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General Abstract 

This work aims, by using only publicly available market data, to quantify and allocate macro 

risks, such as systemic, climate and geopolitical risk, involving listed bank equities. It begins 

by implementing a bivariate appraisal of climate risk for the Eurozone banking sector to expand 

it by developing an innovative, frequency-based approach to attribute risk in a multifactor 

context, extending the scope of the analysis to include systemic, climate and geopolitical risk 

simultaneously. The results of this multifactor assessment indicate that coincident occurrences 

of  multiple crises are likely to generate larger than expected capital shortfalls and that both 

climate and geopolitical risk have increased significantly from July 2011 to April 2022. The 

quantitative assessment of climate tail risk is compatible with the European Central Bank 

(ECB) 2022 climate exercise results, whereas the measure of geopolitical risk shows a 

significant positive correlation with the GPRD Threats index (Caldara and Iacoviello, 2022). 

Finally, these results are deployed to create sectoral portfolios robust to unexpected climate 

shocks: in the Eurozone, a strategy based on overweighting the banks least exposed to the 

climate factor would have produced superior risk-adjusted returns during the 2019-2022 

period. However, the same approach applied to US lenders would have offered inconclusive 

evidence, likely due to the differences between the two regulatory frameworks. 
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General Introduction 

All banks are subject to specific risks which require regulatory capital: credit risk, market risk 

and operational risk (Hull, 2023). Lenders are also subject to macro risk factors concerning the 

broad financial system, which manifest themselves following events of various natures 

suddenly provoking unexpected losses, thus undermining the standing of supposedly solid 

enterprises. Banks are particularly vulnerable to these shocks due to their structural high 

leverage and the confidence needed to conduct their business, prone to be shaken abruptly by 

unexpected situations.  Given the banking system role as provider of credit to the economy and 

as monetary policy transmission channel, solvency is a prerequisite to ensure economic 

prosperity and regulators are continuously tuning their assessment of the consequences of 

potential crises using stress tests, risk exercises and ad-hoc measurements: these efforts identify 

systemic, geopolitical and climate risks as the main types of macro risks menacing the stability 

of the banking system. 

Systemic risk materializes when supposedly isolated bankruptcies are not properly contained, 

escalate, and spread to other agents, implying that the failure of a single institution might lead 

to multiple resolutions and ultimately to a crisis affecting the entire financial system. History 

points to systemic risk as a most serious factor: the 1930s Great Depression and the 2000s 

Great Financial Crisis are examples of what can happen during such events. Systemic crises 

are rare, but devastating: combined losses grow so large that states are forced to use sovereign 

balance sheets to pay for the aggregate shortfall. In the early 2010s academic literature studying 

systemic risk flourished: Systemic Expected Shortfall (Acharya, 2010; 2017) and SRISK 

(Brownlees and Engle, 2012; 2017) provided frameworks to estimate the cost of a financial 

system collapse, network analysis was used to model the propagation of a shock through the 
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system and VaR (Value at Risk), the risk framework that failed to capture the extent of the 

potential losses, was improved by the introduction of CVaR (Conditional Value at Risk) to 

better assess tail risk. Currently, systemic risk is constantly monitored with a variety of tools 

and is at the top of regulators’ worries. 

Geopolitical risk is represented by the consequences of acts of war, terrorism or political 

decisions threatening financial stability. These events are generally difficult to predict and 

potentially devastating, but, barring apocalyptic scenarios, they tend to affect specific 

constituencies: as an example, the consequences of the breakout of the Russo-Ukrainian war 

have been incredibly harsh on the banking systems of the belligerents, but have proven to be 

manageable, if not cheap, by the foreign banks with exposure to the region. Geopolitical risks 

also tend to show low persistency, especially in the case of conventional terror attacks. 

Historically, the largest consequences are linked to political events, such as Brexit, which also 

tend to have longer lasting effects on the banking systems involved. Given geopolitical risk’s 

unpredictable nature, markets reflect increased risk premia for regions perceived as being hot 

spots, whereas risk frameworks tend to assess geopolitical risk using scenario analysis. 

Climate risk is a relatively new factor, pushed to the forefront of financial risk management, 

banking supervision and regulation by climate change. Manifesting itself as physical risk, 

caused by climate events that destroy capital, and transition risk, induced by legislative and 

market modifications linked to the containment of global warming, its relevance is expected to 

rise dramatically with the projected increase in global temperatures. Its dual nature makes 

evaluating total climate risk assessment a very difficult task, which requires a structural 

commitment to create and maintain a database of non-financial data and a granular 

measurement of the greenness of an economy. So far, only the Eurozone appears to have taken 
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all the steps necessary to fully include the climate factor within its risk framework, whereas 

other constituencies have been slower to adopt similar measures. Moreover, contrary to 

systemic and geopolitical risk, the financial system has not endured yet the effects of a serious 

climate crisis. The world, however, has experienced several energy crises: since the 1970s, 

large fluctuations in the price of hydrocarbons have provoked wide swings in the global 

economy and the value of related assets. Until 2020, these instances were generally 

characterized by a boom in the price of fossil fuels, followed by a subsequent bust. Then the 

Covid-19 pandemic came, with lockdowns causing a collapse in demand and a sharp fall in the 

price of oil and gas: European Brent crude prices fell more than 80% in three months, whereas 

in the USA bottlenecks in storage sent West Texas Intermediate crude prices into negative 

territory. This dramatic fall in the value of hydrocarbons occurred from relatively well-behaved 

prices and made a perfect case of what could happen if an uncontrolled planetary warming 

were to force governments to adopt draconian measures to contain greenhouse gas emissions. 

In such a scenario, companies linked to fossil fuel production and exploration, the “stranded 

assets”, would rapidly lose value, likely impairing their ability to service debt: banks exposed 

to these “brown” assets would have to take material write-downs and record crippling losses. 

Assessing the size of these losses in case of a climate event is equivalent to estimating transition 

risk, which the ECB puts at approximately 75% of total climate risk in early 2022 for the 

Eurozone banking system. 

Climate risk is the focus of the first chapter. It is inspired by CRISK (Jung, Engle and Berner, 

2021), a metric constructed on the basis of the SRISK methodology: CRISK estimates 

transition risk using only market data. In their study on a selection of international lenders, the 

scholars found that aggregate CRISK showed a marked jump following the 2020 hydrocarbons 

demand collapse, returning alarming figures for the possible consequences of a climate event. 
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Since then, CRISK has been monitored regularly by the NYU Volatility Institute. We 

customized this approach to analyze the top Eurozone banks, modifying the key parameters 

and using a rolling window instead of a recursive method: the results showed that CRISK could 

serve as an early warning to identify a climate event affecting the Eurozone banking sector. It 

could also be used to assess relative climate sensitivity within the lenders comprised in the 

sample. 

Reflecting on these findings, we realized the main drawbacks of this approach: shortfalls, as 

measured by SRISK and CRISK, are estimated independently, using a bivariate setup involving 

bank returns and a single risk factor at a time. Furthermore, the geopolitical factor is excluded 

from the analysis since there was no “GRISK”. Could all macro risk factors be evaluated 

simultaneously? Estimating one risk at a time makes the job easier since it avoids the issue of 

risk attribution. However, the balance sheet of a bank is always the same, offering a single 

buffer to absorb losses: risk should probably be assessed with a multivariate setup. Henceforth, 

after designing a geopolitical risk factor, we studied a frequency-based system that attributes 

tail risk using relative frequencies and applied it to Eurozone top banks in the July 2011 – April 

2022 period, assessing all risk factors simultaneously. The results obtained within this 

multifactor framework are presented in Chapter 2 and show that, on average, systemic risk 

represents 85.0% of total risk, with climate and geopolitical risks contributing 10.9% and 2.7% 

respectively. Interaction risk among factors is always present, for an average of 1.4% of 

potential combined shortfall1. Our transition risk combined estimate of €47 billion calculated 

at the beginning of 2022 for a significant sample of large banks is compatible with the €53 

 

1 Median contributions: systemic risk 86.5%; climate risk 9.9%; geopolitical risk 2.3%; interaction risk 1.3%. 
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billion ECB Climate Stress Test (2022) appraisal, obtained using a comprehensive, bottom-up 

analysis of individual lenders’ exposure to climate risk, while the aggregate geopolitical risk 

estimates show significant positive correlation with Caldara and Iacoviello (2022) GPR Threat 

index, based on media headlines. 

We then decided to look for a practical utilization of the results obtained using this 

methodology to identify the greenest lenders and improve sectoral portfolio selection. Albeit  

ESG (Environmental, Social and Governance) investing is supposed to be driven by 

motivations that transcend expected return, our take is that bank equities less exposed to losses 

induced by transition risk should perform better than their peers during a climate event. Hence, 

we have checked this hypothesis on two samples comprising the top Eurozone and US lenders 

during the 2019-2022 period: after constructing a sectoral benchmark using market-cap weights 

rebalanced every quarterly cycle, we compared its risk-adjusted performance against climate-

tilted test portfolios. The composition of these portfolios is varied with respect to the 

benchmark at each rebalancing date using weight modifiers based on deviation of each bank 

from the samples’ average Environmental ratings, Scope 2 greenhouse gas emissions and our 

climate loss estimates. The findings, presented in Chapter 3, are mixed. For the Eurozone 

sample the hypothesis is confirmed: the climate loss modifier excels, showing a better risk-

return profile than the benchmark and beating both the rating-adjusted and the emission-

modified portfolios. However, in the case of the North American banks, no climate-tilted 

strategy shows any consistent overperformance vis-à-vis the benchmark. We think that the 

main reason for this regional divergence is the different climate regulatory discipline: the 

stronger European push for greening the economy is reflected in the higher sensitivity to 

climate risk shown by Eurozone lenders, whereas US banks react differently to it. Another 

factor is the lack of reliable emission data: we had to employ relatively homogeneous Scope 2 
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estimates in lieu of more comprehensive and relevant Scope 3 data, which for the foreseeable 

future are not going to become homogeneous enough to be used for analytical purposes. 

Final remarks conclude. 
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Chapter 1: Bivariate Eurozone Banks Climate Risk Assessment 

Using CRISK 

Abstract  

CRISK is a market-based measure of systemic risk conditional on the occurrence of a climate 

crisis which may compromise banks exposed to companies engaged in fossil fuels exploration 

and production. We apply the CRISK methodology to estimate the climate transition risk of a 

sample of Eurozone banks for the period July 2011 – April 2022. While the granular 

measurement system required to properly evaluate the greenness of loans portfolios is being 

implemented, CRISK could provide a valuable contribution within the current EU climate risk 

framework. It may also serve as a guide to rank publicly traded bank equities on the basis of 

their relative climate riskiness. 

1. Introduction 

Regulators across the globe  are studying how to implement climate risk stress tests for banks. 

In the European Union both the European Central Bank (ECB) and the European Banking 

Authority (EBA) are working towards the definition of a climate risk framework, with the 

central bank extending its current top-down scenario analysis and the authority complementing 

it with a granular bottom-up data collection effort focused on the assessment of the greenness 

of Eurozone lenders’ books. Given the unprecedented nature of the challenge, there is no clear 

path forward and the current state of the art in modelling procedures is far from being perfect. 

Since it is difficult to precisely assess the actual amount of carbon exposure of a specific loan 

portfolio, most of the times measurement is carried out using industry proxies or sector 

averages, thus ignoring the in-sector heterogeneity due to material specificities of individual 
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corporate borrowers inside each Climate Policy Relevant Sector (CPRS). Additionally, 

harmonized procedures are still developing, and medium and small-sized enterprises (SME)  

are de facto excluded from the analysis, with policy makers forced to rely on metrics  that might 

not be directly comparable among institutions. For all these reasons, measuring climate risk for 

banks using publicly available market data could constitute a useful complement to the existing 

and developing tools: this paper introduces the use of capital shortfall - CRISK - as a measure 

of climate transition risk for a selection of top Eurozone credit institutions.  

In May 2021 EBA published the report “Mapping climate risk” with the results of its first 

climate exercise. It was conducted with the participation of 26 banks that took part voluntarily 

in the assessment of the greenness of their loan portfolios and related climate risk profiles. The 

sample included approximately half of total EU-banks risk weighted assets (RWA) deployed 

vis-a-vis large non-financial  enterprises. Corporate data collected in accordance with the EU-

wide NACE taxonomy of business activities were reclassified and reconciled according to the 

(CPRS) methodology proposed by Battiston et al. (2017), finding that most of the sample RWA 

were deployed to companies operating in the sectors 1 to 6, heavily affected by transition risks. 

This classification was then integrated by the measurement of each specific debtor greenhouse 

gas emissions (GHG), that is necessary to identify the exposure towards the highest polluters 

and compute the portfolio carbon component. However, proxies had to be used for more than 

80% of the RWA, since most of the specific information was missing.  By comparing the 

classification resulting from CPRS criteria with the firm-specific GHG data, EBA found that 

there are several outliers represented both by relatively low-emission firms operating in CPRS 

1-6 and by high-emission enterprises grouped in the supposedly greener sectors. Consequently, 

if CPRS allowed for a nearly integral (98%) NACE-based classification, the more granular and 

accurate GHG was applied only to a small portion of the sample (17%). Similarly, there were 
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several instances in which banks’ own evaluation of a borrower greenness could not follow EU 

taxonomy classifications or was diverging from the synthetic Taxonomy Alignment 

Coefficient (TAC) by Alessi et al. (2019), hindering a proper calculation of GAR across the 

participating entities.  

In the current EU approach EBA exposure results are then elaborated within the ECB scenario 

analysis, so data quality could materially affect the accuracy of the capital shortfall estimations 

in all circumstances. Eventually, this strategy is bound to lead to a very precise assessment, but 

only following the adoption of common procedures across the EU. Significant improvements 

in the standardization of the results seem unlikely until a broader set of climate disclosures is 

extended to regular companies reporting , including SMEs. A possible stop-gap solution is to 

integrate the results obtained within the current EU framework, which heavily relies on sectoral 

average emissions, with alternative climate risk measures, such as CRISK. 

In their paper Jung, Engle and Berner (2021) propose CRISK as a climate risk assessment 

measure that could potentially be included in future stress tests  on the US banking sector. 

Being a relatively late comer , the Federal Reserve cannot rely on the extensive proprietary 

data set collected by the ECB and is considering a wide range of instruments to evaluate banks’ 

climate risk. CRISK is an estimate of the capital shortfall conditional on a systemic climate 

stress affecting the financial industry closely linked to SRISK, a measure of systemic risk first 

introduced by Acharya et al. (2012) and subsequently developed by Brownlees and Engle 

(2017).  Jung, Engle and Berner (2021) propose a 3-step CRISK estimation process applied to 

data encompassing 20 years of returns, up to and including the oil price collapse in mid-2020 

and its detrimental effect on oil and gas equities (the “stranded assets”): 
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1. Transition risk is identified by the construction of a metric, the climate factor, tracking 

the underperformance of a group of stranded assets (a weighted basket of energy sector EFTs 

– de facto a proxy for CPRS 1) with respect to the market index return. 

2. Bank climate correlations and betas relative to the climate factor are then calculated 

using the Dynamic Conditional Correlation (DCC) (Engle, 2002 and 2009) and Dynamic 

Conditional Beta (DCB) (Brownlees and Engle, 2017) models. 

3. CRISK is measured using the results from DCC/DCB in conjunction with actual banks’ 

balance sheet data to simulate the potential climate-induced equity shortfall conditional on the 

occurrence of a climate crisis affecting stranded assets and thus weighing on lenders. 

Jung, Engle and Berner (2021) find that banks’ climate betas move considerably across 

different time windows and that climate risk is material, mainly due to the fall in the lenders’ 

equity market value caused by the exposure to hydrocarbons producers in the event of a climate 

crisis. This methodology has the advantage of employing only publicly available information 

and bypasses the need for a granular database. This feature, however, also constitutes its main 

limitation, making CRISK a useful measure of climate-induced capital shortfall only in the 

context of a broader macro and micro-prudential framework.  

Given these premises, our analysis aims to understand whether a Eurozone CRISK assessment 

makes sense and what type of scenario can result from that. 

The remainder of the paper addresses these points. Specifically, in Section 2 we define a 

Eurozone climate factor CFE, and the methodology implemented to compute CRISK, whereas 

in Section 3 we illustrate the data used to conduct the analysis, the simulation development and 

the results of the estimation process. Section 4 concludes. 
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2. A CRISK indicator for the Eurozone 

The UN-sponsored Net-Zero Banking Alliance (NZBA), which comprises all major Eurozone 

and international lenders committed to implement a lending policy suitable to favor a material 

reduction in GHG emissions by 2030 and reach carbon neutrality by 2050, has pledged to 

follow the International Energy Agency (IEA)2 resolution recommending the reduction of 

capital commitments towards industries contributing the most to GHG emission. Despite this 

claim, in its 2021 report regarding climate-related financial risks, the ECB notes that, in 

aggregate, the carbon intensity of EU banks’ portfolios has increased:  the central bank 

estimates the total credit sector exposure vis-à-vis CPRS sectors to be approximately €1.9 

trillion. Given the size of the loans outstanding, climate transition could constitute a significant 

risk for Eurozone banks. 

In this section we adapt CRISK, introduced by Jung, Engle and Berner (2021), to the Eurozone 

framework and determine whether it could be potentially integrated in the current EU 

regulators’ toolbox. Several important structural differences between the US and the Eurozone 

have to be taken into account. If the US has become a net exporter of fossil combustibles, the 

Eurozone continues to rely heavily on imports to cover its demand for energy. However, the 

European Emission Trading System (ETS) is likely to have had a bigger impact on corporate 

behavior than the US cap-and-trade rules, significantly fostering the “greening” of the 

European energy sector. Moreover, European banks are subject to different rules and adopt 

 

2 See IEA (2021) “Net Zero by 2050 – A Roadmap for the Global Energy Sector”, 4th revision.  
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IFRS accounting principles, perceived as stricter with respect to US GAAP3. As a result, proper 

adjustments have to be made, starting from climate factor selection. 

Jung, Engle and Berner (2021) calculate the performance of the stranded assets benchmark 

portfolio as the return of a portfolio comprised by the energy ETF XLE (in combination with 

the coal ETF KOL until available) minus the return of the SP500 index (SPX), with negative 

values indicating an underperformance of stranded assets vis-à-vis the broader market. Given 

that the SPX is the de facto international equity benchmark, accounting for a share in excess of 

60% of the MSCI World Index, the choice of this benchmark can be applied also to our study 

by selecting a liquid ETF listed in Europe that tracks the index, hedges the EURUSD currency 

risk regularly and is marked-to-market at the close of European bourses: our choice is 

Blackrock’s iShares IUSE. Listed on 11 exchanges under different tickers, IUSE is an 

accumulation fund whose net asset value in November 2021 was close to €5 billion. There are 

valid alternatives to IUSE, such as Lyxor’s SP5H/SPXH, but not with a price history 

encompassing the entire period considered. 

IUSE was launched in the fall of 2010 and since then has tracked the dollar-denominated SPX 

very well: in the period considered the iShare ETF cumulated daily and yearly log returns show 

a 99.9% correlation with the corresponding SPX USD return statistics. Given the currency 

hedge and that the price of IUSE is arbitraged until the close of European business, it is our 

opinion that the characteristics of this ETF eliminate the need to account for lagged returns in 

this type of analysis. 

 

3 See Admati and Hellwig (2013). 
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In terms of stranded assets, the most likely candidates are coal mining and hydrocarbons 

extraction companies. The largest European coal and lignite mines, however, are mainly based 

in Germany and Poland and are operated directly by utilities, such as RWE (Germany), whereas 

the largest mining stocks involved in extraction, such as BHP or Glencore, are listed in the UK. 

The operations of these multinational enterprises span across the world, with most of their 

mines based on other continents, making them unsuitable to be part of a Eurozone tracker. 

Therefore, we think that the best option is to use only the EURO STOXX Energy index SXET, 

which represents the net return plus dividends of the SXEE Euro Energy index: it comprises 

companies whose main legacy business is fossil fuels exploration and production (E&P, a good 

proxy for CPRS 1) and does not include any renewable energy pure plays. With respect to 

banks, in the past decade the EURO STOXX bank index SX7E significantly lagged both the 

EURO STOXX (SXXE)4 and the EURO STOXX SXEE Energy index, as shown in Figure 1. 

This marked underperformance is the consequence of particularly poor returns registered by 

banks during the 2011-12 sovereign debt crisis and the 2016 Brexit dislocation. In 2020 all 

sectors were heavily affected by the outbreak of the COVID pandemic, but oil and gas equities 

were also hit by the temporary collapse of fossil fuel prices that depressed sector returns long 

after the broader market recovered.  

 

4 The EURO STOXX index SXXE comprises only the euro-denominated securities included in the wider STOXX 

600 index, thus representing a smaller, currency-homogeneous subset of stocks. As of the end on November 2021 

SXXE included 291 stocks as shown by Qontigo - https://www.stoxx.com/index-details?symbol=sxxe. 
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Figure 1: SXXE vs SX7E vs SXEE, Cumulated Returns, 07/2011-04/2022 

 

For the reasons discussed, we define the Climate Factor for the Eurozone CFE as the combined 

return of a long position in the Energy index SXET and a short position in the IUSE euro-

hedged SPX ETF:  

𝐶𝐹𝐸 =  𝑆𝑋𝐸𝑇 − 𝐼𝑈𝑆𝐸 

Figure 2 shows both the spread cumulative arithmetic returns (long SXET and short IUSE) and 

the dispersion of daily CFE log returns (CFE_r) across the time window considered (on the 

secondary vertical axis). This definition of the climate factor makes a bank with a higher, 

positive, climate Beta more inclined to suffer from a drop in the market value of its traded 

equity during a systemic climate crisis that affects the equities of fossil fuels producers. 

20

40

60

80

100

120

140

160

180

SXXE (€STOXX_600) SX7E (€STOXX_Banks) SXEE (€STOXX_Energy)



18 

 

Figure 2: SXET-IUSE Cumulative Arithmetic Returns and Log-Returns Dispersion (right axis), 07/2011-04/2022 

 

2.1 Eurozone banking basket selection 

A good proxy for the Eurozone banking industry should include all the Eurozone-based 

institutions that contribute the most to systemic risk, as determined by EU and international 

regulators. In this process, Total Assets (TA) and Risk-Weighted Assets (RWA) represent key 

metrics used to identify Global Systematically Important Institutions (G-SII): in 2019, net of 

UK institutions, EBA determined that large French banks tended to carry the most in terms of 

TA and RWA, followed by a group of German, Dutch, Spanish and Italian lenders. Country-

wise the situation was the same, with France, Spain, Germany, Italy and Netherlands 

contributing the most to the Eurozone total bank assets. Following the release of the 2021 

exercise by EBA, these data were confirmed. 

We then select a group of 10 of the largest G-SII as a proxy for the Eurozone banking sector: 

the basket includes BNP, Credit Agricole (ACA) and Société Générale (GLE) for France, 

Deutsche Bank (DBK) and Commerzbank (CBK) for Germany, Santander (SAN) and BBVA 

for Spain, Unicredit (UCG) and Intesa (ISP) for Italy, ING (INGA) for the Netherlands. Figure 

3 shows the evolution of TA for the selected sample. 
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Figure 3: Individual Banks Total Assets in € millions, 2011Q2-2022Q1 

 

Figure 4 shows that, in aggregate, for the selected basket both TA and RWA (secondary axis) 

have remained rather stable: during the period considered TA increased 15.4% from 11.99 

trillion to 13.84 trillion euros, whereas RWA decreased 0.6% from 3.95 to 3.92 trillion euros, 

with standard deviations of 5.7% and 2.8% respectively. Within the sample we can notice a 

clear dichotomy: in terms of TA, French banks BNP, ACA and GLE boosted their combined 

balance sheets by €1.87 trillion, Spanish SAN and BBVA by €0.57 trillion and Italian ISP and 

UCG by €0.43 trillion; in contrast, German DBK and CBK, with Dutch INGA, reduced their 

combined holdings by €1.03 trillion. BNP’s TA registered the largest increase (+€0.86 trillion), 

while DBK’s TA contracted the most (-€0.56 trillion). 
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Figure 4: Total Assets vs Total Risk Weighted Assets RWA (right axis) in € millions, 2011-2022 

 

Given that all these banks operate in the same time zone and adopt the euro as both operating 

and reporting currency, we had no need to implement any lag or forex adjustment to complete 

our study. 
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the same be done for climate risk? In their paper Jung, Engle and Berner (2021) apply the same 

exercise to the effects of the distress in the oil and gas sector due to the collapse of oil prices 

in 2020 and they produce an estimate for capital shortfall affecting global banks exposed to the 

CPRS1 borrowers. We apply the same methodology to our sample of large Eurozone lenders 

using CFE as climate factor. 

Starting from the fundamental accounting identity that makes total book assets TA equal to the 

sum of total book liabilities TL and the book value of equity E we have:  

𝑇𝐴 = 𝑇𝐿 + 𝐸                                                                                (1) 

Indicating with MV the market capitalization of the bank on a given trading day, Quasi-Assets 

QA are then defined as the sum of the book value of TA and (MV – E), i.e., the difference 

between the market cap of a bank and the book value of its equity. QA could also be expressed 

as the sum of its liabilities TL and its market cap MV: 

𝑄𝐴 = 𝑇𝐴 + (𝑀𝑉 − 𝐸) = (𝑇𝐴 − 𝐸) + 𝑀𝑉 = 𝑇𝐿 + 𝑀𝑉                                       (2) 

Assuming that the value of a bank’s liabilities is generally stable around its nominal value, QA 

can be considered as a real-time, forward-looking market measure of the size of the balance 

sheet and consequently of the actual quality of the bank assets and the power they have to 

generate future earnings, with the ratio MV/E being equivalent to the standard Price to Book 

Value ratio P/BV. 

𝑀𝑉

𝐸
=

𝑃

𝐵𝑉
                                                                              (3) 

A MV/E (or P/BV) larger than 1 implies a market price for the shares at a premium with respect 

to the book equity per share, and at a discount when it trades below 1. Interestingly, most 
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Eurozone lenders’ shares are trading below book value, albeit with an average discount that 

has recently started to contract. 

We now introduce the concept of Capital Shortfall CSt at time t, defined as: 

𝐶𝑆𝑡 = 𝑘 𝑄𝐴𝑡 − 𝑀𝑉𝑡 = 𝑘(𝑇𝐿𝑡 + 𝑀𝑉𝑡) − 𝑀𝑉𝑡 = 𝑘 𝑇𝐿𝑡 − (1 − 𝑘)𝑀𝑉𝑡                         (4) 

Given a prudential capital buffer k as a percentage of the bank’s QA, CS identifies a minimum 

level of safeguard in terms of market value of its equity: a positive CS value indicates a 

potential burden on public finances in case of a crisis leading to a bailout. The parameter k 

could vary significantly among jurisdictions: according to Engle, Jordeau and Rockinger 

(2015) for the US GAAP standard a k=8% is adequate, whereas stricter EU rules and IFRS 

accounting standards make assets of Eurozone banks look larger than their counterparts, thus 

suggesting k=5.5% as a more appropriate value. We therefore set k=5.5% in our analysis. 

Indicating with w the time span used in the projection window, CRISKt is defined as the 

expected capital shortfall at time t conditional to the outburst of a systemic event related to 

climate risks: 

𝐶𝑅𝐼𝑆𝐾𝑡 = 𝐸𝑡(𝑘 𝑄𝐴𝑡+𝑤 − 𝑀𝑉𝑡+𝑤 | 𝑐𝑟𝑖𝑠𝑖𝑠), 𝑤 > 0                                             (5) 

Since the market value of TL is assumed to remain close to par, the expected value of a bank’s 

debt is equal to its nominal value5. By expanding and substituting we get to Eq. (6), composed 

by two terms, CRISKD
t for debt and CRISKM

t for market value: 

 

5 During times of crisis the total amount of bank debt tends to have small absolute fluctuations, even if its 

composition might vary: a reduction in inter-bank borrowing is usually compensated by an increase in other types 

of obligations, often with central banks acting as counterparts. 
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𝐶𝑅𝐼𝑆𝐾𝑡 = 𝐸𝑡(𝑘 𝑇𝐿𝑡+𝑤 + 𝑘 𝑀𝑉𝑡+𝑤 − 𝑀𝑉𝑡+𝑤 | 𝑐𝑟𝑖𝑠𝑖𝑠) =  𝐶𝑅𝐼𝑆𝐾𝑡
𝐷 + 𝐶𝑅𝐼𝑆𝐾𝑡

𝑀                        (6) 

with 

𝐶𝑅𝐼𝑆𝐾𝑡
𝐷 = 𝑘𝐸𝑡(𝑇𝐿𝑡+𝑤  | 𝑐𝑟𝑖𝑠𝑖𝑠) ;  𝐶𝑅𝐼𝑆𝐾𝑡

𝑀 =  −(1 − 𝑘)𝐸𝑡(𝑀𝑉𝑡+𝑤 | 𝑐𝑟𝑖𝑠𝑖𝑠), 𝑤 > 0 

QLevt is defined as the leverage of the bank measured by the ratio of Quasi-Assets to the market 

cap: 

𝑄𝐿𝑒𝑣𝑡 =
𝑄𝐴𝑡

𝑀𝑉𝑡
=

𝑇𝐿𝑡 + 𝑀𝑉𝑡

𝑀𝑉𝑡
=

𝑇𝐿𝑡

𝑀𝑉𝑡
+ 1                                                        (7) 

Hence, under the assumption of no debt renegotiation6, 𝐶𝑅𝐼𝑆𝐾𝑡
𝐷 can also be expressed as: 

𝐶𝑅𝐼𝑆𝐾𝑡
𝐷 =  𝑘𝑇𝐿𝑡 = 𝑘 (𝑄𝐿𝑒𝑣𝑡 − 1) 𝑀𝑉𝑡                                                     (8) 

Eq. (8) highlights the direct influence of QLev on the risk profile of a bank: the relationship 

between leverage and balance sheet size is a key factor in determining the systemic relevance 

of an institution. Even assuming that the equity of a bank is not affected by a systemic event, 

leverage might generate a capital shortfall if QLev exceeds the ratio 1/k, which for k=5.5% 

implies a leverage just below 20. Interestingly, at end of April 2022, only BBVA showed a 

value for QLev below this level in our sample. 

The first term of Eq. (6) represents the precautionary amount of funds to be covered by the 

market capitalization of the bank, which, in turn, might be affected by the expected drop in its 

equity value: the extent of this fall is computed as the bank equity multiperiod arithmetic return, 

 

6 That is 𝐸𝑡(𝑇𝐿𝑡+𝑤  | 𝑅𝑓,𝑡+1:𝑡+𝑤 < 𝑐𝑟𝑖𝑠𝑖𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = 𝑇𝐿𝑡 , see Brownlees and Engle (2017). 
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Rt, conditional on the systemic event indicated by a factor return, Rf, lower than a certain crisis 

level thresh considered to be critical. 

This value is defined as LRMESt (Long Run Marginal Expected Shortfall at time t), and it is 

expressed as shown in Eq. (9): 

𝐿𝑅𝑀𝐸𝑆𝑡 =  − 𝐸𝑡(𝑅𝑡+1:𝑡+𝑤 | 𝑅𝑓𝑡+1:𝑡+𝑤 < 𝑡ℎ𝑟𝑒𝑠ℎ)                                                       (9) 

Following Brownlees and Engle (2017), we can derive an approximation for LRMES in a static 

bivariate normal framework as 

 𝐿𝑅𝑀𝐸𝑆𝑡
𝑠𝑡𝑎𝑡𝑖𝑐 =  −√𝑤 𝛽𝑡

𝑐𝑙𝑖𝑚𝑎𝑡𝑒  𝐸𝑡 [ 𝑟𝑓,𝑡+1| (𝑟𝑓,𝑡+1 <
𝑙𝑜𝑔(1+𝑡ℎ𝑟𝑒𝑠ℎ)

√𝑤
)] 

with 𝛽𝑡
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 =  𝜌𝑏𝑓

𝜎𝑏

𝜎𝑓
 being the climate Beta, calculated as the correlation between a bank 

return rb and the climate factor return rf times the ratio of their respective standard deviations. 

In a dynamic context, with 𝐼𝑅𝑓,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ  being the indicator function signaling a climate 

factor drop below the crisis threshold,  𝐿𝑅𝑀𝐸𝑆𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

is computed as the Monte Carlo average 

for a number of runs S of a series of simulated bank arithmetic returns Rb over the projected 

time span w: 

𝐿𝑅𝑀𝐸𝑆𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼𝑅𝑓,𝑡+1:𝑡+𝑤
𝑠 <𝑡ℎ𝑟𝑒𝑠ℎ

∑ 𝐼𝑅𝑓,𝑡+1:𝑡+𝑤
𝑠 <𝑡ℎ𝑟𝑒𝑠ℎ

𝑆
𝑠=1

                        (10) 

Rearranging 𝐶𝑅𝐼𝑆𝐾𝑡
𝑀 we get: 𝐶𝑅𝐼𝑆𝐾𝑡

𝑀 =  −(1 − 𝑘) 𝑀𝑉𝑡(1 − 𝐿𝑅𝑀𝐸𝑆𝑡) 

Hence: 

𝐶𝑅𝐼𝑆𝐾𝑡 = 𝐶𝑅𝐼𝑆𝐾𝑡
𝐷 + 𝐶𝑅𝐼𝑆𝐾𝑡

𝑀 = 𝑘𝑇𝐿𝑡 − (1 − 𝑘) 𝑀𝑉𝑡(1 − 𝐿𝑅𝑀𝐸𝑆𝑡)                     (11) 
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That could be expressed as 𝐶𝑅𝐼𝑆𝐾𝑡 = 𝑘𝑇𝐿𝑡 − (1 − 𝑘)𝑀𝑉𝑡 𝑒𝑥𝑝[𝛽𝑡
𝑐𝑙𝑖𝑚𝑎𝑡𝑒  𝑙𝑜𝑔(1 − 𝑑)], with d 

indicating the climate factor drop during the event. Being 𝑙𝑜𝑔(1 − 𝑑) strictly negative, the 

higher the climate Beta, the lower the market value of the bank that could be used to cover the 

required prudential fraction of its assets. 

It is possible for the climate Beta of a bank to be negative: this feature would signal the 

resilience of the institution with respect to the effects of transition risks since a marked decline 

in value of the stranded assets would lead to a capital buffer increase. Indeed, many of the 

banks do show, albeit sporadically, dynamic betas close to or below zero. 

In certain periods the simulation could also return negative CRISK values: such an occurrence 

would indicate a capital surplus despite a climate crisis. To avoid distortions, the standard 

CRISK calculation method puts a constraint on the result by imposing CRISKt = max(0, 

CRISKt). Migueis and Jiron (2020) point out that the existence of negative values for the capital 

shortfall could affect the effective calculation of systemic risks, potentially leading to 

underestimate exposures and impairing the consistency of relative riskiness rankings: they 

recommend using CRISKM, a modified version of CRISK, which requires a slight change in 

its computation without altering the substance and the nature of the metric. With 𝐶𝑆𝑀𝑡 =

𝑚𝑎𝑥(0, 𝑘𝑇𝐴𝑡 −  𝑊𝑡  |  𝑐𝑟𝑖𝑠𝑖𝑠) , CRISKMt is computed as shown in Eq. (12):  

𝐶𝑅𝐼𝑆𝐾𝑀𝑡 = 𝐸𝑡(𝐶𝑆𝑀𝑡+𝑤|𝑅𝑓𝑡+1:𝑡+𝑤 < 𝑡ℎ𝑟𝑒𝑠ℎ) ≥  𝐶𝑅𝐼𝑆𝐾𝑡 = 𝐸𝑡(𝐶𝑆𝑡+𝑤|𝑅𝑓𝑡+1:𝑡+𝑤 < 𝑡ℎ𝑟𝑒𝑠ℎ) (12) 

In a dynamic simulation with one or more satisfied threshold conditions, employing CRISKM 

instead of CRISK makes every term included in the calculation of the average7 non-negative, 

 

7 See Eq. (10). 



26 

 

potentially increasing the capital shortfall estimate for that specific date. In our sample, 

however, CRISK estimation carried out using the standard method is not materially affected 

by this issue: negative CRISK is experienced only in a handful of cases. This is likely due to 

the relatively high leverage of most of the banks analyzed: as expected, negative standard 

CRISK measures appear to be closely linked to situations characterized by low climate betas 

and low leverage ratios relative to the rest of the sample. 

2.3 Dynamic Conditional Climate Correlations and Betas 

After analyzing the relationship between the basket return and the climate factor, we use 

Dynamic Conditional Correlation and Dynamic Conditional Beta to compute CRISK. DCC 

belongs to multivariate GARCH models and is based on a combination of time-varying 

conditional correlations and volatility adjusted returns, i.e., standardized residuals with mean 

zero and both conditional and unconditional variance equal to 1. DCC calculations are carried 

out in steps: 

1) Volatility and standardized residuals estimation using an appropriate GARCH model; 

2) Dynamic correlations estimation using the standardized residuals; 

3) Rescaling. 

Each series volatility is estimated using the univariate asymmetric GJR-GARCH introduced 

by Glosten, Jagannathan and Runkle (1993) of the variance vt modeled, under the constraint 

 𝛼 + 𝛽 +
𝛾

2
< 1, as a function of the unconditional variance 𝜔, the lagged squared shock 𝑦𝑡−1

2 , 

the lagged variance vt-1 and an indicator function 𝐼𝑦𝑡−1<0 that assumes the value of 1 if the 

lagged return is negative: 

𝑣𝑡 =  𝜔 +  𝛼𝑦𝑡−1
2 +  𝛾𝑦𝑡−1

2 𝐼𝑦𝑡−1<0 + 𝛽𝑣𝑡−1                                       (13) 
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This asymmetric GARCH specification, considered to be most useful in financial 

econometrics, reflects the greater impact of negative shocks on volatility8. 

Subsequently it is possible to generate the conditional covariance Hi,j,t and from there the 

variance-covariance matrix Ht, obtained as: 

𝐻𝑡 =  𝐷𝑡𝑅𝑡𝐷𝑡                                                                          (14)  

Dt is the time-varying diagonal standard deviation matrix and Rt is the conditional quasi-

correlation matrix of the standardized returns that can be further decomposed into the time-

varying covariance matrix Qt: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄)𝑡
−0.5 𝑄𝑡𝑑𝑖𝑎𝑔( 𝑄)𝑡

−0.5                                                   (15) 

In the Engle (2002), (2009) specification the DCC process is mean reverting: indicating with 

𝜀𝑡 the residual vector, with 𝜀𝑡
𝑇its transpose and using correlation targeting with 𝑄 being the 

unconditional variance-covariance matrix and imposing the constraint 𝛼 +  𝛽 < 1,  𝑄𝑡  can be 

expressed as: 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄 +  𝛼𝜀𝑡𝜀𝑡
𝑇 +  𝛽𝑄𝑡−1                                             (16) 

From Eq. (17) the dynamic conditional correlation coefficient equation, necessary to conduct 

a simulation, can be determined to be: 

𝜌𝑖,𝑗,𝑡 =
𝑄𝑖,𝑗,𝑡

√𝑄𝑖,𝑖,𝑡𝑄𝑗,𝑗,𝑡

                                                                 (17) 

 

8 See Rabemananjara and Zakoian (1993). 



28 

 

DCC calculations are executed maximizing the joint log likelihood with respect to all volatility 

and correlation parameters, adopting either a 2-stage or a 3-stage process. Dynamic Conditional 

Betas and LRMES/CRISK estimates are all based on the DCC results. 

The DCC/DCB framework has been widely used in financial applications and it is still in 

development. Ling and McAleer (2002), Caporin and McAleer (2012) and Aielli (2013) have 

pointed out some theoretical flaws concerning the consistency of the DCC estimator, with 

Aielli introducing the DCC-A, or corrected DCC (cDCC). In our work DCC and DCC-A have 

returned extremely close results. There exist also alternative but conceptually similar 

approaches to dynamic conditional correlation, such as the DCC-TT, introduced by Tse and 

Tsui (2002), which we include in this analysis. 

3. CRISK estimation and results 

3.1 Data 

The computation of CRISK requires the collection of balance sheet data. We used Datastream 

to gather all reported quarterly results for our sample of banks starting from Q2-2011 to Q1-

2022. Adjusted price data for the 10 securities start on June 30th, 2011, and log returns are 

computed from the following day, July 1st, 2011, up to and including April 29th, 2022. To 

ensure synchronicity, only days when all the components of the basket traded have been 

included9, for a total of 2735 observations per each security, index or factor and an average 

trading year consisting of 252 sessions. 

 

9 See the Appendix for a full list of excluded dates.  
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3.2 Eurozone Climate Betas 

Our first step in analyzing climate risk is to compute fixed climate Betas with STATA 16.1 for 

the sample of banks. We run an OLS regression of the log return10 of each bank on the log 

returns of both the Euro Stoxx SXXE and the climate factor CFE using Newey-West standard 

errors robust to heteroskedasticity and optimized lag. The task is to measure the market Beta 

𝐵𝑀 and the climate Beta 𝐵𝐶   across the entire period considered and verify the existence of a 

long-run relationship that can justify adding CFE as a second factor influencing the returns of 

the selected banks. For each bank the regression is: 

𝑟𝑏,𝑡 = 𝛼 + 𝐵𝑀,𝑏  𝑆𝑋𝑋𝐸𝑡 +  𝐵𝐶,𝑏  𝐶𝐹𝐸𝑡 +  𝑒𝑏,𝑡                                               (18) 

rb,t being the bank daily log returns, α the constant term, 𝐵𝑀,𝑏 the Beta with respect to the 

market log returns (SXXE), 𝐵𝐶,𝑏 the climate Beta with respect to the factor CFE log returns 

and eb,t the error term. The results for the entire sample are shown in Table 1.  

Table 1: Fixed Betas 

 const BM BC 

BNP -0.00002 1.46099*** 0.15336*** 

ACA -0.00005 1.45905*** 0.16318*** 

GLE -0.00029 1.69900*** 0.20445*** 

SAN -0.00022 1.27862*** 0.33368*** 

BBVA -0.00009 1.27960*** 0.25728*** 

INGA -0.00005 1.53191*** 0.16586*** 

DBK -0.00063 1.49975*** 0.06971*      

CBK -0.00064 1.52606*** 0.12928*** 

UCG -0.00071 1.61249*** 0.24483*** 

ISP -0.00002 1.50670*** 0.15618*** 

***: significant at 1% or better; **: significant at 5% or better; *: significant at 10% or better 

 

10 In the Appendix log returns are indicated as “_r” whereas arithmetic returns with “_R”. If not specified, all 

calculations have used log returns. 
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As expected, all banks show a positive and statistically significant Euro Stoxx Beta, whereas 

the intercept is always not significant. More importantly, 9 banks out of 10 also have a climate 

Beta that is both positive and statistically significant at the 95% level: only DBK appears to 

have a negligible and not significative sensitivity to the climate factor. Further details are 

shown in the Appendix. In the case of DBK, the reason might be related to its business model 

and its global exposure, more skewed towards OTC derivatives, level 3 assets (mark-to-model) 

and trading11 than the other banks included in the sample, thus characterizing Deutsche Bank 

more as an investment bank than a lending-focused institution. Consequently, DBK is 

comparatively less sensitive to climate-related risks, albeit the size of its balance sheet still 

induces large exposures during a crisis. 

Table 2: GARCH-GJR Univariate Parameters 

 const BM BC Alpha Beta Gamma 

BNP 0.00000 1.31807*** 0.16923*** 0.03231 0.94310 0.02817 

ACA 0.00009 1.33611*** 0.18687*** 0.00334 0.97830 0.02484 

GLE 0.00038 1.49230*** 0.18007*** 0.08065 0.85514 0.05434 

SAN 0.00009 1.28613*** 0.27373*** 0.02498 0.95429 0.01559 

BBVA 0.00002 1.24666*** 0.18072*** 0.04168 0.94299 0.01580 

INGA 0.00000 1.37610*** 0.09995*** 0.01277 0.94966 0.05082 

DBK -0.00022 1.44024*** 0.00701- 0.02368 0.97236 -0.00025 

CBK 0.00002 1.41373*** 0.06146- 0.01303 0.97085 0.02398 

UCG 0.00031 1.52631*** 0.24048*** 0.05400 0.88480 0.05668 

ISP 0.00016 1.31643*** 0.21640*** 0.05188 0.92410 0.03353 

***: significant at 1% or better; **: significant at 5% or better; *: significant at 10% or better 

 

11 Source: EBA, G-SII 2019 exercise, page 2: 

https://app.powerbi.com/view?r=eyJrIjoiZTUyODBjZDktNGQyMy00NmU3LTgyZjQtNzJlMTVkMTVhYzU5

IiwidCI6IjNiYWNiNGZmLWYxYTItNGM5Mi1iOTZjLWU5OWZlYzgyNmI2OCIsImMiOjl9 . 

https://app.powerbi.com/view?r=eyJrIjoiZTUyODBjZDktNGQyMy00NmU3LTgyZjQtNzJlMTVkMTVhYzU5IiwidCI6IjNiYWNiNGZmLWYxYTItNGM5Mi1iOTZjLWU5OWZlYzgyNmI2OCIsImMiOjl9
https://app.powerbi.com/view?r=eyJrIjoiZTUyODBjZDktNGQyMy00NmU3LTgyZjQtNzJlMTVkMTVhYzU5IiwidCI6IjNiYWNiNGZmLWYxYTItNGM5Mi1iOTZjLWU5OWZlYzgyNmI2OCIsImMiOjl9
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We move forward by employing the Engle and Sheppard (2001) test to determine whether 

correlations are static or dynamic to choose between a Bollerslev (1990) Constant Conditional 

Correlations (CCC) model or a DCC framework: since correlations are found to be dynamic12, 

we proceed adopting a 2-step dynamic approach employing SXXE and CFE as regressors. The 

first step involves the quantification of univariate GARCH-GJR parameters for each bank, as 

presented in Table 2. All parameters are substantially in line with the previous findings related 

to the fixed Betas, except for CBK, whose climate Beta becomes non-significant. In the second 

step we estimate the multivariate process parameters13 𝛼 and 𝛽, as shown in Table 3, all 

significant at the 95% level, with correlation targeting results (DCC-A/DCC) in the Appendix. 

Table 3: Multivariate Parameters  
α β 

DCC 0.00635*** 0.98125*** 

DCC-A 0.00645*** 0.98136*** 

DCC-TT 0.00458*** 0.98822*** 

***: significant at 1% or better; **: significant at 5% or better; *: significant at 10% or better 

We then compare14 CCC, DCC (Engle), DCC-A (Aielli cDCC) and DCC-TT (Tse and Tsui) 

across the entire period considered, obtaining the results shown in Table 4. 

Table 4: Conditional Correlation Models Comparison 

Model T  p 

  log-

likelihood   SC  

         

HQ   

       

AIC 

CCC 2735 0 82672.133 -60.455 -60.455 -60.455 

DCC 2735 2 82807.478 -60.548 -60.551 -60.552 

DCC-A 2735 2 82811.072 -60.551 -60.554 -60.555 

DCC-TT 2735 2 82792.799 -60.537 -60.540 -60.542 

 

12 See the Appendix for the results. 

13 See Eq. (16). 

14 Using OxMetrics 8.2 G@RCH module. 
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As expected, given the results of the Engle-Sheppard test, CCC is outperformed by all the 

dynamic correlation models. DCC-A shows better results in terms of log-likelihood, Schwarz 

(SC), Hannan-Quinn (HQ) and Akaike (AIC) criteria, with DCC as second best and DCC-TT 

third. Since both DCC-A and DCC return very close outputs, if a dynamic approach is 

warranted, we recommend using either of them to estimate any enlarged, EU-focused, multi-

factor model developed along the lines of the Fama-French (2015) framework that takes into 

consideration climate risk exposure and is built including CFE (or its equivalent) among the 

regressors. 

3.3 CRISK estimation 

We then move to the next phase, employing two different statistical packages15 and using the 

Dynamic Conditional Correlation (DCC) and Dynamic Conditional Beta (DCB) framework 

developed by Engle (2002) and Engle (2009) to estimate the dynamic parameters for the banks 

included in the sample with respect to the climate factor16 alone. By combining the results 

generated by DCC/DCB, balance sheet data and the banks’ market capitalization on a given 

date, it is possible to compute specific and aggregated CRISK estimates that can be then used 

to assess climate riskiness. This has been done with a simulation that follows the procedure 

proposed by Brownlees and Engle (2017): 

1) Generate the standardized shock series; 

2) Execute a coarse sampling with replacement of the shocks; 

 

15 OxMetrics 8.2 and Matlab R2021b, integrated with the MFE Toolbox by K. Sheppard. 

16 See Engle, Jondeau and Rockinger (2015) and Brownlees and Engle (2017) for DCB implementation. 
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3) Create the desired number of runs S for a simulated time window w to obtain a series 

of conditional log returns using the parameters generated by the DCC for the last day 

as a starting set; 

4) Convert the log returns to an arithmetic return for each run; 

5) Compute CRISK for the given date as the Monte Carlo average capital shortfall 

conditional on the climate factor dropping more than the crisis threshold thresh. 

The simulation is conducted separately for each bank, with batches of demeaned returns used 

as DCC input. In our study we have used a simulated time window w with w=63 and w=125 

(3 and 6 months), five thousand iterations S per each reference date and a crisis threshold 

thresh=-30%. In the period from July 2011 to April 2022, this value corresponds approximately 

to the first percentile in terms of cumulative arithmetic return (loss) registered by SXXE and 

SXET over both the 3-month and 6-month windows; for CFE it represents the fourth worst 

performance for a 3-month period and the eleventh for a 6-month window17. 

Computationally, Brownlees and Engle18 use a recursive estimation scheme: from the start date 

this method gradually expands the amount of data used as input for the each DCC calculation 

and ends up including the entire time sample for the last output. Despite the pros of the 

expanding sample, we have opted to implement a rolling window approach since we consider 

it to be closer to an actual risk management set-up. It is also nimbler and faster to compute, 

albeit its output is somewhat more volatile and less robust by construction due to the reduced 

 

17 Jung, Engle et al. (2021) use a 50% drop of the climate factor as crisis threshold. 

18 See Brownlees and Engle (2017). 
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sample size. To assess sensitivity, DCC calculations have been carried out employing different 

methods (rolling and expanding time windows), showing significant overall stability at an 

aggregate level.  We show the results generated by using a 250-day and a 500-day rolling 

window, both with a 5-day interval between each sampling, for a total of 498 and 448 

datapoints respectively, using w=63 days and S=5 thousand iterations. Figures 5 and 6 display 

the actual output for both CRISK 250 and CRISK 500, remarkably similar even using the two 

different time spans. As expected, CRISK500 shows higher persistency than CRISK250. 

Figure 5: Combined CRISK250, 8/2012–2/2022 

  

Figure 6: Combined CRISK500, 8/2012–2/2022 

  

3.4 Results 

We found three periods that show considerable aggregate CRISK for our sample of banks, as 

shown by the 4-week and 13-week CRISK250 moving averages in Figure 7: 2011-12, 2015-
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16 and 2020-22. The first two happen to be also times of financial distress, coinciding with the 

EU sovereign debt crisis and Brexit, both with no clear links to climate issues. The 2020-2022 

window, however, represents an ideal benchmark to assess how CRISK can be used to measure 

transition risk. 

Figure 7: Combined CRISK250, 4-week and 13-week Moving Averages, 8/2012-2/2022 

 

In 2020 after the COVID outbreak CRISK climbs from zero to elevated levels that persist even 

after markets react to the fiscal and monetary stimulus emergency response, eventually moving 

to new highs. This phase has all the markings of an energy sector crisis generated by a fall in 

global demand that puts the market out of balance, creating a widespread excess of fossil fuels 

supply that in turn depresses their prices. CPRS1 firms experience a sudden and sharp 

contraction in revenues, income, and loss in the value of their reserves: debt spreads soar and 

equity valuations collapse. In this situation, the sector-specific risks of insolvency go up 

substantially and banks exposed to energy companies experience a severe increase of transition 

risk, causing a de-rating of the lenders’ equity metrics. Figure 8 shows the contribution of all 

selected banks to the aggregate CRISK jump from zero to levels exceeding 500 billion euros. 

The synchronicity in the increase underlines the systematic nature of climate risk with respect 

to the potentially material capital shortfall hitting the entire banking industry at the same time. 
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Figure 8: CRISK250 Contribution, 02/2020-02/2022 

  

During 2021 CRISK250 starts to decrease, returning to zero in autumn. As seen in Figure 6, 

the less reactive CRISK500 shows a contraction only at the end of February 2022, a period that 

coincides with the start of the Russo-Ukrainian conflict. The break-out of a war involving a 

major oil and gas producer provokes the opposite effect than the pandemic outbreak: supply 

reductions and sanctions put the global energy markets out of balance once again, causing 

hydrocarbon prices to increase and energy companies to record windfall profits. This situation 

strengthens the outlook for CPRS1 companies and reduces risks for lenders: aggregate 

CRISK250 drops, reflecting a reduced credit risk for banks exposed to the sector and, at least 

temporarily, a less severe quantification of transition risk. 

We now move on to analyze the factors determining CRISK, which are both sectoral and 

company specific. After years of poor relative returns, likely related to an ever-growing ESG 

awareness within the investment industry, energy equities start to outperform markedly in the 

autumn of 2021, somewhat anticipating the effects of future geopolitical events and the 

improving position of the sector: from September 2021 to April 2022 EURO STOXX Energy 
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SXEE overperforms both the EURO STOXX SXXE and the EURO STOXX SX7E bank index 

by more than 27%, as shown in Figure 9. 

Figure 9: SXXE vs SX7E vs SXEE, 09/2021-04/2022 

 

During this period CFE returns are particularly strong, influencing CRISK estimates: a robust 

energy sector relative momentum is likely to lower CRISK, whereas underperformance pushes 

CRISK up, as occurred in 2020. The effects are, as expected, more visible on CRISK250, that 

reacts more quickly than CRISK500. Figure 10 shows graphically the existence of positive 

correlation between SXEE and SXE7 until the start of the war: both energy and banks are 

fundamentally cyclical sectors which, barring specific issues, tend to show similarly trending 

relative returns vis-à-vis the market benchmark. The move up from September 2021 to April 

2022, shared by both SXEE and SXE7, could also indicate overperformance of value-based 

investing strategies with respect to growth-based alternatives. This structural co-dependence 

of energy and bank stocks on cyclical is likely to be the main cause of the spurious results 

registered during the EU sovereign debt crisis and Brexit, leading to elevated and prolonged 

aggregated CRISK values in absence of any specific climate trigger and cautioning against the 

use of CRISK if taken out of context. In terms of estimation, the marked positive correlation 
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between energy and bank stocks experienced in the September 2021 to January 2022 time 

frame (0.866 vs 0.301 from September 2021 to April 2022) is likely to be captured by the 

simulation algorithm and prolong the persistency of elevated CRISK500 values going forward. 

With respect to the attribution of transition risk to individual companies, the most important 

idiosyncratic factors that affect CRISK are balance sheet size, P/BV, leverage (QLev), and 

DCC climate Beta: CRISK increases given a larger pool of asset, a higher leverage ratio and a 

more pronounced climate Beta, whereas it decreases given a better price to book ratio. 

Table 5 shows these metrics and the DCC Beta 13-week moving average at the end of 2020, 

that is at the height of the energy sector crisis, together with the absolute value of CRISK250 

and its relative share among lenders.  

Table 5: 2020Q4 Bank Metrics 

Bank TA P/BV QLev DCC β β 13W CRISK250 CRISK250% 

BNP   2,595,498  0.48 46.89 1.160 0.915        95,486  20.0% 

ACA   1,969,300  0.47 64.00 1.094 0.919        82,207  17.3% 

GLE   1,472,337  0.24 98.42 1.370 1.128        67,315  14.1% 

DBK   1,387,791  0.31 72.76 0.970 0.750        59,492  12.5% 

SAN   1,514,242  0.54 33.36 1.537 1.083        46,359  9.7% 

UCG      903,353  0.28 50.25 1.009 0.902        34,389  7.2% 

INGA      956,481  0.56 30.99 1.411 0.993        27,796  5.8% 

CBK      544,330  0.21 78.87 1.191 1.056        23,428  4.9% 

ISP      996,848  0.54 25.98 0.789 0.672        20,580  4.3% 

BBVA      727,014  0.62 26.51 1.163 1.019        19,296  4.1% 

The corresponding CRISK500 results, which are very similar, are shown in the Appendix. The 

three French banks BNP, ACA and GLE account for more than half of total CRISK250 (and 

CRISK500), followed by DBK and SAN. BNP is by far the largest bank by total assets: despite 

its average climate Beta, price to book discount and leverage, the sheer size of its balance sheet 

pushes CRISK higher. ACA, the second riskiest bank of the sample, manages to register only 
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a modestly higher CRISK than GLE despite a 34% larger balance sheet due to better metrics 

across the board, whereas GLE is affected by the combination of the highest discount in terms 

of price to book and the highest leverage coupled with a high climate beta. DBK comes fourth, 

with a worse CRISK with respect to SAN (fifth) despite a lower asset base: the main cause is 

the leverage ratio, which is 2.2 times higher. The remaining banks show declining CRISK 

values: UCG and CBK are characterized by relatively low climate betas but also high discounts 

to book, whereas INGA’s CRISK (7th highest), thanks to a balanced set of metrics but the Beta, 

is only 18% above CBK’s measure despite a much larger balance sheet. ISP and BBVA, with 

the lowest CRISK of the lot, benefit from a relatively better equity valuation and moderate 

leverage compared to their peers. The climate betas are all positive with a mean of 1.17 and 

trending higher than their respective trailing averages: this dynamic is anticipating that 

aggregate CRISK is not going to decrease any time soon, as effectively measured in the 

following weeks.   

Table 6 presents the results of the same exercise at the end of March 2022, describing a very 

different situation:  

Table 6: 2022Q1 Bank Metrics 

Bank TA P/BV QLev DCC β β 13W CRISK250 CRISK250% 

ACA   2,073,955  0.49 60.52 -0.579 0.171        74,521  19.9% 

BNP   2,634,444  0.56 39.41 -0.895 0.257        73,832  19.8% 

GLE   1,464,449  0.33 66.90 -0.832 0.219        59,749  16.0% 

DBK   1,323,993  0.36 53.30 -0.260 0.226        47,441  12.7% 

SAN   1,595,835  0.63 28.69 -0.391 0.340        36,257  9.7% 

UCG      916,671  0.36 39.60 0.161 0.385        27,749  7.4% 

INGA      951,290  0.71 24.51 -0.387 0.354        20,223  5.4% 

ISP   1,069,003  0.65 25.24 -0.560 0.131        19,115  5.1% 

CBK      473,044  0.32 49.39 -0.863 0.330        14,750  3.9% 

BBVA      662,885  0.82 18.22 -0.299 0.220                 -    0.0% 
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Individual and aggregate CRISK250 levels are more contained, driven down by improved 

equity metrics. ACA is now the bank with the largest CRISK, and BBVA is still the lowest, 

reporting a zero value. The most striking difference, however, is that all climate Betas are now 

trending well below the trailing average and are negative: the projection is for CRISK to drop 

and stay lower for longer, possibly at or near zero. CRISK500 developments, shown in the 

Appendix, are similar, with all DCC Betas in negative territory. 

To assess the climate riskiness of a bank, though, absolute levels of CRISK might not be 

appropriate: the use of the sole climate factor CFE to compute CRISK is arbitrary and suitable 

only if applied to very specific cases, precisely when transition risk becomes the single most 

important cause of market volatility and systemic instability. In other instances, the effect of 

climate change as measured by a broader and carefully selected multi-factor model that 

includes CFE among the determinants of stock returns is probably a better choice. However, at 

any given time, it is our opinion that relative climate sensitivity of listed banks can be estimated 

using the ratio of absolute CRISK over market capitalization. This dimensionless measure, that 

has zero as its lower bound and an unconstrained upper limit, allows the regulator or the 

portfolio manager to rank lenders according to their absolute sensitivity to climate issues 

weighted by the market value of their equity, which is the ultimate reserve of value against the 

creditors’ claims and the quintessential equity metric. 

Tables 7 to 10 show the rankings of the banks in our sample with respect to CRISK250 and 

CRISK500 at the previously considered dates (December 28th, 2020, and March 30th, 2022). 

On December 28th, 2020, using the CRISK to MV ratio, GLE is the riskiest bank, whereas BNP 

ranks only 6th, preceded by CBK, DBK, ACA and UCG. ISP is at the bottom of the ranking, 

with BBVA, INGA and SAN immediately above. 
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Table 7: Rankings by CRISK250 to MV Ratio, 2020Q4 

Bank MV CRISK250 CRISK250/MV 

GLE  14,654       67,315  4.59 

CBK    6,713       23,428  3.49 

DBK  19,052       59,492  3.12 

ACA  30,479       82,207  2.70 

UCG  17,225       34,389  2.00 

BNP  54,529       95,486  1.75 

SAN  44,535       46,359  1.04 

INGA  30,667       27,796  0.91 

BBVA  26,833       19,296  0.72 

ISP  37,353       20,580  0.55 

Table 8: Rankings by CRISK500 to MV Ratio, 2020Q4 

Bank MV CRISK500 CRISK500/MV 

GLE   14,654      66,817  4.56 

CBK     6,713      23,075  3.44 

DBK   19,052      58,315  3.06 

ACA   30,479      81,857  2.69 

UCG   17,225      35,945  2.09 

BNP   54,529    100,964  1.85 

SAN   44,535      46,480  1.04 

INGA   30,667      25,594  0.83 

BBVA   26,833      19,553  0.73 

ISP   37,353      22,616  0.61 

Interestingly, the rankings are the same using both CRISK250 and CRISK500. 

Table 9: Rankings by CRISK250 to MV Ratio, 2022Q1 

Bank MV CRISK250 CRISK250/MV 

GLE    21,234       59,749  2.81 

ACA    33,696       74,521  2.21 

DBK    24,045       47,441  1.97 

CBK      9,179       14,750  1.61 

UCG    22,150       27,749  1.25 

BNP    65,518       73,832  1.13 

SAN    54,493       36,257  0.67 

INGA    38,166       20,223  0.53 

ISP    41,465       19,115  0.46 

BBVA    35,940                -    0.00 

The rankings on March 30th, 2022, are different: ACA jumps at the second place above the 

German banks, followed by UCG in the case of CRISK250 and BNP for CRISK500. BBVA is 
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always the less risky, preceded either by ISP or INGA. GLE is always top of the list and SAN 

is a6th, exactly as at the end of 2020. 

Table 10: Rankings by CRISK500 to MV Ratio, 2022Q1 

Bank MV CRISK500 CRISK500/MV 

GLE      21,234        64,379  3.03 

ACA      33,696        90,102  2.67 

DBK      24,045        51,077  2.12 

CBK        9,179        18,241  1.99 

BNP      65,518      101,187  1.54 

UCG      22,150        29,908  1.35 

SAN      54,493        45,281  0.83 

ISP      41,465        26,953  0.65 

INGA      38,166        23,088  0.60 

BBVA      35,940          6,597  0.18 

It is our opinion that these rankings are more useful, especially because even banks with large 

balance sheets, such as BNP or SAN, can be relatively less risky than peers that show a higher 

climate Beta, are more leveraged or trade at lower P/BV multiples. Furthermore, they 

complement standard ESG Environmental Pillar ratings which, by design, are mostly geared 

towards the assessment of banks’ efforts to tackle climate change rather than focusing on their 

loan portfolio exposure. As discussed by Brandon et al. (2021), ESG rating disagreements are 

common and influence stocks risk premia: CRISK rankings would be unambiguous, sorting 

out banks according to their sensitivity towards climate-induced systemic risks. The evolution 

of the rankings and the Betas could also give strong hints about which bank is taking the 

necessary steps to become less affected by transition risk: dropping towards the bottom of the 

table is a de facto synthetic indicator of commitment to take the appropriate steps to manage 

transition risk and, more broadly, climate change. This type of behavior is likely to result in a 

premium valuation over the peers. 
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This ratio can also be used with aggregate values, that is total CRISK over total market cap, to 

assess the riskiness of the entire banking sector. In this role, the indicator could be seen as a 

sort of “climate thermometer” for EU lenders and could play the role of a leading indicator to 

signal an incoming shock. 

Figure 10: CRISK250/MV_AGG Ratio, 6/2012-3/2022 

 

As shown by Figures 10 and 11, given the historical precedent in 2020, regulators and markets 

should consider the financial sector climate exposure a rising systemic risk factor when both 

aggregate CRISK250/MV_AGG and CRISK500/MV_AGG ratios climb above 2.50 for a few 

weeks. 
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Figure 11: CRISK500/MV_AGG Ratio, 6/2012-3/2022 

 

 

4. Conclusions 

In a decade dominated by ESG investing and marked by the push towards a greener EU 

economy at the detriment of carbon producers, the achievement of a satisfactory and accurate 

measurement of the greenness of a bank loan portfolio is still far from being accomplished. 

While the effort to harmonize reporting standards and carbon disclosures is ongoing, ECB 

climate risk stress tests could be effectively complemented by alternative measures of transition 

risks that are nimbler and easier to implement. In this framework, indicators based on relative 

CRISK could play an important role: even if they involve complex calculations, they have the 

advantage of requiring only publicly available market data and produce dynamic rankings that 

are easy to follow and study. Therefore, it is reasonable to expect an increase in the number of 

independent studies and research that use CRISK to determine either the relative climate 

riskiness of a lender or assess the level of aggregate systemic stress in the European financial 

sector generated by climate risk: CRISK is likely to become a common tool for the investment 

community.  
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Individual companies can also use CRISK effectively to check their progress in tackling 

climate risk. Banks that limit excess capital allocations to potentially stranded assets, control 

their leverage and improve their equity base, eventually will experience low or near-zero 

climate betas, and consequently a lower CRISK. It is our opinion that this approach will be 

rewarded by the market with premium valuations for the banks that achieve better climate risk 

management results by showing a lower relative CRISK measure than the competitors. 

Similarly, ESG portfolio allocations could also employ relative CRISK to tilt their exposure in 

the sector towards the less risky lenders. 

Lastly, the identification of a proper EU climate factor is important towards the formulation of 

an EU multi-factor model that explicitly includes climate risk among the determinants of equity 

returns. A most interesting result would be the quantification and the decomposition of 

systemic risk among its various components, with a focus on the evolution of the share taken 

by climate risk. 
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Chapter 2: Multifactor Risk Attribution applied to Systemic, 

Climate and Geopolitical Tail Risks for the Eurozone Banking 

Sector 

Abstract  

The aim of this work is to introduce an innovative methodology to perform risk attribution 

within a multifactor risk framework. We apply this analysis to the assessment of systemic, 

climate and geopolitical risks relative to a representative sample of Eurozone banks between 

2011 and 2022. Comparing the results to the output of a bivariate approach, we find that 

contemporaneous tail crises generate combined equity losses exceeding partial analysis 

estimates. We then attribute the combined risk to each factor and to the effect of their 

interaction by employing our proposed frequency-based approach. For our computations we 

use multivariate GARCH, Monte Carlo simulations and a suite of Eurozone-specific factors. 

Our results show that total combined risk is on average 18% higher than traditional systemic 

risk estimates, that climate risk more than doubled in our period of analysis, and that 

geopolitical risk surged to over 5% of total combined risk. Our climate risk estimate is in line 

with the results of the 2022 European Central Bank climate stress test and our geopolitical risk 

measure shows positive correlation with the Threats index by Caldara and Iacoviello (2022), 

American Economic Review, 112(4), 1194-1225.  

Keywords: Risk Attribution; Climate Risk; Geopolitical Risk; Systemic risk; Multifactor 

Models; Risk Management; Eurozone Banks. 
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1. Introduction 

Three major macro risk factors mostly threaten bank solvency: systemic, climate and 

geopolitical risks. Our work presents an innovative methodology that allows simultaneous risk 

assessment and attribution for these three combined factors based exclusively on publicly 

available data. 

Allen and Carletti (2013) identify four major sources of systemic risk: panics, asset price 

dislocations, contagions, and foreign exchange mismatches. When such events occur, the 

failure of one or more banks has the potential to impair other financial institutions, thus 

provoking economic damages much greater than the nominal gross exposure, possibly severe 

enough to put overall financial stability into question. Regulators constantly monitor the health 

of the banking system and conduct regular stress-test exercises to keep systemic risk at a 

minimum, whereas scholars have devised different approaches to quantify combined losses. 

We identify three consolidated approaches to estimate capital shortfalls: CoVar, network-based 

analyses and SRISK. Introduced by Adrian and Brunnermeier (2016), CoVar concentrates on 

the tail dependency between the banking system and a particular lender in distress to measure 

the aggregate value at risk (VaR) for the financial sector. Network based models explore cross 

exposures to capture the interdependencies that spread contagion within the system: Battiston 

et al. (2012) show how banks can be treated as interconnected nodes whose solvency depends 

on the strength of their counterparts. SRISK, developed by Engle et al. (2015) and Brownlees 

and Engle (2017) on the concept of Marginal Expected Shortfall pioneered by Acharya et al. 

(2017), estimates negative equity by using the output of a bivariate MGARCH analysis on 

index and banks’ returns to perform a Monte Carlo simulation which projects the potential 

capital shortfall in the event of a dislocation in the equity market. Our contribution is closely 
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related to the latter, as we introduce a multifactor assessment and attribution framework applied 

to an SRISK-type approach. 

Climate change is a further risk factor that could impair banks’ assets. It manifests itself in two 

ways: physical risk, linked to the occurrence of natural disasters due to changing climatic 

conditions that destroy economic capital, and transition risk, that affects carbon-emitting 

companies whose business model might be disrupted by sudden economic, market or 

regulatory shifts related to the transition towards a low-carbon economy. In the EU the sector 

these activities belong to are identified as Climate Policy Relevant Sectors (CPRS). Lenders 

have committed plenty of capital to these companies: according to the European Central Bank 

(ECB, 2021), the total Eurozone credit sector exposure vis-à-vis CPRS was approximately €1.9 

trillion. These assets might sooner or later transform into “stranded assets”, due to their 

perceived long-term loss of value in a fully decarbonized world. Currently, the methodology 

to assess climate risk properly is in its early stages of development and its quantification is 

therefore difficult. The ECB, building on the methodology proposed by Battiston et al. 

(2017)19, carried out its first climate stress test exercise20 (CST) in 2022, and estimated 

potential losses linked to climate change at €70 billion, with the caveat that this figure may 

materially understate transition risk due to the lack of accurate carbon emission data. However, 

there exists a complementary, market-based methodology21 to assess transition risk: CRISK, 

 

19 The work by Battiston et al. (2017) laid the basis to include the evolution of carbon emissions and temperatures 

in a comprehensive climate stress test effort, whereas Roncoroni et al. (2021) proposed to combine the stress test 

approach with network evaluation analysis to investigate higher-round effects of a climate crisis on the financial 

sector. 

20 European Central Bank (ECB-ESBR) (2022), “2022 climate risk stress test”, July. 

21 For an alternative, network-based approach, see Roncoroni et al. (2021). 
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introduced by Jung et al. (2021). CRISK adopts the same bivariate approach designed to 

compute SRISK applied to a different climate factor tracking the relative performance of 

stranded assets vis-à-vis the main stock market index. 

Geopolitical risk is doubtless the third major macro risk factor menacing bank solvency. It can 

be broadly defined as risk caused by war, terrorism and political tensions or actions that might 

undermine banks’ balance sheet: some of the costliest capital write-downs of either assets or 

goodwill can be traced back to the effects of political events, such as Brexit, or to the 

consequences of a conflict, as the war in Ukraine. There is no straightforward way to quantify 

geopolitical risk: current approaches rely on indices that track global or regional risk levels 

based on relative frequencies of non-financial data, such as news articles related to such events, 

as the GPRD by Caldara and Iacoviello (2022)22, or on custom-made composite indicators 

published by universities23, large institutions24 and organizations. To the best of our knowledge, 

no specific methodology exists to quantify the effect of geopolitical risk on banks’ assets based 

on publicly available data only. 

Since each bank has only one balance sheet and mandatory capital requirements are designed 

to prevent bankruptcies regardless of the nature of the crisis, we think that these three macro 

risks should be assessed simultaneously. However, both SRISK and CRISK compute the 

amount of negative equity independently by using a bivariate, partial analysis. Why is this the 

case? We suspect that the lack of well-established methods to attribute risk in a multifactor 

 

22 See Caldara, D., Iacoviello, M., (2022). “Measuring Geopolitical Risk,” American Economic Review, April, 

112(4), pp.1194-1225 with freely accessible data at https://www.matteoiacoviello.com/gpr.htm and section A1 

23 See for example https://vlab.stern.nyu.edu/georisk published by the NYU. 

24 For example, the Blackrock Investment Institute Geo-political risk dashboard. 

https://www.matteoiacoviello.com/gpr.htm%20and%20section%20A1
https://vlab.stern.nyu.edu/georisk
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framework might be at the root of the problem: a bivariate approach relies only on one dynamic 

correlation between factor and bank returns, whereas a multifactor framework depends on 

𝑛(𝑛−1)

2
 unique pairwise correlations, with n indicating the number of factors. Additionally, the 

number of possible factor combinations is 2n, or (2n-1) if only non-zero occurrences are 

considered. Therefore, a multifactor analysis needs to take into consideration all the possible 

outcomes and attribute risk accordingly. Our work aims to provide a solution to this issue by 

proposing an innovative methodology to perform risk attribution within a multifactor risk 

framework. We apply this analysis to the assessment of systemic, climate and geopolitical risks 

on a representative sample of Eurozone banks between 2011 and 2022 and when comparing 

our results to the output of a bivariate approach, we find that contemporaneous tail crises 

generate combined equity losses that exceed partial analysis estimates. We then attribute the 

combined risk to each factor and to the effect of their interaction by employing our proposed 

frequency-based approach. Computations are based on multivariate GARCH, Monte Carlo 

simulations and a suite of Eurozone-specific factors. The paper is organized as follows. In 

Section 2 we present our methodology, whereas in Section 3 we show how to apply it 

simultaneously to systemic, climate and geopolitical risk factors on our sample of Eurozone 

banks. We present our results, by also including a sensitivity analysis, in Section 4. Section 5 

concludes. 
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2. Methodology 

2.1 Expected capital shortfall 

If a bank fails, the most important step is to identify the capital shortfall, defined as the losses 

that exceed its equity. The magnitude of this equity deficit represents the haircut imposed on 

creditors or the amount of the potential bailout to be borne by the taxpayers. The expected 

capital shortfall 𝐶𝑆𝑡 estimated at time t is computed following the methodology adopted by 

Brownlees and Engle (2017) up to the definition of Long Run Marginal Expected Shortfall 

(LRMES). Hereafter, we introduce the notation adopted in this paper by showing the bivariate 

process in six equations, whereas multifactor risk attribution is discussed in Section 2.2. 

At time t, by indicating with 𝑇𝐿𝑡 the book value of the bank’s liabilities, with 𝑀𝑉𝑡 the market 

capitalization of the company, and with k the minimum proportion of assets to be held as equity, 

we define 𝐶𝑆𝑡 as: 

𝐶𝑆𝑡 = 𝑘 𝑇𝐿𝑡 − (1 − 𝑘)𝑀𝑉𝑡 ,                                                      (1) 

where 𝑘 is a prudential capital buffer expressed as a percentage of the bank’s liabilities.  

A positive value for 𝐶𝑆𝑡 indicates a potential capital shortfall. In other words, 𝐶𝑆𝑡 > 0 signals 

the possibility of recording losses exceeding the market value of the bank. The parameter k 

varies depending on the jurisdiction: Engle et al. (2015) recommend setting k=8% when 

dealing with balance sheets that follow the US GAAP accounting standard, whereas k=5.5% is 

preferable in the case of banks reporting using IFRS rules25. 

 

25 For a comprehensive discussion on this matter see Admati and Hellwig, (2013). 
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Indicating with w (𝑤 > 0) the time span used in our projection window, 𝐶𝑆𝑡 can be expressed 

as the expected capital shortfall at time t conditional to the outburst of a crisis: 

𝐶𝑆𝑡 = 𝐸𝑡(𝑘 𝑇𝐿𝑡+𝑤 + 𝑘 𝑀𝑉𝑡+𝑤 − 𝑀𝑉𝑡+𝑤 | 𝑐𝑟𝑖𝑠𝑖𝑠)  .                                          (2) 

Assuming no bail-in, the market value of 𝑇𝐿𝑡+𝑤 is supposed to remain close to par and, 

consequently, the expected value of the bank’s debt is equal to its nominal value26. By 

expanding and substituting we get to Eq. (3): 

𝐶𝑆𝑡 = 𝑘𝑇𝐿𝑡 − (1 − 𝑘)𝐸𝑡(𝑀𝑉𝑡+𝑤 | 𝑐𝑟𝑖𝑠𝑖𝑠)  .                                               (3) 

𝑘𝑇𝐿𝑡 represents the capital buffer expressed in terms of the reporting currency that needs to be 

covered by the expected market capitalization of the bank which, during the breakout of a crisis, 

is projected to fall by the multiperiod arithmetic return Rb. Since the occurrence of an event is 

signaled by a factor return Rf breaking a critical level thresh, the magnitude of the fall given a 

crisis is defined as LRMESt (Long Run Marginal Expected Shortfall at time t), and it is 

expressed as shown in Eq. (4): 

𝐿𝑅𝑀𝐸𝑆𝑡 =  − 𝐸𝑡(𝑅𝑏,𝑡+1:𝑡+𝑤  | 𝑅𝑓,𝑡+1:𝑡+𝑤 < 𝑡ℎ𝑟𝑒𝑠ℎ) .                              (4) 

In a dynamic bivariate context, with 𝐼{𝑅𝑓,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ} being the indicator function signaling a 

factor drop below the crisis threshold,  𝐿𝑅𝑀𝐸𝑆𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

is computed as the Monte Carlo average 

for S runs of a series of simulated bank arithmetic returns Rb over the projected time span w: 

 

26 During times of crisis the total amount of bank debt tends to have small absolute fluctuations, even if its 

composition might vary: a reduction in deposits might be compensated by an increase in other types of funding, 

often provided by central banks. The no bail-in assumption implies that bank bonds are set to be reimbursed 

without haircuts.  
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𝐿𝑅𝑀𝐸𝑆𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

= −
∑ 𝑅𝑏,𝑡+1:𝑡+𝑤

𝑠𝑆
𝑠=1  𝐼{𝑅𝑓,𝑡+1:𝑡+𝑤

𝑠 <𝑡ℎ𝑟𝑒𝑠ℎ}

∑ 𝐼
{𝑅𝑓,𝑡+1:𝑡+𝑤

𝑠 <𝑡ℎ𝑟𝑒𝑠ℎ}
𝑆
𝑠=1

   .                    (5) 

Rearranging Eq. (3) we get the expression for the expected capital shortfall 𝐶𝑆𝑡: 

𝐶𝑆𝑡 = 𝑘𝑇𝐿𝑡  − (1 − 𝑘) 𝑀𝑉𝑡 (1 − 𝐿𝑅𝑀𝐸𝑆𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

)  .                    (6) 

2.2 Multifactor risk attribution 

Bivariate approaches use Eq. (6) to compute the magnitude of the equity deficit at time t, but 

to calculate 𝐶𝑆𝑡 within a multifactor framework we need to apply MGARCH analysis to n 

factors and to the bank, that is to n+1 variables. In our case study we estimate the capital 

shortfall using a quartet of variables which includes the three macro factors (systemic or 

market: MKT; climate: CFE; geopolitical: GFE) and the bank. Factors MKT and CFE perform 

a break of the threshold when their return is lower than thresh, whereas the geopolitical factor 

GFE behaves in reverse27 and the threshold is broken when the return of GFE is higher than (- 

thresh). The MGARCH output is then elaborated in a simulation window of length w. By 

indicating the simulated returns with: 

1)  𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤 for the return of the market factor MKT 

2)  𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤  for the return of the climate factor CFE 

3) 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤 for the return of the geopolitical factor GFE 

4) 𝑅𝑏,𝑡+1:𝑡+𝑤 for the return of the bank 

 

27 A geopolitical event causing flight-to-quality flows is likely to produce an increase, and not a fall, in GFE. 
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we analyze each one of the (23-1) possible, non-zero, combinations of events (𝐸𝑉𝐸𝑁𝑇 =

𝐺, 𝐶, 𝐶𝐺, 𝑆, 𝑆𝐺, 𝑆𝐶, 𝑆𝐶𝐺) occurring with frequencies f(EVENT), summarized in Table 1. 

Table 1: Simulation Occurrences 

EVENT MKT<thresh CFE<thresh GFE>(-thresh) FREQ 

G   X f(G) 

C  X  f(C) 

CG  X X f(CG) 

S X   f(S) 

SG X  X f(SG) 

SC X X  f(SC) 

SCG X X X f(SCG) 

We then derive an expression for 𝐿𝑅𝑀𝐸𝑆𝐸𝑉𝐸𝑁𝑇,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

 which varies with each of the (23-1) 

outcomes: 

a. G: only GFE above (- thresh), with frequency f(G) 

𝐿𝑅𝑀𝐸𝑆𝐺,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼
{𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

 

∑ 𝐼
{𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

𝑆
𝑠=1

 ; 

b. C: only CFE below thresh, with frequency f(C) 

𝐿𝑅𝑀𝐸𝑆𝐶,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼
{𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ}

 

∑ 𝐼
{𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ}

 𝑆
𝑠=1

 ; 

c. CG: only CFE below thresh and GFE above (- thresh), with frequency f(CG) 

𝐿𝑅𝑀𝐸𝑆𝐶𝐺,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼
{𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

 

∑ 𝐼
{𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

𝑆
𝑠=1

 ; 

d. S: only MKT below thresh, with frequency f(S) 

𝐿𝑅𝑀𝐸𝑆𝑆,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ}

 

∑ 𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ}

𝑆
𝑠=1

 ; 
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e. SG: only MKT below thresh and GFE above (- thresh), with frequency f(SG) 

𝐿𝑅𝑀𝐸𝑆𝑆𝐺,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

= −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

 

∑ 𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

 𝑆
𝑠=1

; 

f. SC: only MKT below thresh and CFE below thresh, with frequency f(SC) 

𝐿𝑅𝑀𝐸𝑆𝑆𝐶,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

= −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1  𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ}

 

∑ 𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ}

𝑆
𝑠=1

 ; 

g. SCG: MKT below thresh, CFE below thresh and GFE above (- thresh), with 

frequency f(SCG) 

𝐿𝑅𝑀𝐸𝑆𝑆𝐶𝐺,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = −

∑ 𝑅𝑏,𝑡+1:𝑡+𝑤
𝑠𝑆

𝑠=1   𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

  

∑  𝐼
{𝑅𝑓=𝑚,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑐,𝑡+1:𝑡+𝑤<𝑡ℎ𝑟𝑒𝑠ℎ ⋀ 𝑅𝑓=𝑔,𝑡+1:𝑡+𝑤>−𝑡ℎ𝑟𝑒𝑠ℎ}

  𝑆
𝑠=1

 

Each case generates a specific capital shortfall 𝐶𝑆𝐸𝑉𝐸𝑁𝑇,𝑡,  computed as a Monte Carlo average. 

Hence, at time t there is an array of (2n-1) different equity deficit estimates to be analyzed. Of 

these, n depend on single factor outcomes, (2n-n-2) on a combination of more than one factor 

and only one on the occurrence of all the events at once. 

By ranking the n single factor occurrences by the magnitude of the respective capital shortfall 

it is possible to determine whether there exists a dominant type of risk: this assessment should 

give the same result as the comparison operated using bivariate shortfall estimates. In our case, 

the expectation is for the systemic (market) shortfall 𝐶𝑆𝑆,𝑡 to be consistently higher than the 

one generated by either a climate (𝐶𝑆𝐶,𝑡) or geopolitical (𝐶𝑆𝑆,𝑡) isolated events: 

(𝐶𝑆𝑆,𝑡 > 𝐶𝑆𝐶,𝑡) ⋀ (𝐶𝑆𝑆,𝑡 > 𝐶𝑆𝐺,𝑡) 

This expectation is confirmed by the results. 
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Furthermore, by ranking all the outcomes, it is possible to identify the major source of 

aggregate risk, which we define as MAX_RISKt. The expectation is for MAX_RISKt to 

correspond to the negative equity generated by the simultaneous outbreak of all the crises at 

once: specifically, in our case across the entire period we expect 𝐶𝑆𝑆𝐶𝐺,𝑡 to be the largest 

shortfall compared to all composite occurrences in addition to the ones related to the single 

dominant factor: 

(𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝑆𝐺,𝑡) ⋀ (𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝑆𝐶,𝑡) ⋀ (𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝐶𝐺,𝑡) ⋀ (𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝑆,𝑡)  

We find that 𝑀𝐴𝑋_𝑅𝐼𝑆𝐾𝑡 =  𝐶𝑆𝑆𝐶𝐺,𝑡 holds 99.7% of the times28. 

Once a dominant risk factor has been identified and the maximum combined risk quantified, 

we use relative frequencies to attribute excess tail risk. We define excess tail risk 

MAX_RISK_NETt as the difference between 𝑀𝐴𝑋_𝑅𝐼𝑆𝐾𝑡 and the shortfall generated by the 

dominant risk. In our example, the attribution of tail risk is necessary when a systemic incident 

occurs in conjunction with either a geopolitical or a climate crisis, or both (SG, SC, and SCG 

types of events). Hence, MAX_RISK_NETt is the difference between MAX_RISKt and systemic 

risk estimate 𝐶𝑆𝑆,𝑡:  

𝑀𝐴𝑋_𝑅𝐼𝑆𝐾_𝑁𝐸𝑇𝑡 =  𝐶𝑆𝑆𝐶𝐺,𝑡 − 𝐶𝑆𝑆,𝑡  . 

MAX_RISK_NETt measures the potential losses exceeding the dominant systemic risk caused 

by the simultaneous occurrence of systemic, climate and geopolitical events or combinations 

 

28 See Section 4.3 for the details. 
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thereof. We then proceed by attributing MAX_RISK_NETt to either climate, geopolitical, or 

interaction risk using the relative frequencies f(EVENTt) of each single occurrence at time t. 

Indicating with Dt the denominator, computed as the sum of all frequencies, or Dt = f(SCt) + 

f(SGt) + f(SCGt), the climate tail risk relative share MCRISK-Xt is given by f(SCt)/Dt, the 

geopolitical tail risk part MGRISK-Xt as f(SGt)/Dt and the portion of the interaction effect INTt 

among factors as f(SCGt)/Dt. Summing up: 

a)  MCRISK-Xt is the deficit exceeding 𝐶𝑆𝑆,𝑡 attributed to climate risk, computed as:  

𝑀𝐶𝑅𝐼𝑆𝐾˗𝑋𝑡 = (𝐶𝑆𝑆𝐶𝐺,𝑡 − 𝐶𝑆𝑆,𝑡) 
𝑓(𝑆𝐶𝑡)

𝑓(𝑆𝐶𝑡) + 𝑓(𝑆𝐺𝑡) + 𝑓(𝑆𝐶𝐺𝑡)
 ; 

b) MGRISK-Xt is the excess shortfall over 𝐶𝑆𝑆,𝑡 resulting from geopolitical risk, quantified 

as: 

𝑀𝐺𝑅𝐼𝑆𝐾˗𝑋𝑡 = (𝐶𝑆𝑆𝐶𝐺,𝑡 − 𝐶𝑆𝑆,𝑡) 
𝑓(𝑆𝐺𝑡)

𝑓(𝑆𝐶𝑡) + 𝑓(𝑆𝐺𝑡) + 𝑓(𝑆𝐶𝐺𝑡)
 ; 

c) INTt is the negative equity surpassing 𝐶𝑆𝑆,𝑡 attributable to the interaction of all factors 

calculated as: 

𝐼𝑁𝑇𝑡 =  (𝐶𝑆𝑆𝐶𝐺,𝑡 − 𝐶𝑆𝑆,𝑡) 
𝑓(𝑆𝐶𝐺𝑡)

𝑓(𝑆𝐶𝑡) + 𝑓(𝑆𝐺𝑡) + 𝑓(𝑆𝐶𝐺𝑡)
 . 

Risk assessment and attribution is now complete. 

This methodology is applicable also if there is no dominant single risk factor: in these instances, 

once that 𝑀𝐴𝑋_𝑅𝐼𝑆𝐾𝑡 has been determined, risk attribution is carried out based on relative 

frequencies calculated with respect to all composite occurrences that exceed the single risk 

factor that produces the highest shortfall at time t. 
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2.3 Conditional correlation models (CCC and DCC) 

The proposed approach employs conditional correlations modelling to analyze data and 

generate simulation parameters. Over any given period, correlations between factors can be 

either constant or dynamic: after checking the specific sample properties, we apply either 

Constant Conditional Correlation (CCC) introduced by Bollerslev (1990) or Dynamic 

Conditional Correlation (DCC) by Engle (2002; 2009). 

CCC is a multivariate GARCH model used when correlation is constant. It allows individual 

variables to follow idiosyncratic variance processes but forces correlation to be time invariant. 

As such, CCC estimation is carried out in two, computationally efficient, steps: 

4) Univariate volatility and standardized residuals estimation using an appropriate 

GARCH model; 

5) constant correlations estimation using the standardized residuals. 

DCC is a multivariate GARCH method that allows for dynamic correlation. It is based on a 

combination of time-varying conditional correlations and volatility adjusted returns, using 

standardized residuals with mean zero and both conditional and unconditional variance equal 

to 1 to estimate the correlation matrix directly. DCC calculations, as outlined by Engle (2009), 

are carried out in 3 steps, with the first one being in common with CCC: 

1) “DE-GARCHING” - univariate volatility and standardized residuals estimation 

using the selected GARCH model; 

2) Dynamic quasi-correlations estimation using the standardized residuals; 

3) Rescaling of the quasi-correlations to produce a correlation matrix. 
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We adhere to the standard financial practice of estimating each series variance 𝑣𝑡 using the 

univariate asymmetric GJR-GARCH introduced by Glosten, Jagannathan and Runkle (1993), 

which is modeled as a function of the unconditional variance 𝜔, the lagged squared shock 𝑦𝑡−1
2 , 

the lagged variance 𝑣𝑡−1 and an indicator function 𝐼{𝑦𝑡−1<0}: 

𝑣𝑡 =  𝜔 +  𝜑𝑦𝑡−1
2 +  𝛾𝑦𝑡−1

2 𝐼{𝑦𝑡−1<0} + 𝜆𝑣𝑡−1 .                                      (7) 

This asymmetric GARCH specification29 is most useful in financial econometrics since it takes 

into consideration the greater impact of negative shocks on volatility30. In our case it produces 

the standardized residuals used to generate the quasi-correlation matrix 𝑄𝑡.  

We use an Engle (2002; 2009) DCC mean reverting process:  indicating with 𝜀𝑡 the residual 

vector, with 𝜀𝑡
𝑇its transpose and by using correlation targeting with 𝑄 being the unconditional 

variance-covariance matrix, 𝑄𝑡  can be expressed as: 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄 +  𝛼𝜀𝑡𝜀𝑡
𝑇 +  𝛽𝑄𝑡−1 .                                            (8) 

under the constraint (𝛼 +  𝛽 < 1) applied to the mean-reverting parameters 𝛼 and 𝛽. Eq. (8) 

represents the dynamic conditional correlation equation. Finally, 𝑄𝑡 needs to be rescaled to 

generate the proper correlation matrix 𝑅𝑡: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄)𝑡
−0.5 𝑄𝑡 𝑑𝑖𝑎𝑔(𝑄)𝑡

−0.5 .                                                  (9) 

 

29 Under the constraint φ+λ+γ/2<1 for a Gaussian distribution, 

30 See Rabemananjara and Zakoian (1993). 
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with  𝑑𝑖𝑎𝑔(𝑄)𝑡
−0.5 being the inverse of a matrix formed by the volatilities on the main diagonal 

and zeros elsewhere. 

DCC calculations are executed maximizing the joint log likelihood with respect to all volatility 

and correlation parameters and can be computationally demanding, especially in the case of 

large multifactor frameworks. 

In our study, 𝐿𝑅𝑀𝐸𝑆𝐸𝑉𝐸𝑁𝑇,𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

 estimates are based on the DCC output whenever the data shows 

that correlations are dynamic; otherwise, we use CCC. 

3. Multifactor risk attribution applied to the Eurozone banking sector 

3.1 Sample selection 

We apply our multifactor risk framework to a sample comprising large Eurozone banks in the 

period July 2011 - April 2022. To our best knowledge, this is the first attempt to analyze 

simultaneously the effect of the three macro risks of interest (systemic, climate and 

geopolitical) with the aim to quantify and attribute tail risk. Given the multivariate nature of 

this context, we now identify systemic risk as MSRISK (corresponding to the shortfall 𝐶𝑆𝑆,𝑡), 

climate risk as MCRISK (𝐶𝑆𝐶,𝑡), and geopolitical risk as MGRISK (𝐶𝑆𝐺,𝑡) to differentiate these 

estimates from their bivariate specifications, whereas MCRISK-X, MGRISK-X and INT 

define, respectively, the part of tail risk attributable to climate, geopolitical and interaction risk. 

The sample includes BNP, Credit Agricole (ACA) and Société Générale (GLE) for France, 

Deutsche Bank (DBK) and Commerzbank (CBK) for Germany, Santander (SAN) and BBVA 

for Spain, Unicredit (UCG) and Intesa (ISP) for Italy, ING (INGA) for the Netherlands. We 
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believe that this sample represents a good proxy for the Eurozone banking industry, mainly for 

two reasons. 

Firstly, it includes all the Eurozone-based institutions that contribute the most to systemic risk, 

both in terms of TA and of Risk-Weighted Assets (RWA). These are key metrics used by EU 

and international regulators to identify Global Systematically Important Institutions (G-SII): in 

2019, net of UK lenders, the European Banking Authority (EBA) determined that large French 

banks tended to carry the most in terms of TA and RWA, followed by a group of German, 

Dutch, Spanish and Italian lenders. Country-wise, the situation was similar, with France, Spain, 

Germany, Italy, and the Netherlands contributing the most to the Eurozone total bank assets. 

Following the release of the 2021 exercise by EBA, these data were confirmed. 

Secondly, during the period considered, the combined market cap of these 10 banks represented 

more than 70% of the total value of the Eurozone bank index STOXX SX7E. Zhang et al. 

(2021) select a sample of large lenders comprising about 70% of total assets to analyze the 

relationship between liquidity creation and systemic risk for Chinese banks. Measures of risk 

such as MSRISK, MCRISK, and MGRISK (or their bivariate specifications) rely on market 

capitalization to evaluate the potential equity shortfall attributable to a specific entity: by 

including in our study over 70% of the combined market valuation of the top Eurozone lenders 

we consider this group of banks as a representative sample of listed equities contributing the 

most to systemic risk. In terms of balance sheet aggregates, from January 2011 to April 2022, 

total assets TA for the basket increased 15.4%, from €11.99 trillion to €13.84 trillion, whereas 
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risk-weighted assets RWA decreased 0.6%, from €3.95 to €3.92 trillion, with standard 

deviations of 5.7% and 2.8% respectively31. 

3.2 Systemic Risk Factor 

To compute MSRISK we have taken as reference the Euro STOXX 600 market index. The 

EURO STOXX 600 index (SXXE) comprises only the euro-denominated securities included 

in the wider STOXX 600 index, thus representing a smaller, currency-homogeneous subset of 

equities. At the beginning of 2022 SXXE included 291 stocks32.  

SXXE returns are considered net of the Eurozone overnight (O/N) risk-free rate returns. The 

choice of which rate is used in the computations, being it a money market rate, such as the 

overnight or the 3-month interbank rate, as opposed to a benchmark derived from the capital 

markets like bond or interest rate swap returns, might influence the results of the analysis, 

especially in the presence of persistently steep yield curves. This is not our case. ECB’s 

monetary policy in the Eurozone has been remarkably stable across the entire period 

considered: the three key rates (deposit, repo, and marginal lending) have been kept around 

zero percent (or slightly below in the case of the deposit rate) from 2012 until mid-2022. 

Consequently, money market rates as measured by the overnight EONIA rate, replaced by 

€STR at the end of 2021, have remained close to 0% (or below) since 2012. Similarly, yields 

on 10-year Bunds, the German government bonds considered as the long-term risk-free rate 

 

31 Gehrig and Iannino (2021) show that the attempts by the successive rounds of Basel regulations have failed to 

reduce systemic risk for large banks: given this dichotomy between TA and RWA showed by the aggregate 

sample, we should not assume a decrease in total risk, since trends in regulatory measures of exposure, such as 

RWA, might not be very good indicators of the overall financial sector systemic risk. 

32 See index provider Qontigo - https://www.stoxx.com/index-details?symbol=sxxe. 
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benchmark for the Eurozone, during the period considered have dropped from being above 

2.5% in 2011 to close to 0% in 2015, hovering around this level until April 2022 (see Appendix 

Section A7 for more details). Therefore, given the characteristics of the time-series considered, 

it would have been equally appropriate to use a risk-free rate of 0% for the Eurozone during 

the entire period: the results would have been the same. 

Hence, we define the Market Factor for the Eurozone MKT as a long position in the Euro Stoxx 

SXXE net of the overnight risk-free return 𝑖𝑡:  

𝑀𝐾𝑇 =  𝑆𝑋𝑋𝐸𝑡 − 𝑖𝑡  . 

3.3 Climate Risk Factor 

In this work we include climate risk within our multifactor framework using a Eurozone-

specific climate factor CFE. As a proxy for the world markets33 we use a liquid ETF listed in 

Europe that tracks the S&P500 index but hedges the EURUSD currency risk regularly and is 

marked-to-market at the close of European bourses: our choice is Blackrock’s iShares IUSE34. 

Listed on 11 European exchanges under different tickers, IUSE35 is an accumulation fund 

whose net asset value in November 2021 was close to €5 billion. 

 

33 During the period considered the S&P500 index represented more than of 60% of the MSCI World Index. 

34 There are valid alternatives to IUSE, such as Lyxor’s SP5H/SPXH, but not with a price history encompassing 

the entire period considered. 

35 IUSE was launched in the fall of 2010 and since then has tracked the dollar-denominated SPX very well: in the 

period considered the iShare ETF cumulated daily and yearly log returns show a 99.9% correlation with the 

corresponding SPX USD return statistics. Given the currency hedge and that the price of IUSE is arbitraged until 

the close of European business, it is our opinion that the characteristics of this ETF eliminate the need to account 

for lagged returns in this type of analysis. 
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With respect to the stranded assets portfolio, it is not easy to identify a proper coal tracker for 

the Eurozone: most of the European coal and lignite production is concentrated in Germany 

and Poland, with most of the mines operated by utilities (CPRS 2) like RWE (Germany) or 

PGE (Poland). The biggest mining companies in terms of market capitalization are diversified 

multinational entities listed in the UK, with the largest share of the extraction activity, mostly 

non-coal focused, taking place outside the continent. Therefore, we think that the best option 

is to use only the EURO STOXX Energy index SXET, which represents the net return plus 

dividends of the SXEE Euro Energy index: it comprises companies whose main legacy 

business is fossil fuels exploration and production (E&P, a good proxy for CPRS 1) and does 

not include any renewable energy pure plays. In 2020 all sectors were heavily affected by the 

outbreak of the COVID pandemic, but oil and gas equities were also hit by the temporary 

collapse of fossil fuel prices that depressed sector returns long after the broader market 

recovered.  

For the reasons discussed, we define the Climate Factor for the Eurozone CFE as the combined 

return of a long position in the Energy index SXET and a short position in the IUSE euro-

hedged SPX ETF:  

𝐶𝐹𝐸 =  𝑆𝑋𝐸𝑇 − 𝐼𝑈𝑆𝐸 . 

This definition of the climate factor makes a bank with a higher exposure vis-à-vis energy 

companies more inclined to experience a sharper drop in its market capitalization when 

transition risk rises. 
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3.4 Geopolitical Risk Factor 

Geopolitical risk is the third risk factor included in our multivariate framework. Typically, 

global tensions cause “flight-to-quality” dynamics that are likely to boost the prices of 

perceived safe assets, such as Treasury bonds, gold or stocks of companies operating in the 

defense sector and depress equities most geared towards economic expansion and international 

trade, including the banking sector. We introduce a metric constructed as the combined return 

of a long position in a basket comprised 50% by gold and 50% by European equities operating 

in the defense sector and a short position in the IUSE ETF as Geopolitical factor for the 

Eurozone GFE. We have not included any fixed income instrument return in our analysis due 

to the rate dynamics described in Section 3.2, but such an addition would likely benefit the 

accuracy of a geopolitical factor meant to be used for a different macro area and/or timeframe. 

Gold returns are computed using the PHAU physical gold ETF issued by Wisdom Tree, that 

tracks closely the price of gold expressed in US dollars both in London and Tokyo but trades 

in euros on 3 European exchanges. Given that the US Dollar itself is often perceived to be a 

safe-haven, the choice of using PHAU euro-denominated returns accounts for the effect of the 

appreciation or depreciation of the euro vis-à-vis the US currency as well, with an increase in 

geopolitical risk usually causing PHAU returns in euros to be higher, and vice versa. PHAU 

ETF NAV at the beginning of 2022 was close to €5 billion and consisted entirely of registered 

gold bullion stored in London safes. Being PHAU entirely bullion-based, the ETF does not 

offer any form of distribution. 

The defense industry return is calculated using the STOXX SXRARO Defense and Aerospace 

index, which represents the return including net dividends of the European stocks included in 
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the SXPARO index. It comprises all major European companies involved in the defense sector, 

which is positively correlated with an increase in the perceived geopolitical risk. 

Hence, the long component of GFE is computed as the average daily return of a position 50% 

in PHAU and 50% in SXRARO against a short position 100% in the IUSE ETF: 

𝐺𝐹𝐸 =  0.5 𝑃𝐻𝐴𝑈 +  0.5 𝑆𝑋𝑅𝐴𝑅𝑂 −  𝐼𝑈𝑆𝐸 . 

Banks with a higher sensitivity with respect to the geopolitical factor GFE experience sharper 

market capitalization declines when geopolitical-driven flight-to-safety flows take place. 

4. Results 

4.1 Data 

The computation of systemic, climate, geopolitical risk, and combinations thereof requires the 

collection of balance sheet data. We used Datastream to gather all reported quarterly results for 

our sample of banks starting from Q2-2011 to Q1-2022. Adjusted price data for the 10 

securities start on June 30th, 2011, and log returns are computed from the following day, July 

1st, 2011, up to and including April 29th, 2022. To ensure synchronicity, only days when all the 

components of the basket traded have been included36, for a total of 2735 observations per each 

security, index or factor and an average trading year consisting of 252 sessions. Given that all 

the banks operate in the same time zone and adopt the euro as both operating and reporting 

currency, there has been no need to implement any lag or forex adjustment to complete our 

study, making the whole estimation process much simpler and faster. 

 

36 See the Appendix, Section A10, for a full list of excluded dates.  
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4.2 Simulation procedure 

We start by applying either Bollerslev (1990) Constant Conditional Correlation (CCC) or Engle 

(2009) Dynamic Conditional Correlation (DCC), as warranted by the characteristics of each 

sub-sample37, to estimate the parameters for the factors and the banks that serve as input for 

the simulation. The results are cross-checked using two different statistical packages38. We 

then combine these parameters to the balance sheet and market capitalization data recorded on 

a given date to compute specific and aggregated conditional shortfall estimates and assess 

simultaneously systemic, climate, geopolitical risk, and combinations thereof. This simulation, 

inspired by Brownlees and Engle (2017) and Engle (2017), is structured to reflect the 

multivariate framework employed. It is coded using Matlab and runs separately for each bank, 

with batches of demeaned returns used as DCC (or CCC) input. In our study we have used a 

simulated time window w with w=63 (3 trading months), 75,000 iterations S per each date and 

a crisis threshold vector thresh=(-30%, -35%, -40%). During the observation period the first 

percentile for the cumulative arithmetic return (loss) registered over any 3-month window is 

represented by a fall of approximately 30% for the market factor MKT and by a 20% drop for 

the climate factor CFE39; with respect to the geopolitical factor, which works in reverse, the 

GFE 3-month return (gain) that corresponds to the 99% percentile of the sample is 18.5%. 

 

37 A preliminary analysis on the full sample has been conducted using the Tse (2000) and the Engle and Sheppard 

(2001) tests. See Appendix A8.1 and A8.2 for details. 

38 OxMetrics 8.2 and Matlab R2021b, integrated with the MFE Toolbox by K. Sheppard and the Parallel 

Computing module. 

39 Jung et al. (2021) use a 50% climate factor drop in 6 months as crisis threshold. Considering the distributions 

of realized returns in our sample, we deem such a steep fall unrealistic for our specific purpose. 
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Computationally, Brownlees and Engle (2017) use a recursive estimation scheme: from the 

start date this method gradually expands the period and the amount of data used as input for 

the each multivariate GARCH calculation, ending up including the entire time sample. The 

loglikelihood of the estimates grows with the sample size. We have adopted both this method 

and a rolling window approach, which is closer to an actual risk management set-up. It is also 

nimbler and faster to compute, albeit its output is somewhat more volatile and less robust by 

construction due to the fewer datapoints. Hereafter we present the results generated using the 

expanding (recursive) method, a -30% threshold for all the factors and a 5-day interval between 

each sampling, for a total of 498 datapoints and over 2 billion simulated returns per bank, 

whereas the rolling window results are employed to assess relative riskiness among banks in a 

different work40. 

For each window, either expanding or rolling, the multivariate simulation consists of the 

following steps: 

1. Generate a quartet of data composed by the standardized shocks - 3 factors and one 

bank; 

2. Select the best fitting multivariate GARCH model (CCC or DCC) based on likelihood; 

3. Generate the parameters to be used in the simulation; 

4. Perform a coarse sampling with replacement of the shocks; 

5. Simulate for the selected number of runs conditional log returns over a time window w 

using, as a starting set, the last parameters generated by the multivariate GARCH; 

6. Convert log returns to arithmetic returns; 

 

40 “Identifying green banks”, forthcoming. 
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7. Compute the Monte Carlo average capital shortfall conditional on either factor, or 

combination thereof, breaking the crisis threshold thresh (MKT and CFE below thresh, 

GFE above minus thresh). Taking into consideration all seven non-zero breaks possible 

occurrences, we record both the size of the deficit and the frequency of each specific 

type of event resulting from the simulation. 

4.3 Tail risk estimation and attribution 

As explained in Section 2.2 and Section 3.1, we define systemic risk MSRISKt as the capital 

shortfall 𝐶𝑆𝑆,𝑡, climate risk MCRISKt
 41 as 𝐶𝑆𝐶,𝑡, and geopolitical risk MGRISKt as 𝐶𝑆𝐺,𝑡. Each 

risk measure is computed as the Monte Carlo average of the equity deficit recorded during the 

simulation runs when only the return of their respective market factor breaks its threshold: 

MKT<thresh for 𝐶𝑆𝑆,𝑡, CFE<thresh for 𝐶𝑆𝐶,𝑡, and GFE>(-thresh) for 𝐶𝑆𝐺,𝑡. 

Risk estimation is carried out as follows. We first check how MSRISKt, generated by type-S 

occurrences, compares with MCRISKt or MGRISKt, originated from type-C or type-G events 

respectively. Since MSRISKt is consistently larger than MCRISKt and MGRISKt, the simulation 

results confirm that systemic (market) risk is the dominant risk factor: neither climate nor geo-

political risk seem to be capable to provoke losses exceeding the effects of a Eurozone financial 

crisis. 

This result is expected, since the €1.9 trillion total exposure of Eurozone banks to CPRS 

relevant sectors is only a fraction of  the approximately €14 trillion combined assets comprised 

in our sample; similarly, it is reasonable to assume that the level of losses caused by a 

 

41 In their VLAB website the NYU publishes the bivariate CRISK estimate. See https://vlab.stern.nyu.edu/climate  

https://vlab.stern.nyu.edu/climate
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widespread financial crisis would surpass the impact of a severe geopolitical event barring an 

apocalyptic incident that most likely would also provoke a market dislocation (comprised in 

type-SG events). Moreover, type-CG events, which estimate the effect of simultaneous climate 

and geopolitical events that do not trigger a wider systemic crisis, rarely produce a 

corresponding equity shortfall 𝐶𝑆𝐶𝐺  which surpasses 𝐶𝑆𝑆 and, when this is the case, the two 

estimates are close42. Therefore, we deduce that MSRISKt represents the maximum loss that 

can be reasonably expected following the occurrence of either type-S, type-C, type-G, or type-

CG events. In other words, the capital shortfall provoked by a systemic event is likely to 

comprise the maximum losses caused by separate financial, climate or geopolitical crises, or 

even by a concurrent climate and geopolitical event: MSRISKt can be used as the reference risk 

to calculate and allocate tail risk. 

This step is necessary when a systemic incident occurs in conjunction with either a geopolitical 

or a climate crisis, or both. As described in Section 2.2, these are the events SC, SG and SCG. 

In our work we verified that the condition 

(𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝑆𝐺,𝑡) ⋀ (𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝑆𝐶,𝑡) ⋀ (𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝐶𝐺,𝑡) ⋀ (𝐶𝑆𝑆𝐶𝐺,𝑡 > 𝐶𝑆𝑆,𝑡)  

holds in 4966 out of 4980 cases, that is 99.7% of all the single bank instances considered, 

whereas in terms of aggregate risk the condition is always verified. 

These results show that MAX_RISKt always surpasses MSRISKt: across the 498 dates 

considered MAX_RISKt is higher than MSRISKt by a minimum of +4.1% and a maximum of 

+56.4%, registering a +18.1% average increase and a median gain of 17.1%. These results 

 

42 In the cases when 𝐶𝑆𝐶,𝐺 does exceed 𝐶𝑆𝑆, we find that 𝐶𝑆𝐶,𝐺 is on average larger than 𝐶𝑆𝑆 by 2.8%. 
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quantify potential losses exceeding systemic risk caused by the occurrence of contemporaneous 

crises of different nature: this is tail risk, which would be unaccounted for without this type of 

multifactor analysis due to the way bivariate risk measures such as SRISK are constructed. 

Therefore, we conclude that bivariate systemic risk measures appear to underestimate 

maximum capital shortfall because they ignore the effects of climate, geopolitical and 

interaction risks. 

Hereafter we present the results43 of our analysis based on an expanding window. 

MAX_RISK_NET is attributed to MCRISK-X, MGRISK-X and INT using relative 

frequencies recorded at the end of each run. 

Figure 1 shows aggregate risk MAX_RISK increasing from €573 billion to €649 billion 

(+13.2%) during the whole period: after bottoming below €400 billion in 2014Q3, it reaches 

its peak right at the beginning of 2022Q1. Figure 2 decomposes MAX_RISK in MSRISK, 

MCRISK-X, MGRISK-X, and INT values. 

 

43 As explained in Section 4.2, the observation period goes from the beginning of July 2011 to the end of April 

2022 using a 5-day interval between measurements, for a total of 498 dates. The threshold thresh is set at -30% 

whereas the Monte Carlo simulation is conducted with 75,000 runs over a 63-day period (3 months) per date, per 

bank. 
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                                     Figure 1: MAX_RISK                                        Figure 2: MSRISK, MCRISK-X, MGRISK-X, INT 

  

MSRISK moves from €547 billion to €569 billion (+4.0%), increasing less than MAX_RISK 

and staying closer to being unchanged, as suggested by the static value in RWA. In line with 

Gehrig and Iannino (2021), our study finds that the modest fall in the regulatory exposure fails 

to capture the increase in the aggregate systemic risk, especially considering climate and 

geopolitical tail risks as measured by MCRISK-X and MGRISK-X. 

From July 2011 to April 2022 our proposed climate risk measure MCRISK-X more than 

doubles, increasing from approximately €15 billion to over €34 billion, after surpassing €160 

billion following the ratification of the Paris Climate Agreement. On average, MCRISK-X 

increases MAX_RISK by 13.2% with respect to MSRISK estimates (median hike: 11.5%). As 

presented in Figure 3, MCRISK-X rises sharply during the 2015 and 2020 energy bear 

markets44 due to the related surge in transition risk. Conversely, MCRISK-X recent fall is likely 

 

44 In both instances Brent crude prices dropped more than 50%. 
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caused by a temporary reduction of transition risk, likely attributable to the sharp rise in the 

price of fossil fuels provoked by the breakout of the Russo-Ukrainian war. Given the attention 

reserved to climate by Eurozone governments and regulators, this situation appears to be 

transitory: in its 2022 CST exercise the ECB quantifies the potential climate losses for 

Eurozone financial institutions in approximately €70 billion, of which €53 billion due to 

disorderly transition. It also cautions that this estimate might significantly understate the extent 

of the problem. Our aggregate MCRISK-X measure in the first months of 2022 is above €47 

billion for a sample of listed banks that represents approximately 70% of the EUROSTOXX 

sectoral market cap. Therefore, we concur with the central bank and conclude that the actual 

climate risk hanging over the Eurozone financial sector is likely to be somewhat higher than 

this appraisal. 

Figure 3 – tail risk attributable to climate risk MCRISK-X 

 

A bivariate approach would produce results way apart from the CST output. Figure 4 compares 

climate tail risk MCRISK-X with MCRISK and its bivariate equivalent CRISK. MCRISK, 

represented in our analysis by the event C and the shortfall 𝐶𝑆𝐶 , that is when only the climate 
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factor CFE breaks the threshold, tracks closely CRISK. Climate risk estimates based on either 

metric would be, on average, more than 9 times MCRISK-X45, which exhibits also a markedly 

different trend. This finding shows the limits of bivariate risk analysis and validates the 

adoption of a multifactor risk framework in conjunction with the proposed risk attribution 

methodology. 

Figure 4: MCRISK vs CRISK vs MCRISK-X 

 

MGRISK-X estimates are presented in Figure 5. By its nature, MGRISK-X is very volatile, 

influenced by high-impact but low-persistency shocks provoked by events, actions, threats, or 

news that influence markets for a limited period except for prolonged wars. 

 

45 These findings are in line with the NYU V-Lab output: for the selected sample the C event generates a 

multivariate MCRISK estimate on April 29th, 2022, of €490 billion, versus a bivariate V-LAB measure of $469 

billion: considering the prevailing FX rate at the time of €/$=1.05, this equates to a €446 billion bivariate CRISK, 

or 91.1% of our MCRISK estimate produced in a multivariate context using a different climate factor. 
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Figure 5 – tail risk attributable to geopolitical risk MGRISK-X 

 

MGRISK-X shows significant correlation with the Caldara and Iacoviello (2022) GPRD 

(0.30***) and GPRD Threats (0.46***) indices, built using Anglo-Saxon news sources. Caldara 

and Iacoviello do publish single country indices but, to our best knowledge, not an aggregate 

Eurozone geopolitical risk index. 

As expected, given the composition of the geopolitical factor GFE, MGRISK-X reacts more 

noticeably to conflicts46 than to terrorist activity affecting Eurozone member states. From a low 

of €2 billion in early 2016, MGRISK-X has been propelled to above €64 billion by the break-

out of the war in Eastern Europe in early 2022, reaching the highest level recorded during the 

whole period. On average, MGRISK-X contributes to MAX_RISK 3.2% of MSRISK 

measures, with a median increase of 2.8%. Worryingly, since 2018, the floor for MGRISK-X 

seems to have moved higher.  

 

46 Such as the annexation of Crimea in 2014, the fall of the ISIS Caliphate in late 2017-2018 and the North Korean 

crisis in 2018-2019. 
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The interaction effect INT is presented in Figure 6.  

Figure 6: tail risk attributable to interaction risk INT 

 

Contrary to MCRISK-X and MGRISK-X, this measure of extra risk provoked by the 

simultaneous occurrence of a systemic, climate and geopolitical crisis does not show a 

particular trend, reaching its peak of approximately €17 billion at the breakout of the pandemic. 

INT adds, on average, 1.6% of MSRISK estimates to MAX_RISK (median addition: +1.5%). 

4.4. Sensitivity Analysis 

To assess sensitivity, in addition to using the vector (-30%, -35%, -40%) of threshold values, 

shortfall estimates have been carried out employing different rolling 250-day and 500-day time 

windows. Generally, shorter time frames and higher absolute value thresholds tend to generate 

larger risks, and with rolling windows there are some cases of CCC outperforming DCC. 

However, despite using 75,000 runs per date, the higher the absolute value of the threshold, the 

higher the number of instances that require data interpolation for both 250 and 500-day rolling 

windows to estimate certain risk measures continuously. Therefore, the results presented are 

obtained using the expanding method. 
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Both MAX_RISK and MSRISK estimates tend to grow with the absolute value of the 

threshold, whereas the dispersion tends to contract (Table 2), as shown by the ratio of the 

respective measures calculated with different thresholds.  

Table 2: MAX_RISK and MSRISK threshold ratios 
 MAX_RISK threshold ratios  MSRISK threshold ratios  

 Ratio_35/30 Ratio_40/35 Ratio_40/30 Ratio_35/30 Ratio_40/35 Ratio_40/30 

Mean: 103.7% 102.9% 106.7% 104.8% 104.3% 109.3% 

Std. Dev.: 2.5% 2.5% 3.9% 1.8% 1.7% 3.4% 

Min: 91.9% 92.8% 85.3% 101.6% 101.1% 103.0% 

Max: 122.0% 119.3% 125.8% 110.0% 109.7% 119.4% 

In Tables 2, 3, 4 and 5, Ratio_x/y indicates the ratio of the estimates computed respectively 

with threshold x% and threshold y%. 

Even with thresh set at -40%, only one date (2013-01-25) requires data interpolation to obtain 

MSRISK, proving the reliability of the expanding (recursive) window method. 

In terms of stability, MCRISK-X estimates are not very sensitive to changes to the absolute 

value of the threshold, which tends to increase the dispersion rather than affecting the 

magnitude of the climate risk estimate, as reported in Table 3. 

Table 3 – MCRISK-X threshold ratios 
 Ratio_35/30 Ratio_40/35 Ratio_40/30 

Mean: 97.0% 93.3% 90.5% 

Std. Dev.: 14.8% 19.9% 23.2% 

Min: 38.3% 18.5% 17.1% 

Max: 164.0% 205.9% 195.7% 

 

As mentioned, we have calculated MCRISK-X using also rolling windows: in both instances 

the resulting metric values show wider swings, signaling very well the transition risk spikes 

occurred in 2015 and 2020. In both instances the surges are followed by a sharp decline.  
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As presented in Table 4, in terms of MGRISK-X the choice of the threshold appears to affect 

more the dispersion than its value: 

Table 4: MGRISK-X threshold ratios 
 Ratio_35/30 Ratio_40/35 Ratio_40/30 

Mean: 100.8% 100.3% 100.7% 

Std. Dev.: 25.0% 33.9% 39.3% 

Min: 23.0% 0.0% 0.0% 

Max: 281.8% 330.4% 401.0% 

Using 250-day and 500-day rolling windows, MGRISK-X shows prolonged periods of zero or 

near zero geopolitical risk, followed by spikes before the Crimean crisis in 2014, the breakout 

of the pandemic and of the Russo-Ukrainian war. 

Table 5: INT threshold ratios 
 Ratio_35/30 Ratio_40/35 Ratio_40/30 

Mean: 94.7% 93.9% 90.5% 

Std. Dev.: 20.4% 28.8% 37.2% 

Min: 0.0% 0.0% 0.0% 

Max: 186.8% 233.8% 253.0% 

Interaction estimates are not very sensitive to threshold changes, as shown in Table 5. 

5. Conclusions 

Our work develops a multifactor framework that allows for tail risk assessment and attribution. 

This approach manages to identify a dominant risk factor, if present, and uses it as a reference 

to quantify and allocate tail risk to other concurrent sources when events of different nature 

occur at once.  

The application of this methodology to the sample of large Eurozone lenders produces several 

interesting findings that are robust to changes in factor thresholds: 
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1) Systemic risk is identified as the dominant risk factor for Eurozone banks. Furthermore, 

our analysis indicates that, on average, current systemic risk estimates obtained using a 

bivariate approach underestimate potential aggregate losses by €77.1 billion (median: 

€75.6 billion), or 18.1% (median: 17.1%). The undershooting is caused by the effects 

of the interaction between the different types of risk that can be captured only by a 

multivariate analysis. 

2) The proposed climate tail risk attribution model produces a result which is comparable 

with the ECB climate stress test appraisal, even though their €53 billion transition risk 

assessment is likely to be moderately optimistic (lower than the actual risk). 

Conversely, bivariate approaches overestimate climate risk by almost one order of 

magnitude. This overshooting is provoked by the overlapping of capital shortfall 

estimates that fails to consider the dominant risk, that is systemic risk, as the major 

source of potential negative equity comprising the losses of isolated events of different 

nature. However, climate risk does constitute a dangerous source or tail risk if combined 

with systemic and geopolitical issues. Its mean addition to systemic risk is, on average, 

€55.7 billion (median: €51.6 billion), representing 10.8% of the maximum potential 

aggregate shortfall (median: 9.9%). It can account for up to 32.1% of maximum 

combined losses during energy bear markets. In the period considered, despite its late 

drop, climate tail risk has more than doubled. 

3) Geopolitical risk adds €14.3 billion (median: €11.9 billion) to mean systemic risk, 

representing on average 2.7% (median: 2.3%) of aggregate maximum risk if combined 

with systemic and climate events. During the dramatic period leading to the breakout 

of the war in Ukraine tail risk linked to the geopolitical factor surged to €64.7 billion, 

or 10.6% of maximum aggregate losses, thereby reaching the maximum incidence 
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across the entire period analyzed. Further refinements in the geopolitical factor GFE 

would certainly improve the accuracy and timeliness of the results, which are 

significantly correlated with the Caldara and Iacoviello (2022) Threats index. 

4) Interaction risk is a by-product of the simultaneous occurrence of multiple crises which 

can be measured only within this type of multivariate framework. It does not show any 

specific trend and represents on average 1.4% (median: 1.3%) of total risk. However, 

it never drops to zero and can reach 3.6% of combined aggregate losses, thereby 

indicating latent potential excess shortfall. 

5) Our results are in line with Gehrig and Iannino (2021) in suggesting that the relative 

stability of risk weighted exposure reported by Eurozone banks does not reflect the 

actual trajectory of their aggregate risk, which is higher in 2022 than in 2011. 

6) These findings could be used to develop portfolio construction techniques robust to 

multiple shocks. Lin et al. (2023) have introduced a suite of metrics based on bivariate 

𝐿𝑅𝑀𝐸𝑆𝑡
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

 designed to identify portfolios of banks able to overperform during 

systemic crises, whereas MCRISK-X and MGRISK_X could be utilized to perform 

sectoral stock selection to minimize the impact of climate and geopolitical shocks on 

portfolio returns. We are currently in the process of investigating this subject further 

with the forthcoming “Identifying green banks” paper. 

Regulators could use this approach to explore the effects of simultaneous, manifold risk 

occurrences on Eurozone capital buffers. As shown by Gouriéroux et al. (2022), the 

identification of optimal capital requirements becomes extremely difficult when long-term 

challenges, such as the transition to a carbon neutral economy, have to be matched with short-

term micro-prudential considerations. Regulation needs to ensure systemic integrity while 
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preserving Eurozone banks’ capability to produce earnings and strengthening their capital base, 

because a well-supervised and successful banking sector is necessary to achieve long-term 

financial stability. Hopefully, the methodology proposed in this work will contribute to 

achieving such a goal. 
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Chapter 3: Identifying Green Bank Stocks 

Abstract  

We investigate the effectiveness of three different climate metrics in identifying green banks 

within a sample of large Eurozone and US lenders in the February 2019 – April 2022 period. 

We compute weight modifiers determined by relative exposure to stranded assets, 

environmental ratings and Scope 2 emissions and apply them to create sectoral portfolios robust 

to climate events. The adjusted portfolios’ risk-return performance is compared against a 

market capitalization benchmark and an optimized portfolio. The results show that the selected 

climate loss proxy overperforms in the Eurozone, succeeding in creating an effective climate 

tilt while containing active risk. Both emission-adjusted and rating-modified portfolios work 

as well, albeit less effectively. Conversely, the results with respect to US banks are 

inconclusive, with no metric consistently overperforming, likely due to accounting practices 

that tend to inflate total assets and the absence of a homogeneous Scope 3 indirect emissions 

reporting standard. 

Keywords: bank stocks; stock selection; portfolio management; ESG; Environmental ratings; 

climate risk, Scope 2 emissions, Scope 3 emissions.  
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1. Introduction  

Despite coordinated efforts by international regulators like the Basel Committee for Banking 

Supervision (BCBS, 2021) and organizations such as the Network for Greening the Financial 

System (NGFS)47, the Task Force on Climate-related Financial Disclosures (TCFD, 2020), and 

the Net Zero Banking Alliance (NZBA)48 to improve the transparency of the financial system 

with respect to climate change disclosures, the assessment of the greenness of a lender is still 

a subjective exercise that depends considerably on the relevant jurisdiction. If Eurozone banks 

have to comply with the Corporate Sustainability Reporting Directive (CSRD), US lenders 

must follow the US Security and Exchange Commission Climate Disclosure Rule (CDR), and 

banks domiciliated in other constituencies need to adopt different climate disclosure standards 

yet (APRA, 2021). Consequently, any metric designed to reflect the greenness of a lender 

depends on a very specific set of rules: for example, the EU Green Asset Ratio (GAR), 

mandatory from 2024, compares the proportion of climate-friendly green assets, as defined by 

the EU taxonomy (Alessi et al., 2019), with the total size of the balance sheet, formulated used 

International Financial Reporting Standards (IFRS). Hence, GAR cannot be directly applied to 

banks adopting a different framework, or reporting using another accounting method, such as 

the US Generally Accepted Accounting Principles (GAAP). Furthermore, emission reporting 

is prepared following multiple standards, making comparisons hard. 

 

47 The NGFS is an international organization formed in late 2017 to facilitate the cooperation among governments 

and regulators on the matter of climate risk (NGFS, 2020). It comprises all major central banks and international 

institutions, such as the Bank for International Settlements (BIS). 

48 The United Nations-sponsored NZBA fosters the implementation of a path towards a carbon neutral global 

financial system by 2050, as suggested by the IEA (IEA, 2021). NZBA membership is strictly voluntary. 



84 

 

Within this fragmented context, investors pursuing specific sustainability goals are prone to 

screen assets employing ratings (Lesser et al., 2016) issued, autonomously or on request, by 

private agencies, which combine environmental (E), social (S) and governance (G) pillars into 

an ESG score. These ESG ratings tend to have a controversial influence on funds’ performance 

(Alda, 2020; Bofinger et al., 2022), asset returns (Shanaev and Ghimire, 2022; Teti et al., 2023), 

equity risk premia (Brandon et al., 2021) and cost of capital (Rojo-Suárez and Alonso-Conde, 

2023). By construction all ESG ratings are low frequency, lagging data: bank ESG ratings are 

usually updated only once a year49, in the calendar quarter50 following the publication of 

corporate sustainability reports referring to the previous accounting period. ESG ratings are 

assigned on the basis of a combined score, obtained by blending the three pillars and the 

controversies assessment together: when they diverge, it is due to differences in measurements, 

scope, or weights (Berg, Kolbel and Rigobon, 2022). Weights assigned to the environmental, 

social and governance pillars vary depending on the industry classification of any given 

company.  Since the financial sector is perceived as being a light GHG emitter, in the case of 

lenders the E-pillar usually represents the least relevant contributor to the ESG rating: Standard 

and Poors Global (S&P) and Morgan Stanley Capital (MSCI) give the environmental score for 

banks only a 13% overall weight, articulated in three sub-scores. Refinitiv, which is the rating 

provider chosen for this work, follows a similar approach, assigning the E-pillar 14.4% of the 

rated banks’ ESG evaluation. Environmental E scores are assigned taking into consideration 

 

49 If regulatory actions or litigations emerge in between, some providers react to these events refreshing ratings 

earlier to track the development of open controversies. 

50 It is best practice to update ESG ratings by April: for example, a 2021 E rating should have been refreshed by 

April 2022. Consequently, our test considers applicable changes to the rating for portfolio choices occurring from 

late April of each year. Sometimes ratings are delayed, but the market is likely to discount new corporate 

sustainability information soon after dissemination. 
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several qualitative and quantitative factors, ranging from the depth of climate-related initiatives 

promoted by the company to the amount of green assets under management, and they include 

also actual metrics related to a lender’s footprint, such as the consumption of natural resources, 

waste, and greenhouse gas (GHG) emissions. Refinitiv’s environmental rating is decomposed 

in 3 parts: resource usage (2.4% of total), carbon emissions (again 2.4%) and innovation 

(9.6%). Consequently, emissions influence only 17% of the environmental score and carry a 

very marginal effect on the combined ESG rating. The key metric determining the emission 

component of the E score, identified by Refinitiv as @AnalyticCO2, is built around the sum of 

the reported  Scope 1 and Scope 2 emissions, that is GHG generated directly by the lenders 

(Scope 1) or related to the indirect emissions linked to their energy consumption (Scope 2). 

@AnalyticCO2 is calculated as the ratio of total Scope 1 and Scope 2 emissions (in metric 

tons) with respect to Total Revenues (in currency millions) for each bank: the lower the metric, 

the greener the bank. Unfortunately, Scope 1 and Scope 2 reporting is still not fully harmonized, 

even within the same region. Hereafter we present Table 1, showing @AnalyticCO2 for the 

Eurozone sample.  

Table 2:Reported GHG (Scope2) over Revenues - Eurozone 10 largest banks by assets. 

 BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP 

2010 8.04 0.31 3.50 6.47 10.11 21.76 15.17 5.15 11.76 3.25 

2011 8.14 1.29 3.42 5.67 10.62 7.96 13.14 6.27 11.80 8.17 

2012 4.42 0.71 2.82 5.23 8.36 5.12 12.04 4.87 11.76 3.15 

2013 4.34 0.66 2.05 4.61 7.76 3.92 4.84 3.49 11.31 2.42 

2014 4.46 0.50 2.66 4.38 8.87 3.24 5.29 4.54 10.26 5.06 

2015 4.35 0.59 4.66 4.79 8.65 2.77 4.25 14.18 10.70 5.71 

2016 4.50 1.49 4.15 7.73 10.44 1.73 5.05 13.81 12.91 6.23 

2017 5.09 1.14 3.20 5.99 9.37 1.15 4.50 11.82 13.05 5.77 

2018 5.19 1.20 4.13 6.02 9.46 0.93 4.71 12.31 9.77 6.20 

2019 4.54 0.99 3.97 5.25 11.04 0.90 5.33 12.39 9.80 5.04 

2020 3.96 1.08 3.29 4.74 8.28 0.68 3.70 8.92 7.69 3.36 

2021 3.50 1.05 2.92 4.80 8.14 0.57 2.50 7.67 7.84 4.28 
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It includes the ten largest Eurozone listed banks by assets in the July 2011-April 2022 period: 

Credit Agricole (ACA), Banco Bilbao Vizcaya and Argentaria (BBVA), Banque National de 

Paris (BNP), Commerzbank (CBK), Deutsche Bank (DBK), Société Générale (GLE), ING 

Group (INGA), Banca Intesa (ISP), Banco Santander (SAN) and Unicredit (UCG). Certain 

names appear to be materially greener than others, but this contrast is mostly caused by 

different criteria used to compute total emissions. Table 2 illustrates the ratio for a US sample 

which comprises the ten largest North American banks listed in the United States by assets in 

the 2011-2022 period, excluding financial companies classified as investment banks, asset 

gatherers or broker-dealers. The US lenders included in the analysis are Bank of America 

(BAC), Citigroup (C), JP Morgan Chase (JPM), Wells Fargo (WFC), US Bancorp (USB), 

Truist Financial Corporation (TFC),  PNC Bank (PNC), Capital One Financial (COF), Bank of 

New York Mellon (BK), and MTB Bank (MTB). For the US sample the differences in the 

approach to emission reporting are striking, with some  lenders not publishing climate 

disclosures for prolonged periods of time. 
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Table 3: Reported GHG (Scope2) over Revenues - US 10 largest banks by assets. 

 BAC C JPM WFC USB TFC PNC COF BK MTB 

2010 16.44 11.99 12.85 18.81 22.93 18.55 24.36 13.06 16.96 -- 

2011 18.16 12.81 13.61 19.78 22.85 -- 29.97 12.03 16.26 -- 

2012 18.49 13.65 13.43 16.58 20.37 -- 28.75 9.77 14.95 -- 

2013 16.33 11.59 12.10 16.28 -- -- 26.49 10.05 14.38 -- 

2014 15.55 10.99 10.55 15.73 -- -- 25.72 9.43 10.77 -- 

2015 13.47 10.67 11.35 13.77 -- -- 22.52 8.98 0.94 -- 

2016 12.64 10.89 10.21 12.02 -- -- 22.14 8.38 0.81 -- 

2017 10.32 9.64 8.43 10.57 -- -- 18.46 5.58 9.97 8.53 

2018 9.36 8.85 7.56 10.75 -- -- 15.40 6.08 9.16 8.40 

2019 8.60 7.97 6.71 9.94 -- 17.60 12.60 5.81 8.40 7.77 

2020 8.23 6.97 6.11 10.45 10.94 8.99 10.09 4.15 7.20 6.84 

2021 7.39 7.07 6.91 8.21 10.27 11.31 8.41 3.37 6.02 6.35 

The lack of homogeneous data is even more pronounced for @AnalyticCO2IndirectScope3, a 

similarly constructed metric which is supposed to consider indirect GHG generated upstream 

by the supply chain and downstream by lending, that is the primary business of any bank. Table 

3 presents @AnalyticCO2IndirectScope3, computed as the ratio of indirect Scope 3 GHG in 

metric tons to revenue (in euro millions) for the European banks considered: 

Table 4: Reported indirect GHG (Scope3) over Revenues - Eurozone 10 largest banks by assets. 

 BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP 

2010 2.53 0.31 1.20 1.84 1.08 4.04 3.06 1.98 0.49 0.50 

2011 2.71 0.00 1.48 2.08 0.99 1.77 2.34 2.47 0.55 0.34 

2012 1.42 0.50 1.09 2.19 1.17 4.88 1.84 2.31 0.62 0.41 

2013 1.28 0.41 0.79 2.15 1.23 2.20 1.97 4.78 0.37 0.58 

2014 1.48 0.20 1.13 2.10 1.27 1.35 1.95 6.20 0.35 0.55 

2015 1.64 0.36 2.22 2.30 1.41 1.49 1.81 6.83 0.38 0.74 

2016 1.61 0.67 2.05 2.43 1.36 1.48 1.75 6.88 0.52 0.91 

2017 1.84 1,619.72 1.59 1.62 1.54 1.32 1.71 6.33 0.45 2.30 

2018 2.45 1,568.96 2.84 1.90 1.90 1.33 1.76 6.40 0.32 2.57 

2019 1.84 1,537.06 2.85 1.81 1.83 1.09 2.42 6.57 0.39 0.53 

2020 1.08 1,834.19 1.88 0.63 0.19 0.34 0.43 3.65 0.31 0.62 

2021 0.61 1,610.55 1.21 0.58 0.30 0.26 0.09 3.04 0.10 0.54 

The only bank fully reporting both upstream and downstream GHG, Credit Agricole (ACA), 

shows a @AnalyticCO2IndirectScope3 ratio for 2021 of 1,610.55, which is about one thousand 
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times higher than its peers. Interestingly, in the case of ACA, indirect Scope 3 emissions (147 

million metric tons) represent 153% of combined Scope 1 and Scope 2 GHG (96 million metric 

tons), or more than 60% of total Scope 1, Scope 2, and Scope 3 combined emissions. To put 

this value into context, in 2021 Total Energies SA, the largest oil and gas conglomerate 

headquartered in the Eurozone, reported a @AnalyticCO2IndirectScope3 of 2,118.54, only 

31% higher than ACA’s, with respect to a @AnalyticCO2 (Scope 1 and Scope 2) ratio of 

191.59, that is 27 times higher than ACA’s 7.07. The other Eurozone lenders report Scope 3 

emissions below Scope 1 and Scope 2 GHG not because of a much greener business model, 

but simply due to the choice of a different emission reporting methodology.  

Noticeable differences in GHG reporting standards emerge also in the US sample. The  

@AnalyticCO2IndirectScope3 metric for the North American banks is shown in Table 4. 

Table 5: Reported indirect GHG (Scope3) over Revenues - US 10 largest banks by assets. 

   BAC C JPM WFC USB TFC PNC COF BK MTB 

2010 11.89 1.17 1.34 1.39 1.35 -- 7.56 -- 1.93 -- 

2011 41.83 1.54 1.56 1.40 1.31 -- 11.92 1.42 1.66 -- 

2012 57.86 1.78 1.55 1.56 9.47 -- 10.58 1.21 3.21 -- 

2013 49.44 2.04 1.67 1.76 -- -- 10.08 1.43 1.58 -- 

2014 53.88 2.40 1.64 1.39 -- -- 10.47 1.33 -- -- 

2015 49.53 1.46 1.57 1.13 -- -- 10.50 1.37 1.34 -- 

2016 65.99 1.95 1.44 1.24 -- -- 10.27 8.22 1.29 -- 

2017 59.60 2.09 1.86 44.57 -- -- 9.45 1.85 1.15 0.59 

2018 43.87 2.06 1.62 43.77 -- -- 6.58 5.00 1.05 1.17 

2019 46.60 1.70 1.57 41.50 -- 0.56 4.05 13.34 0.89 1.15 

2020 38.90 0.29 0.30 33.08 3.59 6.46 0.97 7.81 0.14 0.32 

2021 32.95 0.15 0.32 27.21 3.64 4.54 0.33 7.24 0.08 0.22 

BAC and WFC seem to produce indirect Scope 3 GHG which are a multiple of the competitors, 

but this is just another instance of different emission reporting standards that cause a marked 

misalignment in the data. This serious issue hinders a proper relative evaluation of the 

greenness of a lender based on indirect emissions and leads us to conclude that at this stage 
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Scope 3 data cannot be used to identify green banks, even if they are probably the most 

important metric to track the progress of the drive towards a greener financial system. 

This problem is coupled with the way E pillar scores are attributed: banks receive a total 

numerical score obtained as the sum of their performance in Resource Usage (weight: one 

sixth), Emissions (weight: one sixth) and Innovation (weight: two thirds). Therefore, E-ratings 

give more weight to internal practices and broad initiatives to confront climate change rather 

than focusing on lending policies with respect to brown assets, incentivizing bank managers to 

concentrate on boosting their performance in the Innovation category (9.6% of total ESG score) 

rather than reducing downstream emissions. Table 5 presents the evolution of the 

Environmental pillar ratings for the Eurozone sample. 

Table 6: Environmental Pillar Score for the EU sample, 2010-2021 (Weight 14.4% on TOTAL ESG SCORE). 

 BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP 

2010 A+ A+ A+ A A+ A A A+ A A+ 

2011 A+ A A+ A A+ A A+ A+ A A+ 

2012 A+ A A+ A A A A A A A+ 

2013 A+ A A+ A A+ A A+ A A A+ 

2014 A+ A A+ A+ A+ A A+ A A A+ 

2015 A+ A+ A+ A+ A+ A A+ A A A+ 

2016 A+ A+ A+ A+ A+ A+ A+ A A A+ 

2017 A+ A+ A A A A A+ A A A 

2018 A+ A+ A+ A A A A+ A- A- A 

2019 A+ A+ A+ A A- A A+ A A A 

2020 A+ A+ A+ A A+ A A+ A A A+ 

2021 A+ A+ A+ A A+ A A+ A+ A A+ 

Total scores are sorted and put into classes spaced by 0.083 points: A+ is the highest rating, 

assigned for scores comprised between 0.9166 and 1.0000, while D- is the worst, issued for 

scores between 0.0000 and 0.0833. E pillar ratings are then issued depending on the class, 

without distinction between different intra-class scores: a bank obtaining 0.9167 gets A+, and 

so does a bank with a perfect score of 1. Table 6 illustrates the environmental ratings assigned 
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by Refinitiv to the banks included in the US sample.  

Table 7: Environmental Pillar Score for the US sample, 2010-2021 (Weight 14.4% on TOTAL ESG SCORE). 

 BAC C JPM WFC USB TFC PNC COF BK MTB 

2010 A A+ A A- B+ D+ A- C A- D+ 

2011 A A+ A- B B D+ B+ C A- D+ 

2012 A A+ A- B B D B+ C A D+ 

2013 A A+ A- B B D B+ C A D+ 

2014 A+ A B+ B B D B+ B+ A+ D+ 

2015 A+ A A- A B+ D+ A- B+ A+ C- 

2016 A+ A A- A B+ D+ A- B+ A+ C- 

2017 A A+ B A B- D- B C A D 

2018 A A+ B- A B- D B B A D 

2019 A A A- A- B- D B B A D 

2020 A- A A- A- B- D+ B- B A B 

2021 A A A A- A D+ C+ B A B+ 

The exhibits show two very different pictures: Eurozone lenders tend to get high and stable 

environmental ratings, whereas US banks show more volatility. This dichotomy reflects both 

the different regulatory path towards carbon neutrality adopted in the two macro areas as well 

as idiosyncratic issues affecting the ratings of some US banks. The uniformly positive 

European results likely make E-ratings unsuitable to assess relative greenness within the 

Eurozone financial sector; conversely, given the more differentiated outcomes, potentially they 

could be used if applied to the US sample. 

Academic literature on portfolio selection and ESG factors recognizes the problem of 

downstream Scope 3 emissions reporting. Pedersen, Gibbons, and Pomorski (2021) use a ratio 

of Scope 1 and Scope 2 emissions to revenues (equivalent to Refinitiv’s @AnalyticCO2) as an 

environmental rating proxy to construct an ESG-modified efficient frontier, citing the noisiness 

and inconsistency of Scope 3 estimates as the reason to neglect them. We concur: Scope 3 

emissions are difficult to track and are systematically under reported by most of the companies; 

however, to manage portfolios mandated to identify and invest only in the greenest stocks,  
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brown asset exposure should probably represent one of the main factors determining which 

names to hold. In the case of banks, more capital allocated to borrowers involved in heavy 

carbon-emitting activities leads to increased sensitivity to volatility affecting stranded assets: 

rather than ignoring indirect emissions, there might be ways to use proxies and perform 

portfolio selection accordingly. Specifically, we propose the ratio of climate-induced losses to 

the size of the balance sheet as a natural way to assess greenness: the smaller the incidence, the 

more robust is the lender. 

But can a portfolio manager rely on any, or all, of these metrics to adopt a sectoral exposure 

robust to climate risk? This work investigates their effectiveness in identifying the greenest 

banks during a climate event by applying weight modifiers based on the three criteria (loss-to-

asset ratios, E-ratings, and Scope 2 emissions) to model portfolios comprising both samples in 

the 2019-2022 period and check whether they are successful in improving the portfolio risk-

return profile with respect to a cap-weighted benchmark. The window between January 2019 

and April 2022 includes the run-up to the breakout of COVID-19, the severe 2020-21 energy 

bear market, its aftershock, and the early stages of the Russo-Ukrainian war. In 2020 the 

consequences of the pandemic depressed global hydrocarbons demand and provoked severe 

dislocations in the energy markets, affecting stranded assets and creating the same conditions 

that can be reasonably expected in the aftermath of a climate event. By mid-2021 the supply-

demand unbalances were mostly cleared and, in 2022, following the international reaction to 

the war in Eastern Europe, abruptly reversed by an opposite shock provoking a temporary surge 

in price due to restrictions to the supply of fossil fuels. Therefore, we can conclude that, in the 

period considered, stranded assets experienced a complete reverse boom-bust cycle, which 

might serve as a guide for the unfolding of climate events and represents an ideal test period to 

confront different climate robustness measures. 
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2. Assessing the greenness of a bank: methodology 

To perform such a task, we first have to design metrics that allow to identify banks 

characterized by a) higher environmental ratings than their peers; b) lower exposure to losses 

related to stranded assets; c) lower Scope 2 emissions to revenues ratio than the competitors. 

The portfolio weight of these “green” banks is going to be higher than the benchmark, whereas 

the opposite is true for “brown” lenders. 

2.1 Environmental Rating Weight Modifier RWM 

We start with the environmental rating modifier related to E pillar ratings. As stated before, we 

assume they are refreshed once a year in April, using data published in the corporate and social 

responsibility reports referring to the previous fiscal year. Since both Eurozone and US banks 

tend to report annual results early in the first quarter, this assumption is realistic. Given that E 

ratings do not differentiate among companies bearing the same classification, we assign to the 

bank i at time t the relevant top score SCOREi,t reflecting its E-rating: 1.000 for A+, 0.9167 for 

A, and so on, down to 0.0833 for D-. We then obtain the reverse score REVSCOREi,t by 

subtracting SCOREi,t from 1 (an A+ rating gets 0, an A 0.083, and a D- gets a 0.9166) and carry 

on by computing the difference between the average reverse score 𝑅𝐸𝑉𝑆𝐶𝑂𝑅𝐸𝑡 and each 

individual reverse score: this value, divided by 100 to be expressed in percentage terms, 

represents the rating weight modifier 𝑅𝑊𝑀𝑖,𝑡, which can be either positive or negative: 

𝑅𝑊𝑀𝑖,𝑡 =
𝑅𝐸𝑉𝑆𝐶𝑂𝑅𝐸𝑡 −  𝑅𝐸𝑉𝑆𝐶𝑂𝑅𝐸𝑖,𝑡

100
 .                                 (1) 

Banks with an E-pillar rating better than the average would show a positive 𝑅𝑊𝑀𝑖,𝑡, and vice 

versa: we will be employing rating weight modifiers to determine the extent of the overweight, 
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or underweight, to apply to each name during a climate crisis. Tables 7 and 8  present the 

relevant Eurozone and US RWM metrics for the period considered. 

Table 8: Eurozone Rating Weight Modifiers RWM and Mean Reverse Score REVSCORE (2018-2022). 

 
BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP MEAN 

2017 0.058% 0.058% -0.025% -0.025% -0.025% -0.025% 0.058% -0.025% -0.025% -0.025% 0.058% 

2018 0.067% 0.067% 0.067% -0.017% -0.017% -0.017% 0.067% -0.100% -0.100% -0.017% 0.067% 

2019 0.058% 0.058% 0.058% -0.025% -0.108% -0.025% 0.058% -0.025% -0.025% -0.025% 0.058% 

2020 0.033% 0.033% 0.033% -0.050% 0.033% -0.050% 0.033% -0.050% -0.050% 0.033% 0.033% 

2021 0.025% 0.025% 0.025% -0.058% 0.025% -0.058% 0.025% 0.025% -0.058% 0.025% 0.025% 

Table 9: US Rating Weight Modifiers RWM and Mean Reverse Score REVSCORE (2018-2022). 

 
BAC C JPM WFC USB TFC PNC COF BK MTB MEAN 

2017 0.283% 0.367% 0.033% 0.283% -0.050% -0.550% 0.033% -0.217% 0.283% -0.467% 0.367% 

2018 0.258% 0.342% -0.075% 0.258% -0.075% -0.492% 0.008% 0.008% 0.258% -0.492% 0.342% 

2019 0.250% 0.250% 0.167% 0.167% -0.083% -0.500% 0.000% 0.000% 0.250% -0.500% 0.333% 

2020 0.125% 0.208% 0.125% 0.125% -0.125% -0.458% -0.125% -0.042% 0.208% -0.042% 0.292% 

2021 0.158% 0.158% 0.158% 0.075% 0.158% -0.508% -0.258% -0.092% 0.158% -0.008% 0.242% 

2.2 Climate Loss Weight Modifier LWM 

Following a climate event, an assessment of the loss 𝐶𝐿𝐼𝑀𝐴𝑇𝐸_𝐿𝑂𝑆𝑆𝑡 at time t caused by the 

exposure to the k brown assets in the loan book can be conducted using Loss Given Default 

LGDt and probability of default PODt estimates, updated given the occurrence of such a crisis:  

𝐶𝐿𝐼𝑀𝐴𝑇𝐸_𝐿𝑂𝑆𝑆𝑡 =  ∑(𝐿𝐺𝐷𝑡,𝑖 | 𝑐𝑟𝑖𝑠𝑖𝑠)  (𝑃𝑂𝐷𝑡,𝑖  | 𝑐𝑟𝑖𝑠𝑖𝑠) .                       (2) 

𝑘

𝑖=1

 

This calculation requires granular information related to the loan and investment books of the 

bank, usually accessible for the regulator but unavailable to the public, thus prompting the need 

to choose a proxy for climate risk losses. Climate risk includes both physical risk and transition 

risk (Battiston et al., 2017): while physical risk is represented by the loss of capital directly 
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provoked by climate events, for lenders transition risk depends on the exposure to stranded 

assets. In its 2022 Climate Stress Test (CST) the European Central Bank (ECB) concludes that 

transition risk represents approximately 76% of the Eurozone banking sector exposure to total 

climate risk (ECB, 2021; ECB, 2022). In our previous work (Bettin, Mensi and Recchioni; 

2023) we estimated Eurozone bank losses attributable to transition risk using only market data, 

and yet obtaining aggregate values compatible with the ECB 2022 CST results. 

Hence, we proceed by employing our proposed climate tail risk measure as a proxy for 

𝐶𝐿𝐼𝑀𝐴𝑇𝐸_𝐿𝑂𝑆𝑆𝑖,𝑡 to identify the banks less exposed to climate risk, noting that any other 

realistic estimate of losses induced by climate risk exposure would serve the same purpose and 

could be used to replace it: the more accurate the indicator, the better the results. Climate loss 

estimate MCRISKXi,t for bank i at time t is calculated following a multi-step process described 

in detail in Chapter 2. Firstly, it is necessary to assess each lender’s sensitivity to its specific 

regional climate factor that tracks the relative performance of stranded assets using market 

returns and multivariate MGARCH analysis (Engle, 2002; Bauwens et al., 2006; Engle, 2009, 

Brownlees and Engle, 2016; Engle, 2017; Jung et al., 2021) in a multifactor framework. These 

parameters are then deployed to conduct a simulation and compute the climate loss estimate 

MCRISKXi,t as a Monte Carlo average of the expected tail losses at time t given the occurrence 

of a crisis, which is defined as a 30% fall in 3 months for the respective factor: MCRISKXi,t 

represents an appraisal of total tail risk for a given bank attributable to climate risk. 

MCRISKX-Ri,t is computed by dividing MCRISKXi,t by the Total Assets TAi,t of the bank, 

obtaining a dynamic, high-frequency, coincident and dimensionless metric expressed as a 

percentage of the balance sheet size: the lenders with the lowest loss estimate are the greenest.  
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𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑖,𝑡 ≅
𝐶𝐿𝐼𝑀𝐴𝑇𝐸𝐿𝑂𝑆𝑆 𝑖,𝑡

𝑇𝐴𝑖,𝑡
 .                                               (3) 

We apply this methodology to investigate transition risk for the two samples in the period 

considered to represent a proxy of a possible climate event. As for E ratings, we are to use the 

difference between the average value at time t, indicated as 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡, and MCRISKX-Ri,t, 

to penalize lenders with exposure to climate losses greater than the average and increase 

allocation to banks that are greener, that is less sensitive to stranded assets volatility as indicated 

by a value for MCRISKX-Ri,t lower than the average. The Climate Loss Weight Modifier 

𝐿𝑊𝑀𝑖,𝑡 is defined as: 

𝐿𝑊𝑀𝑖,𝑡 =   𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡 ― 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑖,𝑡  .                                   (4) 

Figure 1 presents the average 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡  for the Eurozone and the US sample respectively.  

Figure 2: Average MCRISKX-R, Eurozone and US samples (2019-2022). 

  

In the Eurozone, climate risk as measured by average 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡 remains elevated 

throughout 2021, showing consistently higher values than the USA during the entire period. In 
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both regions, average risk drops considerably following the military escalation in Eastern 

Europe in early 2022. For the EU bank sample, mean transition risk estimates calculated with 

𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡 are neither stable nor static. The same can be said for the dispersion of individual 

metrics with respect to mean risk. As shown by Figure 2 and Figure 3, banks display 

idiosyncratic sensitivities to the climate factor which, in contrast with the rather homogeneous 

picture given by E pillar ratings, are markedly diverse. This heterogeneity can be used to 

identify the greenest banks and complement indicators such as GAR or any other metric based 

on taxonomy.  

Figure 2: Average MCRISKX-R vs idiosyncratic dispersion with respect to mean, Eurozone and US samples (2019-2022). 

  

The US sample shows a diametrically opposite behavior: exposure to climate risk losses, as 

measured by MCRISKX-R, appears to be consistently lower and the average dispersion is 

much more contained. Interestingly, this is the exact opposite picture shown by environmental 

E-ratings. 
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Figure 3: Idiosyncratic MCRISKX-R dispersion with respect to mean, Eurozone and US samples (2019-2022). 

  

 

2.3 GHG Emission Weight Modifier EWT 

Finally, we apply the same methodology to determine emission weight modifiers 𝐸𝑊𝑀𝑖,𝑡 as 

the difference between the average ratio of Scope 2 emissions to Revenues 𝑆𝐶𝑂𝑃𝐸2𝑡  and the 

individual ratios 𝑆𝐶𝑂𝑃𝐸2𝑖,𝑡 and divide by 10,000 to scale it in line with the other modifiers: 

𝐸𝑊𝑀𝑖,𝑡 =
𝑆𝐶𝑂𝑃𝐸2𝑡  −  𝑆𝐶𝑂𝑃𝐸2𝑖,𝑡

10000
 .                                             (5) 

Lenders with a reported Scope 2 GHG ratio lower than the average will obtain a positive 

emission weight modifier, and vice versa. Tables 9 and 10 show relevant 𝐸𝑊𝑀𝑖,𝑡 metrics for 

the Eurozone and the US sample respectively. 

Table 10: Eurozone Scope2 Emissions Ratio Weight Modifiers EWM (2019-2022). 

 BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP MEAN 

2017 0.010% 0.050% 0.029% 0.001% -0.033% 0.050% 0.016% -0.057% -0.069% 0.003% 0.061% 

2018 0.008% 0.048% 0.019% 0.000% -0.035% 0.051% 0.013% -0.063% -0.038% -0.002% 0.060% 

2019 0.014% 0.049% 0.020% 0.007% -0.051% 0.050% 0.006% -0.065% -0.039% 0.009% 0.059% 

2020 0.006% 0.035% 0.013% -0.002% -0.037% 0.039% 0.009% -0.044% -0.031% 0.012% 0.046% 

2021 0.008% 0.033% 0.014% -0.005% -0.038% 0.038% 0.018% -0.033% -0.035% 0.000% 0.043% 
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Table 11: US Scope2 Emissions Ratio Weight Modifiers EWM (2019-2022). 

 BAC C JPM WFC USB TFC PNC COF BK MTB MEAN 

2017 -0.022% -0.015% -0.003% -0.024% 0.082% 0.082% -0.103% 0.026% -0.018% -0.004% 0.082% 

2018 -0.018% -0.013% 0.000% -0.032% 0.076% 0.076% -0.078% 0.015% -0.016% -0.008% 0.076% 

2019 -0.001% 0.006% 0.018% -0.014% 0.085% -0.091% -0.041% 0.027% 0.001% 0.008% 0.085% 

2020 -0.002% 0.010% 0.019% -0.025% -0.029% -0.010% -0.021% 0.038% 0.008% 0.012% 0.080% 

2021 0.001% 0.005% 0.006% -0.007% -0.027% -0.038% -0.009% 0.042% 0.015% 0.012% 0.075% 

3.  Green sectoral portfolio construction 

We now proceed by employing weight modifiers to create green sectoral portfolios. If the 

lenders showing either lower MCRISKX-R, or better environmental ratings, or lower Scope 2 

GHG to revenue ratios are effectively green lenders, we should be able to use this information 

to construct a sectoral portfolio robust to climate shocks which is capable to outperform a 

benchmark while assuming moderate tracking risk. We check this hypothesis in the period 

ranging from February 2019 to April 2022 by comparing the risk-return profile of a  

capitalization weighted benchmark portfolio, denominated PB, against the performance of three 

portfolios adjusted for: 1) climate losses (PL); 2) environmental ratings (PR); 3) Scope 2 

emissions (PE). We include in the analysis also a standard mean-variance optimized portfolio 

PO which plays the role of an actively managed portfolio built ignoring climate risk. The 

benchmark portfolio PB is constructed using the components’ market capitalization 𝑀𝑉𝑖,𝑡 and 

rebalanced according to quarterly cycles. We compute the portfolios’ risk-return profile for all 

three available calendar cycles: Cycle 1 (January, April, July, and October), Cycle 2 (February, 

May, August, and November) and Cycle 3 (March, June, September, and December)51. Given 

the high volatility registered both by the markets and by the banking sector in the window 

 

51 MSCI indices are reviewed on the close of the last day of Cycle 2 and rebalanced in May and November, 

whereas Cycle 3 is used by Qontigo (EUROSTOXX) and S&P for their quarterly adjustments and scheduled 

rebalancing that come into effect after the close on the third Friday of the cycle months. 
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considered, this choice reflects the widest possible spectrum of outcomes. The benchmark 

weights 𝑊𝑖,𝑡
𝐵  for each of the n banks at the rebalancing time t are determined as: 

𝑊𝑖,𝑡
𝐵 =  

𝑀𝑉𝑖,𝑡

∑ 𝑀𝑉𝑖,𝑡
𝑛
𝑖=1

 .                                                              (6) 

The loss-adjusted portfolio PL employs tweaked weights 𝑊𝑖,𝑡
𝐿 , obtained by adding to 𝑊𝑖,𝑡

𝐵  the 

loss weight modifier 𝐿𝑀𝑊𝑖,𝑡 , computed as the difference between the average 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡 

and individual 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑖,𝑡 values: 

𝑊𝑖,𝑡
𝐿 =  𝑊𝑖,𝑡

𝐵 +  𝐿𝑊𝑀𝑖,𝑡 =  𝑊𝑖,𝑡
𝐵  +  ( 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑡 ― 𝑀𝐶𝑅𝐼𝑆𝐾𝑋˗𝑅𝑖,𝑡) .         (7)  

The rating-adjusted version PR is tilted towards lenders with better E-ratings using the rating 

weight modifiers 𝑅𝑊𝑀𝑖,𝑡: 

𝑊𝑖,𝑡
𝑅 = 𝑊𝑖,𝑡

𝐵 + 𝑅𝑊𝑀𝑖,𝑡 =  𝑊𝑖,𝑡
𝐵  +  (

𝑅𝐸𝑉𝑆𝐶𝑂𝑅𝐸𝑡 −  𝑅𝐸𝑉𝑆𝐶𝑂𝑅𝐸𝑖,𝑡

100
) .        (8) 

The emission-adjusted version PE is adjusted to favor lighter Scope 2 GHG emitters using the 

emission weight modifiers 𝐸𝑊𝑀𝑖,𝑡: 

𝑊𝑖,𝑡
𝐸 = 𝑊𝑖,𝑡

𝐵 + 𝐸𝑊𝑀𝑖,𝑡 =  𝑊𝑖,𝑡
𝐵  +  (

𝑆𝐶𝑂𝑃𝐸2𝑡 −  𝑆𝐶𝑂𝑃𝐸2𝑖,𝑡

100
) .                  (9) 

For PL, PR and PE, this simple rule allows banks showing 1) exposure to transition risk losses 

lower than the average; 2) better environmental rating than the peers; 3) lower Scope 2 GHG 
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ratios to become overweight, whereas the ones with worse attributes become underweight52. 

Modified weights add to 1 by construction: at each rebalancing date the cap weighted 

benchmark PB and the modified portfolios PL, PR and PE are always fully invested, with no 

leverage employed. Stock purchases are funded by stock sales for the same consideration, and 

dividends are included in the return calculation but assumed to be distributed, not reinvested. 

These conditions apply to the optimized portfolio PO too.  

The modified weight formulas cab be improved by multiplying the modifiers by an 

aggressiveness53 multiplier AL, AR and AE. In this case the three equations would become: 

𝑊𝑖,𝑡
𝐿 =  𝑊𝑖,𝑡

𝐵 +  𝐴𝐿 ⋅ 𝐿𝑊𝑀𝑖,𝑡  .                                                      (10) 

𝑊𝑖,𝑡
𝑅 = 𝑊𝑖,𝑡

𝐵 + 𝐴𝑅 ⋅ 𝑅𝑊𝑀𝑖,𝑡  .                                                       (11) 

𝑊𝑖,𝑡
𝐸 = 𝑊𝑖,𝑡

𝐵 + 𝐴𝐸 ⋅ 𝐸𝑊𝑀𝑖,𝑡  .                                                       (12) 

The effect of 𝐴𝐿, 𝐴𝑅 and 𝐴𝐸 is linear with respect to the portfolios’ excess returns vis-à-vis the 

benchmark. Their default value is 1: for values greater (lower) than the default, multipliers 

allow to increase (decrease) the tilt towards environmental robustness at the expense of greater 

(lower) tracking error. Moreover, they are useful for potential scaling needs: weight modifiers 

could assume values which are either too large or too small with respect to the portfolio 

holdings standard weights, requiring a multiplier to achieve the desired positioning. 

All portfolios are dynamically adjusted and rebalanced at the close on the last date of each 

 

52 At time t, if  MCRISKX˗R, E-ratings or Scope 2 GHG ratios were the same (or equal to zero) for all banks, the 

respective adjusted portfolio would be identical to the benchmark PB until the following rebalancing date. 

53 See Lee (2000) for an in-depth analysis of the selection of an optimal aggressiveness factor.  
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cycle when values for MCRISKX-R are available (they differ slightly depending on the region) 

to reflect shifts in weights. Benchmark PB weights are adjusted only if there are changes in the 

share count generated by corporate actions54 and buybacks, which apply to PL, PR and PE too; 

however, test portfolios are further adjusted at each rebalancing date to reflect changes in the 

respective modifiers. Given that environmental ratings and emission estimates are refreshed 

only once a year, the relative overweight/underweight positions generated by 𝑅𝑊𝑀𝑖,𝑡 and 

𝐸𝑊𝑀𝑖,𝑡 remain in place for four rebalancing periods. Conversely, 𝐿𝑊𝑀𝑖,𝑡 can change every 

three months. Optimized portfolio PO weights vary according to the model output and are 

refreshed at every rebalancing date. Contrary to all the other portfolios, PO weights are 

unrelated to the market cap of the stocks and can go to zero if required by the algorithm. 

4. Results 

We present the results for the 3 EU quarterly cycles in Tables 11, 12 and 13: 

Table 12: QC1_EU PB, PO, PL, PR, PE Metrics. 

QC1_EU BENCHMARK OPTIMIZED LOSS RATING SCOPE2 

Period Return% -7.9230 -7.2017 -7.5994 -7.8511 -7.9078 

Sharpe Ratio 0.1219 0.1478 0.1246 0.1226 0.1222 

Sortino Ratio 0.1780 0.2254 0.1820 0.1789 0.1783 

Information Ratio 
 0.2255 1.1054 0.6196 0.3498 

Tracking Error 
 0.0712 0.0010 0.0004 0.0003 

Upside Ratio 
 1.0745 1.0016 1.0002 1.0002 

Downside Ratio 
 1.0503 0.9981 0.9994 1.0000 

Capture Ratio 
 1.0231 1.0035 1.0007 1.0002 

 

  

 

54 Such as ISP issuing sizable new stock following the closing of the acquisition of another bank in the third 

quarter of 2020. 
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Table 13: QC2_EU PB, PO, PL, PR, PE Metrics. 

QC2_EU BENCHMARK OPTIMIZED LOSS RATING SCOPE2 

Period Return% 20.3737 24.8239 20.8089 20.4309 20.3824 

Sharpe Ratio 0.3354 0.3861 0.3398 0.3360 0.3355 

Sortino Ratio 0.4971 0.5743 0.5044 0.4981 0.4973 

Information Ratio 
 0.0622 0.9358 0.3424 0.0673 

Tracking Error 
 0.0942 0.0012 0.0003 0.0002 

Upside Ratio 
 0.8957 1.0016 0.9998 0.9999 

Downside Ratio 
 0.8202 0.9962 0.9990 0.9997 

Capture Ratio 
 1.0920 1.0054 1.0008 1.0001 

Table 14: QC3_EU PB, PO, PL, PR, PE Metrics. 

QC3_EU BENCHMARK OPTIMIZED LOSS RATING SCOPE2 

Period Return% 10.7614 18.9633 11.2587 10.8136 10.7687 

Sharpe Ratio 0.2717 0.3510 0.2754 0.2721 0.2718 

Sortino Ratio 0.3981 0.5038 0.4041 0.3987 0.3983 

Information Ratio 
 0.4316 1.2519 0.3723 0.2441 

Tracking Error 
 0.0872 0.0011 0.0004 0.0003 

Upside Ratio 
 1.0967 1.0038 1.0004 1.0003 

Downside Ratio 
 1.0120 0.9986 0.9998 1.0003 

Capture Ratio 
 1.0836 1.0052 1.0005 1.0001 

 

Hereafter follow Tables 14, 15 and 16, with the results for the US sample. 

Table 15: QC1_US PB, PO, PL, PR, PE Metrics. 

QC1_US BENCHMARK OPTIMIZED LOSS RATING SCOPE2 

Period Return% 11.2229 4.0195 11.2036 11.2004 11.2243 

Sharpe Ratio 0.2393 0.1617 0.2391 0.2391 0.2393 

Sortino Ratio 0.3653 0.2311 0.3650 0.3654 0.3654 

Information Ratio 
 -0.3917 -0.4074 0.0511 0.0891 

Tracking Error 
 0.0667 0.0001 0.0010 0.0001 

Upside Ratio 
 0.9384 0.9997 1.0001 1.0000 

Downside Ratio 
 1.0356 1.0000 1.0004 1.0000 

Capture Ratio 
 0.9062 0.9998 0.9997 1.0000 
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Table 16: QC2_US PB, PO, PL, PR, PE Metrics. 

QC2_US BENCHMARK OPTIMIZED LOSS RATING SCOPE2 

Period Return% 37.8967 32.0837 37.8764 37.9055 37.8851 

Sharpe Ratio 0.4963 0.4511 0.4960 0.4961 0.4961 

Sortino Ratio 0.8853 0.8203 0.8850 0.8856 0.8850 

Information Ratio 
 -0.4026 -0.3199 0.0483 -0.1933 

Tracking Error 
 0.0484 0.0001 0.0013 0.0001 

Upside Ratio 
 0.9637 0.9997 1.0015 1.0000 

Downside Ratio 
 1.0351 0.9999 1.0023 1.0002 

Capture Ratio 
 0.9310 0.9998 0.9993 0.9998 

Table 17: QC3_US PB, PO, PL, PR, PE Metrics. 

QC3_US BENCHMARK OPTIMIZED LOSS RATING SCOPE2 

Period Return% 36.8332 17.8403 36.8844 36.7977 36.8383 

Sharpe Ratio 0.4751 0.3136 0.4754 0.4748 0.4751 

Sortino Ratio 0.6784 0.4607 0.6791 0.6780 0.6785 

Information Ratio 
 -0.6252 0.3624 -0.0278 0.2651 

Tracking Error 
 0.1013 0.0004 0.0009 0.0001 

Upside Ratio 
 0.7436 1.0006 1.0008 1.0002 

Downside Ratio 
 0.8745 1.0003 1.0014 1.0003 

Capture Ratio 
 0.8503 1.0003 0.9994 1.0000 

The first tables for each region (Tables 11 and 14) refer to Quarterly Cycle 1 (QC1), starting 

in April 2019 and ending in April 2022. These two sets of data include the full effect of the 

geopolitical events in Eastern Europe, spanning over a considerably more turbulent last trading 

quarter and generating a markedly  less favorable outcome for the recorded sector performance, 

especially for Eurozone lenders. Tables 12 and 15 refer to Quarterly Cycle 2 (QC2) and 

encompass the February 2019 to February 2022 period; Tables 13 and 16 present the results of 

Quarterly Cycle 3 (QC3), ranging from March 2019 to March 2022. All the results are 

calculated using starting weights determined by April 2019, February 2019 and March 2019 

market capitalizations and weight modifiers, followed by twelve quarterly rebalancing actions. 

Aggressiveness factors have been kept at their default value. Optimized portfolio PO weights 
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depend exclusively on the optimization algorithm55, are adjusted regardless of market cap or 

climate factors and use a set of returns which starts in July 2011 and is updated adding new 

information at each rebalancing date. 

We include the Sharpe Ratio56 (SHR), the Sortino Ratio (SOR), Information Ratio (IR), 

Tracking Error (TE), Upside Ratio (UR), Downside Ratio (DR) and Capture Ratio (CR) 

statistics for all runs considered but, given the rules applied, we deem the IR to be the most 

relevant indicator to determine the effectiveness of the three weight modifiers in constructing 

a climate-tilted sectoral portfolio. 

The Eurozone results are clear: PL, the portfolio adopting 𝐿𝑊𝑀𝑖,𝑡 derived from the loss 

exposure proxy MCRISKX-R, markedly overperforms, showing an IR close or above 1 across 

the three cycles. PL SHR and SOR are also consistently better than PB, and CR is always above 

one, while the TR is very limited. Both PE and PR offer a better risk profile than PB, albeit they 

perform less well than PL. In particular, the tracking error TE generated by PE is material. PO, 

generates the best overall returns but at the expense of a large 7% to 9% TE penalizing its IR. 

Figures 4 (QC1_EU), 5 (QC2_EU) and 6 (QC3 EU) present Eurozone excess return profiles. 

 

55 We used MATLAB portfolio optimization package using a constant 1% risk-free rate given that short-term rates 

hovered close to zero until spring 2022 in both the Eurozone and the United States. 

56 Risk free rate: 1% p.a. 
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Figure 4: Eurozone QC1 Excess Returns (4/2019-4/2022). 

 

Figure 5: Eurozone QC2 Excess Returns (2/2019-2/2022).  
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Figure 6: Eurozone QC3 Excess Returns (3/2019-3/2022). 

 

The outcome for the North American sample is very different. None of the three metrics offers 

a consistent overperformance profile. PE and PR show a modestly positive IR 2 out of 3 times 

instead of PL’s 1 out of 3. Furthermore, the same inconclusive pattern is repeated across the 

spectrum of indicators. Lastly, PO fails on all counts, generating consistently lower period 

returns coupled with the largest TE. Figures 7. 8 and 9 show US excess return profiles. 

Figure 7: US QC1 Excess Returns (4/2019-4/2022). 
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Figure 8: US QC2 Excess Returns (2/2019-2/2022). 

 

Figure 9: US QC3 Excess Returns (3/2019-3/2022). 

 

In terms of transaction costs, we have estimated commissions for all portfolios applying current 

program trading rates57 to the volume of trades exceeding the rebalancing flows required by 

the benchmark adjustments. We calculate a negligible impact (in few hundredths of a basis 

point) for the three adjusted portfolios, but a significantly higher impact for PO. 

 

57 Commission rates currently range between 1 to 2 basis points (bps) on the value of the program.  
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5. Conclusions 

Our aim was to identify green banks by comparing three climate risk metrics and testing their 

effectiveness in improving a financial portfolio robustness to climate shocks. We measured the 

greenness of a lender with respect to the average of its peers according to these parameters: 

a) exposure to transition risk; 

b) environmental E rating; 

c) GHG footprint. 

During a climate event the market should be inclined to recognize a premium for these 

qualities, with green lenders producing superior risk-adjusted returns. We applied this analysis 

to a sample of large banks operating in the Eurozone and in the USA during the 2019-2022 

period, since this time window was characterized by reverse boom-bust dynamics in 

hydrocarbons markets which are reasonable to expect, in opposite order, given any future 

climate crisis. In our simulation we have analyzed the performance of three climate-tilted 

portfolios modified according to their respective relative climate risk metrics against a market 

capitalization-weighted benchmark and an optimized portfolio. For all the model portfolios 

we have simulated quarterly rebalancing adjustments, one for each of the three available 

calendar cycles. 

For the Eurozone sample, our findings show that climate-tilted sectoral portfolios would have 

overperformed in terms of Information Ratio (IR), with minimal impact in terms of additional 

transaction costs. In particular, the transition risk modifier linked to climate risk losses would 

have consistently generated the best IR, close or above 1 for all three cycles. This result is 

confirmed by the Sharpe Ratio (SR) and Sortino Ratio (SOR) as well. Both the rating and the 

emission modifiers would have achieved modest, but positive, risk-adjusted overperformance 
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too. The optimized portfolio would have offered the best absolute return and superior SR and 

SOR, but also the largest tracking error (TE) and, consequently, a poor IR. 

Conversely, our findings for US banks are inconclusive: there was no modified portfolio 

constructed according to the abovementioned criteria able to show a constant overperformance 

over the benchmark across all rebalancing cycles. Rating and emission modifiers would have 

delivered better results just two out of three times, whereas the loss modifier, so successful 

with the Eurozone sample, in the US would have produced a positive IR only once. This 

pattern is confirmed also by disappointing SR and SOR metrics. The optimized portfolio in 

the US would have significantly underperformed, both in terms of absolute returns, TE and 

IR. 

We are aware that this approach might draw criticisms: the effects of ESG criteria on portfolio 

construction is undoubtedly a very controversial topic. On the one hand, Horan et al. (2022) 

present an ESG framework that responds to the demands of investors concerned both with 

financial and non-financial gains, thus balancing performance and environmental (or broad 

ESG) considerations when performing asset allocation decisions: by construction, ESG 

investing is not designed to increase portfolio returns. On the other hand, Edmans (2023) 

suggests that ESG factors, if unanticipated, should lead to superior returns. Hence, if 

environmental issues are truly relevant, during an unexpected climate event green banks should 

outperform, leading to the possibility to construct sectoral portfolios robust to climate transition 

risk. 

Our results show that in the Eurozone green banks stock selection is feasible: loss-exposure 

proxies, such as MCRISKX-R, can be used to effectively improve the performance of a sectoral 

portfolio with respect to a market cap benchmark. Also, E-rating and Scope 2 GHG adjusted 
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portfolio can be used, albeit less efficiently, as alternative measures to construct a climate-

robust core holding. The use of aggressiveness multipliers larger than the unit one used for the 

simulation would further stress the climate-robustness of portfolios, albeit at the expense of 

increased tracking error. 

However, the findings for the North American banking sector could have been more decisive. 

If E-ratings and Scope 2 emissions have shown some propensity to work in identifying green 

lenders, their performance is not consistent. MCRISKX-R does even worse. Why is this the 

case? Are US banks considerably less exposed to stranded assets than their Eurozone peers? 

We suspect that this apparent lack of climate risk incidence on US bank returns is closely 

related to differences in: 

a) regulatory frameworks; 

b) central bank policies; 

c) accounting standards. 

In November 2022 the EU approved important legislation on sustainability reporting, the 

Corporate Sustainability Reporting Directive (CSRD), and in July 2023 the European 

Commission officially adopted the European Sustainability Reporting Standards (ESRS), 

which includes specific indicators concerning GHG emissions. Both the CSRD and the ESRS 

are starting to exert significant effects on the behavior of a rapidly growing number of 

companies and lenders alike: the European Market and Securities Authority (ESMA, 2023) 

estimates that by 2029 up to 50 thousand large and mid-sized enterprises, listed and not, will 

be required to disclose their environmental footprint in compliance with the CSRD following 

the ESRS. Given the scope of this effort and the need to provide detailed upstream and 

downstream emission data to fully comply with the normative, it is likely that most of the 
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European supply chain will be involved. Hence, if the current regulatory focus on climate 

issues persists, going forward Eurozone banks should be able to identify with greater accuracy 

the greenness of a borrower and deploy their capital accordingly. Conversely, in the US there 

exists no comparable legislation. Moreover, efforts by the Securities and Exchange 

Commission (SEC) to extend climate-related disclosures (SEC, 2023) are sometimes at odds 

with political initiatives by some individual States determined to reduce the weight of ESG 

parameters in formulating investment decisions.  

Marked differences can also be found between the behavior of the two central banks, the ECB 

and the FED. In the Eurozone, the ECB has taken a proactive role in preventing climate risk, 

as demonstrated by the launch in 2022 of the first region-wide climate stress test. Furthermore, 

both the Presidency and the Supervisory Board use every chance they get to relentlessly steer 

banks towards a greener credit framework, with both words and actions. The FED, on the 

contrary, is just in the preliminary stages of arranging a pilot climate exercise with just six 

banks and, so far, it has avoided pushing explicitly towards greener bank lending. We think 

that the market has taken notice, likely downgrading the relevance of any climate-related risk 

signal affecting US lenders. 

There are also accounting issues at work. During the Spring 2023 four mid-sized US banks had 

to be either resolved or liquidated in the space of a few weeks. These events exposed the risks 

of excessively relying on held-to-maturity (HTM) accounting: following the quick rise of 

interest rates, these lenders were carrying considerable losses related to their bond portfolios 

which, albeit not shown in their accounts, ultimately put their solvency in doubt and caused 

deposit runs. The application of HTM accounting to certain assets allows banks to carry them 

at par value regardless of their price, making balance sheet aggregates less transparent. In this 
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instance, long fixed income positions were valued significantly higher than their mark to 

market (MTM) value. This scenario would not be applicable to Eurozone banks: currently they 

use mostly MTM, with HTM restricted to a significantly smaller portion of their assets. The 

2023 mini-crisis could also suggest that SRISK, MSRISK and MCRISKX-R calculations, 

which normally take into account a capital buffer requirement of 8% for lenders adopting 

GAAP and of 5.5% for banks using IFRS, might not fully reflect the actual gap between the 

two accounting practices58. 

The combination of all these factors makes it hard to consistently identify the greenest US 

banks using the metrics selected. This situation might change if regulators and markets were to 

push for the development of a common, homogeneous and comparable indirect Scope 3 

emissions reporting protocol, which could lead to the creation of powerful metrics to assess the 

greenness of a bank. This conclusion is suggested by the fact that Scope 3 emissions are the 

only way to fully account for the direct and indirect GHG footprint of a business and assess its 

impact on climate change. Unfortunately, it looks like this data won’t be available for a long 

time. Until then, a mix of loss proxies, such as MCRISKX-R, environmental ratings, and Scope 

2 emissions disclosures, might be the only viable, if imperfect, alternative to perform this type 

of analysis. 

 

58 See Engle, Jondeau and Rockinger (2015) for further analysis of this issue. 
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Appendix 

Appendix – Chapter 1 

A1.1. Fixed Betas statistics (STATA) 

Bivariate static model on the full sample. 

BNP SXXE_r CFE_r _cons 

b 1.46099 0.15336 -0.00002 

se 0.04187 0.04474 0.00028 

t 34.89541 3.42788 -0.06302 

p-value 0.00000 0.00062 0.94975 

lower 1.37889 0.06563 -0.00056 

upper 1.54308 0.24108 0.00053 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 

 

ACA SXXE_r CFE_r _cons 

b 1.45905 0.16318 -0.00005 

se 0.03897 0.03422 0.00030 

t 37.44283 4.76922 -0.18056 

p-value 0.00000 0.00000 0.85672 

lower 1.38264 0.09609 -0.00064 

upper 1.53546 0.23028 0.00053 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 
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GLE SXXE_r CFE_r _cons 

b 1.69900 0.20445 -0.00029 

se 0.04790 0.04335 0.00033 

t 35.46726 4.71654 -0.86841 

p-value 0.00000 0.00000 0.38524 

lower 1.60507 0.11945 -0.00093 

upper 1.79293 0.28945 0.00036 

Df 2732 2732 2732 

Crit 1.96083 1.96083 1.96083 

 

SAN SXXE_r CFE_r _cons 

b 1.27862 0.33368 -0.00022 

se 0.03153 0.03690 0.00026 

t 40.55546 9.04218 -0.82669 

p-value 0.00000 0.00000 0.40848 

lower 1.21680 0.26132 -0.00073 

upper 1.34044 0.40604 0.00030 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 

 

BBVA SXXE_r CFE_r _cons 

b 1.27960 0.25728 -0.00009 

se 0.03046 0.04022 0.00027 

t 42.00601 6.39633 -0.31934 

p-value 0.00000 0.00000 0.74949 

lower 1.21987 0.17841 -0.00063 

upper 1.33933 0.33615 0.00045 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 

 

INGA SXXE_r CFE_r _cons 

b 1.53191 0.16586 -0.00005 

se 0.03467 0.03573 0.00027 

t 44.18231 4.64278 -0.19894 

p-value 0.00000 0.00000 0.84232 

lower 1.46393 0.09581 -0.00059 

upper 1.59990 0.23591 0.00048 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 
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DBK SXXE_r CFE_r _cons 

b 1.49975 0.06971 -0.00063 

se 0.03624 0.03644 0.00033 

t 41.38372 1.91318 -1.89078 

p-value 0.00000 0.05583 0.05876 

lower 1.42869 -0.00174 -0.00128 

upper 1.57081 0.14115 0.00002 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 

 

CBK SXXE_r CFE_r _cons 

b 1.52606 0.12928 -0.00064 

se 0.04171 0.04939 0.00042 

t 36.58600 2.61737 -1.54020 

p-value 0.00000 0.00891 0.12363 

lower 1.44427 0.03243 -0.00145 

upper 1.60785 0.22613 0.00017 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 

 

UCG SXXE_r CFE_r _cons 

b 1.61249 0.24483 -0.00071 

se 0.05053 0.04295 0.00043 

t 31.91035 5.70078 -1.66706 

p-value 0.00000 0.00000 0.09562 

lower 1.51341 0.16062 -0.00155 

upper 1.71158 0.32905 0.00013 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 

 

ISP SXXE_r CFE_r _cons 

b 1.50670 0.15618 -0.00002 

se 0.04783 0.03259 0.00031 

t 31.49926 4.79207 -0.05962 

p-value 0.00000 0.00000 0.95246 

lower 1.41291 0.09228 -0.00062 

upper 1.60049 0.22009 0.00059 

df 2732 2732 2732 

crit 1.96083 1.96083 1.96083 
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A1.2. GJR-GARCH outputs (OxMetrics G@RCH) 

Univariate GJR-GARCH (1,1) output for individual banks with SXXE and CFE as 

regressors. Robust standard errors (Sandwich). 2735 observations and 7 parameters each. 

BNP 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 -0.01 0.994 

SXXE_r (M) 1.318 0.042 31.11 0.000 

CFE_r (M) 0.169 0.031 5.51 0.000 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.126    

Kurtosis (Y) 10.562    

Log Likelihood 8145.9    

ACA 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.33 0.743 

SXXE_r (M) 1.336 0.036 37.22 0.000 

CFE_r (M) 0.187 0.033 5.59 0.000 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.234    

Kurtosis (Y) 10.336    

Log Likelihood 7713.6    

GLE 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 1.43 0.153 

SXXE_r (M) 1.492 0.050 29.74 0.000 

CFE_r (M) 0.180 0.035 5.18 0.000 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.454    

Kurtosis (Y) 11.702    

Log Likelihood 7581.5    
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SAN 

 
Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.40 0.686 

SXXE_r (M) 1.286 0.038 34.24 0.000 

CFE_r (M) 0.274 0.057 4.76 0.000 

Mean (Y) 0.000    

Variance (Y) 0.000    

Skewness (Y) -0.488    

Kurtosis (Y) 12.173    

Log Likelihood 8038.6    
 

BBVA 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.10 0.918 

SXXE_r (M) 1.247 0.033 38.29 0.000 

CFE_r (M) 0.181 0.030 5.93 0.000 

Mean (Y) 0.000    

Variance (Y) 0.000    

Skewness (Y) -0.204    

Kurtosis (Y) -0.204    

Log Likelihood 7994.6    
 

INGA 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.01 0.994 

SXXE_r (M) 1.376 0.039 35.34 0.000 

CFE_r (M) 0.100 0.033 3.07 0.002 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.410    

Kurtosis (Y) 11.030    

Log Likelihood 7994.4    

DBK 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 -0.76 0.449 

SXXE_r (M) 1.440 0.038 38.35 0.000 

CFE_r (M) 0.007 0.035 0.20 0.841 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.234    

Kurtosis (Y) 7.894    

Log Likelihood 7382.7    
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CBK 

 
Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.05 0.962 

SXXE_r (M) 1.414 0.051 27.98 0.000 

CFE_r (M) 0.061 0.047 1.30 0.195 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.205    

Kurtosis (Y) 8.121    

Log Likelihood 6809.8    
 

UCG 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.91 0.363 

SXXE_r (M) 1.526 0.051 29.89 0.000 

CFE_r (M) 0.240 0.043 5.63 0.000 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.490    

Kurtosis (Y) 9.277    

Log Likelihood 6915.7    

ISP 

 

Coefficient Std.Error t-value p-value 

Constant(M) 0.000 0.000 0.65 0.515 

SXXE_r (M) 1.316 0.041 32.30 0.000 

CFE_r (M) 0.216 0.027 8.00 0.000 

Mean (Y) 0.000    

Variance (Y) 0.001    

Skewness (Y) -0.820    

Kurtosis (Y) 12.188    

Log Likelihood 7737.4    
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A1.3. Dynamic Conditional Correlations model outputs (OxMetrics G@RCH) 

Results on the full sample with SXXE and CFE as regressors using DCC, DCC-A (cDCC) and 

DCC-TT. Robust standard errors (Sandwich). 

DCC 

 
Coefficient Std.Error t-value p-value 

Alpha 0.006 0.002 3.43 0.001 

Beta 0.981 0.008 122.70 0.000 

Log Likelihood 82807.5    
 

DCC-A 

(cDCC) 

 
Coefficient Std.Error t-value p-value 

Alpha 0.006 0.002 3.50 0.001 

Beta 0.981 0.008 125.50 0.000 

Log Likelihood 82811.1    
 
DCC-TT 

 
Coefficient Std.Error t-value p-value 

Alpha 0.005 0.002 2.61 0.009 

Beta 0.988 0.006 155.90 0.000 

Log Likelihood 82792.8    
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A1.4. DCC and DCC-A Correlation Targeting Matrices 

Full sample correlation targeting output. 2735 observations, 117 parameters, 10 series. DCC 

and DCC-TT outputs are identical. 

DCC BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP 

BNP 1.000 0.604 0.684 0.487 0.490 0.516 0.463 0.458 0.477 0.471 

ACA 0.604 1.000 0.629 0.418 0.435 0.485 0.422 0.457 0.441 0.432 

GLE 0.684 0.629 1.000 0.459 0.473 0.514 0.477 0.497 0.487 0.465 

SAN 0.487 0.418 0.459 1.000 0.690 0.352 0.365 0.373 0.430 0.396 

BBVA 0.490 0.435 0.473 0.690 1.000 0.369 0.350 0.372 0.426 0.400 

INGA 0.516 0.485 0.514 0.352 0.369 1.000 0.403 0.440 0.378 0.384 

DBK 0.463 0.422 0.477 0.365 0.350 0.403 1.000 0.542 0.366 0.319 

CBK 0.458 0.457 0.497 0.373 0.372 0.440 0.542 1.000 0.427 0.390 

UCG 0.477 0.441 0.487 0.430 0.426 0.378 0.366 0.427 1.000 0.651 

ISP 0.471 0.432 0.465 0.396 0.400 0.384 0.319 0.390 0.651 1.000 

 

DCC-A BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP 

BNP 1.000 0.611 0.689 0.490 0.491 0.519 0.462 0.460 0.479 0.471 

ACA 0.611 1.000 0.636 0.417 0.434 0.485 0.422 0.458 0.442 0.434 

GLE 0.689 0.636 1.000 0.464 0.473 0.519 0.477 0.498 0.490 0.466 

SAN 0.490 0.417 0.464 1.000 0.690 0.353 0.367 0.374 0.431 0.394 

BBVA 0.491 0.434 0.473 0.690 1.000 0.367 0.349 0.370 0.425 0.398 

INGA 0.519 0.485 0.519 0.353 0.367 1.000 0.404 0.442 0.378 0.384 

DBK 0.462 0.422 0.477 0.367 0.349 0.404 1.000 0.545 0.370 0.321 

CBK 0.460 0.458 0.498 0.374 0.370 0.442 0.545 1.000 0.428 0.390 

UCG 0.479 0.442 0.490 0.431 0.425 0.378 0.370 0.428 1.000 0.655 

ISP 0.471 0.434 0.466 0.394 0.398 0.384 0.321 0.390 0.655 1.000 

 

A1.5. Engle and Sheppard dynamic correlation test 

Lags: 5 and 10 

 E-S test p-value 

Lag: 5 60.169 0.000 

Lag:10 71.584 0.000 
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Appendix – Chapter 2 

A2.1. GPRD, THREATS indices and MGRISK-X (right scale) 

    

Correlation output (STATA 16.1) 

 GPRD THREATS MGRISK-X 

GPRD 1     

THREATS 0.8980*** 1   

MGRISK-X 0.3043*** 0.4560*** 1 

 

Data downloaded from https://www.matteoiacoviello.com/gpr.htm on November 3, 2022. 
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A2.2. Evolution of Total Assets (TA) for the selected sample 

 

A2.3. Evolution of aggregate Total Assets and aggregate Risk Weighted assets for the sample 
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A2.4. SXXE vs SX7E vs SXEE, Q3/2021-Q2/2022 

 

A2.5. SXET – IUSE and daily dispersion (right scale) 

 

A2.6. 0.5 SXRARO + 0.5 PHAU – IUSE and daily dispersion (right scale) 
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A2.7. Eurozone interest rates, 2011Q3-2022Q1A2. Eurozone interest rates, 2011Q3-2022Q1 

 

A2.8.1. Tse test on the entire sample (OxMetrics 8.2) 

LM Test for Constant Correlation of Tse (2000) 

--------------------------------------------------- 

LMC:  38.0318 [0.0000000] 

--------------------------------------------------- 

P-value in brackets. LMC~X²(N*(N-1)/2)) under H0: CCC model, with N=#series 

 

A2.8.2. Engle-Sheppard test for dynamic correlation (OxMetrics 8.2) 

----------------------------------------------- 

   E-S Test(5) =  70.3061   [0.0000000] 

   E-S Test(10) =  116.544   [0.0000000] 

------------------------------------------------ 

P-values in brackets. E-S Test(j)~X²(j+1) under H0: CCC model 

 

A2.9. Full-sample CCC-DCC comparison (OxMetrics 8.2) 

Model        T p     log-likelihood         SC            HQ          AIC 

MG@RCH(1) 2735 3 26970.570     -19.714     -19.718      -19.720  

MG@RCH(2) 2735 5 27078.285     -19.787<   -19.794<   -19.798< 
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A2.10. Excluded dates (MM/DD/YYYY) 

8/15/2011, 5/1/2012, 8/15/2012, 12/24/2012, 12/31/2012, 5/1/2013, 8/15/2013, 12/24/2013, 

12/26/2013, 12/31/2013, 5/1/2014, 8/15/2014, 10/3/2014, 12/24/2014, 12/26/2014, 12/31/2014, 

5/1/2015, 5/25/2015, 12/24/2015, 12/31/2015, 5/16/2016, 8/15/2016, 10/3/2016, 12/26/2016, 

5/1/2017, 6/5/2017, 8/15/2017, 10/3/2017, 10/31/2017, 5/1/2018, 5/21/2018, 8/15/2018, 10/3/2018, 

12/24/2018, 12/31/2018, 5/1/2019, 6/10/2019, 8/15/2019, 10/3/2019, 12/24/2019, 12/31/2019, 

5/1/2020, 6/1/2020, 12/24/2020, 12/31/2020, 5/24/2021, 12/24/2021, 12/31/2021. 
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A2.11. MSRISKt percentage difference with respect to MCRISKt, MGRISKt, MCGRISKt 
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Appendix – Chapter 3 

A3.1. EU banks ESG combined ratings – Refinitiv. 

 BNP ACA GLE SAN BBVA INGA DBK CBK UCG ISP 

2010 B+ B- B A- A- A- C+ B B- A- 

2011 B- B- A- B A B- C+ B B A- 

2012 A- B+ B- B A B C+ B A- B 

2013 B- B+ B- A- A C+ C+ B A B+ 

2014 B- B B B A B+ C+ B+ A- B+ 

2015 B- C+ A B+ A B+ C+ C+ A A- 

2016 A C B- A- A A- C C+ B+ A- 

2017 B- B+ B- B+ A- B+ C B- B B+ 

2018 A- B B- B+ A B+ C B+ A A- 

2019 B- B A- B B- B+ C+ C+ B- C+ 

2020 B B B- B+ B A- C+ B- A B+ 

2021 B+ B- B- B- B A- C+ A- B B+ 

 

A3.2. US banks ESG combined ratings – Refinitiv. 

 BAC C JPM WFC USB TFC PNC COF BK MTB 

2010 C C+ C C B- C- B- C+ C C- 

2011 C C C C B- C B+ B- C C 

2012 C C C C B- C- B C- B- C 

2013 C C C C C+ C- C+ C- C C- 

2014 C- C C C C- C B+ B- B C 

2015 C C+ C C+ C+ C+ B+ B+ C+ C+ 

2016 C C+ C+ C B- B- A- B+ B C+ 

2017 C+ C+ C+ C+ B- B- A- B+ B+ C+ 

2018 C+ C+ C C+ B- B A- A- B C+ 

2019 C+ C+ C C+ B- B B+ B- B C+ 

2020 C+ B- C+ C C- B- A- A- B- B 

2021 C+ B- C+ B C B B B- C+ B- 

 


