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Single IMU Displacement and Orientation
Estimation of Human Center of Mass: A

Magnetometer-Free Approach
Stefano Cardarelli, Student Member, IEEE, Alessandro Mengarelli, Member, IEEE, Andrea Tigrini,

Annachiara Strazza, Student Member, IEEE, Francesco Di Nardo, Member, IEEE,
Sandro Fioretti, Member, IEEE, and Federica Verdini

Abstract—In this paper, a self-contained procedure to estimate
the vertical, medial-lateral, and anterior-posterior displacement
of a single sacrum-worn inertial measurement unit (IMU) is
presented, which can be related to the human body center of mass
(CoM) displacement during treadmill walking through an adap-
tation of the sacral marker method. Further, a magnetometer-
free custom sensor-fusion algorithm for orientation estimation
is proposed alongside a practical alignment procedure to refer
relative IMU orientation estimation to a ground-fixed reference
frame. Twelve healthy subjects performed two trials of treadmill
walking at 3, 4 and 5 km/h for 150 s, with a sacrum-worn IMU.
Orientation and displacement estimations were then compared
with those obtained from an optoelectronic measurement system.
Roll, pitch and yaw angles showed root mean square errors
(RMSE) lower than 2 deg for walking trials at 3, 4 and 5 km/h,
with Pearson’s correlation coefficient higher than 0.90 for each
angle. Displacement accuracy was evaluated in terms of peak-to-
trough distances and RMSE. Mean errors resulted lower than
1 mm for each axis of interest and for each gait speed, with
RMSE not higher than 2.5 mm. The proposed off-line algorithm
can be used in low-budget and infrastructure-free environments,
to achieve reliable CoM displacement estimation during cyclic
activities such as treadmill walking.

Index Terms—strapdown IMU, human body center of mass,
treadmill walking, Unscented Kalman filter, 3-D displacement
estimation, attitude estimation.

I. INTRODUCTION

IN the field of gait analysis, the 3-D motion of a subject’s
center of mass (CoM) is a valuable source of information,

being a strong indicator of the overall biomechanical perfor-
mance of walking [1]–[4]. Furthermore, CoM displacement
has been associated to the evaluation of the risk of fall and
pathological conditions in both adults and children [4]–[7].
The estimation of CoM displacement, therefore, represents a
central issue in the movement analysis field and throughout the
years a number of different techniques have been proposed in
order to obtain an accurate spatial tracking of human CoM.
According to the literature, the majority of studies relies on
three main estimation methods [8], [9]. The first one is the
segmental analysis and is based on the weighted sum of
the CoM of single, body segments [8], [10], requiring an a
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priori knowledge of their mass distribution and an optoelec-
tronic (OPT) system for kinematic measurements. The second
method, based on force platforms measures, involves the
application of inverse kinematic to estimate the CoM position
from the double integration of ground reaction forces [1], [8],
[9]. The third method relies on the assumption that a single
marker placed over the sacrum can represent the CoM [11],
[12] and due to its relatively easy marker setup, it is one of the
most frequently used procedures for CoM estimation during
dynamic tasks, and in particular during walking [9], [10].
On the other hand, despite these aspects, the sacral marker
method remains limited in its applicability to OPT system
instrumented environments, making this method barely usable
in different experimental scenarios.

A possible way to overcome this limitation is the replace-
ment of the sacral marker with a single inertial measurement
unit (IMU) [10], [11], [13]. In this regard, the vertical (VT),
medial-lateral (ML) and anterior-posterior (AP) displacement
of the CoM can be hence ideally estimated simply through
the double integration of the linear acceleration component
measured by the IMU itself. Incidentally, in addition to the
CoM displacement, the use of an IMU allows also to obtain
the orientation of the body segment where the IMU is placed,
i.e. the pelvis [14], [15]. The use of such method adaptation
would imply a significant drop of costs and the enhancement
of the measurement setup portability, making it particularly
suitable for home-monitoring applications and in rehabilitation
scenarios.

However, a crucial matter needs to be taken into consid-
eration: the choice of the orientation estimation algorithm
and a proper calibration procedure are both fundamental to
refer IMU measurements (orientation and displacement) to
an arbitrarily chosen ground-fixed reference frame (RF). An
accurate orientation estimation is hence necessary to isolate
the linear acceleration which is then used to estimate the IMU
displacement, due to the fact that the gravitational acceleration
is included in the readings of the accelerometer. Therefore, it
is clear that the accuracy of the displacement estimation is
strictly dependent on the accuracy of the orientation estima-
tion.

In the gait analysis field, the instrumented treadmill ap-
pears to have widespread employment, providing a series of
advantages over walking on the ground, allowing to perform
a series of repetition of a cyclic function such as gait in a
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controlled environment, at a repeatable and stable velocity,
with a high number of consecutive steps. Further, a treadmill-
based training has a key role as neuromotor therapeutic tool
in promoting residual walking ability, being also particularly
useful for the evaluation of pathological subjects in research
and clinical contexts [4], [16], [17]. However, in motion
analysis laboratories, magnetic disturbances are a common
phenomenon that causes distortions in attitude estimation of
an IMU [18]. In our particular scenario, such disturbances
are generated by the treadmill electric motor and metallic
structure, which affect the IMU magnetometer signal, leading
to a bad computation of the sensor’s orientation. For all these
reasons, a magnetometer-free strapdown approach is proposed,
in order to estimate the device relative orientation through an
Unscented Kalman filter (UKF)-based sensor-fusion algorithm
which relies only on accelerometer and gyroscope data. A
calibration procedure is also proposed in order to refer the
magnetometer-free orientation estimation to a ground-fixed
navigation RF. This aspect was required also for validating
the results with respect to an OPT system.

While the orientation estimation problem is commonly
addressed through information filters, as Kalman-based or
complementary, the inertial displacement estimation requires
the use of the double integration of acceleration, where the
drifting phenomenon can represent a crucial drawback, if not
adequately treated. However, the unreliability of the simple,
straightforward double integration of the signal coming from
the accelerometer is well-acknowledged in the field of inertial
sensing and dead-reckoning [19]. Thus, the double integration
requires to be put into a theoretical (model) or experimental
(zero-velocity updates) frame in order to temporally limit the
drifting behavior. For this reason, in the field of human motion
analysis, one of the most used approaches, also known as
indirect estimation method, requires a geometrical model of
human lower-limb [20], [21], being subject-dependent due to
the need of anthropometric parameters. On the other hand,
the methods based on zero-velocity update require the inertial
sensor to be mounted on the foot in order to obtain the
quasi-stationary periods needed for the integration and drift
reset [22]. However, the latter method is mainly used for
pedestrian dead-reckoning and cannot be directly employed for
CoM displacement estimation, unless a biomechanical model
and a multi-IMU approach are adopted [11].

The goal of the proposed work is hence to present a reliable
procedure to estimate the 3-D human body CoM displacement,
during treadmill walking by using a single inertial sensor,
without the need for any biomechanical gait model and relying
on the cyclic pattern of walking mechanics. To this aim, the
sacral marker method was adopted, where the CoM trajectory
is represented by the sacrum bone movement and the marker
was replaced by a sacrum-worn IMU [10], [11], [13].

The choice of adopting the Unscented variant of the Kalman
filter, over the well-established Extended version (EKF) [23],
[24], was driven by the necessity to achieve high accuracies
in spite of a missing sensor (magnetometer), following the
intuition that the better performances of the UKF over the
EKF [25], [26] would compensate the lack of magnetometer
measurements. The core logic behind the UKF is that “it is

easier to approximate a probability distribution [than it is to]
approximate an arbitrary nonlinear function or transforma-
tion”, and, as stated by Wan and Van Der Merwe, this can
be achieved with a “comparable level of complexity” [25],
[27]. The trade-off choice adopted between computational cost
and results accuracy is further discussed in this work. The
validity of the proposed method was evaluated by comparing
both attitude and displacement IMU estimations with those
obtained through an OPT system.

II. METHODOLOGY AND EXPERIMENTAL SETUP

The strapdown estimation of an IMU displacement from
its accelerometer data is a non-trivial task. Let us assume
a simplified model of the sensor, where only the linear
acceleration is taken into account and the Coriolis, Euler and
centripetal accelerations are assumed negligible [28], [29]:

âB = aBl + gB + v (1)

where B represents the sensor’s (Body) RF. Measured ac-
celeration is a combination of linear acceleration (aBl ) and
gravitational acceleration (gB) with additive white Gaussian
noise denoted as v ∼ N(0,R) [23], [30]. In order to properly
estimate the sensor’s displacement, three major issues need to
be taken into account:

1) The relative orientation estimation of B with respect to a
fixed RF (Navigation - N ) in which the movement must
be represented.

2) The contribution of gB, which must be efficiently re-
moved before the linear acceleration integration.

3) The integration technique implementation combined with
proper filtering to minimize the error introduced by v.

In this section, these points are addressed consequentially.
Firstly, an UKF sensor fusion algorithm is proposed to opti-
mally estimate the orientation of the IMU placed on the lower
back. Secondly, the estimated orientation is used to properly
remove gB from each acquired acceleration time frame and
refer each accelerometer reading to N . Finally, the double
integration of the linear acceleration is performed through a
4th-order Runge-Kutta procedure.

A. Orientation Estimation

The estimation of a rigid body orientation in space amounts
to define an algebraic relationship between the representation
of a point p ∈ R3 in two different RFs. This relationship
is commonly defined using either a Direction Cosine Matrix
(DCM) [31] or a quaternion product, as reported in the
following expressions:

pN = ANB · pB (2)

pN = [qNB ]
−1 ⊗ pB ⊗ qNB (3)

where pN and pB represent the same point in R3 respectively
in N and B. For the sake of simplicity, in (2)-(3), B and N
share the same origin. The matrix ANB is the DCM, whose
columns are the axes versors of B expressed in N . The symbol
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⊗ represents the Hamilton Product (HP) [32] and qNB ∈ H is
a unit quaternion q =

[
q0 eT

]T
, where q0 is its scalar part

and e is its vector part (or imaginary part) [32].
The quaternion approach offers many advantages over the

DCM one. One above all is the possibility to store a 4-
D vector instead of a (3 × 3) matrix. Also, the rotation
representation in H bypasses the gimbal lock issue, which
occurs when using Euler angles parametrization. Lastly, this
kind of representation allows the feasibility of a state-space
approach to orientation estimation, which is presented in the
following section.

1) A State-Space Approach: The changing rate of a quater-
nion describing the orientation of a non-static rigid body, can
be related to its angular velocity by the following expression

q̇ = Ω · q (4)

Ω =
1

2

[
0 −ωT
ω −[ω×]

]
(5)

where ω =
[
ωx ωy ωz

]T
is the rigid body angular velocity

expressed in B and [ω×] is a skew-symmetric matrix [33],
[34]. The discrete solution of (4) is

qk+1 = Φk+1,k · qk (6)
Φk+1,k = exp(Ωk · Ts) (7)

where (7) represents the state-transition matrix of the homoge-
neous system, which can be approximated to the second term
of its Taylor series Expansion as follows:

Φk+1,k = I(4×4) + Ωk · Ts (8)

However, as in the case of the acceleration (1), there is the
necessity to deal with real data coming from an estimation of
the angular velocity by means of a gyroscope to define the
content of (5). Hence

ω̂ = ω + δω (9)

is assumed as a simplified gyroscope model [31], [34],
where δω is a vector Brownian process with E {δωδωT } =
Q(t)δt [30] and E is the expectation operator. The direct
consequence of this assumption is the re-definition of (4) as
follows:

q̇ = (Ω̂− δΩ)q

= Ω̂q− δΩq

= Ω̂q + Γδω (10)

with

Γ = −δ(Ωq)

δω
= −1

2

[
−eT

[e×] + q0 · I

]
(11)

The necessity to involve a filtering process in the orientation
estimation is highlighted by the stochastic nature of (10);
hence, any attempt to estimate a quaternion from this form
would result in unbounded drift after a certain period of
time, independently from the numerical integration technique
applied.

2) The Filtering Process: A quaternion-based, discrete-
time UKF sensor fusion was chosen to estimate the IMU
orientation. The state-space vector of the filter is defined by
a unit quaternion and the prediction phase of the filter is
performed as reported in Table I, where Xk are the Van Der
Merwe Sigma-points at time frame k [35].
The Sigma-points propagation is performed through the f(∗)
function, which applies the discrete-time model (6)-(7) to
the columns of Xk. The system noise covariance matrix is
computed as follows, accordingly to [23], [30], [36]:

Qk+1 =

(
Ts
2

)2

ΓkΣgΓ
T
k (12)

where Σg = σgI, and σg is the gyroscope sensor’s variance.
The state error covariance matrix Pk=0 and the initial state
qk=0 must be obviously given in advance.

The update phase of the filtering process is hence performed
by processing the information coming from the accelerometer,
as reported in Table II.
The h(∗) function (Table II.2) used to propagate the Sigma-
points during the update phase is the discrete system’s mea-
surement process:

âk+1 = h(q−k+1) + vk

= [q−k+1]
−1 ⊗ gNq ⊗ q−k+1 + vk (13)

with gNq =
[
0 0 0 g

]T
quaternion vector [32]. This

formulation is made under the assumption that the linear
acceleration aBl in the simplified model (1) is small enough
to be excluded from the observation at time (k + 1). To
achieve this, it is necessary to evaluate the norm of the
read acceleration before the update step. In case the norm
of the acceleration exceeds g (with a certain tolerance), the
assumptions made in (13) fall short, hence the update phase
of the filter is skipped and the time index is incremented.
The tolerance choice for the acceleration norm evaluation was
chosen in compliance with [23].

The high nonlinearity of (13) requires the use of a nonlinear
form of the Kalman Filter to estimate the error covariance
matrix at the update phase. The UKF is based on the fact
that no approximation is made directly on the nonlinear func-
tion (model or measurement process), but on its probability
distribution [37]. As a result, no first-order approximation is
injected in the process through the a priori computation of a
Jacobian of the nonlinear function (as in EKF). This choice
is made in spite of a higher computational complexity due to
the Cholesky factorization [38] inside the Unscented transform
(UT) step.

B. Displacement Estimation
Thanks to the quaternions estimated in the previous sec-

tion, it is possible to clean the accelerometer readings from
the gravitational component. An estimate of the linear body
acceleration is hence given by

aNlk ≈ ãNlk = qk ⊗ âBk ⊗ q−1k − gN ; ∀k (14)
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TABLE I
UKF PREDICTION

Weights computation - only once

c = α2(κ+ n); λ = c− n (I.1)

w
(m)
0 = λ/c; w

(c)
0 = λ/(c+1−α2+β) (I.2)

w
(m)
i = w

(c)
i = λ/(2c); i = 1 . . . 2n (I.3)

wm =
[
w

(m)
0 w

(m)
1 . . . w

(m)
2n

]T
(I.4)

wc =
[
w

(c)
0 w

(c)
1 . . . w

(c)
2n

]T
(I.5)

W = (I−
[
wm . . .wm

]
) · diag(wc) · (I−

[
wm . . .wm

]
)T (I.6)

Unscented Transform generation and propagation

Xk =
[
qk . . . qk

]
+
√
c
[
0(n×1)

√
Pk −

√
Pk

]
(I.7)

X̂k+1 = f(Xk) (I.8)

State and error covariance matrix estimation

q−
k+1 = X̂k+1wm (I.9)

P−
k+1 = X̂k+1WX̂Tk+1 +Qk+1 (I.10)

TABLE II
UKF UPDATE

Unscented Transform generation and propagation

X−
k+1 =

[
q−
k+1 . . . q−

k+1

]
+
√
c
[
0(n×1)

√
P−
k+1 −

√
P−
k+1

]
(II.1)

Y−
k+1 = h(X−

k ) (II.2)

Kalman Gain computation

µk+1 = Y−
k+1wm (II.3)

Pxyk+1 = X−
k+1WY

−T

k+1 (II.4)

Pyyk+1 = Y−
k+1WY

−T

k+1 +Rk (II.5)

Kk+1 = Pxyk+1P
yy−1

k+1 (II.6)

State and error covariance matrix update

qk+1 = q−
k+1 +Kk+1 · (yk+1 − µk+1) (II.7)

Pk+1 = P−
k+1 −Kk+1P

yy
k+1K

T
k+1 (II.8)

where the approximation symbol is due the lack of the
noise term v in the given relationship. The integration of
the estimated linear acceleration is carried out via Runge-
Kutta 4th-order method [39], solving the following continuous
system for s (speed) and d (displacement):

ṡNk = ãNlk (15)

ḋNk = sNk (16)

The proposed integration approach relies on the cyclical pat-
tern of acceleration of a sacrum-worn IMU during walking,
which allows to compensate drift exploiting the cyclic change
of acceleration direction, thus changing the sign of the inte-
gration every short temporal interval (left-right stride cycle).
The treadmill walking ensures cyclical pattern of acceleration

to be observed on each motion axis (AP, VT and ML). Ob-
tained displacements are further processed with a Butterworth
bandpass filter with cutoff frequencies ω = [0.1, 5] Hz in order
to smoothen output signals and deal with residual integration
drift.

C. Inertial and Navigation Reference Frames Alignment

Fig. 1. As shown in image “A”, the inertial sensor is placed to fit the OPT
system calibration frame. An example of the relationship between the two
different RFs is represented by image “B”. In this example, the IMU’s RF is
rotated of a known 90 deg angle about the OPT system x axis. The qoffset is
hence known.

In order to compare displacements expressed in two dif-
ferent RFs (IMU and OPT system), they must be aligned
through a specific calibration procedure. In this regard, due
to the lack of magnetometer information for the present setup,
the relationship between B and the chosen N , which is usually
obtained considering the heading misalignment with magnetic
north. This subsection deals with this fundamental issue to
ensure a proper validation of the proposed method through an
exact alignment of B and N .

The filter defined in the previous sections estimates a
quaternion which relates the navigation frame N with B
for every kth instant. Keeping the IMU still and allowing
the UKF to converge, for example after i iterations, the
resulting estimated quaternion will reflect the rotation which
minimizes the residual in (II.7, Table II). The result is hence
strictly dependent on the choice of gNq . This is however a
sub-optimal estimation, since even if the choice of gNq is
compliant with the read gravitational component in the wanted
N (in this case the RF of the OPT system), the estimated
quaternion is missing an “heading” information, which is
usually obtained through a magnetometer. For example, sup-
pose the IMU is laying still on a flat surface with its y-
axis pointing upward: choosing gNq =

[
0 0 g 0

]T
any

quaternion qi =
[
cos θ/2 0 sin θ/2 0

]T
; ∀θ ∈ {0, 2π}

would satisfy (II.7, Table II).
One way to address this issue is to impose the IMU to start

the acquisition from a configuration whose orientation (qoffset)
with respect to N is known. The following steps are proposed
to ensure a proper alignment:

1) Both the IMU and the target are equipped with small
velcro strips.

2) The IMU is placed in the measurement space so that
qoffset is known (Fig. 1). A good choice would be to force
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the initial aligment of the two systems chosing N so that
qoffset =

[
1 0 0 0

]T
.

3) The acquisition starts and the filter is allowed to converge
for an arbitrary number of iterations i. This number
may change in accordance to how the gyroscope and
accelerometer variances affect the Q and R matrices and
also with the choice of qk=0 and Pk=0.

4) The IMU is hence placed on the target thanks to the
velcro strips while it is still acquiring.

5) From instant i every quaternion is reset to the qoffset as
follows:

qk := qoffset ⊗ (q−1i ⊗ qk); ∀k = i . . . s (17)

where s is the number of samples acquired. This procedure
allows the rotations of the IMU to be referred to the RF of
the OPT system. As a result, if a ground RF convention is
adopted to describe the rotations in terms of roll-pitch-yaw
(RPY) angles, any IMU fixed on a markers cluster will return
the same estimated values. Consequently, both orientation and
displacement estimations can be properly compared between
the two measurement systems. Further, the resulting rotations
of the rigid body will be always around the axes of the fixed
navigation frame, regardless of the different placement of the
sensor from one experimental trial to another. This ensures the
repeatability and consistency of results among different trials.

D. Experimental Setup and Data Processing

Twelve healthy subjects (6 females and 6 males), age: 23±2,
height: 160 ± 10 cm, weight: 60 ± 5 kg were asked to walk
on a treadmill for approximately 150 s at a speed of 3, 4
and 5 km/h [40]. Each walking trial was repeated twice for
each subject for a total of 72. The total number of steps
acquired was 13090 (3335 at 3 km/h, 4602 at 4 km/h and
5153 at 5 km/h). Further, in order to investigate drifting effects,
each subject performed three additional longer walking trials
(3 km/h) lasting 350 s and the error curve between OPT
system and IMU CoM displacement was also computed (see
Discussion section). Each subject was instrumented with a
single IMU (NGIMU, x-io Technologies (UK), dimensions
56×39×18 mm, weight 46 g, battery life 4-12 hours, sampling
rate 100 Hz, triaxial accelerometer: range ±16 g, resolution
490 µg. Triaxial gyroscope: range ±2000 dps, resolution
0.06 deg/s) attached on a markers cluster placed on the lower
trunk (Fig. 2). The cluster hosted a total of four markers and
was recorded with a six infrared cameras OPT system (BTS
Bioengineering Corp., sampling rate 100 Hz). The markers
cluster and IMU placement has been performed for each
subject and trial by the same, expert examiner. In order to
reduce possible over-controlled conditions in the experimental
setup, each subject was instructed to not hold the hands on
the handrail, allowing free walking conditions. Accelerometer
and gyroscope raw data were off-line processed through a
Python custom routine. At the beginning of each trial, the
procedure described in Section II-C was followed. This study
was conducted following the ethical principles of the Helsinki
Declaration and was approved by the local ethics committee.

Fig. 2. The IMU was attached in correspondence of the sacrum bone and
the rigid markers cluster was fixed with an elastic strap (A). In panel (B) are
graphically reported the fixed and navigation RFs.

The volunteers gave their written informed consent prior the
beginning of the experiment.

The evaluation of orientation estimation was made compar-
ing the rotations obtained from the two measurement systems.
Estimated quaternions for the IMU and rotation matrices
from the markers cluster were converted into RPY angles
following the (X1Y2Z3) ground Tait-Bryan convention. The
angles temporal series were compared in terms of root mean
square error (RMSE) and Pearson correlation coefficient (r).
The evaluation of IMU displacement was made comparing
its peak-to-trough values with the ones extracted from the
cameras-measured cluster markers displacement. Further, also
the RMSE values between CoM displacement trajectories were
computed.

The choice of the RF of the OPT system, in relation to the
treadmill, was made as follows: the x axis pointed towards the
walking direction, y axis pointed upwards and z axis pointed
to form a right-handed coordinate system (Fig. 2).

III. RESULTS

Root mean square errors between RPY angles time-series
computed from OPT system and IMU are reported in Table III
as mean±standard deviation, together with their correlation
coefficients. Peak-to-trough values of the CoM displacement
computed from OPT system and IMU data are reported in
Table IV, as mean±standard deviation for all the considered
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TABLE III
ERRORS AND STANDARD DEVIATIONS BETWEEN OPT SYSTEM AND IMU

ESTIMATED TAIT-BRYAN (X1 Y2 Z3) ANGLES FOR ALL THE THREE
CONSIDERED WALKING SPEEDS. THE THIRD COLUMN REPRESENTS THE

PEARSON’S CORRELATION COEFFICIENTS BETWEEN THE ANGLES
TEMPORAL SERIES AND THEIR STATISTICAL SIGNIFICANCE.

Speed Rotation axis RMSE (deg) SD (deg) r p

3 km/h
Roll x-axis 1.08 0.93 0.96 10−16

Pitch y-axis 0.48 0.43 0.96 10−16

Yaw z-axis 0.64 0.54 0.92 10−16

4 km/h
Roll x-axis 0.95 0.82 0.95 10−15

Pitch y-axis 0.58 0.51 0.96 10−14

Yaw z-axis 0.99 0.92 0.94 10−15

5 km/h
Roll x-axis 1.19 0.43 0.97 10−16

Pitch y-axis 1.43 1.35 0.94 10−15

Yaw z-axis 1.79 1.69 0.95 10−15

TABLE IV
COMPARISON BETWEEN PEAK-TO-TROUGH DISPLACEMENTS (MEAN±SD)

MEASURED THROUGH OPT SYSTEM AND ESTIMATED BY IMU. IN THE
LAST COLUMN, THE AVERAGE (±SD) RMSE VALUES BETWEEN COM

DISPLACEMENT TRAJECTORIES ARE ALSO REPORTED.

Speed Direction OPT (mm) IMU (mm) RMSE (mm)

3 km/h
AP x-axis 30.3 ± 11.3 29.3 ± 11.2 1.2 ± 0.5
VT y-axis 24.6 ± 7.5 25.0 ± 6.5 1.8 ± 1.1
ML z-axis 32.7 ± 21.6 32.0 ± 22.2 1.6 ± 0.9

4 km/h
AP x-axis 29.2 ± 5.0 30.0 ± 7.0 1.2 ± 0.6
VT y-axis 30.0 ± 6.0 29.3 ± 9.3 2.1 ± 1.1
ML z-axis 45.8 ± 6.9 42.1 ± 8.9 2.4 ± 1.3

5 km/h
AP x-axis 26.1 ± 4.5 27.2 ± 6.0 1.4 ± 0.4
VT y-axis 20.7 ± 5.4 21.8 ± 7.2 2.2 ± 1.3
ML z-axis 42.7 ± 6.6 38.4 ± 8.6 2.5 ± 1.3

walking speeds. A boxplot representation of Table IV is given
in Fig. 3.

For a representative subject (walking speed 5 km/h), a 20
s window of the RPY angles time series for OPT system and
IMU are reported in Fig. 4, while a 20 s time window of CoM
displacement computed from OTPS and IMU is reported in
Fig. 5.

IV. DISCUSSION

The present work aims to propose a novel software-based
technique to estimate the AP, VT, and ML CoM displacement
through a sacrum-worn IMU, with respect to a ground RF
during treadmill walking along with IMU orientation in a
magnetometer-free sensor-fusion setup. Beyond the position
estimation drift due to thermal noise integration, which is
usually dealt with high-pass filtering, the main issues regarding
such practice are the following: the presence of undesired grav-
itational acceleration readings and the time-varying pose of the
sensor’s RF. In the present work, a comprehensive approach
is proposed to address the listed issues, with an UKF-based
filter that estimates the orientation of an IMU with respect to
a ground fixed navigation frame. It is worth outlining that the
proposed orientation and displacement estimation procedure
is performed without using magnetometer data, in contrast
with more classical sensor-fusion approaches employing the
entire set of information provided by an IMU [23], [28], [41],

[42]. The significant advantage of this approach is its insensi-
tivity to magnetic interferences, which are likely to occur in
motion analysis laboratories, where electrical appliances and
metallic instrumentation are often present. The latter is well
acknowledged as an unavoidable source of distortions which
can bias the outcomes of inertial sensing based techniques at
various levels [18], [43]. Incidentally, the choice of relying
on the above mentioned magnetometer-free sensor fusion, in
combination with an UKF-based approach, also allowed to
avoid first-order approximation of the measurement model
(as in EKF), due to the nature of the UT. An example of
first-approximation induced error is shown in Fig. 6, where
the drifting behavior of the EKF during a quasi-stationary
period is compensated by the UT in the UKF. Despite a direct
comparison between EKF and UKF was beyond the aim of
the present work and deserves to be deepened in dedicated
studies, during the quasi-stationary periods between the end
of the calibration procedure and the beginning of walking
(about 20 s for each subject), the drifting behavior of the EKF
resulted in average initial orientation offsets equal to 13.4±7.7,
1.2±1.0 and 3.3±2.6 degrees for the heading, attitude and
bank respectively, while for the UKF the same biases resulted
0.8±0.7, 0.5±0.4 and 0.2±0.1 degrees. It is worth underlining
that the latter comparison has been performed under the same
filters conditions, i.e. the same initial state and error covariance
matrix, same system noise covariance matrix and measurement
noise covariance matrix. The above reported differences in
the initial biases seem to suggest that the lower performances
of EKF in terms of drifting are not directly related to the
absence of the magnetic information but it can be referred to
the different computational procedures of the two filters, i.e.
the measurement model linearization performed by the EKF
which is absent in the UKF. However, the probability distri-
bution approximation in the UT, which is achieved through
the Cholesky factorization [37], [38], makes the filter barely
applicable in real time with an IMU at a working frequency
of 100 Hz. At the same time, due to the choice of excluding
the magnetometer from the sensor fusion, lower sampling
frequencies would make the estimation vulnerable to drift
induced by undersampled rapid orientation variations. In this
sense, accuracy has been favored over real-time applicability
in the present work.

These experimental choices led to the remarkable corre-
spondence of the IMU attitude estimation when compared to
that obtained from the gold-standard (OPT system). Indeed,
orientation estimation errors (Table III) presented values under
1 deg for both pitch and yaw angles, while the higher errors
in the roll angles are due to underestimations of the IMU with
respect to the OPT system (Fig. 4). Attitude errors resulted
comparable with those reported in [23], when no magnetic
disturbances are considered and where a full sensor fusion was
performed, i.e. by using also magnetometer data. However,
when magnetic disturbances were taken into account, attitude
biases reported in [23] raised significantly, resulting higher
than those observed for all the walking speeds considered
in the present study. These aspects highlight once more the
influence of magnetic disturbances on IMU-based attitude
estimation. On the other hand, they support the importance
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Fig. 3. Boxplot representation of the peak-to-trough estimated from OPT system data and the proposed IMU-based method for 3 km/h (left), 4 km/h (center)
and 5 km/h (right). Red lines inside the boxes represent medians. The boxes are defined between the 25th (Q1) and 75th (Q3) percentiles. The whiskers are
respectively defined as Q1− 1.5 · IQR and Q3 + 1.5 · IQR, where IQR = Q3− Q1 is the inter-quartile range.

Fig. 4. A 20 s sample window of sacrum-worn IMU rotations of a
representative subject estimated through the OPT system (solid line) and the
IMU (dashed line) at 5 km/h walking speed. RPY angles (pelvic drop, rotation
and anterior tilt respectively as defined by [44]) are respectively referred to
rotations about the x, y and z axes of the RF defined in II-D.

Fig. 5. A 20 s sample window of CoM displacement of a representative
subject measured with the OPT system (solid line) and with the IMU (dashed
line), at 5 km/h walking speed.

of developing IMU-based orientation estimation methods able
to avoid the use of magnetic information, as that proposed in
the present study. Incidentally, the reliability of the present
results seems to be confirmed also considering full sensor
fusion approaches used during the same motor task. Bolink
and colleagues [45] proposed an inertial sensor based method
for estimating pelvis orientation during gait, reporting errors
with respect to an OPT system not lower than 2.6 deg for
both sagittal and frontal plane, while in the present study the
corresponding angles (yaw and roll) showed a decrease in the
RMS errors equal to about 1.5 deg for 3 and 4 km/h and about
1 deg for 5 km/h. The lower and more variable hip angular
ranges reported for increased movement speeds [46], could
partially account for the higher RMSE and SD observed in
IMU orientation, in particular for pitch and yaw angles, when
considering increasing walking speeds (Table III). Further,
a higher walking speed leads to relatively fast transitions
between gait phases, in particular during the loading phase,
resulting in faster amplitude transients of inertial data which
could likely be linked to an enhanced presence of movement
artifact noise in IMU measurements, affecting the eventual

inertial attitude estimation. However, it is worth noticing that
the increase in RMSE and SD values for 4 and 5 km/h is
in any case not higher than 1 deg with respect to 3 km/h,
highlighting a reliable attitude estimation also for increasing
walking speeds.

An accurate orientation estimation of an IMU is crucial for
its 3-D displacement computation, considering that a good
orientation estimation positively affects an efficient removal
of the gravitational component. However, a correct rotation of
the read acceleration to fit the navigation frame is unavoidable
when displacement estimation has to be represented in an
arbitrary coordinate system, other than the sensor RF; this
is also true when those estimations have to be compared to
the measurements provided by a gold-standard OPT system
for validation purposes. Therefore, in order to address the
latter issues, a straightforward calibration procedure is pro-
posed (Section II-C) to refer magnetometer-free orientation
estimation to a fixed RF.

With regard to this matter, it is important to note that,
without the proposed calibration, the lack of magnetic in-
formation in the present experimental setup would make it
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impossible to refer the body RF of the IMU to a ground-fixed
RF, which is usually determined by a standard heading rotation
with respect to the measured magnetic north. Henceforth, any
estimated displacement would not be related to the real VT,
ML, and AP directions. Despite it is often disregarded, this
aspect is of paramount importance in order to obtain a proper
measurement reference to a fixed RF. Indeed, without this
kind of calibration, the following orientation and displacement
estimation of the sensor would be referenced to the initial
pose of the sensor, which depends on the in situ placement
procedure made by the experimenter. Keeping in mind the
proposed application, the misalignment of the sensor RF with
respect to a fixed RF is to be considered as an unavoidable
issue, due to three main leading factors: the first is the
physiological shape of the human pelvis and in general of
the human back, which is not normal to the ground plane. The
second is the intra- and inter-examiner variability in the sensor
placement and the third is the difficulty to obtain a perfect
alignment of the subject, and thus of the sensor heading, with
the direction of progression. All of these factors lead to a
misalignment between the sensor’s and the fixed RFs which,
if not properly addressed, represents a significant source of
error when the orientation and displacement estimated from
the IMU are compared with those measured in the fixed RF.

In the present study, thanks to the calibration procedure,
it was possible to estimate and correct, for each trial, the
starting sensor misalignments with respect to the fixed RF.
Average sensor misalignments showed non negligible values,
equal to 3.0±4.0 deg for the roll angle, 0.5±2.2 deg for the
pitch angle and 6.5±5.7 deg for the yaw angle. Therefore, the
proposed calibration procedure was needed in order to make
the measurement setup immune to the above mentioned subject
heading misalignment (mainly affecting pitch estimation and
leading to AP and ML displacement estimation errors), lower-
back cluster placement errors (mainly affecting yaw estimation
and leading to VT and AP displacement estimation errors)
and IMU positioning on the cluster (mainly affecting roll
estimation and leading to VT and ML displacement estimation
errors).

Results in displacement estimations have been evaluated
comparing the peak-to-trough distances computed from the
OPT system and IMU time-series. The high similarities be-
tween percentiles of the two sets of measures show that the
two systems are measuring the same quantities (25%, 50%
and 75% percentile absolute differences are below 2 mm for
each axis and for each walking speed, Fig. 3). Further, at 3
km/h both the average peak-to-trough and standard deviations
numerical values measured by the two systems resulted in any
case below 1 mm (Table IV) for each considered direction.
For the other two considered speeds, only the ML direction
showed a limited increase in the errors, not higher than 4
mm, with similar standard deviations. This indicates that the
measurements performed by the proposed IMU-based method
and the OPT system agree not only in terms of average values
but also in terms of inter-subject variability.

In particular, regarding the vertical CoM component, present
results showed errors 80% lower with respect to [47] where the
same experimental setup was adopted, but higher speeds were

Fig. 6. Example of quaternions estimated with EKF and UKF. The EKF
shows a significant drifting behavior toward the end of the stationary period,
which is absent in the UKF estimation. Circles represent a magnified view of
the different drifting behavior of EKF and UKF.

Fig. 7. CoM displacement time-series along the AP, VT and ML directions
during a 350 s walking trial of a representative subject. Red line represents
the error between OPT system (solid line) and IMU (dashed line).

considered. Considering other works where a full sensor fusion
(including magnetometer) was performed, our estimation ac-
curacy of VT CoM component resulted comparable for all the
gait speeds with that reported in [13], where a lower number of
consecutive free walking cycles was considered (three walks).
The accuracy was also higher with respect to [48] (about 2 mm
versus an average error over the three speeds of about 0.6 mm),
where a 10 m walking test was performed and two consecutive
steps were analyzed and with respect to [49], where 10 s
walking trials were analyzed. Incidentally, the accuracy on
the VT CoM component results particularly important, being a
valuable source of information about gait mechanics and one
of the most considered features for the latter kind of motor
task [4]. Despite relatively few studies compared the full 3-D
CoM trajectory estimation during walking obtained by a single
IMU, for what concerns the AP and VT CoM components, the
errors obtained in the present study resulted not higher than
1 mm for all the considered walking speeds (Table IV), while
in [11] errors not lower than 3 mm were reported for the same
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directions, with a remarkable drop of the error of about 80%
(about 0.5 mm versus 3 mm) for the VT direction. For the ML
component, the errors resulted comparable for trials at 4 and
5 km/h, while for trials at 3 km/h they showed a considerably
lower value (about 0.4 mm versus 3 mm). Incidentally, the
accuracy of displacement estimation seems to be supported
also by the RMSE values between CoM trajectories (Table IV),
which resulted in any case below 2.5 mm for 150 s walking
trials, with a limited variability (SD not higher than 1.3 mm).
It is worth noticing that in [11] only the subjects’ self-selected
speed was considered and more importantly there was the need
for a multi-IMU setup for CoM estimation, while in the present
study a noticeably less obtrusive setup was presented, with a
single sacrum-worn sensor.

Eventually, another aspect deserves to be briefly discussed.
When dealing with strapdown inertial motion tracking, the
drifting issue represents an aspect to be carefully dealt with.
The solutions reported in Section II-B appear to properly
address the drift issue for relatively long walking trials (150
s) at 3, 4 and 5 km/h. However, the reliability of the proposed
approach has been verified also considering longer epochs.
Therefore, each subject performed three additional walking
trials lasting 350 s and the convergence in measure [50]
was studied through the computation of the error curve. As
shown in Fig. 7, the absence of any significant drifting effect
is verified by the quasi-static value of the average error
convergence to zero.

The proposed CoM estimation method provides promising
results in terms of both orientation and 3-D displacement,
also when the walking task was performed at different speeds
(3, 4 and 5 km/h). However, it is worth noticing that, taking
into account the experimental setup employed in this study, a
direct comparison with one of the most used methods for CoM
estimation, i.e. the segmental analysis, was not performed.
Albeit it was beyond the aim of the study, the latter could
be viewed as a partial limitation of this work, deserving
to be carefully investigated in future and focused studies.
However, the validity of the present results with respect to
a widely used and accepted CoM estimation method, i.e.
the sacral marker method, seems to suggest the reliability of
the proposed procedure also with respect to different CoM
estimation methods. Indeed, for the walking task the sacral
marker method has been reported to be comparable with
respect to the segmental analysis [9], [10] and even better with
respect to different methods, such as those based on the double
integration of the ground reaction force [9]. However, all these
aspects need to be deepened and investigated in dedicated
studies, also considering larger populations and different gait
conditions, such as ground and slope walking.

Future studies should assess the validity of the proposed
CoM estimation procedure with respect to the segmental
analysis method, by using a multi-IMU setup. Further, the
3-D CoM displacement based on a single IMU should be
tested also on level walking, where a different strapdown
procedure is needed for an IMU placed on the sacrum and not
on the foot [19]. The use of the magnetometer information
also deserves to be carefully assessed, in order to better
understand the weight of such kind of data in this type of

applications. Eventually, due the off-line processing presented
in this study for 3-D orientation and displacement estimation,
the real-time applicability of the proposed procedure deserves
to be carefully investigated. The latter, together with a stand-
alone version of the proposed algorithm, represents a part
of the future developments regarding this work. Incidentally,
a generalized version of the proposed algorithm is currently
under development and will be made available upon request
on a public hosting service (GitLab) for those interested.

V. CONCLUSION

In this work, a single IMU and RF alignment procedure to
estimate 3-D CoM displacement and orientation during tread-
mill walking has been presented. Magnetometer-free sensor
fusion has been proposed to avoid orientation estimation errors
introduced by the treadmill structure and electric motor, and
more generally to be applied in any laboratory environment
where magnetic disturbances may affect measurements.

The proposed approach relies on a Unscented variant of
the Kalman Filter and on post-processing Butterworth fil-
ters, highlighting a focus on data accuracy with low-cost
instrumentation rather than real-time applicability, which is
most valuable in clinical settings. The compact form of the
proposed algorithm, alongside with a straightforward ground-
fixed RF alignment procedure, the necessity of a single low-
cost measuring device such as an IMU and the use of a com-
mon electrical treadmill, make this experimental setup highly
valuable in those scenarios where cumbersome instrumentation
is willingly avoided to ensure subject’s freedom of movement.
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