

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Detection of phenicol-oxazolidinone resistance gene optrA in Aerococcus viridans from bovine faeces, Italy

This is the peer reviewd version of the followng article:

Original

Detection of phenicol-oxazolidinone resistance gene optrA in Aerococcus viridans from bovine faeces, Italy / Coccitto, Sonia Nina; Fioriti, Simona; Cinthi, Marzia; Morroni, Gianluca; Di Giannatale, Elisabetta; Mingoia, Marina; Brenciani, Andrea; Giovanetti, Eleonora. - In: JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY. - ISSN 0305-7453. - 76:9(2021), pp. 2479-2481. [10.1093/jac/dkab162]

Availability:

This version is available at: 11566/290597 since: 2024-04-09T15:45:16Z

Publisher:

Published DOI:10.1093/jac/dkab162

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

Journal of Antimicrobial Chemotherapy

First detection of phenicol-oxazolidinone resistance gene optrA in Aerococcus viridans from bovine faeces, Italy

Journal:	Journal of Antimicrobial Chemotherapy
Manuscript ID	Draft
Manuscript Type:	Correspondence
Date Submitted by the Author:	n/a
Complete List of Authors:	Coccitto, Sonia; Università Politecnica delle Marche Facoltà di Medicina e Chirurgia Fioriti, Simona; Università Politecnica delle Marche Cinthi, Marzia; Università Politecnica delle Marche Morroni, Gianluca; Università Politecnica delle Marche Di Giannatale, Elisabetta Mingoia, Marina; Università Politecnica delle Marche, Department of Biomedical Sciences and Public Health Brenciani, Andrea; Università Politecnica delle Marche, Dept. Biomedical Sciences and Public Health Giovanetti, Eleonora; Università Politecnica delle Marche, Dept. Biomedical Sciences and Public Health
Keywords:	Aereoccus viridans, Oxazolidinones resistance, optrA gene, Conjugative plasmid
	·

SCHOLARONE[™] Manuscripts

1	Letter
2	First detection of phenicol-oxazolidinone resistance gene <i>optrA</i> in
3	Aerococcus viridans from bovine faeces, Italy
4	
5	Coccitto Sonia Nina ^{1†} , Fioriti Simona ^{1†} , Marzia Cinthi ² , Morroni Gianluca ¹ , Di
6	Giannatale Elisabetta ³ , Mingoia Marina ¹ , Andrea Brenciani ^{1*} , and Eleonora Giovanetti ²
7	
8	
9	¹ Unit of Microbiology, Department of Biomedical Sciences and Public Health,
10	Polytechnic University of Marche Medical School, Ancona, Italy;
11	² Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic
12	University of Marche, Ancona, Italy;
13	³ Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo,
14	Italy.
15	
16	
17	[†] These authors have contributed equally to this work.
18	
19	
20	*Corresponding author.
21	Unit of Microbiology, Department of Biomedical Sciences and Public Health,
22	Polytechnic University of Marche Medical School,
23	Via Ironto IU/A, 60126 Ancona, Italy.
24	Len: +390/12206299;
25	E-mail: a.brenciani@staff.univpm.it

26 Sir,

27

antibiotic resistance genes (ARGs) are now ubiquitous also in non-clinical environments.
Specifically, livestock farms are considered major reservoirs of ARGs and pose a risk for
human health since ARGs can be spread to human bacterial pathogens. Although many
antimicrobials administered to animals are used exclusively in veterinary applications,
most of them can drive co-selection of genes for the resistance to drugs critical in human
medicine.

Oxazolidinones, including linezolid and tedizolid, are effective antimicrobial agents for 34 the treatment of severe human infections due to MDR Gram-positive bacteria and they 35 36 have never been approved for animal use. Nevertheless, acquired linezolid-resistance has arisen in bacteria of animal origin, as well as in human isolates, due to extensive use of 37 38 phenicols in veterinary medicine that provide the selective pressure for a rapid 39 dissemination of the cfr, ¹ $optrA^2$ and $poxtA^3$ linezolid resistance genes on animal farms.⁴ Analysis of the prevalence and distribution of linezolid-resistance genes in animal 40 41 settings is important for evaluating the risk to public health and for development of 42 control measures.

43 During a routine surveillance aimed at the detection of linezolid resistance genes in
44 enterococci of animal origin, pooled faecal samples were collected from cattle farms

45 where florfenicol was used previously. The samples were inoculated in buffered peptone

46 water supplemented with florfenicol (10 mg/L) and incubated at 44°C for 48 hours.

47 Then, 0.1 mL was inoculated in Slanetz Bartley agar plates supplemented with

48 florfenicol (10 mg/L) and the enterococci grown on this medium were tested by PCR for

49 the presence of *cfr*, *optr*A and *poxt*A genes.⁵ Isolates carrying at least one linezolid

50 resistance gene were identified by MALDI-TOF (Vitek-MS, bioMérieux). Interestingly,

51 one *optrA*-positive isolate (called 1417-4A) belonged to the *Aerococcus viridans* species.

Susceptibility testing, carried out by reference broth microdilution (www.clsi.org) and
 interpreted according to the EUCAST clinical breakpoints (version 10.0,

54 www.eucast.org) revealed that MICs of linezolid, tedizolid, and florfenicol for A.

55 viridans 1417-4A were 1 mg/L, 1 mg/L, and 16 mg/L, respectively. In filter mating

56 experiments, using florfenicol (10 mg/L) for selection,⁶ optrA gene was successfully

57 transferred from A. viridans 1417-4A to E. faecium 64/3 recipient (transfer frequency,

58 1.7×10^{-5} per recipient). Two randomly selected transconjugants showed MICs of

59 tedizolid and florfenicol identical to those for the donor, instead a linezolid MIC of 4

60 mg/L was recorded for both transconjugants. It is notable that a 4-fold increase in the

61 linezolid MICs was detected in transconjugants compared to that of *E. faecium* 64/3

recipient (1 mg/L) suggesting that optrA of A. viridans could confer reduced linezolid
susceptibility in enterococcal background.
In S1-PFGE and hybridization assays,⁶ an optrA-specific probe hybridized with a ca. 30kb plasmid both in donor and transconjugants.
In order to characterize the optrA genetic element, whole-genome sequence (WGS) of A.

67 *viridans* 1417-4A was carried out by Illumina MiSeq platform (MicrobesNG,

- Birmingham, UK) using a 2 x 250 paired end approach. De novo assembly of WGS data
 was performed using the SPAdes software (http://bioinf.spbau.ru/spades).
- 70 Bioinformatics analysis revealed that *optrA* gene was located on a new 37,845-bp
- 71 plasmid, named pAv-oprtA (G+C content, 32.0%) (accession no. MW364930). The map
- 72 of the plasmid is shown in Figure 1 and the major characteristics of the ORFs are
- 73 detailed in Table S1. Four relevant areas were detectable in pAv-optrA: (i) an antibiotic
- resistance region containing *optrA* (responsible for phenicols and oxazolidinone
- resistance) and *erm*(B) (responsible for macrolide, lincosamide and streptogramin B
- resistance) genes. The *optrA* gene was 98.0% identical to the DNA reference sequence

77 (GenBank accession no. KP399637.1). Moreover, twenty-two amino acid changes were

- detected in the protein sequence compared to that of $OptrA_{E349}$ (96% identity, 98%)
- region spanning from orf10 to orf23; (*iii*) a conjugation region spanning from orf10 to orf23; (*iii*) a
- 80 segment harbouring repA (orf28) and parA (orf30) genes responsible for plasmid
- 81 replication and partitioning, respectively. The *repA* gene was not typeable by plasmid
- 82 finder (https://cge.cbs.dtu.dk/services/PlasmidFinder/); (iv) a complete type 1
- restriction-modification cassette (*orf35*, *orf1* and *orf2*) showing 96.0% DNA sequence
- identity with the corresponding region of *poxtA*-carrying pC25-1 and pC27-2 plasmids.⁷
- 85 A post-segregational killing mechanism might be responsible for maintaining of pAV-
- 86 optrA in A. viridans 1417-4A host.⁸

WGS analysis also ruled out the presence of *cfr*, *cfr*-like and *poxtA* genes. No mutations
were detected in the genes encoding the 23S rRNA and ribosomal proteins.

Aerococci are widespread in the environment and frequently isolated from foods and
animals and now are increasingly recognized as human pathogens.⁹ To the best of our

81 knowledge, this is the first report of the *optrA* gene in *Aerococcus* species, carried by a

- 92 conjugative plasmid. A. viridans caused different human infection such as urinary tract
- 93 infections, osteomyelitis, septic arthritis, septicaemia and endocarditis, therefore the
- 94 presence of linezolid resistance *optrA* gene in this species and its ability to transfer to
- human pathogen *E. faecium*, are cause for concern.
- 96

Funding 97

- This work was supported by PRIN 2017 grant prot. 20177J5Y3P from MIUR-Italy 98
- and by Progetto Strategico di Ateneo 2017 Polytechnic University of Marche, 99
- "In the hunt of new antibiotics: active compounds from both chemical synthesis 100
- and natural sources". 101
- 102
- 103
- **Transparency declarations** 104
- 105 None to declare

106	Refe	rences
107		
108	1.	Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne
109		chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob
110		Agents Chemother 2000; 44: 2530-3.
111	2.	Wang Y, Lv Y, Cai J, et al. A novel gene, optrA, that confers transferable
112		resistance to oxazolidinones and phenicols and its presence in Enterococcus
113		faecalis and Enterococcus faecium of human and animal origin. J Antimicrob
114		Chemother 2015; 70: 2182–90.
115	3.	Antonelli A, D'Andrea MM, Brenciani A, et al. Characterization of poxtA, a novel
116		phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical
117		origin. J Antimicrob Chemother 2018; 73: 1763-9.
118	4.	Wang Y, Lia X, Fua Y, et al. Association of florfenicol residues with the
119		abundance of oxazolidinone resistance genes in livestock manures. J Hazard Mater
120		2020; 399: 123059.
121	5.	Fioriti S, Morroni G, Coccitto SN, et al. Detection of oxazolidinone resistance
122		genes and characterization of genetic environments in enterococci of swine origin,
123		Italy. Microorganims 2020; 8: 2021.
124	6.	Brenciani A, Morroni G, Pollini S, et al. Characterization of novel conjugative
125		multiresistance plasmids carrying cfr from linezolid-resistant Staphylococcus
126		epidermidis clinical isolates from Italy. J Antimicrob Chemother 2016; 71: 307-
127		13
128	7.	Huang J, Wang M, Gao Y, et al. L. Emergence of plasmid-mediated oxazolidinone
129		resistance gene poxtA from CC17 Enterococcus faecium of pig origin. J
130		Antimicrob Chemother 2019; 74: 2524–30.
131	8.	Kobayashi I. Behavior of restriction-modification systems as selfish mobile
132		elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:
133		3742–56.
134	9.	Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin
135		Microbiol Infect 2016; 22: 22-7.
136		

Page 6 of 9

137 Figure

138

- **Figure 1**. Schematic representation of the *optrA*-carrying pAv-*optrA* plasmid (16,500 bp)
- 140 from A. viridans 1417-4A (accession no. MW364930).
- 141 Arrows indicate the position and direction of transcription of different genes.
- 142

143 Supplementary materials

144

145 **Table S1.** Amino acid sequence identities/similarities of putative proteins encoded by the pAv-optrA (GenBank accession no. MW364930).

146				· · · · · · · · · · · · · · · · · · ·	6				
147	ORF	Start (bp)	Stop (bp)	Size (amino acids)		BLASTP analysis ^a			
148 149 150 151 152					Predicted function	Most significant database match	Accession no.	% Amino acid identity (% amino acid similarity)	
152	<i>C</i> 1	1 4 4 0	202	200	Destruction on the state of the table		WD 11105(470.1	(5 (72))	
155	orj1	1,449	283	388 529	Restriction endonuclease S subunit	Restriction endonuclease subunit S [Aerococcus viriaans]	WP_111856479.1	65 (72)	
154 155	orf2	3,038	1,449	528	DNA methylase subunit	Type I restriction-modification system subunit M [A. viridans]	WP_111856478.1	98 (99)	
156	orf3	3,797	4,039	80	DNA-invertase hin	DNA-invertase hin [A. viridans]	SPT61043.1	100 (100)	
157	orf4	4,979	4,581	132		Hypothetical protein [Escherichia coli]	WP_160516845.1	93 (95)	
158	orf5	5,489	5,761	90		Hypothetical protein [Aerococcus urinaeequi]	HCT97980.1	43 (61)	
159	orf6	7,486	6,833	217		DUF262 domain-containing protein [Enterococcus faecalis]	HAP3453445.1	100 (100)	
160 161	orf7	9,915	7,948	655	ABC-F type ribosomal protection protein OptrA	ABC-F type ribosomal protection protein OptrA [E. faecalis]	HAP3438646.1	99 (99)	
162	orf8	10,213	10,082	43		Hypothetical protein [Bacteria]	WP_000085855.1	100 (100)	
163	orf9	10,955	10,218	245	Ribosomal RNA adenine methylase	23S rRNA (adenine(2058)-N(6))-methyltransferase Erm(B) [Firmicutes]	WP_001038790.1	100 (100)	
164	orf10	13,753	11,648	701	DNA topoisomerase IA	Type IA DNA topoisomerase [Enterococcus]	WP_104846964.1	75 (85)	
165	orf11	14,223	13,831	130		Hypothetical protein [Tetragenococcus solitarius]	WP_068710574.1	43 (64)	
166	orf12	15,082	14,237	281		Unnamed protein product	WP_192982111.1	51 (72)	
167 168	orf13	16,770	15,097	557	Type IV secretory system Conjugative DNA transfer	Type IV secretory system conjugative DNA transfer family protein [Marinilactibacillus psychrotolerans]	WP_138472019.1	86 (92)	
169	orf14	17,207	16,770	145		Hypothetical protein [Alkalibacterium gilvum]	WP_091636415.1	54 (73)	
170	orf15	17,764	17,222	180		Conjugal transfer protein [Carnobacterium sp. 1290_CSPC]	WP_157850759.1	46 (63)	
171	orf16	18,835	17,783	350	CwlT-like N-terminal lysozyme domain	Lysozyme family protein [Carnobacterium sp. 1290_CSPC]	WP_053083829.1	62 (77)	
172	orf17	20,214	18,850	454	Protein secretion system	Hypothetical protein [Enterococcus faecium]	EGP5098947.1	43 (68)	
173	orf18	22,223	20,229	664	Type-IV secretion system protein TraC	DUF87 domain-containing protein [Carnobacterium sp. 1290_CSPC]	WP_053083830.1	77 (87)	
174	orf19	22,941	22,291	216		Conjugal transfer protein [Marinilactibacillus psychrotolerans]	WP_138472028.1	64 (81)	
175	orf20	23,289	22,957	110		Hypothetical protein [M. psychrotolerans]	WP_138472031.1	54 (77)	

177	orf21	23,634	23,314	106	Cag pathogenicity island, type IV secretory system	Hypothetical protein [Carnobacterium sp. 1290_CSPC]	WP_048729905.1	63 (78)
178	orf22	24,188	23,646	180		Hypothetical protein [Carnobacterium sp. 1290_CSPC]	WP_048729908.1	40 (66)
179	orf23	26,975	24,972	667	MobA/MobL family protein	MobA/MobL family protein [Carnobacterium sp. 1290_CSPC]	WP_053083831.1	52 (68)
180	orf24	27,266	27,532	88		Hypothetical protein [Carnobacterium sp. 1290_CSPC]	WP_048729913.1	42 (71)
181	orf25	27,507	27,728	73		Hypothetical protein [Carnobacterium sp. 1290_CSPC]	WP_048729916.1	62 (80)
182 183	orf26	29,159	27,756	467	Antirestriction protein ArdC	ImmA/IrrE family metallo-endopeptidase [<i>Carnobacterium</i> sp. 1290_CSPC]	WP_048729918.1	76 (83)
184	orf27	29,398	29,165	77		Hypothetical protein [Carnobacterium sp. 1290_CSPC]	WP_048729921.1	97 (97)
185	orf28	30,526	29,492	344	Replication initiator protein A (RepA)	Replication initiator protein A [Carnobacterium sp. 1290_CSPC]	WP_048729642.1	76 (85)
186	orf29	31,097	30,912	61		Hypothetical protein [Carnobacterium sp. 1290_CSPC]	WP_048729641.1	92 (96)
187	orf30	31,901	31,128	257	Plasmid partitioning protein	ParA family protein [Carnobacterium sp. 1290_CSPC]	WP_048729640.1	89 (93)
188	orf31	32,141	32,548	135	DDE transposase	IS6 family transposase, partial [E. faecium]	WP_147239629.1	94 (95)
189	orf32	32,677	32,847	56		Hypothetical protein [Bacilli]	WP_164507104.1	100 (100)
190	orf33	33,279	33,106	57		Hypothetical protein FOB80_07155 [A. viridans]	QGS37267.1	100 (100)
191 192	orf34	33,808	34,545	245	Methyltransferase domain	Class I SAM-dependent methyltransferase [Carnobacterium sp. PL12RED10]	WP_149358818.1	99 (100)
193	orf35	37,663	34,976	895	DEAD-like helicases superfamily	Type-1 restriction enzyme R protein [A. viridans]	SPT61052.1	99 (99)
105	- 1	ODE 1		· · · · · ·	(1 i) (1			
195	^{<i>«</i>For each}	h ORF, only	7 the most s	ignificant i	identity detected is listed.			

196	Figure S1. Amino acid sequence alignment of the OptrA proteins of A. viridans 1417-4A (Av) and E.
197	faecalis E349 (Ef). Mismatches are highlighted in yellow.
198	

199				
200	Av	1	LS <mark>E</mark> ATFAIAST <mark>YV</mark> KEDMKMQYKIINGAVYYDGNMVLENIGIEINDNEKIAIVGRNGCGKT	60
201			+S+ATFAIAST KEDMKMQYKIINGAVYYDGNMVLENIGIEINDNEKIAIVGRNGCGKT	
202 203	Ef	1	MS <mark>K</mark> ATFAIAST <mark>NA</mark> KEDMKMQYKIINGAVYYDGNMVLENIGIEINDNEKIAIVGRNGCGKT	60
204 205	Query	61	TLLKAIIGEIELEEGTGESEFQVIKTGNPYISYLRQMPFEDESISMVDEVRTVFKTLIDM	120
205	Sbjct	61	TLLKAIIGEIELEEGTGESEFQVIKTGNPYISYLRQMPFEDESISMVDEVRTVFKTLIDM	120
207 208 209	Query	121	E <mark>K</mark> KMKQLIDKMENQ <mark>C</mark> DDKIINEYSDI <mark>L</mark> ERYMALGGLTYQKEYETMIRSMGFTEAD <mark>D</mark> KKPI E KMKOLIDKMENO DDKIINEYSDI ERYMALGGLTYOKEYETMIRSMGFTEAD KKPI	180
210 211	Sbjct	121	E <mark>N</mark> KMKQLIDKMENQ <mark>Y</mark> DDKIINEYSDI <mark>S</mark> ERYMALGGLTYQKEYETMIRSMGFTEAD <mark>Y</mark> KKPI	180
212 213	Query	181	SEFSGGQRTKIAFIKILLTKPDILLLDEPTNHLDIETIQWLESYLRSYKSTLVIISHDRM SEFSGGQRTKIAFIKILLTKPDILLLDEPTNHLDIETIQWLESYLRSYKSTLVIISHDRM	240
214 215	Sbjct	181	SEFSGGQRTKIAFIKILLTKPDILLLDEPTNHLDIETIQWLESYLRSYKSTLVIISHDRM	240
216 217	Query	241	FLNRIVDKVYEIEWGETKCYKGNYSAFEEQKRENHIKQQKDYDLQQIEIERITRLIERFR FLNRIVDKVYEIEWGETKCYKGNYSAFEEQKRENHIKQQKDYDLQQIEIERITRLIERFR	300
218 219	Sbjct	241	FLNRIVDKVYEIEWGETKCYKGNYSAFEEQKRENHIKQQKDYDLQQIEIERITRLIERFR	300
220 221	Query	301	YKPTKAKMVQSKIKLLQRMQILNAPDQYDTKTYMSKFQPRISSSRQVLS <mark>V</mark> SELVIGYDTP	360
222	Sbjct	301	YKPTKAKMVQSKIKLLQRMQILNAPDQYDTKTYMSKFQPRISSSRQVLS <mark>A</mark> SELVIGYDTP	360
223	Query	361	LAKVNFNLERGQKLGIVGSNGIGKSTLLKTLM <mark>D</mark> G <mark>AS</mark> ALSGDFKFGYNVEISYFDQQLAQI	420
225	Sbjct	361	LAKVNFNLERGQKLGIVGSNGIGKSILLKILM G TALSGDFKFGINVEISIFDQQLAQI LAKVNFNLERGQKLGIVGSNGIGKSTLLKTLM <mark>G</mark> G <mark>VA</mark> ALSGDFKFGYNVEISYFDQQLAQI	420
228 229	Query	421	SGDDTLFEIFQSEYPELNDTEVRTALGSFQFSGDDVFRPVSSLSGGEKVRLTLCKLLYKR	480
230 231	Sbjct	421	SGDDILFEIFQSEITELNDIEVRIALGSFQFSGDDVFRPVSSLSGGEKVRLILCKLLYKR	480
232	Query	481	TNVLILDEPTNHMDIIGKENLENILCSY <mark>K</mark> GTIIFVSHDRYFTNKIADRLLVFDKDGVEFV	540
233 234 235	Sbjct	481	TNVLILDEPTNHMDIIGKENLENILCSY <mark>Q</mark> GTIIFVSHDRYFTNKIADRLLVFDKDGVEFV	540
236 237	Query	541	<mark>E</mark> STYGEYEKKR <mark>L</mark> NSEKPFN <mark>Y</mark> I <mark>N</mark> VE <mark>K</mark> KVEKNNTVKGDRNSIEKEKVKKEKRIEKLEVLINQ +STYGEYEKKR+NSEKPFN_I_VE+KVEKNNTVKGDRNSIEKEKVKKEKRIEKLEVLINO	600
238 239	Sbjct	541	QSTYGEYEKKR <mark>M</mark> NSEKPFN <mark>N</mark> I <mark>K</mark> VE <mark>Q</mark> KVEKNNTVKGDRNSIEKEKVKKEKRIEKLEVLINQ	600
240 241	Query	601	YDEELERLNKIIS <mark>Q</mark> PNNSSDYIVLTE <mark>L</mark> QKSID <mark>E</mark> VKRCQG <mark>I</mark> YFNEWEQLM <mark>G</mark> ELEVM 655 YDEELERLNKIIS+PNNSSDYIVLTE+QKSID+VKRCQG_YFNEWEQLM_ELEVM	
242	Sbjct	601	YDEELERLNKIIS <mark>E</mark> PNNSSDYIVLTE <mark>I</mark> QKSID <mark>D</mark> VKRCQG <mark>N</mark> YFNEWEQLM <mark>R</mark> ELEVM 655	