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Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD
can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical
condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments,
experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with
heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems,
it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or
alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to
delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both
central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a
key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes
deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a
comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing
multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may
represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the
trade-offs, liposomes emerge as the most suitable option.
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INTRODUCTION
Major depressive disorder (MDD) is a severe psychiatric condition
characterized by symptoms such as anhedonia, feelings of
worthlessness, impaired cognitive function, and disrupted sleep
patterns, all of which significantly affect the overall quality of life
[1, 2]. Although depression can occur across all age groups, it is
notably prevalent among older individuals, with the aggravating
circumstance that the clinical condition is frequently overlooked
and undertreated [3]. According to recent meta-analyses, the
worldwide prevalence of depression in older adults varies from
28.4% to 35.1%, with differences linked to geographical regions
and diagnostic tools [4, 5].
In older adults, unlike in other age groups, depressive

symptoms are often part of a multimorbidity condition. This
significantly increases the risk of mortality [6], can complicate
pharmacological management [7], may lead clinicians to under-
estimate the importance of treating depression while focusing on
other chronic pathologies [8], and can exacerbate the reduction of
independent life [9]. Furthermore, specific changes in the brain
structure have been observed in depressed older adults. There is a
significant reduction in the volume of various areas, including the

caudate, putamen, anterior cingulate cortex, and notably the
hippocampus. The latter appears to be a likely consequence of
impaired neurogenic processes. Additionally, white matter hyper-
intensities, believed to result from small, silent cerebral infarctions
causing demyelination and axonal degeneration, have been
identified. Evidence suggests that the decreased integrity of
white matter tracts, indicating dysfunctional brain networks, is
associated with reduced executive function—a common feature
in late-life depression. This decreased integrity is also linked to
impairments in emotion regulation, attention, salience detection,
and self-referential thinking [10, 11]. All the aforementioned
peculiarities of geriatric depression have substantial implications
for the onset of neurodegenerative diseases [12] and an even
greater influence on the risk of suicidal attempts [3].
The prevailing theory underpinning the development of MDD is

the “monoamine hypothesis”, which suggests that a reduction in
monoamine neurotransmitters plays a central role in its patho-
genesis [13]. Accordingly, the primary choice for antidepressant
therapy includes selective serotonin/noradrenaline reuptake
inhibitors. Nevertheless, one-third of older adults experience
treatment resistance, resulting in an unfavorable prognosis
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characterized by compromised medical outcomes, heightened
disability, and accelerated cognitive decline [14]. Individuals aged
65 years or older with MDD may also experience adverse events,
including an elevated rate of falls [15], necessitating therapy
withdrawal [16]. Additionally, it is essential not to underestimate
the challenges stemming from polypharmacy [17], a prevalent
condition in the older population.
Considering the reduced effectiveness and potential risks

associated with traditional pharmacological therapy, evaluating
innovative approaches has become imperative. This review will
focus on the potential of microRNAs (miRNAs) that target Brain-
Derived Neurotrophic Factor (BDNF) as innovative therapeutic
candidates for addressing MDD in older adults. Special emphasis
will be placed on the delivery methods, comparing the strengths
and weaknesses of each suggested approach.

BDNF AND MDD: FROM PATHOPHYSIOLOGY TO THERAPY
FOLLOW-UP
As a member of the neurotrophin family, BDNF is significantly
involved in the functioning of both developing and adult nervous
systems. While neurons are the main producers of this molecule,
its synthesis receives contributions from glial cells and various
peripheral sources, with platelets acting as the primary storage
reservoir [18]. In contrast to other components implicated in
synapse function, BDNF stands out not only as a modulator but
also as a pivotal mediator of synaptic plasticity and communica-
tion [19]. Consequently, deficiencies in BDNF-related signaling
exert a profound influence on the brain, contributing to the
development and exacerbation of neurological and psychiatric
disorders.
In MDD, a significant decrease in both central and peripheral

BDNF has been documented, with potential implications for
therapy response as well [20, 21]. In the limbic regions of
depressed suicide patients, both BDNF mRNA and protein levels
exhibit significant reductions, while studies on animal models
have further demonstrated that chronic exposure to stressful
stimuli triggers the downregulation of this neurotrophin in key
areas, such as the hippocampus and nucleus accumbens [22].
Reduced levels of BDNF have been shown to affect neuronal
structure, leading to a decrease in dendritic arbor complexity and
a simultaneous increase in behavioral abnormalities [23]. Beyond
the neurotrophin quantity, the interaction with Tropomyosin
receptor kinase B (TrkB), the receptor through which BDNF
engages in a ligand-specific manner, holds pivotal significance.
Preclinical studies have demonstrated improvements in the
depressive-like profile when the BDNF/TrkB signaling pathway is
upregulated [24–26]. Interestingly, the use of subanesthetic doses
of ketamine, employing a hormetic approach, has been receiving
growing attention in recent years as a novel treatment for MDD
[27]. Ketamine, by blocking N-methyl-D-aspartate receptors of
glutamate, induces a molecular cascade that precisely promotes
the release of BDNF and then, via the BDNF/TrkB/mTORa pathway,
enhances neuronal plasticity, facilitated by neurotransmitter
homeostasis, synapse recovery, and an increase in dendritic
spines [28].
Apart from the well-documented changes in BDNF metabolism

in the brain, several meta-analyses revealed a correlation between
increased blood levels of BDNF and symptom improvement in
individuals with MDD responding to pharmacological therapies,
regardless of treatment modality [29, 30]. Even more clinically
relevant, there is evidence regarding the potential to integrate
blood BDNF levels with Hamilton Depression Rating Scale scores
to predict treatment response during the early phases of therapy,
prior to observable symptom changes [31]. Finally, in the context
of late-onset MDD, it is crucial to emphasize that within a
particularly vulnerable segment of the elderly population,
specifically individuals affected by Mild Cognitive Impairment,

blood BDNF has been identified as a correlative and prognostic
factor for the decline in mood status [32].

THE ROLE OF miRNA DEREGULATION IN MDD: INSIGHTS INTO
NEUROPLASTICITY, INFLAMMATION, AND BDNF
miRNAs are relatively small (19–25 nucleotides in length) non-
coding single stranded RNAs. Typically, these molecules play a
regulatory role by suppressing expression through interaction
with the 3′ UTR of target messenger RNAs (mRNAs). However, their
influence extends to diverse regions, including the 5′ UTR, coding
sequence, and gene promoters. Remarkably, miRNAs challenge
the conventional suppressive role; under specific conditions, they
act not only as inhibitors but also as activators of gene expression
[33]. A few miRNAs possess the capability to target hundreds of
mRNAs, thereby regulating the expression of numerous genes
[34, 35]. Approximately 70% of miRNAs have been found in the
brain [36–38] and, although only a handful of them are expressed
in a brain-enriched or brain-specific manner [39], they all play
pivotal roles in various functions, including neurogenesis, regula-
tion of axonal morphology, synaptic formation, astrocyte differ-
entiation, as well as cellular apoptosis, proliferation, and migration
[40]. It is therefore not surprising that their deregulation has been
documented in numerous neurological and psychiatric diseases
[41, 42], including MDD (Table 1).
The exhaustive listing of all miRNAs identified to date with a

role in the pathophysiology of MDD exceeds the scope of this
review. Consequently, the presented table should be considered a
partial selection aiming to be as representative as possible of the
overall scenario. Nevertheless, a discernible pattern emerges,
indicating that most of the miRNAs implicated in MDD onset and
progression regulate proteins directly involved in neuroplasticity.
Besides, a deficit in neuronal adaptation may detrimentally affect
an individual’s capacity to cope with highly stressful events and
consequently contributing to the development of depression [43].
Recent evidence also underscores the potential role of miR-218 in
contributing to the dysregulation of the hypothalamic-pituitary-
adrenal (HPA) axis, the pivotal neuroendocrine system governing
the physiological response to stress, with significant conse-
quences in MDD [44]. miR-218 may exacerbate the well-
documented impairment of the HPA axis throughout the aging
process [45], which not only directly influences the onset of the
disease [46, 47] but also has adverse effects on hippocampal
plasticity [48]. Nevertheless, inflammation also emerges as a
significant target of miRNAs in MDD. Besides, many miRNAs listed
in Table 1 have been implicated in the promotion of cellular
senescence, such as miR-185 [49], or demonstrated to be either
upregulated (miR-134) or downregulated (miR-146a and miR-155)
in this context [50]. Senescent cells, via their senescence-
associated secretory phenotype (SASP), constitute a significant
source of pro-inflammatory mediators during aging and age-
related diseases [51], including central nervous system (CNS)
pathologies influenced by SASP factors released by non-neuronal
brain cells [52, 53]. During aging, astrocytes increase the release of
TNF-α, IL-1β, and IL-6, readily assuming the senescence phenotype
after a stimulus [54]. Similarly, aged microglia overexpress
proinflammatory cytokines and exhibit reduced responsiveness
to anti-inflammatory molecules such as IL-10, thereby exacerbat-
ing cognitive impairment, sickness, and depressive-like behaviors
[55]. In addition to the individual impact of the deregulation of
neuroplasticity and neuroinflammation, emerging findings high-
light the interplay between these two phenomena in the
etiopathology of MDD. Pro-inflammatory cytokines reduce the
bioavailability of specific neurotransmitters (e.g., serotonin,
norepinephrine, and dopamine), leading to an imbalance between
glutamatergic excitation and GABAergic inhibition and disrupt
neurocircuitry implicated in the pathogenesis of depression (e.g.,
basal ganglia and anterior cingulate cortex regions) [56]. In the
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complex interaction between miRNA-induced neuroplasticity
deficits and neuroinflammation, BDNF could be a key player.
The detrimental impact of reduced brain BDNF levels and deficit

in its functional pathway on neuroplasticity is easily comprehen-
sible [57, 58], based on the biological processes in which this
neurotrophin is involved, spanning from neuronal survival and
differentiation to synaptic functioning and cognitive performances
[59]. The issue is further compounded by the excessive production
of glucocorticoids resulting from HPA axis dysfunction, which
significantly diminishes BDNF presence, as activated glucocorti-
coid and mineralocorticoid receptors repress the transcription
activity of the BDNF promoter site [60]. The connection with
neuroinflammation may appear more intricate. Nevertheless,
recent research has unveiled a bidirectional modulation between
BDNF and neuroinflammation [61]: chronic inflammation disrupts
the long-term expression of BDNF and decreased BDNF levels, in
turn, lead to abnormal microglia activation in response to stimuli,
resulting in various effects, including damage to the blood–brain
barrier (BBB). The vicious cycle among inflammatory molecules
and BDNF appears to be exacerbated in the presence of the
Val66Met genotype [62], a polymorphism of BDNF widely
evaluated as a possible susceptibility factor for the development
of MDD [63]. Interestingly, experimental stimulation of neuroin-
flammation through LPS administration has been demonstrated to
induce synaptic protein loss via the BDNF/TrkB pathway, establish-
ing a proven causal relationship with the onset of depressive-like
behavior [64]. In Supplementary Table 1, we have added further
information concerning the miRNAs whose changes impact BDNF
synthesis and signaling in late-onset MDD.
A challenging interventional hypothesis posits that the modula-

tion of BDNF holds the potential to address neuroplasticity and
neuroinflammation, thereby mitigating the deficits that contribute
to the initiation and exacerbation of late-onset MDD. Compel-
lingly, the administration of exogenous BDNF into the brain has
been demonstrated to effectively downregulate proinflammatory
cytokines such as TNF-α, IL-1β, and IL-6, while upregulating anti-
inflammatory cytokines like IL-10, thus improving clinical out-
comes in rodent models of stroke and meningitis [65, 66]. Similar
results could be achieved in MDD.

REASONS FOR EXPLORING miRNA AS A POTENTIAL
TREATMENT FOR MDD IN THE OLDER ADULTS
As previously speculated, the administration of exogenous
BDNF may elicit positive effects on neuroplasticity and
neuroinflammation in the treatment of MDD. Nevertheless, we
posit that employing miRNAs as therapeutic agents offers a
more advantageous approach. BDNF faces limitations in cross-
ing the BBB effectively and has a short half-life of only a few
minutes [67], necessitating local administration, a method that
proves highly complex to implement in a clinical context.
Therefore, miRNAs hold the potential for a safer and more
effective strategy for both exerting their beneficial effects and
facilitating CNS delivery.
As of 2022, a total of 17 RNA-based therapeutics, including

mRNA, small interfering RNA (siRNA), antisense oligonucleotides
(ASOs), and aptamers, have received approval from either the
Food and Drug Administration or the European Medicines Agency.
Additionally, there are approximately 222 RNA-based therapeutics
currently in various stages of clinical trials [68], including
numerous miRNA therapeutics (e.g., NCT01646489, NCT0120042
and NCT01872936 (Hepatitis C Virus), NCT04536688 (Autosomal
Dominant Polycystic Kidney Disease), NCT03601052 (keloid
patients)).
Utilizing miRNAs as tools offers advantages over other RNA-

based approaches. Firstly, miRNAs are molecules physiologically
present in human cells, facilitating their seamless integration into
cellular machinery. Secondly, miRNAs have the capability to target
multiple genes within the same pathway, resulting in a broader
yet finely tuned response [69].
At present, two commonly utilized strategies leverage the

therapeutic potential of miRNAs: replacement and inhibition.
Replacement involves reinstating downregulated endogenous
miRNAs by introducing synthetic miRNAs with identical
sequences. Conversely, inhibition entails introducing antagonistic
molecules capable of reducing the expression of endogenous
miRNAs [70]. In Fig. 1, a schematic representation of a potential
therapeutic approach is provided, which involves the replacement
or inhibition of miRNAs that target BDNF, either directly or
indirectly.

Table 1. A summary of specific miRNAs whose dysregulation is recognized to play a role in major depressive disorder.

miRNA MDD Molecular target Affected pathways References

miR-185 miR-491-3p Up regulateda TrkB-T1 Neurogenesis, synaptogenesis,
neuroplasticity

[90, 91]

miR-30e
miR-132
miR-212

Up regulatedb BDNF Neurogenesis, synaptogenesis,
neuroplasticity

[92]

miR-323a-3p Up regulateda ERBB4 Synaptogenesis [93]

miR-204-5p Up regulateda EPHB2, TrkB, ERBB3/4 Synaptogenesis/neuroplasticity

miR-320b Up regulateda DLX5, ERBB4 Neurogenesis

miR-331-3p Up regulateda ERBB2, NRP-2 Neurogenesis and neuroplasticity

miR-134 Down regulatedb CREB Neurogenesis/synaptic plasticity [94]

miR-10a-5p
miR-374b-5p

Down regulatedc not yet defined Neuroplasticity/neurotrophy [95]

miR-542-3p
miR-181-3p
miR-3690

Down regulatedb

Down regulatedb
PTGS2
NRF2, eIF4E, CXCL8

Neuroinflammation/neuroplasticity
neuroinflammation

[96]

miR-146a
miR-155

Down regulatedc TLR4 Inflammation [97, 98]

miR-29a Down regulatedb TLR8 Inflammation [99]
aPost mortem human brain.
bHuman blood.
cPeripheral blood mononuclear cells.
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CONSIDERATIONS FOR CHOOSING miRNA VECTORS
A crucial concern lies in the choice of an appropriate delivery
system for miRNAs. Viral vectors loaded with miRNAs have been
extensively utilized, especially in cancer therapy. However, they
present inherent challenges, such as cytotoxicity, carcinogenicity,
and immunogenicity; on the contrary, non-viral delivery methods
pose lower toxicity risks and are more compatible [71, 72].
Liposomes are lipid-based nanoparticles (NPs) that sponta-

neously assemble into spherical structures, comprising both
single-layered and multilayered vesicles [73]. Notably, liposomes
can encapsulate a wide range of payloads, both hydrophilic and
hydrophobic, with considerable loading efficiency. In the case of
hydrophilic compounds like miRNAs, this efficiency is additionally
found to exhibit a positive correlation with vesicle size, typically
falling within the range of 50 to 500 nm, while showing a negative
correlation with the number of bilayers [74]. Despite their
remarkable efficacy, liposome nanomedicine technology still
exhibits certain limitations; nonetheless, many of these challenges
can be addressed through strategic engineering of the liposome
membrane. Indeed, one of the most intriguing features of these
NPs is their high degree of customizability, surpassing conven-
tional liposomes, including PEGylated and ligand-targeted lipo-
somes [75]. To date, among all synthetic NPs, liposomes stand out
as the safest and most versatile [76].
Exosomes are naturally occurring lipid extracellular vesicles,

usually measuring between 30 to 200 nm in diameter [77]. They
are generated during endosomal maturation and subsequently
released into the extracellular space, carrying a diverse range of
molecules, including DNA, RNA, proteins, and lipids [78]. Exosomes
possess several characteristics that make them suitable as vehicles
for miRNAs including circulation stability, biocompatibility,
reduced immunogenicity, low toxicity, and the capability to
traverse the BBB [79, 80]. However, despite these advantages,
there are still certain shortcomings, which, also in this case, can be
addressed through specific chemical engineering.
Polyethyleneimines (PEIs) are synthetic macromolecules with

positive charges either in the polymer backbone or within their
side chains. PEIs can effectively penetrate the CNS by bypassing
the BBB [81] and their positive amine groups specifically bind to
anionic RNA, thereby protecting it from degradation and

facilitating cellular uptake [82]. These unique characteristics make
PEIs the “gold standard” polymer for miRNA delivery [83].
However, the issue of toxicity, especially neurotoxicity, continues
to pose a significant challenge in clinical applications [81], despite
ongoing efforts to address it.
Finally, several inorganic materials have demonstrated their

capacity for miRNA delivery, including chemically modified gold
[84], iron oxide [85], and silica-based materials [86], among others.
These compounds are typically highly stable and can be
extensively engineered to enhance biocompatibility and enable
precise targeting. Indeed, metal core NPs can be synthesized with
such a high degree of control that they create uniform ultrasmall
drug delivery vehicles (<100 nm) with exceptionally advantageous
characteristics, although some concern arises about the long-term
consequences, especially at high dosages.
Figure 2 provides a more detailed overview of the strengths and

weaknesses within each category. While not claiming to be
exhaustive, it can serve as a starting point for making sound
choices.

CONCLUSIONS
In older adults, MDD significantly affects daily life, particularly by
severely impairing neurocognitive functions. This leads to elevated
rates of disability and mortality when compared to age-matched
non-depressed individuals [87]. Mood disorders in the elderly
population also impose a significant economic and logistical
burden on healthcare systems [88]. Exploring new therapeutic
approaches, either as a supplement to standard guidelines or as
alternatives for non-responsive patients, could pave the way for
improved management of geriatric MDD patients.
In recent years, the increasing focus on BDNF alterations and

their involvement in the onset and progression of MDD has led to
growing interest, giving rise to the “neurotrophin hypothesis of
depression“ [89]. Targeting BDNF expression through tailored
miRNAs stands out as a potentially innovative approach in
pathology oversight. Two essential steps are required: firstly,
conducting a comprehensive and as exhaustive as possible
analysis of the miRNA molecules involved in BDNF pathways
and their relationship to MDD, and secondly, identifying the

Fig. 1 A proposal for the therapeutic use of miRNAs in treating major depressive disorder targeting BDNF. The scheme involves the
simultaneous administration, either intravenously or intranasally, of synthetic miRNA molecules designed to target specific endogenous
miRNAs that regulate BDNF and its interaction with TrkB (e.g., miR-491-3p), as well as miR-181-3p, which indirectly influences neurotrophin
functioning. Both antagonistic and mimic miRNAs are employed. This approach holds the potential to reduce neuroinflammation and
enhance neuroplasticity by up-regulating BDNF levels and its activity. BBB blood–brain barrier, BDNF brain-derived neurotrophic factor, TrkB
tropomyosin receptor kinase B.
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optimal delivery vehicle. Concerning the first aspect, the
simultaneous utilization of multiple miRNAs capable of directly
influencing the neurotrophin while also activating other closely
associated pathways, such as neuroinflammation, represents, in
our opinion, the ideal approach. As for the second topic, while the
perfect vehicle has not been developed yet, considering the trade-
offs, liposomes appear to be the most appropriate choice based
on their current properties.
One last topic that deserves specific consideration is the current

technical incapacity to exclusively target the brain areas involved
in the onset and progression of MDD. Given the pleiotropic
functions of BDNF, altering its synthesis and signaling in areas
without impairments could pose a significant side effect.
Investigating potential molecular ‘footprints’ of neurons and glial
cells of depressed patients in the most affected areas, such as the
hippocampus, should be the primary research objective. This
would allow equipping vectors with high-affinity ligands for these
molecules. Furthermore, even though the majority of BDNF is
synthesized within the CNS, there are also peripheral sources [18].
To minimize systemic alterations, the inhalation route of admin-
istration is preferable to the intravenous one.
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