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Abstract—The analysis of gait rhythm by pattern recog-
nition can support the state-of-the-art clinical methods for
the identification of neurodegenerative diseases (NDD). In
this study, we investigated the use of time domain (TD)
and time-dependent spectral features (PSDTD) for detect-
ing NDD sub-types. Also, we proposed two classification
pathways for supporting NDD diagnosis, the first one made
by a two-step learning phase, whereas the second one en-
compasses a single learning model. We considered stride-
to-stride fluctuation data of healthy controls (CN), patients
affected by Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (AS). TD feature
set provided good results to distinguish between CN and
NDDs, while performances lowered for specific NDD iden-
tification. PSDTD features boosted the accuracy of each
binary identification task. With k-nearest neighbor classi-
fier, the first diagnosis pathway reached 98.76% accuracy
to distinguish between CN and NDD and 94.56% accuracy
for NDDs sub-types, whereas the second pathway offered
an overall accuracy of 94.84% for a 4-class classification
task. Outcomes of this study indicate that the use of TD
and PSDTD features, simple to extract and with a low com-
putational load, provides reliable results in terms of NDD
identification, being also useful for the development of gait
rhythm computer-aided NDD detection systems.

Index Terms—Gait dynamics, neurological disorders,
features extraction, pattern recognition, computer-aided
diagnosis.

I. INTRODUCTION

N EURODEGENERATIVE diseases (NDD) represent a
wide spectrum of disorders related to the impairment of

neurological structures and manifest themselves with a variety
of symptoms, leading to the decline of cognitive and physical
capabilities [1]. Parkinson’s disease (PD) is the second most

Manuscript received 17 December 2021; revised 22 April 2022 and 27
July 2022; accepted 4 September 2022. Date of publication 8 Septem-
ber 2022; date of current version 6 December 2022. (Alessandro Men-
garelli and Andrea Tigrini are co-first authors.) (Corresponding author:
Alessandro Mengarelli.)

The authors are with the Department of Information Engineer-
ing, Università Politecnica delle Marche, 60131 Ancona, Italy (e-mail:
a.mengarelli@pm.univpm.it; a.tigrini@staff.univpm.it; s.fioretti@staff.
univpm.it; f.verdini@staff.univpm.it).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JBHI.2022.3205058, provided by the authors.

Digital Object Identifier 10.1109/JBHI.2022.3205058

common NDD, with a prevalence ranging from 100 to 200 per
100,000 people [2]. PD causes an altered output of the basal gan-
glia, and leads to hypokinetic movements, tremor, bradykinesia,
rigidity, freezing of gait, and in general motor instability [1].
Huntington’s disease (HD) results from a selective loss of striatal
neurons [1], and its most common symptoms are hyperkinetic
limb and trunk movements, known as chorea, affecting almost
3 per 100,000 people [2]. Amyotrophic lateral sclerosis (AS)
arises from the damage of the motor neurons innervating muscle
fibers and motor control centers, with an impaired ability to
regulate muscles’ activity, and it has a prevalence of 5 per
100,000 people [1], [2].

All the above mentioned NDDs share a degraded motor regu-
lation and movement abnormalities, which are among the major
factors leading to the risk of physical injuries and affecting daily
life quality [1], [3]. Due to their degenerative nature, a reliable
identification of these types of diseases is paramount in order
to timely design and develop clinical treatment strategies [1],
[4]. Currently, neuroimaging, magnetic resonance, computer-
ized tomography, blood tests, and tissue biopsy are state of the
art for NDD diagnosis [3], [5]. However, the clinical assess-
ment based on these methods presents some drawbacks, being
highly expensive, time-consuming, and invasive for the patient,
requiring also expert personnel [2], [3], [5], [6]. Furthermore, in
some cases, such techniques can provide poor results in terms
of diagnostic reliability, as the case of magnetic resonance [6]
and in general the misdiagnosis still remains a problem when
dealing with NDD. For instance, up to 25% of PD diagnosis
are incorrect [2], [6], since PD and HD patients present similar
characteristics as the disease progresses and also AS may share
clinical signs with PD [1], [2]. Hence, all these aspects support
the investigation of alternative and reliable tools for assisting
NDDs diagnosis, which should be in general also non-invasive,
low-cost, and without the need for specific skills [4], [7], [8].

Human walking encompasses a series of periodic movements
which involve the whole lower limb and gait abnormalities are
commonly associated with NDDs [1]. Gait dynamics is typically
quantified by spatial-temporal metrics, such as stride length,
stride time, and speed, but their alterations were reported to
be consistent among different diseases and thus do not dis-
tinguish specific NDD sub-types [1]. Conversely, the seminal
works by Hausdorff and colleagues indicated that stride-to-stride
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variability is a significant marker of gait alterations due to
NDD [9], [10] and that stride-to-stride fluctuations are far to be
noise, conveying instead information on non-linear dynamics of
walking, which can be used to gain insights about the neural
control of the motor system [1].

In the past few years, a growing amount of research investi-
gated how NDDs affect specific properties of gait. Statistical-
based analyses gave valuable information for describing walking
dynamics in NDD individuals and highlighted significant differ-
ences in walking patterns of PD, HD, and AS patients [11], [12].
On the other hand, several studies followed a pattern recognition
approach, in an attempt to develop computer-aided methodolo-
gies for the automatic detection of NDDs from gait signals,
suited to support clinicians in the diagnostic and intervention
phases.

Due to its prevalence, some studies focused on PD detection
only, by using non-linear measures on stride-to-stride time-
series [13] or extracting features related to local changes from
ground reaction force (GRF) [14]. However, an even more chal-
lenging issue is to succeed at correctly identifying an individual
as healthy or suffering from a specific NDD. To accomplish
this task, Baratin et al. [15] investigated the discrete wavelet
transform (DWT), performing a series of linear binary clas-
sifications. The DWT was used also in [16], where attention
was given to the recognition of AS with respect to PD, HS,
and controls. On the other hand, features related to repeatabil-
ity and complexity of gait timeseries were also investigated.
The auto-correlation decay time, with the stride time and the
fluctuation variation, was used in [7] for developing a wearable
NDD detection system. The effectiveness of the Shannon en-
tropy and statistical descriptors was evaluated in [17], whereas
the conditional entropy, together with a phase synchronization
analysis, based on the Hilbert transform, was employed in [18].
The use of texture-based features was investigated in [19], by
using the fuzzy recurrence plot for converting gait timeseries into
grayscale images. In [20] a feature set was built by fuzzy entropy,
Lempel-Ziv complexity, and Teager-Kaiser operator, whereas
Prabhu et al. [21] examined the classification performances
of the recurrence quantification analysis (RQA). In [2] a non-
negative least square coding algorithm, fed by the approximate
entropy and statistical features, was tested for identifying PD,
HD, and AS from GRF signals. The same learning model was
used in [5], where the symmetry of right and left stride intervals
was investigated through geometrical distance metrics, and by
Saljuqi and Ghaderyan [3], who extracted coefficients from a
time-frequency representation of the stride signal. Additional
studies focused on the most suitable learning architectures for
NDD recognition. Deep learning methods, such as convolutional
neural networks, were tested on GRF timeseries [22]. In [23], a
fuzzy inference system, based on artificial neural network, was
proposed, whereas Zeng and Wang [24] adopted a deterministic
learning approach for identifying gait dynamics, approximated
by radial basis function neural networks, and then used for
distinguishing between healthy and diseased individuals.

Despite all the above mentioned studies showing promising
results, in almost all cases a series of binary classification tasks

were investigated, i.e. healthy controls versus NDDs or between
NDD sub-types. On one hand, this allowed to assess the signifi-
cance of the proposed methodologies for unveiling different gait
dynamics and providing NDD identification. On the other hand,
this kind of approach is far from being suitable as a diagnostic
tool in an actual clinical scenario, since when an unseen subject
comes into play, the latter should be identified without the need
for choosing among several binary classification models.

In any pattern recognition context, the features selection
is crucial for achieving high and robust classification perfor-
mances. In particular, time domain (TD) features offer several
advantages, since they need limited processing efforts to be
extracted, do not require in general data-dependent computa-
tional parameters, as for non-linear or complexity related fea-
tures [25], [26], and have a low computational load, being thus
particularly suitable for on-line applications, such as myoelectric
motion recognition [27]. In the latter field, TD features found
an extensive employment [28], [29], showing in many cases
higher performances with respect to features belonging to other
domains [30], [31], for classification tasks which often involve
several classes [29], [32]. It is noteworthy that different features
computed in TD and used in myoelectric pattern recognition
have been also successfully employed for gait rhythm analy-
sis [13], [17], [20], [21], [27], [31]. This kind of features proved
to be effective for NDD identification or when employed to boost
the performances of more complex feature sets [2], [20], [21],
[33].

Moreover, in recent years, the use of time-dependent spectral
features (PSDTD) has been proposed [34], [35], [36]. PSDTD
features are still computed in TD but account for the spectral
properties of a signal, thus conveying different kind of infor-
mation while preserving the advantages of remaining in TD
for computation, which represents an important aspect for the
development of wearable and real-time systems for physical
condition monitoring and detection [7], [8]. This motivates an
analysis focused on the performances offered by TD and PSDTD
features when used on gait rhythm data for achieving a reliable
NDD detection and specific disease identification.

The aim of the present work was twofold. Firstly, we inves-
tigated the suitability of different TD feature sets, commonly
used in the field of myoelectric pattern recognition, for the
identification of neurodegenerative disease from gait rhythm
timeseries. In this context, we also tested the additional value
of considering time-dependent spectral features for improving
NDD detection. For this goal, we analyzed walking data relative
to healthy control subjects and to patients affected by PD, HD,
and AS. Secondly, we proposed two classification pathways,
which could support non invasive NDD diagnosis in an actual
clinical scenario.

II. METHODOLOGY

A. Gait Dataset

For this study, a publicly available gait dataset collected by
Hausdorff et al. [9], [10] was considered. Data consist of gait
recordings of 64 subjects: 16 healthy controls (CN), 15 patients
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affected by PD, 20 patients with HD, and 13 patients suffering
from AS. Eligibility criterion was the capacity to walk for at
least 5 minutes without any assistive device and medication use
was not modified for the experimental sessions. None of the
subject presented additional pathologies or comorbidities which
might affect walking dynamics [9]. The degree of neurological
impairment for PD group is measured by the Hoehn and Yahr
score (average value 2.8±0.9) and the total functional capacity
measure for the HD group (6.9±3.8). For the AS population,
the severity of disease is assessed by the time (months) since
diagnosis (18.3±17.8). More detailed information is reported
in [9], [10], [33].

Subjects were asked to walk along a 77 m hallway for 5
minutes at their self-selected pace, in order to minimize walking
variability [9], and instrumented with force-sensitive insoles,
that provided time-series of the force applied to the ground
during gait, sampled at 300 Hz (resolution 12 bit). The insole
used for recording gait temporal data were developed by using
conductive polymer layer sensors as transducers. Two force
sensitive resistors were placed within the shoe by taping them
to an insole. The first sensor was located in correspondence of
the toes and the metatarsals whereas the second one was located
under the heel. Further details can be found in [37]. The dataset
comprises four gait time measures, acquired bilaterally: stride
interval, swing duration, double support duration, and stance
duration. In this study, we consider stride time intervals for
further analyses.

B. Data Pre-Processing

From each gait recording, the first 20 s were removed in order
to avoid biases due to startup effects [9], [10]. According with
the experimental setup, subjects had to turn around and keep to
walk as they approached the end of the hallway [9]. This might
lead to spurious data which should be removed [12]. In this
study, we chose as a threshold the standard deviation (SD) of
the stride time-series and marked as outliers those data samples
which are above or below 2·SD the median value of the entire
stride time-series. As in [12], the less strict choice of 3·SD did
not allow to recognize some spurious data, corresponding to
turning points and easily detectable by visual inspection. Then,
we discarded the data points marked as outliers and they were
replaced with the median value of the time-series.

C. Feature Extraction

An initial set of 15 TD features was computed. This feature
set encompasses common metrics used also the myoelectric
pattern recognition field [31]: mean amplitude value (MAV),
integrated absolute value (IAV), waveform length (WL), zero
crossing (ZC), Willison amplitude (WA), slope sign change
(SSC), variance (VAR), root mean square value (RMS), square
integral (SI), absolute value of the third, fourth, and fifth tempo-
ral moment (TRD, FRTH, and FFTH), 4th order autoregressive
coefficients (AR), difference absolute mean value (DAMV), and
difference absolute standard deviation value (DASDV). For a
detailed explanation of feature computation, the reader can refer
to [31]. Note that since gait rhythm time-series, unlike sEMG

signals, are not zero-mean signals, for ZC computation their
average value was subtracted. In addition, SSC is equivalent to
the signal turns count metric [13], and thus we used the same
threshold for SSC computation (0.05 s).

Then, we split the 15 TD features into different sets to be
tested on gait data. As an aggregation criterion, we relied on
well-acknowledged feature sets, representing a standard bench-
mark in a field where TD features proved to be highly effec-
tive for classification and found widespread employment, i.e.
myoelectric-based gesture recognition [32], [38]. Hence, among
11 of the most commonly used feature sets for sEMG-based
gesture classification [32], those made by TD metrics were
selected:

� Hudgins’s feature set (HUDFS) [27]: MAV, WL, ZC, and
SSC.

� Du’s feature set (DUFS) [28]: WL, ZC, SSC, IAV, VAR,
and WA.

� TD and AR coefficients feature set (TDARFS) [29]: MAV,
WL, SSC, VAR, WA, ZC, and AR.

In addition, 6 PSDTD features were also considered, account-
ing for the power spectrum but still computed in TD [34], [35].
The first three features are based on the root squared of the
zero, second, and fourth order moments (m0, m2, and m4). The
general form is given by:

mn =
N−1∑
k=0

knP (k) (1)

where n is the moment order, k is the frequency index, and P (k)
is the power spectral density. For m0, the Parseval’s theorem
holds, stating that the sum of the square of a function equals
the sum of the square of its Fourier transform. Higher-order
even moments are calculated by relying on a differentiation
property of the Fourier transform, i.e. the nth derivative in TD
corresponds to the multiplication of the spectrum for k to the
power of n [34]. According to [35], the first three PSDTD
features were then obtained as:

f1 = log(m0) (2)

f2 = log(m0 −m2) (3)

f3 = log(m0 −m4) (4)

The additional three PSDTD features are the sparseness (f4), the
irregularity factor (f5), and the waveform length ratio (f6). The
first one provides a measure of the amount of energy packed
into only few components [34], [36] and can be computed as
follows:

f4 = log

( m0√
(m0 −m2) ·

√
(m0 −m4)

)
(5)

The irregularity factor is defined as the ratio between the number
of upward zero crossing and the number of peaks and it repre-
sents a measure of the signal regularity, expressed in terms of
its spectral moments [36]:

f5 = log

(
m2√

m0 ·m4

)
(6)
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Eventually, the waveform length ratio represents the ratio be-
tween the WL of the first and second derivative. It is amplitude
scaling invariant [35] and is given by:

f6 = log

( ∑N−1
i=1 |Δx|∑N−1
i=1 |Δ2x|

)
(7)

where x represents the signal and Δx and Δ2x denote the first
and second derivative for discrete-time signals.

D. Classification Task

In this study, we initially selected five classifiers: k-nearest
neighbor (kNN), support vector machine (SVM), decision tree
(DT), multiclass logistic regression (MLR), and random forest
(RF). These algorithms represent common machine learning
methods used for NDD identification from gait data and thus
were selected in order to allow a direct comparison with previous
works, where the same problem was faced [6], [13], [14], [20],
[21], [33]. In addition, they proved to be effective with small
datasets, as the case of the present study. A detailed overview of
the selected models can be found in [39].

For SVM, we used the radial basis function kernel [20], [21],
with the σ value chosen within the set {0.01–1.5}. For kNN
we set the number of nearest neighbors as k ∈ {1, . . . , 5}. The
tree growing algorithm was the CART method [39] and for
RF the number of trees was selected from 5 to 10 [20]. For
each classification task and classifier, parameters’ selection was
performed by trial-error procedure [20], [21], in order to reach
the best classification accuracy.

For each classifier, we adopted three cross validation (CV)
methods. The first one is the leave-one-out cross validation
(LOOCV), where one observation is used for testing while the
remaining observations are used for training. This procedure
is repeated holding out one observation at a time for training,
until each of them has been used once for testing. This CV is
commonly employed when dealing with small datasets and it
has been used in similar studies [13], [20], [21]. The second
method is the k-fold CV, where the dataset is split into k folds
of equal size and then the first fold is used for validation and
the remaining k − 1 folds are used for training. The process is
repeated k times until each fold is used for validation and the
others for training. In this study we set k = 5. The third method
is the random sub-sampling. For each run, a randomly selected
70% of the entire dataset was used for training and the remaining
30% for testing the classifiers [20]. Classification performances
were quantified by using accuracy (ACC), precision (PRC),
recall (RCL), and specificity (SPC).

E. Experimental Setup

In this study, we performed two experiments, each of them
involving different feature sets and classification tasks.

1) Experiment 1: In the first experiment we tested the va-
lidity of TD feature sets for NDD identification by training the
five classifiers (kNN, SVM, DT, MLR, and RF) using HUDFS,
DUFS, and TDARFS (see Section II-C). We investigated all the
possible binary classification tasks, including the differentiation

between control subjects and NDD patients. This represents a
yet employed scheme when dealing with NDD gait patterns
recognition, hence allowing a direct comparison with previous
studies [15], [20], [21], [33]. In this experiment, LOOCV method
was used.

2) Experiment 2: In the second experiment we investigated
the value of adding time-dependent spectral features for NDD
identification. The 6 PSDTD features were added to the initial 15
TD features (see Section II-C). Then, in order to reduce the num-
ber of classifiers, we followed the approach presented in [20].
The accuracy of each single feature in distinguish between CN
and NDD was computed for the five classifiers (see Section II-D)
and the two which showed the highest number of features with
an accuracy >90% were retained for the subsequent steps. The
features with a single accuracy <90% were removed from the
initial feature set for both the selected classifiers.

For each binary classification task, a backward sequential
feature selection (B-SFS) was applied in order to find re-
duced feature subsets. The B-SFS algorithm belongs to the
category of wrapper methods, suitable when dimensionality
is low [40]. These methods perform a greedy search where
candidate feature sets are built iteratively, with the goal to
enhance the performances of pre-selected classifiers. In brief,
given a d-dimensional feature space Ω = {f1, . . . , fd}, a Γ0 set
is initialized as Γ0 = Ω. Then, the B-SFS algorithm constructs
d− 1 subsets, each of them made by all the features in Γ0

except for one. The absent features within the subset with the
highest classification accuracy is removed from Γ0 and then
the same procedure is iterated d− 1 times, until Γ0 contains
only one feature. The optimal feature subset is chosen as that
with the highest accuracy and the fewest dimensionality. The
B-SFS was run for both the selected classifiers, obtaining in
this way 14 reduced feature subsets (2 classifiers × 7 binary
comparisons).

Here, we used LOOCV and 5-fold CV methods. This was
motivated by comparison purposes, since from previous works,
dealing with the same topic, did not emerge a clear preference
for a specific CV scheme and each of them found an almost
equivalent employment [3], [6], [14], [19], [21].

In addition to this binary classification scheme, in this ex-
periment we proposed two NDD identification pathways, which
could be used in actual diagnosis scenarios. The first diagnosis
pathway (DP1) is made by two learning steps and was similar to
that proposed by Xia et al. [20]. The first step is the classification
of a subject as healthy or affected by NDD and the second one is
the identification of the specific disease (PD, HD, and AS). This
second step was faced as a multi-class classification problem.

The second diagnosis pathway (DP2) was intended to prevent
the use of a cascade of different classifiers, by using a single
recognition step. Here, we avoided the distinction between
controls and NDD patients and each classifiers was trained
and tested for multi-class identification, i.e. for distinguishing
directly between CN, PD, HD, and AS. To the best of our knowl-
edge, this kind of 4-class classification has not been performed
in similar works investigating the same dataset, where binary
comparisons between NDD sub-types or with healthy controls
were favored [3], [5], [6], [12], [33].
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Fig. 1. Accuracy for the binary classification tasks for HUDFS (a),
DUFS (b), and TDARFS (c) and for kNN, SVM, DT, MLR, and RF.

For multi-class tasks, i.e. distinguish between the three NDDs
(DP1) and between all the groups (DP2), we built reduced feature
sets as the union of the subsets obtained with the B-SFS. In the
former case, we considered the subsets relative to the binary
NDD classification tasks, while for the latter all the subsets were
added up, i.e. including also those involving CN group. Finally,
for both DP1 and DP2, we applied the random sub-sampling,
performed over 50 runs, for cross validating the learning models.
The average of the performance metrics computed over multi-
ple runs was used for evaluating the goodness of the results.
We selected this cross validation method in order to ease the
comparison with [20], where a similar classification involving 4
groups was showed.

III. RESULTS AND DISCUSSION

A. Experiment 1

The classification accuracy for HUDFS, DUFS, and TDARFS
is reported in Fig. 1. In order to keep the paper short, we reported
the other metrics as supplementary material. Each TD feature
set showed satisfying results for differentiating between controls
and patients. DUFS provided the highest accuracy, averaged over
all the classifiers, for the CN-PD (95.16%), CN-HD (95.56%),
CN-AS (95.17%), and CN-NDD (93.75%), whereas a 100%
accuracy was reached by the TDARFS (CN-PD with kNN) and
DUFS (CN-HD with SVM). All the three feature sets gave 100%
accuracy in distinguish between CN and AS groups, at least
with one classifier. To be noted, this classification problem can
be challenging, since it often reached low levels of accuracy
compared with the other binary tasks [3], [15], [18], [20], [21].

DUFS and TDARFS showed good performances for CN-
NDD classification, with 99.22% accuracy (SVM and kNN,
Fig. 1). This accuracy is higher with respect to [20] and [15],
where 96.83% and 80.4% were obtained with a larger feature
set and DWT coefficients, respectively. Also data-driven features
offered no superior performances for this task [6] and likewise
if more refined learning schemes are considered, such as neuro-
fuzzy inference [23] or deterministic learning [24].

Fig. 2. Single feature accuracy for each considered classifier. The
accuracy is computed for the CN-NDD classification task.

For the identification of NDD sub-types, each feature set
showed a drop in the accuracy, more pronounced for the PD-HD
case, resulting not higher than 93% (DUFS with the SVM,
Fig. 1). The latter value is still higher than other studies [15], [17]
but aligns with the work of Xia et al. [20], where this binary
task showed the lowest accuracy among the others (91.18%).
The TDARFS appears as the best feature set for PD-AS (100%
accuracy) and HD-AS (98.49%) classification, both with kNN
(Fig. 1), whereas HUDFS and DUFS failed to reach values
beyond 94%, lower than those reported in previous studies [20],
[21].

Overall, these results confirm that simple TD features are
effective for gait rhythm data [33]. However, none of the feature
sets provided stable accuracy levels, with a drop in distin-
guishing between NDD sub-types. Further, none of the learning
methods showed performances comparable with those reported
in previous studies, where in some [20], [33] or all [21] cases
the accuracy resulted slightly higher. To be noted, in many
studies [6], [20], [21] the optimal feature sets included metrics
related to non-linear dynamics of timeseries, indicating the need
for considering also features belonging to other domains. This
supports our efforts for enhancing classification performances,
made in the second experiment, by adding PSDTD features to
the initial set.

B. Experiment 2

As reported in Fig. 2, kNN showed the highest number of
single features with accuracy >90% (18), followed by SVM
(13), and RF (6). Hence, for the next analyses we retained kNN
and SVM. It is noteworthy that PSDTD features were 5 out of 18
for kNN and 4 out of 13 for SVM, supporting the value of spectral
related features for this kind of problem. In the following, for
multi-class problems, the one-versus-one method was employed
for SVM [39].

Among the seven binary classification tasks (Table I), the kNN
showed the best outcomes, reaching a 100% accuracy for all
cases (LOOCV) and boosting the performances of the classical
TD feature sets used in the first experiment. It is noteworthy
that each optimal feature set, selected by the B-SFS algorithm,
encompasses at least one PSDTD feature, pointing out the value
of such kind of metrics. In addition, the MAV is the only feature
shared with the HUDFS, DUFS, and TDARFS among the seven
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TABLE I
CLASSIFICATION PERFORMANCE OF SVM AND KNN FOR ALL THE POSSIBLE BINARY CLASSIFICATION TASKS. RESULTS ARE RELATIVE TO THE LOOCV AND

5-FOLD CV METHODS

optimal sets (Table I), aligning with the role of this amplitude
related metric for NDDs identification [20], [21], [33]. Further,
TD features related to the derivative of the signal (DAMV and
DASDV) turned out to be effective and the DAMV was in one
case (CN-PD) sufficient to provide the best accuracy. Their role
appears supported also by the findings reported in [9], [10],
where the coefficient of variation and the SD of the detrended
gait timeseries marked significant differences between controls
and patients.

Results summarized in Table I represent a substantial ad-
vancement with respect to previous studies [6], [15], [18], [20]
and improve what was reported by Prabhu et al. [21], who
showed 100% accuracy for each binary comparison with RQA,
except for CN-AS (96.15%), whereas we obtained 100% accu-
racy by using a single PSDTD feature. Outcomes appear to be
promising also with respect to [3], where a 93%, 97%, and 94%
accuracy was obtained (5-fold CV) by using linear and non-
linear sparse decomposition-based features for identification of
NDD sub-types with respect to controls.

It should be noted that in those studies where all the binary
comparisons have been investigated, features related to non-
linear dynamics of the gait timeseries were considered [17], [20],
[21]. In both cases, it is required to set a series of computational
parameters, such as the embedding dimension and the similarity
threshold, which might result group-specific [41], being in gen-
eral heavily data-dependent [25]. The features we investigated
in this study do not rely on an a priori parameters’ selection,
combining high classification capabilities with significant ad-
vantages in terms of computational ease and direct applicability
in practical scenarios [7], [8]. In this view, it is also remarkable
that TD and PSDTD features are capable to offer the same
performances of [19], where a 100% accuracy was reported for
the CN-PD, CN-HD, and CN-AS cases (LOOCV). In the present
work, we obtained the same results by relying on a single feature
with a kNN classifier (Table I), whereas in [19] a total of 19
texture-based features were employed. Further, the extraction of
texture-based features requires a preliminary conversion of the
gait timeseries into images, by a fuzzy recurrence plot scheme,

limiting the possible usage of this method at a system level and
for on-line applications.

Finally, the pattern recognition approach proposed in this
study showed to be effective also if compared with previous
works where more advanced classification methods were tested.
Both SVM and kNN provided better outcomes with respect to
the deterministic learning scheme proposed in [24] and to the
adaptive neuro-fuzzy inference investigated by Ye et al. [23].
The former provided accuracy below 90% for each binary task
involving CN group (LOOCV) and a 93.75% was obtained
(all-training-all-testing) for the CN-NDD task. The latter ob-
tained the best performance in distinguishing HD patients from
the controls (94.44% accuracy, LOOCV), still lower than that
provided by SVM and kNN by using also a single PSDTD feature
(Table I).

For what concerns the DP1 (Table II), both classifiers offered
high performances in the first step, i.e. distinguishing between
controls and NDD patients, also when the random sub-sampling
CV is used instead of the LOOCV. A good level of accuracy was
achieved also for the second step, i.e. the identification of specific
NDD. The kNN confirmed to be the most suitable, also with
higher RCL and SPC with respect to the SVM. Those metrics
are of particular importance in clinical related applications, since
they refer to the proportion of actual positive and negative cases
correctly recognized.

The DP1 appears thus a promising diagnosis tool for the NDD
identification and this is supported also by the comparison with
previous studies (Table IV). Using a set of simple statistical
descriptors, Daliri [33] achieved 90.63% accuracy in the di-
agnosis of NDD, whereas for the same problem we obtained
better results (Table II), also in terms of RCL and SPC in the
case of kNN (98.86% versus 90.65% and 92.87%). The first
step of DP1 outperforms also the results presented in [6], where
a 87.5% accuracy was obtained with data-driven features and
DT classifier versus 98.76% of kNN, fed by only two features
(Table II). With the same CV method, our two-step pathway out-
performed also a similar diagnosis streamline proposed in [20].
On average, kNN provided over 99% of correctly recognized
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TABLE II
CLASSIFICATION PERFORMANCE OF SVM AND KNN FOR THE DP1, WHERE A BINARY CLASSIFICATION IS FIRSTLY PERFORMED BETWEEN HEALTHY AND

NDD SUBJECTS AND THEN SPECIFIC NDDS ARE RECOGNIZED BY A 3-CLASS CLASSIFIER. RESULTS ARE REPORTED AS THE AVERAGE OVER 50 RUNS OF
THE RANDOM SUB-SAMPLING CROSS VALIDATION

TABLE III
CLASSIFICATION PERFORMANCE OF SVM AND KNN FOR THE DP2, WHERE A 4-CLASS CLASSIFICATION TASK IS PERFORMED. RESULTS ARE REPORTED AS

THE AVERAGE OVER 50 RUNS OF THE RANDOM SUB-SAMPLING CROSS VALIDATION

TABLE IV
RECOGNITION PERFORMANCES (ACCURACY) FOR DIFFERENT NDD IDENTIFICATION DETECTION INVOLVING MACHINE LEARNING METHODS AND THE SAME

TYPE OF CLASSIFICATION TASKS CONSIDERED IN THE PRESENT WORK. FOR MULTIPLE CLASSIFIERS, THE BEST CASE IS REPORTED

healthy subjects versus 93.67% and over 90% for PD, HD,
and AS groups (Table V), whereas in [20] only for HD were
achieved comparable results and in the other cases the correctly
recognized patients remained below 85%.

With DP2, we investigated the feasibility of a single-step
identification streamline, not yet proposed in similar studies
(Table IV). Both kNN and SVM showed high identification
performances, by using few features in each set ( Table III).
This confirms that the features selected by the B-SFS encompass
significant information regarding the gait rhythm, valuable also
within a multi-class framework. Note that both feature sets are
made by 50% of PSDTD features, further emphasizing their
crucial role for this kind of data.

The kNN showed overall better outcomes with respect to
SVM, despite both models suffering from a relative lowering
of the RCL if compared with DP1 (Table II). This is mirrored
by the lower average percentage of the correctly recognized
subjects for DP2 (Table V). The CN identification remains the
most accurate, as for DP1, and comparable with that obtained
in [20]. This could be linked to the highest number of samples
available for training, but also to the fact that NDD patients
could share some gait patterns, making easier their distinction

TABLE V
AVERAGE PERCENTAGE OF THE CORRECTLY RECOGNIZED SUBJECTS FOR

THE TWO DIAGNOSIS PATHWAYS AFTER 50 RUNS OF THE RANDOM
SUB-SAMPLING CROSS VALIDATION. RESULTS ARE RELATIVE TO THE KNN

with respect to CN but more challenging for identifying NDD
sub-types. Although, on the overall, DP2 resulted less accurate
if compared to DP1 (Table V), it is still comparable with [20]
for CN and HD classes (92.54% versus 93.67% and 90.19%
versus 90.67%), while showed better performances in recog-
nizing correctly PD and AS patients (87.72% versus 84.67%
and 87.67% versus 81.50%). An overview of the results of
the current work compared with some state-of-the-art studies
is reported in Table IV. Eventually, it should be noted that,
even if compared with deep learning schemes [22], the pattern
recognition approach proposed in this study does not fail in
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terms of classification performances (99.5% versus an average
accuracy of 96.7% for DP1 and 94.4% for DP2), but preserves at
the same time the clinical interpretability of the results, relying
on features with a physiological meaning.

The main contributions of this work to existing literature can
be summarized as follows: firstly, we investigated feature sets
encompassing TD metrics not considered in previous studies
for the identification of NDD from gait data, despite basic TD
descriptors showing promising results for the same task [9], [12],
[33]. Moreover, by considering PSDTD features, we assessed
the value of spectral related information for NDD recognition,
since the spectral properties of gait rhythm data have not been
considered in past studies dealing with the same topic. Inves-
tigating PSDTD descriptors has an additional value in view
of the development of a computer aided NDD identification
system, since this kind of features preserves the advantages of
being computed in time. Indeed, features in TD are extracted
directly from raw data, without the need for any transformation,
thus resulting efficient and cost-effective with respect to the
computational load [31]. These are important requirements to
fulfill for an actual hardware-level implementation [7], [8] and
for on-line applications of pattern recognition approaches [34],
[36], where incidentally the same kind of learning models
adopted in this study are favored [35], [38] over more complex
architectures [23], [24]. Thus, despite the evaluation of system-
level aspects related to the technical development of a NDD
identification device was beyond the scope of this study, our
results can have a potential impact also in this area. However,
additional studies are required to translate present findings into
embedded technologies for motor functions and health assess-
ment, where the challenge is to integrate software demands with
hardware-level implementation [4], [7], [8].

A further contribution can be recognized in the two proposed
diagnosis pathways, that can have beneficial impact on clinical
implementation of NDD diagnosis, with the DP2 not presented
in previous works (Table IV). In an actual application scenario,
to an unseen subject it would be requested to perform a single
walking trial and then the physician can use the DP1 in order
to have support for the identification of the subject as healthy
or affected by NDD and then for the diagnosis of the specific
NDD. This requests to compute different features in each of the
two stages, but with significant advantages in terms of accuracy
and specificity of the diagnosis (Table II). If a faster screening
is required, physician can rely on DP2, that offers the advantage
of involving a single step of feature computation, providing a
direct identification of the subject as healthy or affected by a
specific NDD.

In both cases, good classification performances are combined
with a high practical applicability, without the need for multiple
binary comparisons. Each binary classifier has to be feed by
different features and thus, in order to apply the proper learning
model, binary classifications imply the prior knowledge of an un-
known individual as belonging to a specific group, strongly ham-
pering their practical clinical usage. Further, the identification
result would be unreliable if the specific subject does not belong
to the two groups for which the classifier was trained. Clinical
applicability is also favored by considering that the proposed

NDD recognition architecture does not need instrumented envi-
ronments for performing walking trials, since gait rhythm data
can be easily recorded by force insoles or foot-switches [6], [37],
[42], without the need for cumbersome and expensive recording
systems. The easy requirements for data recording allow the
proposed system also to be part of home-based solutions for
health monitoring and disease diagnosis, since the patient does
not need to be instrumented with obtrusive equipment, such as
reflective markers and myoelectric probes. This can potentially
impact on elderly people and on those unable to undergo to
clinical screening on a regular basis, supporting at the same
time remote clinical assessment.

Future studies should be devoted to collect datasets with a
larger sample size and more refined levels of disease severity,
in order to assess the value of TD and PSDTD descriptors
for clinical evaluations about diseases development at different
stages and for the design of therapeutic strategies. Further, the
use of TD and PSDTD features might be investigated on different
kind of gait data, such as ground reaction forces [2], [14], [22],
without the need for raw data processing.

IV. CONCLUSION

Time-dependent spectral features alone resulted highly effec-
tive for the NDD recognition from gait data and PSDTD features
appear to encompass significant information regarding the inner
dynamics which regulate the temporal fluctuations of gait stride
times. The diagnosis pathways proposed here proved to be effec-
tive for NDD identification within a multi-class framework, thus
providing an additional perspective with respect to considering
a series of binary classification tasks. The first pathway offered
slightly superior performances with respect to the second one,
which has not been proposed in previous studies but has instead
the advantage of involving a single learning step. However, in
both cases small feature sets (no more than 7 features) are needed
for achieving high classification performances. All these aspects
support the possible use of this kind of frameworks in actual
scenarios, for automatic NDD gait pattern recognition, and for
supporting clinical evaluations related to disease severity and
progression.
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