, the above result can be
extended to codes obtained by lifting a base matrix not only
with circulant matrices, but also with periodically circulant
matrices having period T .

Corollary 1 Given a tail-biting time-varying SC-LDPC-CC
with finite period T , reordered with Procedure 1, (c× a array
of M ′ ×M ′ periodically circulant matrices with period T),
having girth g, and its convolutional version with girth gfree,
if

M ′ >
gfree − 2

2
msT, (22)

then g = gfree.

Proof: Equation (22) is simply obtained by substituting
M and ms in (21) with the corresponding parameters of the
equivalent time-invariant code, according to Remark 1.

Theorem 1 and Corollary 1 allow to extend our analysis
and design methods, focused on SC-LDPC-CCs, also to block
codes: if a time-invariant (time-varying, respectively) SC-
LDPC-CC with girth g∗ has been designed, then a block
code with girth g∗ can be obtained by lifting the same
base matrix with the same circulant (periodically circulant,
respectively) matrices, but assuming M = g∗−2

2 msT + 1
instead of M →∞.

B. Limits of Time-Invariant SC-LDPC-CCs

In this section we first derive some results on the cycle
properties of base matrices, which are needed for the proof of
the main statement, that is, Theorem 2.

Lemma 5 Given a c×a base matrix B, if B does not contain
any cycle (i.e., it is acyclic), then it has at least one row or
one column with unitary weight.

Proof: The matrix B has finite size, so there exists at least
one path in B which has the largest possible length. If multiple
paths with this length exist, let us consider any of them without
loss of generality. We denote the first and last symbols 1 of
this path as s0 and send, respectively. Let us suppose that B
does not contain any row and any column with unitary weight.
Then, s0 (and also send) can be connected to another symbol 1
which does not belong do the longest path. Thus, the longest
path can be lengthened, which is a contradiction. It follows
that B must have at least one row or one column with unitary
weight.

Lemma 6 Given a c×a (dv, dc)-regular base matrix B, such
that dc > 1 and dv > 1, B contains at least one cycle.

Proof: Follows from Lemma 5. In fact, if dc and dv are
larger than 1, the bipartite graph corresponding to the given
base matrix has no vertices with unitary degree; so, it cannot
be acyclic.

Lemma 7 A c× a (dv, dc)-regular base matrix B, such that
dc > dv > 1, contains at least two cycles.

Proof: It follows from Lemma 6 that B contains at least
one cycle. Let us suppose that B contains a single cycle with
length λ, and assume that this cycle involves columns with
index in {c0, . . . , cλ

2−1
}. Moreover, let us suppose that we

remove any of these columns from B, obtaining the matrix
B∗; the corresponding bipartite graph is acyclic, according to
the initial assumption. However, B∗ has a − 1 columns with
weight dv > 1, λ rows with weight dc − 1 > 1 and c − λ
rows with weight dc > 1. This contradicts Lemma 5, which
demands at least a row or a column with unitary weight in
acyclic matrices. Hence, B must contain at least two cycles.

9

The following result, proven in [32] for QC-LDPC block
codes, can also be applied to SC-LDPC-CCs.

Lemma 8 If two cycles of length λ1 and λ2 in a base matrix
B have ρ symbols 1 in common, then there is an unavoidable
cycle of length 2(λ1 + λ2 − ρ) in the parity-check matrix of
the codes in E(B).

Proof: The unavoidable cycles of this type have been
shown in [32] to satisfy (11) independently of M . Hence, they
also exist in the convolutional case.

In [25], [36], some results on unavoidable cycles yielded by
base matrices that do not contain zero entries are presented.
This is not sufficient to cover our general case, and we
also need to include base matrices containing zero entries
in our analysis. This way, our analysis covers all possible
base matrices of regular codes. This is done in the following
lemmas.

Lemma 9 Given a c×a (dv, dc)-regular base matrix B, such
that dc > dv > 1, if it contains:

1) a 3, or an entry larger than 3, then the girth of any code
in E(B) is bounded above by 6;

2) one pair of symbols 2, then the girth of any code in E(B)
is bounded above by 4(L+2), where L is the number of
symbols in the shortest path between the two symbols
2, starting and ending with a horizontal segment3;

3) a 2, then the girth of any code in E(B) is bounded above
by:

a) 2λ+ 2 if this symbol 2 is involved in at least one
cycle, where λ is the length of the shortest cycle
in which the symbol 2 is involved4;

b) 2(λ + 2L) if this symbol is not involved in any
cycle, where L is the length of a path connecting
the symbol 2 to a cycle with length λ.

Proof: See Appendix B.
The above lemma covers all possible cases in which the

matrix contains at least one entry larger than 1. If the entries
of B are restricted to be in {0, 1}, then we can take advantage
of the following result, given in [26].

Lemma 10 If the base matrix B includes:
• an m × n submatrix, with m = n + 1, containing two

rows or two columns with weight greater than 2, or
• an m × n submatrix, with m = n + 1, containing one

row or one column with weight greater than 3, or
• an m × n submatrix, with m = n, containing one row

and one column with weight greater than or equal to 3,
and all the other rows and columns have weight greater than
or equal to 2, then the girth of any time-invariant code in E(B)
is bounded above by 2(m+ n+ 1).

Proof: The proof is the same as in [26, Property 4].

3Notice that if the two symbols are in the same row or column, then L = 0
and the girth is bounded above by 8, as stated in [25].

4We remark that, in [25], zero entries are not allowed; so, λ = 4 and the
girth is bounded above by 10.

Summarizing, we have shown in Lemmas 8, 9 and 10 that,
under certain conditions holding for a given base matrix B,
the parity-check matrix of codes in E(B) contains unavoidable
cycles. Still, this does not demonstrate that at least one of such
conditions holds for any arbitrarily chosen base matrix with
finite size and regular row/column weight, for any (finite or
infinite) value of the code memory. We prove this fact in the
following theorem.

Theorem 2 Given a c×a (dv, dc)-regular base matrix B, such
that dc > dv > 1, where dc and dv are finite, the parity-check
matrix of any time-invariant code in E(B) contains at least an
unavoidable cycle. Therefore, the girth of any time-invariant
code in E(B) is bounded above by a finite value, say g∗,
corresponding to the length of this unavoidable cycle, for any
value of ms.

Proof: See Appendix C.
In conclusion, we have shown that if the size of the base

matrix is finite, even if ms → ∞, unavoidable cycles of
length g∗ always exist in any regular time-invariant code in
E(B), upper bounding the value of its girth. In other words,
just increasing the memory of a regular time-invariant code,
and keeping a fixed block length, is not sufficient to achieve
unbounded girth.

Notice that, according to the proof in Appendix C, given two
cycles with length λ1 and λ2, the exact value of g∗ depends
on how they are connected. Summarizing, and assuming that
B does not contain entries larger than 1, we have

• g∗ = 2(λ1 + λ2 − ρ) if the two cycles share at least ρ
symbols 1

• g∗ = 2(λ1 + λ2) if the two cycles do not share symbols
1 but have a segment on the same row (or column);

• g∗ = 2(λ1 + λ2 + 1) if the two cycles are connected by
a path of length 2;

• g∗ = 2(λ1 +λ2 +L− 1) if the two cycles are connected
by a path of length L starting with a horizontal (or ver-
tical) segment and ending with a horizontal (or vertical)
segment;

• g∗ = 2(λ1 + λ2 +L) if the two cycles are connected by
a path with length L starting with a horizontal (or ver-
tical) segment and ending with a vertical (or horizontal)
segment.

The tightest, i.e., smallest, value of g∗ depends on the single
code cycle properties and on the considered cycles.

The following corollary is a straightforward consequence of
Remark 1 and Theorem 2.

Corollary 2 Given a c×Ta (dv, dc)-regular base matrix, dc >
dv > 1, where dc, dv and T are finite, and symbolic matrix
as in (6), such that W(Hi(D)) = W(Hj(D)), ∀i 6= j, then
the parity-check matrix of any time-invariant code in E(B)
contains at least one unavoidable cycle. Therefore, the girth
of any periodically time-varying code in E(B =W(H0(D)))
is bounded above by a finite value, say g∗, corresponding to
the length of this unavoidable cycle, for any value of ms.

10

Proof: The statement can be proved by following the
proof of Theorem 2, but considering a Tc × Ta matrix,
according to Remark 1.

Thus, also regular periodically time-varying codes with
finite period T have limited girth, that cannot be improved
by just increasing their memory. In sight of this, asymptotic
analysis techniques [43], [44], which rely on the assumption
of infinite girth, may not be the most suited tool to predict
the performance of the codes we design. Still, as we show
next, introducing a small periodicity in the code can yield an
improvement of the girth properties. Therefore, prediction of
the performance through asymptotic analysis tools would be
more appropriate on periodically time-varying codes than on
time-invariant codes, as the former are closer to codes with
infinite girth than the latter.

We remark that, as shown in [45], block codes can achieve
infinite girth for infinite block length. However, by unwrapping
a block code, we can obtain a time-varying code with a girth
that is lower bounded by that of the block code. In this
construction, if the length of the block code increases, both
memory and period of the time-varying code increase [46].
Therefore, also a time-varying code can achieve infinite girth
if both the period and the memory tend to infinity. We have
proved in Theorem 2 and Corollary 4 that assuming a finite
value of the period is instead a sufficient condition to have
finite girth.

However, we will verify in the next section that, for a given
base matrix, the length of the unavoidable cycles affecting
time-invariant codes lower bounds that of the unavoidable
cycles affecting periodically time-varying codes. This is a
straightforward consequence of Lemma 2: time-invariant codes
and periodically time-varying codes can be obtained by lifting
the same base matrix. In the former case, circulant matrices
have to be used, whereas periodically circulant matrices are
allowed in the second case. Clearly, periodically circulant
matrices grant a larger number of degrees of freedom in the
design, as they are characterized by the shifting of the first
T initial columns, whereas circulant matrices are obtained by
shiftings of their first column only. Exploiting periodicity, we
can break short unavoidable cycles caused by the structure
of the base matrix. The avoidable cycles are removed with a
proper choice of the exponent matrix P. In the next section
we consider a specific family of codes and derive theoretical
and numerical results which validate the above statements.

V. CODES WITH GIRTH LARGER THAN 12

In this section we prove that periodically time-varying
codes with T > 1 may have better girth than the time-
invariant ones with the same block length. We indeed consider
symbolic matrices with the same size c× a, keeping in mind
that periodically time-varying codes with T > 1 contain T
symbolic matrices, leading to more degrees of freedom in the
code design. In particular, we show how unavoidable cycles
with length 12 can be avoided through a proper management
of the period T . We have chosen this particular length because
unavoidable cycles with length 12 are the shortest ones that
can occur in the parity-check matrix of codes without paral-
lel edges. So, as a benchmark, we consider fully-connected

monomial codes. The reason is threefold: firstly, it is shown
in Lemma 9 that entries of B which are larger than 1 have
a negative impact on the girth5; secondly, full connection
guarantees that the code block length is relatively small and
that H(D) can be represented with the minimum possible
number of parameters; thirdly, unavoidable cycles with length
12 derive from

B12 =

[
1 1 1
1 1 1

]
(23)

and full-connection puts us in the worst-case scenario, as the
base matrix of fully-connected monomial codes is filled with
submatrices of the type (23). For all these reasons, if we
consider a c × a base matrix containing some zero entries,
the analysis of unavoidable cycles with length 12 is less
complex than that of a c × a base matrix containing only
1’s. In particular, the number of submatrices of the type (23)
decreases as the number of zero entries in the base matrix
increases. In a (c, a)-regular fully-connected monomial code,
using an exhaustive approach,(

a

3

)(
c

2

)
+

(
a

2

)(
c

3

)
submatrices of the type (23) have to be tested. For example,
a single void entry reduces this quantity to(

a− 1

2

)
(c− 1) + (a− 1)

(
c− 1

2

)
;

so, the search space becomes smaller. The effect of more void
entries in the base matrix, which further reduce the search
space, depends on their position within the base matrix and it
is not analyzed here.

A. Impact of the Period T on the Girth

Let us consider a time-invariant code in E(B), where B
contains (23). The parity-check matrix of this code exhibits
unavoidable cycles of length 12, i.e., its girth is bounded above
by 12.

From now on, we consider periodically time-varying codes
which are described by the same B as that of time-invariant
codes. In other words, we assume that W(Hi(D)) =
W(Hj(D)), ∀i 6= j. This assumption is pessimistic, as we
are not exploiting all degrees of freedom in the choice of B.
Increasing the girth by allowing different base matrices would
indeed be an easier problem.

Let us now consider E(B12). We demonstrate that time-
varying codes randomly picked from E(B12) can achieve girth
larger than 12, even for small values of T . This confirms
the potential of time-varying SC-LDPC-CCs over the time-
invariant ones.

Lemma 11 A time-varying code with period T = 2 in
E(B12) has g ≤ 20, and a solution holding with the equality
sign always exists for a proper choice of the parameters.

5Entries of the base matrix larger than 1 affect positively the code free
distance, as shown in [36]. However, free distance is not the focus of this
work.

11

Proof: According to the Remark 1, a time-varying code
with period T = 2 can be studied by means of a 2c × 2a
symbolic matrix. Referring to (23), we have a 4 × 6 (2, 3)-
regular base matrix. Any matrix with 4 rows can contain a
cycle with at most length 8.

According to the results in [33], if the girth of a base matrix
B is gb, any time-invariant code in E(B) can have girth larger
than or equal to 3gb. Let us show first that the 4 × 6 (2, 3)-
regular base matrix can have, at most, girth gb = 6. In order
to achieve gb > 4, all the columns of the base matrix must be
different. In a 4×6 (2, 3)-regular base matrix there are exactly(
4
2

)
= 6 different columns that can be used; this means that

by using them all, all the cycles of length 4 can be avoided.
On the other hand, using all the different columns, cycles of
length 6 arise. Hence, the girth of any code in E(B12) can be
larger than or equal to 18. It is shown in [33] that the only
submatrices leading to unavoidable cycles of length 18 are

B1
18 =

1 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1

 , B2
18 =

1 1 1 0
0 1 0 1
1 0 0 1
0 0 1 1

 , (24)

which contain at least one column (and one row) with weight
larger than 2; thus, the 4 × 6 (2, 3)-regular matrix cannot
contain them. It follows that g ≥ 20 can be achieved.

In order to prove that g ≤ 20, let us consider the submatrices
that lead to unavoidable cycles of length 20, which are

B1
20 =

1 1 1 0 0
1 1 0 1 0
0 0 0 1 1
0 0 1 0 1

 , B2
20 =

1 1 1 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 .
(25)

Both matrices in (25) contain a cycle of length 8. It follows
that in order to have g > 20 the 4 × 6 (2, 3)-regular matrix
should not contain cycles of length 8. On the other hand, B
cannot contain cycles of length larger than 8, as it only has
4 rows; so, if B does not contain cycles of length 8, it only
contains cycles of length 4 and 6. Then, if B contains only
cycles of length 4 and 6, they combine yielding cycles of
length smaller than or equal to 18, according to Lemma 8.
Thus, we can conclude that g ≤ 20, which holds with the
equality sign if and only if B contains at least one cycle of
length 8.

Generalizing (23), we have the following 2×a base matrix

B =

[
1 1 . . . 1
1 1 . . . 1

]
. (26)

Corollary 3 Any time-varying code with period T = 2 in the
ensemble described by (26) can achieve

g ≤

{
14 if a = 4,

12 if a ≥ 4.
(27)

and a solution holding with the equality sign always exists for
a proper choice of the parameters.

Proof: Carried out with similar arguments as those in the
proof of Lemma 11.

We notice from (27) that, as expected, increasing a, for fixed
values of the period T = 2, yields a drop of the upper bound
on the girth which can be reached with a suitable choice of the
parameters. We thus need to increase T , if we aim at breaking
the unavoidable cycles of length 12 affecting time-invariant
codes in the ensemble described by (26). The following result
holds.

Lemma 12 A necessary and sufficient condition to obtain a
(2, a)-regular time-varying code having period T with girth
g > 12 from the ensemble described by (26) is T ≥

⌈
a
2

⌉
.

Proof: According to Remark 1, we can represent any
(2, a)-regular time-varying code with a 2T × aT base matrix
B. In order to avoid the unavoidable cycles of length 12,
entailed by (23), we need to ensure that B does not contain
the same column more than twice. The number of possible
different columns is T 2, which can be repeated up to two
times, yielding 2T 2 possibilities. If the number of possibilities
is smaller than the number of columns of the base matrix, the
latter cannot be constructed. Thus, it must be 2T 2 ≥ aT , that
is T ≥ a

2 . Choosing T = a
2 when a is even and T =

⌈
a
2

⌉
when a is odd ensures that the above condition is verified.

The above lemma can be generalized to any value of c > 2
as follows.

Corollary 4 A necessary condition to obtain a (c, a)-regular
time-varying code with period T , with c > 2 and girth g > 12
from E(B), where B is an all-ones c× a matrix, is T ≥

⌈
a
2

⌉
.

Proof: Carried out with similar arguments as those in the
proof of Lemma 12.

B. Degrees of Freedom in the Code Design

Once the value of T which guarantees that girth larger than
12 can be obtained for a proper choice of P has been found,
we need to determine the number of parameters Np required
to actually design a periodically time-varying code free of
unavoidable cycles with length up to 12. In other words, we
need to determine which entries of the base matrix are to be
lifted with circulant permutation matrices (with M →∞) and
which are to be lifted with periodically circulant permutation
matrices with period T (and M →∞).

In general, a periodically time-varying fully-connected
monomial code with period T needs at most Tac entries
to be defined, since its symbolic matrix (6) contains T sub-
matrices with size c × a. This assumes that all the entries of
the base matrix are lifted with periodic permutation matrices.
Nevertheless, as we show in the following, some entries of
the base matrix are lifted with circulant permutation matrices,
whereas others are lifted with periodic permutation matrices;
so, the cost in terms of representation might actually be smaller
than Tac.

For the sake of convenience, we introduce a c × a matrix
L with binary entries. If li,j is 0, then bi,j is lifted with a

12

circulant permutation matrix, which can be represented by a
single integer (the position of the only 1 in the first column). If,
instead, li,j is 1, then bi,j is lifted with a periodically circulant
permutation matrix, which can be represented by T integers. In
other words, the matrix L has the same size as B and catches
which entries are lifted with periodic permutation matrices,
requiring T integers each for representation, and which ones
are lifted with circulant matrices, requiring 1 integer each for
representation. The knowledge of L, or better, of its Hamming
weight, and T permits to calculate the number of integers
required to design and describe a periodically time-varying
SC-LDPC-CC with period T and girth larger than 12. The
following considerations hold.

Lemma 13 Periodically time-varying fully-connected mono-
mial SC-LDPC-CCs with period T are characterized by Np =
W(L)T +(ac−W(L)), whereW(L) is the Hamming weight
of L.

Proof: Follows from the fact that the symbols 1 in
L represent periodically circulant permutation matrices with
period T , described by T integers, and the 0’s in L represent
circulant permutation matrices, described by a single integer.

Corollary 5 Time-invariant fully-connected monomial SC-
LDPC-CCs have Np = ac.

Proof: Follows from the fact that L contains only zeros
in the time-invariant case.

Our goal is obviously that of reducing Np as much as
possible, still keeping the conditions which guarantee a certain
girth fulfilled. In other words, we need to minimize W(L) in
order to achieve a certain girth using the smallest possible
number of degrees of freedom.

Example 4 Let us consider (23) and any L such thatW(L) =
1. Then, a periodically time-varying code with period T =
2, Np = 7 and g = 20 in E(B12) can be obtained for a
proper choice of the entries of P. This means that exploiting
at least 7 degrees of freedom instead of the 6 of the time-
invariant case, the girth can be increased from 12 to 20. This
is a straightforward consequence of Lemma 11.

The following lemmas hold.

Lemma 14 In order to prevent the occurrence of unavoidable
cycles with length 12 in codes picked from the ensemble
described by (26), it has to be W(L) ≥ a − 2, and at least
one matrix L such that the above inequality is satisfied with
the equality sign always exists.

Proof: Clearly, L can have at most two all-zeros columns,
or unavoidable cycles due to (23) would arise. This proves
W(L) ≥ a − 2. The proof of the second part of the theorem
is conducted by evidence: let us consider

L =

[
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .

]
;

then, this matrix excludes the presence of cycles with length
12, for a proper choice of P.

Lemma 15 Let us consider a time-varying code with period
T picked from the ensemble described by (26). In order to
achieve g > 12, it has to be

Np ≥ (a− 2)
⌈a
2

⌉
+ a+ 2, (28)

and at least one matrix L such that (28) holds with the equality
sign always exists.

Proof: Equation (28) is obtained considering that, accord-
ing to Lemma 12, T = da2 e is required, at least, to have
g > 12. The rest follows from Lemmas 13 and 14.

Let us now consider the following 3× a base matrix

B =

1 1 . . . 1
1 1 . . . 1
1 1 . . . 1

 . (29)

The following lemmas hold.

Lemma 16 In order to prevent the occurrence of unavoidable
cycles with length 12 in periodically time-varying codes with
period T , randomly picked from the ensemble described by
(29), it has to be

W(L) ≥

{
3 if a = 4,

WL,3,a otherwise,

where WL,3,a , min{a, 6} + 2max{0, a − 6}. Furthermore,
a solution with the equality sign can always be found for
a proper choice of L (the proper choice is discussed in the
proof).

Proof: Let us consider the possible columns of L. Keep-
ing in mind that we aim at minimizing its weight, we have
two possible cases:

1) if the all-zeros column appears in L, then each one of
the other three columns with weight 1 can appear at
most once, and each other column with weight 2 can
appear as many times we need. The resulting minimum
weight of L is therefore W1 , 3 + 2max{0, a− 4}

2) if the all-zeros column does not appear in L, then
each one of the other three columns with weight 1 can
appear at most six times (twice each), and each other
column with weight 2 can appear as many times we
need. The resulting minimum weight of L is therefore
W2 , min{a, 6}+ 2max{0, a− 6}.

Comparing W1 and W2, it is easy to observe that W1 is
smaller than W2 only if a = 4.

Lemma 17 Let us consider a time-varying code with period
T , randomly picked from the ensemble described by (29). In
order to achieve girth larger than 12, it has to be

Np ≥

{
12 + 3(T − 1) if a = 4,

TWL,3,a + 3a−WL,3,a otherwise,
(30)

13

and it is possible to find at least one matrix L such that a
solution with the equality sign exists.

Proof: Easily follows from Lemmas 13 and 16.
Let us now consider the following 4× a base matrix

B =

1 1 . . . 1
1 1 . . . 1
1 1 . . . 1
1 1 . . . 1

 . (31)

The following lemmas hold.

Lemma 18 In order to prevent the occurrence of unavoidable
cycles with length 12 in codes picked from the ensemble
described by (31), a necessary condition that has to be fulfilled
is

W(L) ≥

WL,4,a,0 if 5 ≤ a ≤ 7,

WL,4,a,1 if 8 ≤ a ≤ 9,

WL,4,a,2 if a = 10,

WL,4,a,3 if a ≥ 11.

where

WL,4,a,0 , 3 + 2min{a− 3, 3}+ 3max{0, a− 6},

WL,4,a,1 , 14 + 3max{0, a− 8},

WL,4,a,2 , 19

WL,4,a,3 , 2min{a, 12}+ 3(a− 12)

Furthermore, it is possible to find at least one matrix L such
that the above inequality is satisfied with the equality sign.

Proof: See Appendix D.

Lemma 19 Let us consider a time-varying code with period
T and girth larger than 12 randomly picked from the ensemble
described by (31). It is possible to find a matrix L such that
this code can be represented with

Np =

TWL,4,a,0 + 4a−WL,4,a,0 if 5 ≤ a ≤ 7,

TWL,4,a,1 + 4a−WL,4,a,1 if 8 ≤ a ≤ 9,

TWL,4,a,2 + 4a−WL,4,a,2 if a = 10,

TWL,4,a,3 + 4a−WL,4,a,3 if a ≥ 11
(32)

integers and solutions with smaller values of Np do not exist.

Proof: Easily follows from Lemmas 13 and 18.
For the general case of c > 4, we derive some sufficient

conditions on Np.

Lemma 20 Let us consider an all-ones c × a matrix, c < a.
If the following condition is satisfied

W(L) ≥WL,c,a

where

WL,c,a , (c−2)min{a, c(c−1)}+(c−1)max{0, a−c(c−1)},

then it is possible to find at least one L such that the occurrence
of unavoidable cycles with length 12 is prevented.

Proof: Let us divide L in two parts as follows

L =
[
L1|L2

]
.

There are
(
c
2

)
vectors with length c and weight c − 2 that

can be chosen as different columns of L. Each of these
columns can be chosen twice, without causing the occurrence
of unavoidable cycles with length 12. We fill L1 with these
columns, which are, at most, c(c−1). Each of them obviously
contributes with c− 2 symbols 1 to the total weight of L. L2

is filled with columns chosen as random vectors with length
c and weight c − 1, which cannot cause unavoidable cycles
with length 12. Combining these considerations the lemma is
eventually proved.

Theorem 3 A periodically time-varying code with period T
and girth larger than 12 can be designed using

Np = TWL,c,a + ac−WL,c,a

degrees of freedom, where WL,c,a has been defined in Lemma
20, for a proper choice of L.

Proof: Easily follows from Lemmas 13 and 20.
Keeping this in mind, in the following section we investigate

the design of SC-LDPC-CCs.

VI. DESIGN METHODS

In this section we first show how to design periodically time-
varying codes with small period T and same block length as
the time-invariant ones, but larger girth. We also show that,
in order to achieve much larger girths, a larger memory is
required.

As claimed in Lemma 11, codes with girth g = 20 in
E(B12) can be obtained considering a period T = 2. The
following symbolic matrix, describing a time-varying SC-
LDPC-CC with period T = 2 and girth g = 20, has been
found by means of a random search

H(D) =

[
1 1 1 D D D
1 D D6 D D2 D17

]
. (33)

Notice that, according to Lemma 15, at least 7 integers are
needed to design a code with this girth. In our case, we have
used exactly 7 integers: 3 integers are sufficient to describe the
entries at position (0, j0), j0 ∈ {0, 1, . . . , 5}, 2 integers are
sufficient for the entries at position (1, j1), j1 ∈ {0, 1, 3, 4}
and 2 integers are needed for the entries at positions (1, 2)
and (1, 5). The corresponding L is indeed

L =

[
0 0 0
0 0 1

]
.

In other words, the girth can be improved from 12 (in
the time-invariant case) to 20 (in the time-varying case) by
considering 7 integers instead of 6 to design the symbolic
matrix, when E(B12) is considered.

Notice that solutions with smaller memory than (33), which
is ms = 16, can be found. The design procedure we use works
on a per-column basis and is summarized in Algorithm 1. In
words, P is initialized as an empty matrix; then, as a test, a
column is appended to P and the girth of the corresponding

14

code is evaluated. If the girth is not smaller than the target
girth, then the new column is fixed and the procedure is
repeated until P has aT columns, or all the possible columns
have been tested without success. In the latter case, ms is
increased by one and the procedure is restarted.

Algorithm 1
Input block length a, number of parity symbols per period c,
memory order ms, period T , girth g

procedure EXPONENT_MATRIX_SEARCH(a, c, ms, T , g)
P← []
while P has less than aT + 1 columns do

for i← 0 to T do
S(i) ← All possible vectors with length c and

entries in [i, i + 1, . . . , i + ms] containing the value i at
least once.

x← 1
while x ≤ aT do

i← bxac
for ji ← 0 to (ms + 1)c −mc

s do
Ptest ← [P S(i)ji]
g∗ =Girth_Evaluation(P)
if g∗ ≥ g then

P← [P S(i)ji]
if x = aT then

return P
else

x← x+ 1

x← x− 1

ms ← ms + 1

We remark that Hi(D), 0 ≤ i ≤ T − 1, in general,
contains entries with exponents in [i,ms + i] but, as shown
in [47] for QC-LDPC codes and later generalized in [23]
for SC-LDPC-CCs, it is always possible to obtain Hi(D)
such that all its columns contain at least once xi. This
considerably reduces the search space. The algorithm we use
in order to determine the girth of a given code is inspired by
the cycle-counting algorithm proposed in [48, Algorithm 1].
Nevertheless, assessing the multiplicity of cycles goes beyond
the scope of this work; so, we just focus on the existence of
cycles with a given length.

By applying Algorithm 1, which is exhaustive on a reduced
search space, we have found the exponent matrix with the
smallest possible ms, which is

P =

[
0 0 4 1 1 7
0 3 0 6 7 1

]
, (34)

corresponding to a periodically time-varying code with period
2 and ms = 6. Nevertheless, being

L =

[
0 0 1
1 1 0

]
,

we have used 9 integers for the code design, which is larger
than the lower bound given by (28).

We generalize the above arguments also considering dv =
c = 3. We have designed a (3, 4)-regular time-varying code

with period T = 2 and girth g = 14 by means of a guess-and-
test algorithm, inspired by that proposed in [26]. Its exponent
matrix is as follows

P =

 16 112 79 0 262 69 213 1
142 25 0 0 133 26 1 183
0 92 160 133 1 1 58 225

 .
(35)

The corresponding L is as follows

L =

1 1 1 0
1 0 0 1
0 1 1 1

 .
If we increase a, obtaining a (3, 5)-regular code, we need

T ≥ 3 to ensure that the potential girth is larger than 12. We
have found a solution with the equality sign, that is, such that
T = 3: the exponent matrix of a periodically time-varying
code with g = 14, a = 5, c = T = 3 is (36).

There also exists a solution for (3, 6)-regular time-varying
codes with period T = 3 to achieve g > 12. The exponent
matrix, found by means of the same guess-and-test algorithm
as above, defining a time-varying code with T = 3 and g = 14
is (37). Notice that, referring to all the above examples, the
bounds given in Lemma 11 and Corollary 4 are satisfied with
the equality sign, showing that they are tight, at least for small
values of c.

VII. ERROR RATE PERFORMANCE

In this section we assess the performance of the newly
designed codes described in Section VI. For this purpose, we
consider some code examples and estimate their performance
in terms of bit error rate (BER) under iterative decoding
through Monte Carlo simulations of binary phase shift key-
ing (BPSK) modulated transmission over the additive white
Gaussian noise (AWGN) channel. We have made the parity-
check matrices of the codes we consider publicly available
in [49]. We consider a BP-based decoder performing 150
iterations. For practical reasons, the codes are terminated after
24 000 time instants. Owing to termination and to the possible
presence of some linearly dependent rows in the parity-check
matrix of the considered codes, the asymptotic code rate for
SC-LDPC-CCs and the design rate for QC-LDPC block codes
might not coincide with the actual code rate. However, the
effect of such a deviation from the ideal rate on the fairness
of our comparisons is negligible.

Let us consider a code according to (35), i.e., a (3, 4)-regular
time-varying code with period T = 2, a = 4, c = 3, ms =
261, R∞ = 1

4 and girth g = 14, and compare its performance
to those of codes with the same parameters but smaller girths,
i.e., g = 6 and g = 12. These codes are obtained by feeding
Algorithm 1 with the parameters listed above. Their exponent
matrices are

P6 =

 261 96 50 226 92 183 119 73
210 247 182 102 157 66 89 219
182 164 139 194 13 197 182 237

15

P =

 2032 108 1575 375 0 1 1283 1 1 2272 708 1163 2 771 648
0 2180 0 0 226 1859 546 1768 1171 1179 2 2 1890 1594 2

1737 0 1358 801 187 794 1 1032 1556 1 1380 2300 2457 2 454

 (36)

P =

 0 300 81 36 0 195 1 157 302 2 1 305 2 4 1447 2029 2 2
0 120 49 64 209 5 3 150 105 300 230 304 1109 1204 2032 2 2923 2921
51 1 0 2 103 2 282 2 1 77 3 3 534 1450 2 2923 1609 3485

(37)

and

P12 =

 71 148 26 244 260 249 9 17
32 251 42 194 209 36 93 239
224 110 151 226 49 81 124 263

 ,
respectively.

Simulation results are shown in Fig. 2. We notice that, as
expected, the performance improves as the girth increases. In
addition, we consider two time-invariant codes with T = 1,
a = 4, c = 3, ms = 261, R∞ = 1

4 and g = 12. In order
to distinguish between them, they are addressed to as Code 1
and Code 2. Their exponent matrices are

PC1 =

139 0 122 263
0 245 0 65
119 211 31 0

and

PC2 =

266 68 0 186
217 174 0 163
0 0 91 0

 ,
respectively. Finally, we consider the QC-LDPC block code
designed in [50] with girth g = 14 and design rate R = 1

4 ,
based on the Steiner Triple System. Notice that the blocklength
of this code, which is 34 260, is much larger than the constraint
length of the time-varying SC-LDPC code with the same
girth, which is 1 052. Despite this, the latter code maintains a
significant gain over the QC-LDPC block code.

Time-varying codes also show a significant improvement
over the time-invariant ones with the same parameters. A
justification of such a large gap is provided by the analysis of
the error patterns yielding decoding failures for these codes.
In particular, many decoding failures of the time-invariant
codes with girth 12 are caused by codewords with weight
24; this was also observed in [27]. It is shown in [36]
that the free distance of (3, 4)-regular time-invariant fully-
connected monomial SC-LDPC codes is indeed upper bounded
by 24. Instead, time-varying codes are characterized by larger
symbolic matrices, yielding larger upper bounds on the code
free distance. For example, the error patterns of (35) do not
contain any codeword with weight smaller than 106. So, even
though we are aware that a careful analysis of the dominant
trapping sets is required, it can be immediately noticed that
a very large difference between the structure and the free
distance of the codes has a major impact also on the code
performance. A thorough analysis of the free distance of
periodically time-varying codes with T > 1 is out of the scope
of this paper, and is left for future works.

Fig. 2. Comparison of the BER resulting from Monte Carlo simulations of
QC-LDPC codes, time-invariant codes and time-varying codes with T = 2
for different girth values. In all cases a = 4, c = 3, ms = 261 and R = 1

4
.

Aiming at evaluating the trade-off between the description
complexity (in terms of integers required to represent the
code, i.e., Np) and the error rate performance, in Table II
we show the value of Eb

N0
at which BER = 10−4, for all the

considered codes, and we denote it as
(
Eb
N0

)∗
. Notice that

the periodically time-varying codes with T = 2 and block
length a = 4 are represented by 24 integers instead of the
12 integers required for the time-invariant codes with block
length a = 4; however, we remark that a time-invariant code
with block length Ta = 8 and the same code rate would
require 48 integers for representation.

TABLE II
Eb
N0

AT WHICH BER = 10−4 , FOR CODES WITH DIFFERENT PERIOD AND
GIRTH.

T g
(

Eb
N0

)∗
(dB)

0 14 1.84

1 12 3.9 - Code 1

1 12 3.91 - Code 2

2 6 1.37

2 12 1.22

2 14 1.19

Table II allows us to remark that there is a significant gap, of

16

Fig. 3. Comparison of the BER resulting from Monte Carlo simulations of
time-invariant codes and time-varying codes with T = 2. In all cases a = 5,
c = 3, g = 8, ms = 28 and R = 2

5
.

about 2.7 dBs when BER = 10−4 between the time invariant
codes, which can be represented with 12 integers, and the
periodically time-varying ones, which can be represented with
24 integers.

In order to provide a further example, let us consider
a time-invariant code with girth g = 8, described by the
following exponent matrix from [11]

P =

 1 2 4 8 16
5 10 20 9 18
25 19 7 14 28

 , (38)

which corresponds to an SC-LDPC code with R∞ = 2/5
and girth 8. Its simulated performance is reported in Fig. 3.
For carrying out a fair comparison, we have designed two
time-varying codes with T = 2, the same memory and girth,
but a smaller multiplicity of cycles with length 8. We have
named these codes Code 3 and Code 4, which are described
by the following exponent matrices

PC3 =

 0 0 1 20 0 1 1 2 21 1
25 13 0 1 11 26 14 1 2 12
21 14 28 0 3 22 15 19 1 4

 ,
(39)

PC4 =

 20 0 27 0 13 1 28 19 12 19
21 20 17 15 28 21 18 1 24 3
0 28 0 16 0 29 1 26 1 1

 .
(40)

The Tanner time-invariant SC-LDPC code has 3 cycles of
length 8 per node, whereas Code 3 and Code 4 have 1.2
and 0.8 cycles of length 8 per node, respectively. This, along
with the potentially larger minimum distance of time-varying
codes, justifies the better performance observed for Code 4
with respect to the other codes.

VIII. CONCLUSION AND FUTURE WORK

We have shown that periodically time-varying SC-LDPC
codes with small period allow achieving significant improve-
ments with respect to the corresponding time-invariant coun-
terparts in terms of girth, at the expense of an increase in
the number of degrees of freedom that is at most linear with
the product of the code period and the size of the considered
base matrix. Actually, for practical parameter choices, this
upper bound is shown to be loose, thus yielding limited design
complexity. In fact, we have shown that just increasing the
memory of time-invariant codes is not sufficient to improve
their girth beyond a fixed upper threshold. In principle, this is
only possible by increasing both the period and the memory.
For this reason, we have focused our attention on time-
varying SC-LDPC-CCs, for which we have proposed a new
and efficient representation that allows an easy design of codes
with the same block length as the time-invariant ones, but with
larger girth. Clearly, in order to achieve a larger girth, a larger
memory is required as well.

As a challenge for future works, we believe that it is worth
investigating the effect of irregularity on our analysis. On the
one hand, from a theoretical standpoint, we believe that state-
ments such as Theorem 2 and Corollary 3 also hold if the code
is irregular, as long as its parity-check matrix does not contain
either rows or columns with unitary weight. On the other hand,
from a numerical standpoint, using masking techniques [51],
[52] could lead to irregular codes with girths even larger than
those achieved by introducing a small periodicity in the code
design, at the cost of a more complex theoretical analysis and
representation.

We believe that further insights may be provided by an
investigation of the free distance of periodically time-varying
SC-LDPC codes with T > 1, which is potentially larger than
that of the time-invariant SC-LDPC codes characterized by the
same code rate and values of a, c, ms.

APPENDIX A
PROOF OF THEOREM 1

We take advantage of the equivalence between the circulants
block form and the blocks circulant form of the parity-check
matrix of QC-LDPC codes. A parity-check matrix as in (13)
is considered.

We consider cycles in the parity-check matrix as defined
in Section II-D. We need to distinguish between two types of
cycles:

1) those without any symbol 1 in the tail6 of (13) (named
type-1 cycles in the following),

2) those with at least one symbol 1 in the tail of (13)
(named type-2 cycles in the following).

A cycle, with length λ, of type-1 can span at most

N (1)
p =

⌊λ
4

⌋
ms + 1 (41)

periods. This can be shown by considering that a type-1
cycle with length λ has λ

2 horizontal segments and λ
2 vertical

6The tail of the parity-check matrix of a tail-biting code is the portion above
its main block diagonal.

17

segments and any horizontal segment can span at most ms+1
periods. The cycle spanning the largest number of periods has
horizontal segments spanning ms + 1 periods each. Starting
from any of the leftmost symbols 1, we notice that, in
this scenario, λ

2 segments are required to reach any of the
rightmost symbols 1, and as many are needed to go back to
the untouched leftmost symbol 1. Thus,

N (1)
p =

⌊λ/2
2

⌋
(ms + 1)−

(⌊λ/2
2

⌋
− 1

)
=
⌊λ
4

⌋
ms + 1.

Type-2 cycles, in their turn, can be separated into

• cycles with an even number of symbols 1 in the tail of
(13),

• cycles with an odd number of symbols 1 in the tail of
(13).

Any type-2 cycle with an even number of symbols 1 in the tail
of the parity-check matrix can be mapped into a type-1 cycle,
and fulfills (41). On the other hand, any type-2 cycle with an
odd number of symbols 1 in the tail of the parity-check matrix
can span at most

N (2)
p =

λ− 2

2
ms + 1 (42)

periods. In order to prove (42) we firstly need to consider that,
for any finite M , horizontal segments of type-2 cycles can span
up to M periods in H. This eventually means that, given M ,
the shortest cycle spanning all the available M periods has
one single symbol 1 in the tail of the matrix. Given this, any
type-2 cycle with length λ has one horizontal segment and one
vertical segment meeting in the tail, and λ−2

2 segments in the
diagonal band of H. It easily follows that

N (2)
p =

λ− 2

2
(ms + 1)− λ− 2

2
+ 1 =

λ− 2

2
ms + 1.

Comparing N (1)
p with N (2)

p , we notice that⌊λ
4

⌋
ms + 1 ≤ λ

4
ms + 1 ≤ λ− 2

2
ms + 1

for λ ≥ 4, which is always true by definition. We can conclude
that N (2)

p defines the largest number of periods that a cycle
with length λ can span in the parity-check matrix of a QC-
LDPC code.

Notice that gQC = gfree if and only if no cycle with length
λ < gfree exists in the parity-check matrix of the QC-LDPC
code. So, if a cycle of type-1 does not exist in the H of the
convolutional code, it cannot exist in the H of the QC-LDPC
code. On the other hand, if we choose M in such a way that
the longest cycle with length λ = gfree − 2 is too short to
have at least one symbol 1 in the tail of H, the free girth is
guaranteed. Thus, it must be

M >
gfree − 2− 2

2
ms + 1 +ms − 1 =

gfree − 2

2
ms.

APPENDIX B
APPENDIX B - PROOF OF LEMMA 9

We consider a generic code in the ensemble E(B) for each
of the above cases.

1) If B contains a 3, then H(D) contains the polynomial
hi,j(D) = Dk1 +Dk2 +Dk3 , for some i and j, which,
according to (11), yields an unavoidable cycle with
length 6, due to the following equation

(k1 − k2) + (k2 − k3) + (k3 − k1) = 0.

2) Let us consider the case in which a row of B contains
one pair of symbols 2. The same proof also holds if such
pair exists in the same column. The symbolic matrix
contains hi,j1(D) = Dk1 +Dk2 and hi,j2(D) = Dm1 +
Dm2 , for some i, j1, j2. Then, the following equation

(k1−k2)+(m1−m2)+(k2−k1)+(m2−m1) = 0 (43)

leads to an unavoidable cycle with length 8. If the two
symbols 2 are neither in the same row nor in the same
column, then there must exist a path which connects
them, which starts and ends with a horizontal segment,
as the matrix has finite size and dc > 2. Then, the
equation describing an unavoidable cycle contains 8
terms due to the symbols 2, as in (43), and 4L additional
terms due to the L symbols connecting them.

3) The symbol 2 either is involved in at least one cycle or
belongs to a path connected to a cycle, since the matrix
has finite size. In the first case, we have the following
configuration in B (after a reordering of the row and
column indices, if needed)

2 . . .

1
. . .

...

 ,
which corresponds to

Dk1 +Dk2 . . .

Dm1
. . .

...

in H(D). This leads to an unavoidable cycle described
by the equation

(k1 − k2) + (k2 −m1) + (m1 − k1) + . . . = 0,

where the omitted portion of the equation contains the
terms relative to the remaining λ − 2 symbols in the
shortest cycle in which the symbol 2 is involved, covered
in both possible ways, so that they cancel each other.
There are thus 6 + 2(λ − 2) = 2λ + 2 terms in the
equation.
If, on the other hand, the symbol 2 does not belong to
any cycle, then there exists a path with length L starting
from it, which connects the symbol 2 to a cycle, say
with length λ. As dc > 2, we can consider the path
to begin with a horizontal segment. If the path ends
with a horizontal segment, then the equation of type (11)

18

leading to an unavoidable cycle contains 4 terms due
the symbol 2, 2λ terms due to the cycle and 4(L − 1)
terms due to the path. So, the unavoidable cycle has
length 2(λ + 2L). Similarly, if the path ends with a
vertical segment, the equation of type (11) yielding an
unavoidable cycle contains 4 terms due to the symbol 2,
4(L−2) terms due to the first L−2 symbols in the path,
and 2(λ+2) terms due to the cycle and the last symbol
in the path. So, also in this case, the unavoidable cycle
has length 2(λ+ 2L).

APPENDIX C
PROOF OF THEOREM 2

According to Lemma 9, if the base matrix contains entries
larger than 1, then the girth of any code in E(B) is bounded
above by g∗ ∈ {6, 8, 10, 12}, independently of the value of
ms, and the theorem is proved. If the entries of the B are
binary, according to Lemma 7, B contains at least two cycles,
say with length λ1 and λ2. There are two possibilities:
• The two cycles share at least ρ symbols 1, with ρ ≥ 1.
• The two cycles do not share any symbol 1.
In case the cycles share symbols 1, according to Lemma

8, the girth of the codes in E(B) is bounded above by g∗ =
2(λ1 + λ2 − ρ), independently of the value of ms, and the
theorem is proved. In case the cycles do not share symbols 1,
next we analyze all the possible cases for positioning of the
two cycles, which do not have any symbol 1 in common and
do not form any other cycle.

1) The two cycles have a horizontal (or vertical) segment
in the same row (or column).
Then, considering the (λ1

2 + λ2

2 −1)×(
λ1

2 + λ2

2) (or vice
versa) submatrix which contains the two cycles, we can
easily notice that it has one row (or column) with weight
4, and no rows/columns with weight 1. So, according to
Lemma 10, the girth of any code in E(B) is bounded
above by g∗ = 2(λ1 + λ2), regardless of ms.

2) The two cycles are connected by a path with length 2,
formed by a horizontal segment and a vertical segment.
Then, considering the (λ1

2 + λ2

2)× (λ1

2 + λ2

2) submatrix
which contains the two cycles and the remaining symbol
1 in the path, we can easily notice that it has one row and
one column with weight 3, and no rows/columns with
weight 1. So, according to Lemma 10, the girth of any
code in E(B) is bounded above by g∗ = 2(λ1+λ2+1),
for any ms.

3) The two cycles are connected by a path with length
L starting with a horizontal (or vertical) segment and
ending with a horizontal (or vertical) segment. Clearly,
L is odd and the path involves L + 1 symbols: each
of the two cycles contain one of these symbols and the
remaining L − 1 symbols in the path, instead, do not
belong to the two considered cycles. Then, considering
the (λ1

2 + λ2

2 + L−12)× (λ1

2 + λ2

2 + L−32) (or vice versa)
submatrix which contains the two cycles and the path,
we can easily notice that it has two rows (two columns)
with weight 3, and no rows/columns with weight 1. So,
according to Lemma 10, the girth of any code in E(B)

is bounded above by g∗ = 2(λ1 + λ2 +L− 1), for any
ms.

4) The two cycles are connected by a path with length
L starting with a horizontal (or vertical) segment and
ending with a vertical (or horizontal) segment. Clearly,
L is even and the path involves L + 1 symbols in
total: as above, two of them belong to the considered
cycles and L− 1 of them do not. Then, considering the
(λ1

2 + λ2

2 + L−12)× (λ1

2 + λ2

2 + L−12) submatrix which
contains the two cycles and the path, we notice that it
has one row and one column with weight 3, and no
rows/columns with weight 1. So, according to Lemma
10, the girth of any code in E(B) is bounded above by
g∗ = 2(λ1 + λ2 + L), for any value of ms.

It can be easily shown that these are the only possibilities for
the position of the two cycles, without creating other cycles.

APPENDIX D
PROOF OF LEMMA 18

Let us consider all the different columns that L can contain.
The following considerations hold:

1) If the all-zeros column appears in L, it is possible to
use at most 6 columns with weight 2 and as many
columns with weight 3 we wish, in order to design
L. The minimum weight of the resulting L is W3 ,
2min{6, a− 1}+ 3max{0, a− 7}.

2) If the all-zeros column does not appear in L and all the
four columns with weight 1 appear in L, we can fill the
remaining part of L with as many columns with weight
3 as necessary. The minimum weight of the resulting L
is W4 , 4 + 3(a− 4).

3) If the all-zeros column is not used and 3 columns with
weight 1 are used, we can fill the remaining part of L
with 3 columns with weight 2 and as many columns
with weight 3 as necessary. The minimum weight of the
resulting L is W5 , 3+2min{a−3, 3}+3max{0, a−
6}.

4) If the all-zeros column is not used and 2 columns with
weight 1 are used, we can fill the remaining part of L
with 6 columns with weight 2 and as many columns
with weight 3 as necessary. The minimum weight of the
resulting L is W6 , 2+2min{a−2, 6}+3max{0, a−
8}.

5) If the all-zeros column is not used and 1 column with
weight 1 is used, we can fill the remaining part of L
with 9 columns with weight 2 and as many columns
with weight 3 as necessary. The minimum weight of the
resulting L is W7 , 1+2min{a−1, 9}+3max{0, a−
10}.

6) If the all-zeros column and the columns with weight
1 are not used, we can fill the remaining part of L
with 12 columns with weight 2 and as many columns
with weight 3 as necessary. The minimum weight of the
resulting L is W8 , 2min{a, 12}+ 3max{0, a− 12}.

Then, we have compared W3 to W8 for increasing a > 4,
choosing the function (or one of the functions) providing the
smallest W(L).

19

REFERENCES

[1] M. Battaglioni, M. Baldi, F. Chiaraluce, and M. Lentmaier, “Girth
properties of time-varying SC-LDPC convolutional codes,” in Proc.
IEEE International Symposium on Information Theory (ISIT 2019),
Paris, France, Jul. 2019, pp. 2599–2603.

[2] K. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, Dec. 2013.

[3] A. Jiménez Felström and K. S. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrix,” IEEE Trans.
Inf. Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[4] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.
Satyukov, “Searching for voltage graph-based LDPC tailbiting codes
with large girth,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2265–
2279, Apr. 2012.

[5] M. Lentmaier, M. M. Prenda, and G. Fettweis, “Efficient message-
passing scheduling for terminated LDPC convolutional codes,” in Proc.
IEEE International Symposium on Information Theory (ISIT 2011), St.
Petersburg, Russia, Aug. 2011, pp. 1826–1830.

[6] A. R. Iyengar, M. Papaleo, P. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[7] D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell,
and R. Smarandache, “Spatially coupled sparse codes on graphs: theory
and practice,” IEEE Commun. Mag., vol. 52, no. 7, pp. 168–176, Jul.
2014.

[8] M. Battaglioni, A. Tasdighi, M. Baldi, M. H. Tadayon, and F. Chiaraluce,
“Compact QC-LDPC block and SC-LDPC convolutional codes for
low-latency communications,” in Proc. 2018 IEEE 29th International
Symposium on Personal, Indoor and Mobile Radio Communications,
(PIMRC), Bologna, Italy, Sep. 2018.

[9] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello,
“Deriving good LDPC convolutional codes from LDPC block codes,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 835–857, Feb. 2011.

[10] K. Liu, M. El-Khamy, and J. Lee, “Finite-length algebraic spatially-
coupled quasi-cyclic LDPC codes,” IEEE J. Select. Areas Commun.,
vol. 34, no. 2, pp. 329–344, Feb. 2016.

[11] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[12] D. Achlioptas, H. Hassani, W. Liu, and R. Urbanke, “Time-invariant
LDPC convolutional codes,” in Proc. IEEE International Symposium
on Information Theory (ISIT 2017), Aachen, Germany, Jun. 2017, pp.
366–370.

[13] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579,
Jun. 2002.

[14] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual
Allerton Conf., Monticello, IL, Oct. 2003, pp. 1426–1435.

[15] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181–201,
Jan. 2010.

[16] Y. Hashemi and A. Banihashemi, “On characterization of elementary
trapping sets of variable-regular LDPC codes,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5188–5203, Sep. 2014.

[17] ——, “New characterization and efficient exhaustive search algorithm
for leafless elementary trapping sets of variable-regular LDPC codes,”
IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 6713–6736, Dec. 2016.

[18] X. Tao, Y. Li, Y. Liu, and Z. Hu, “On the construction of LDPC codes
free of small trapping sets by controlling cycles,” IEEE Commun. Lett.,
vol. 22, no. 11, pp. 9–12, Jan. 2018.

[19] M. Sadeghi and F. Amirzade, “Edge-coloring technique to analyze ele-
mentary trapping sets of spatially-coupled LDPC convolutional codes,”
IEEE Commun. Lett., Early Access, 2019.

[20] S. Naseri and A. H. Banihashemi, “Construction of girth-8 QC-LDPC
codes free of small trapping sets,” IEEE Commun. Lett., vol. 23, no. 11,
pp. 1904–1908, Nov 2019.

[21] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth
QC-LDPC codes,” in Proc. 5th Int. Symp. on Turbo Codes and Related
Topics, Lausanne, Switzerland, Oct. 2008, pp. 180–185.

[22] Y. Wang, S. C. Draper, and J. S. Yedidia, “Hierarchical and high-girth
QC LDPC codes,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4553–
4583, Jul. 2013.

[23] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi,
“Design and analysis of time-invariant SC-LDPC convolutional codes
with small constraint length,” IEEE Trans. Commun., vol. 66, no. 3, pp.
918–931, Mar. 2018.

[24] H. Zhou and N. Goertz, “Cycle analysis of time-invariant LDPC
convolutional codes,” in Proc. 2010 17th International Conference on
Telecommunications (ICT 2010), Doha, Qatar, Apr. 2010, pp. 23–28.

[25] ——, “Unavoidable cycles in polynomial-based time-invariant LDPC
convolutional codes,” in Proc. 11th European Wireless Conference on
Sustainable Wireless Technologies, Vienna, Austria, Apr. 2011, pp. 39–
44.

[26] ——, “Girth analysis of polynomial-based time-invariant LDPC convo-
lutional codes,” in Proc. 2012 19th International Conference on Systems,
Signals and Image Processing (IWSSIP), Vienna, Austria, Apr. 2012, pp.
104–108.

[27] M. Battaglioni, M. Baldi, and G. Cancellieri, “Connections between low-
weight codewords and cycles in spatially coupled LDPC convolutional
codes,” IEEE Trans. Commun., vol. 66, no. 8, pp. 3268–3280, Aug.
2018.

[28] M. H. Tadayon, A. Tasdighi, M. Battaglioni, M. Baldi, and F. Chiaraluce,
“Efficient search of compact QC-LDPC and SC-LDPC convolutional
codes with large girth,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1156–
1159, Jun. 2018.

[29] M. Sadeghi, “Optimal search for girth-8 quasi cyclic and spatially
coupled multiple-edge LDPC codes,” IEEE Commun. Lett., vol. 23,
no. 9, pp. 1466–1469, Sep. 2019.

[30] S. Naseri and A. H. Banihashemi, “Spatially coupled LDPC codes
with small constraint length and low error floor,” IEEE Commun. Lett.,
vol. 24, no. 2, pp. 254–258, Feb. 2019.

[31] M. B. Tavares, K. S. Zigangirov, and G. P. Fettweis, “Tail-biting
LDPC convolutional codes,” in Proc. IEEE International Symposium
on Information Theory (ISIT 2007), Nice, France, Jun. 2007, pp. 2341–
2345.

[32] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic LDPC codes for fast
encoding,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2894–2901, Aug.
2005.

[33] S. Kim, J.-S. No, H. Chung, and D.-J. Shin, “Quasi-cyclic low-density
parity-check codes with girth larger than 12,” IEEE Trans. Inf. Theory,
vol. 53, no. 8, pp. 2885–2891, Aug. 2007.

[34] S. J. Chandrasetty, V. A. Johnson and G. Lechner, “Memory-efficient
quasi-cyclic spatially coupled low-density parity-check and repeat-
accumulate codes,” IET Commun., vol. 8, no. 17, pp. 3179–3188, Nov.
2014.

[35] D. G. M. Mitchell, R. Smarandache, and D. J. Costello, “Quasi-cyclic
LDPC codes based on pre-lifted protographs,” IEEE Trans. Inf. Theory,
vol. 60, no. 10, pp. 5856–5874, Oct. 2014.

[36] R. Smarandache and P. O. Vontobel, “Quasi-cyclic LDPC codes: In-
fluence of proto- and Tanner-graph structure on minimum Hamming
distance upper bounds,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp.
585–607, Feb. 2012.

[37] M. R. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[38] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788–1793, Aug. 2004.

[39] M. Sadeghi and F. Amirzade, “Analytical lower bound on the lifting
degree of multiple-edge QC-LDPC codes with girth 6,” IEEE Commun.
Lett., vol. 22, no. 8, pp. 1528–1531, Aug. 2018.

[40] R. Townsend and E. J. Weldon, “Self-orthogonal quasi-cyclic codes,”
IEEE Trans. Inf. Theory, vol. IT-13, no. 2, pp. 183–195, Apr. 1967.

[41] M. Karlin, “New binary coding results by circulants,” IEEE Trans. Inf.
Theory, vol. IT-15, no. 1, pp. 81–92, Jan. 1969.

[42] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and
M. Baldi. (2017, Jul.) Design and analysis of time-invariant SC-LDPC
convolutional codes with small constraint length: exponent matrices.
[Online]. Available: https://doi.org/10.6084/m9.figshare.5166373

[43] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[44] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[45] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[46] M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov, “To the theory
of low-density convolutional codes. II,” Problems of Information Trans-
mission, vol. 32, pp. 288–306, 2001.

20

[47] A. Tasdighi, A. H. Banihashemi, and M.-R. Sadeghi, “Efficient search
of girth-optimal QC-LDPC codes,” IEEE Trans. Inf. Theory, vol. 62,
no. 4, pp. 1552–1564, Apr. 2016.

[48] H. Zhou and N. Goertz, “Cycle analysis of time-variant LDPC convolu-
tional codes,” in Proc. 6th Int. Symp. Turbo Codes Iterative Information
Processing, Paris, France, Sep. 2010, pp. 48–52.

[49] M. Battaglioni, F. Chiaraluce, M. Baldi, and M. Lentmaier.
(2021) Dataset related to “Girth analysis and design of
periodically time-varying SC-LDPC codes”. [Online]. Available:
http://doi.org/10.5281/zenodo.4467759

[50] M. Esmaeili and M. Gholami, “Structured quasi-cyclic LDPC codes
with girth 18 and column-weight J ≥ 3,” AEU - International Journal
of Electronics and Communications, vol. 64, no. 3, pp. 202–217, 2010.

[51] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Upper Saddle
River, NJ: Prentice-Hall, Inc., 2004.

[52] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construc-
tion of regular and irregular LDPC codes: Geometry decomposition and
masking,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 121–134, Jan
2007.

Massimo Battaglioni (Member, IEEE) was born in Macerata, Italy, in 1991.
He received a Laurea degree in Electronic Engineering in 2013, a Laurea
Magistrale degree in Electronic Engineering (summa cum laude) in 2015 and
a PhD in Information Engineering in 2019, by Marche Polytechnic University.
Since 2019 he is a postdoctoral researcher at the Department of Information
Engineering of Marche Polytechnic University. In 2017 he has been a visiting
student at the Electrical and Information Technology Department, LTH, Lund
University, Sweden. In 2018 he has been a visiting student at the Klipsch
School of Electrical and Computer Engineering, NMSU, Las Cruces, NM,
USA and at the School of Electrical and Electronic Engineering, University
College Dublin, Ireland. His research activity is focused on coding techniques
for communications reliability and cryptography, with particular attention to
block and convolutional LDPC codes for symmetric and asymmetric channels
and their application to cryptography. He currently serves as an Editor for
IEEE Communications Letters.

Franco Chiaraluce (Senior Member, IEEE) was born in Ancona, Italy,
in 1960. He received the Laurea degree (summa cum laude) in electronic
engineering from the University of Ancona in 1985. Since 1987, he has been
with the Department of Electronics and Automatics, University of Ancona. He
is currently a Full Professor in Telecommunications at the Marche Polytechnic
University, Ancona, Italy. He has coauthored more than 300 scientific papers
and 3 books, and he holds 3 patents. On his research topics, he collaborates
with national and international companies. His main research interests involve
various aspects of communication systems theory and design, with a special
emphasis on error correcting codes, cryptography, and physical layer security.
He is also a member of the IEICE.

Marco Baldi (Senior Member, IEEE) received the Laurea degree (Hons.)
in electronics engineering and the Ph.D. degree in electronics, computer, and
telecommunications engineering from the Università Politecnica delle Marche,
Ancona, Italy. Since 2019, he has been an Associate Professor with the
Università Politecnica delle Marche, Department of Information Engineering,
where he also coordinates the local node of the CINI Cybersecurity National
Laboratory and takes part in the Research and Service Center for Privacy
and Cybersecurity (CRiSPY). He has coauthored over 150 scientific articles
and one book, and holds four patents. His research is focused on coding
and cryptography for information security and reliability. He is a member
of AEIT, CINI, CNIT, IEEE Communications Society, IEEE Information
Theory Society and an IEEE senior member. He serves as a Senior Associate
Editor for IEEE Communications Letters and an Associate Editor for the
EURASIP Journal on Wireless Communications and Networking and the
MDPI Information journal.

Michael Lentmaier (Senior Member, IEEE) is an Associate Professor at
the Department of Electrical and Information Technology at Lund University,
which he joined in January 2013. His research interests include design and
analysis of coding systems, graph based iterative algorithms and Bayesian
methods applied to decoding, detection and estimation in communication
systems. He received the Dipl.-Ing. degree in electrical engineering from
University of Ulm, Germany in 1998, and the Ph.D. degree in telecommu-
nication theory from Lund University, Sweden in 2003. He then worked as
a Post-Doctoral Research Associate at University of Notre Dame, Indiana
and at University of Ulm. From 2005 to 2007 he was with the Institute of
Communications and Navigation of the German Aerospace Center (DLR)
in Oberpfaffenhofen, where he worked on signal processing techniques in
satellite navigation receivers. From 2008 to 2012 he was a senior researcher
and lecturer at the Vodafone Chair Mobile Communications Systems at TU
Dresden, where he was heading the Algorithms and Coding research group.
He is a senior member of the IEEE and served as an editor for IEEE
Communications Letters (2010-2013), IEEE Transactions on Communications
(2014-2017), and IEEE Transactions on Information Theory (2017-2020). He
was awarded the Communications Society & Information Theory Society Joint
Paper Award (2012) for his paper “Iterative Decoding Threshold Analysis for
LDPC Convolutional Codes”.

	Pagina vuota

