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A B S T R A C T

The Pareto frontier is extensively adopted in multi-objective optimization, especially in multi-carrier energy
system modeling. Despite the various methodologies available to derive the frontier, it represents different
optimal solutions, making the final selection non-trivial. The modeler’s expertise is crucial in determining
the weight factors assigned to each objective for selecting the final solution from the Pareto frontier. This
study proposes a novel approach to support such decision-making, introducing an additional key performance
indicator, the state of health of the battery, evaluated through physical battery modeling. By comparing
different scheduling schemes in multi-objective multi-carrier energy systems, each with its distinct battery
operational strategy, this newly introduced indicator has deployed to automatically identify the ultimate
solution from the Pareto frontier, without additional weighting coefficients. Such an approach, therefore,
automates the decision process, which supports easy engineering, especially for the small scale multi-energy
systems such as smart homes, like the case study presented in this work that has four distinct energy carriers,
adopting the 12 V 128 Ah LFP chemistry Li-ion battery modules, demonstrates the effectiveness of this
automated selection process. Furthermore, when compared to the maximum values across the entire frontier,
the automatically chosen solution exhibits reductions of 27.96% in CO2 emissions and 3.67% reduction in
overall costs. Over long-term operation, this approach has the potential to extend battery lifespan by up to
26.67%, directly impacting the economics of multi-carrier energy systems.
1. Introduction

Energy systems modeling has a critical role as a support measure for
energy planners and policymakers to deal with the complexities of the
ongoing energy transition. As they undergo a profound transformation.
Long-term energy planning is a key tool in anticipating and preparing
for future energy scenarios, especially in light of the fluctuating and
evolving energy policies [1]. Indeed, energy systems modeling provides
a valuable framework for re-assessing and adapting to these dynamic
conditions. Moreover, energy systems models are also instrumental in
the operational stage, enabling the optimization of already installed
energy assets based on the specific objectives set by the designer.
This optimization can lead to improved scheduling and enhanced per-
formance, ensuring the efficient utilization of available resources. By
harnessing the power of energy systems modeling, decision-makers
can make informed choices, and effective strategies, and drive the
successful implementation of sustainable energy solutions.

Among the various approaches that enable energy transition, sector
coupling emerges as a significant concept. It involves the integration
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of energy-consuming sectors with the power generation sector to ef-
fectively reduce energy transition costs [2]. The scientific literature
presents many technical solutions for implementing sector coupling,
with direct electrification of consumers and the utilization of Power-
to-X technologies, as they enable cross-energy sector coupling, being
particularly promising [3]. To effectively address the integration of
sector-coupling measures, energy system modeling must be adjusted ac-
cordingly, to accommodate the infiltration of diverse energy networks.
This means that multiple energy carriers and multiple objectives must
be considered within energy systems modeling.

Certainly, the synergies among multiple energy carriers must be
thoroughly evaluated, regardless of the scale of the multi-carrier sys-
tem. With the proliferation of advanced and energy-efficient buildings,
which incorporate various energy carriers, these modern constructions,
often referred to as ‘‘smart homes’’, can also be effectively modeled as
multi-energy systems. These smart homes are equipped with a range
of intelligent technologies designed for producing, converting, storing,
and consuming energy. These technologies are seamlessly managed
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Nomenclature

Acronyms

ACh Absopriont Chillers
BCD Basic Cooling Demand
BESS Battery Energy Storage Systems
BHD Basic Heating Demand
BNGD Basic Natural Gas Demand
CC-CV Constant Current-Constant Voltage
DFN Doyle-Fuller-Newman
ECM Equivalent Circuit Model
EV Electric Vehicles
FEL Flexible Electrical Loads
HEMS Home Energy Management System
HP Heat Pump
LFP Lithium iron phosphate
MAE Mean Absolute Error
MILP Mixed Integer Linear Programming
NCA Nickel Cobalt Aluminum
NMC Nickle Manganese Cobalt oxide
PBM Physic-Based Model
PS2D PSeudo Two Dimensional model
PV PhotoVoltaic systems
PyBaMM Python Battery Mathematical Modeling
RHS Right Hand Side
SCD Space Cooling Demand
SHD Space Heating Demand
SOH State Of Health
SPM Single Particle Model
SPMe Single Particle Model with Electrolyte
ST Solar Thermal systems
TSEL Time-Shiftable Electric Loads
TSS Thermal Storage Systems

Sets

𝑡 Timesteps

Parameters

𝛥𝑡 Timestep length per hour
𝜂𝐵𝐸𝑆𝑆,𝑐ℎ Discharging efficiency of BESS
𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 Charging efficiency of BESS
𝜆𝑔,𝑏𝑡 Natural gas energy buying price, [AC∕Nm3]
𝜆ℎ,𝑠𝑡 Heating energy selling price, [AC∕kWh]
𝜆ℎ,𝑏𝑡 Heating energy buying price, [AC∕kWh]
𝜆𝑝,𝑏𝑡 Electric energy buying price, [AC∕kWh]
𝜆𝑝,𝑠𝑡 Electric energy selling, [AC∕kWh]
𝜉 Carbon intensity of energy consumption,

[kgCO2
∕kWh]

𝐿𝐻𝑉𝑔 Lower heating value of gas, [kWh∕Nm3]
𝑁 Number of cells
𝑛 Number of Pareto curve solutions
𝑟𝐵𝐸𝑆𝑆,𝑐ℎ Charging rate of BESS, [kW]
𝑟𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 Discharging rate of BESS, [kW]

by a Home Energy Management System (HEMS), which operates in
response to dynamic pricing structures and carbon dioxide (CO2) sig-
als transmitted by the power grid, as outlined in the study by Fiorini
t al. [4].
2

𝑠𝑜𝑒𝐵𝐸𝑆𝑆,𝑖𝑛𝑖 Initial state of charge for BESS, [kWh]
𝑠𝑜𝑒𝐸𝑆𝑆,𝑚𝑖𝑛 Minimum state of charge for BESS, [kWh]
𝑠𝑜𝑒𝐸𝑆𝑆,𝑚𝑎𝑥 Maximum state of charge for BESS, [kWh]

Subscripts

𝑏𝑎𝑡𝑡 Battery module level
𝑐𝑒𝑙𝑙𝑠 Cell level
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 Parallel connections
𝑠𝑒𝑟𝑖𝑒𝑠 Series connections

Variables

𝑝𝐵𝐸𝑆𝑆,𝑑𝑖𝑠
𝑡 Power discharged from BESS, [kW]
𝑝𝐵𝐸𝑆𝑆,𝑠
𝑡 Power sold to external grid from BESS, [kW]
𝑢𝐸𝑆𝑆
𝑡 Binary variable for BESS
𝐸 Energy, [kWh]
𝑔𝑒𝑥𝑡,𝑏𝑡 Natural gas bought (import) from the network, [m3]
ℎ𝑒𝑥𝑡,𝑏𝑡 Heating power bought (imported) from the external

grid, [kW]
ℎ𝑒𝑥𝑡,𝑠𝑡 Heating power sold (exported) to the external grid,

[kW]
𝑝𝐵𝐸𝑆𝑆,𝑐ℎ
𝑡 Power charged for BESS, [kW]
𝑝𝐵𝐸𝑆𝑆,𝑢
𝑡 Power used internally from BESS, [kW]
𝑝𝑒𝑥𝑡,𝑏𝑡 Electric power bought (imported) from the external

grid, [kW]
𝑝𝑒𝑥𝑡,𝑠𝑡 Electric power sold (exported) to the external grid,

[kW]
𝑄 Capacity, [Ah]
𝑠𝑜𝑒𝐵𝐸𝑆𝑆

𝑡 State of charge for BESS, [kWh]
𝑇 Temperature, [K]
𝑉 Voltage, [V]

While financial and environmental objectives are commonly pur-
sued in energy systems optimization, several other objectives can
also be selected. For instance, minimizing grid dependency, reducing
dumped energy, or maximizing energy reliability are additional objec-
tives, that have been identified in the work of Khezri et al. [5]. The
vast amount of objectives reflects the requirement to extend the scope
of energy system optimization to multi-objective driven. By adopting
sector coupling and following a comprehensive approach to energy
system modeling, policymakers, and energy planners can deal with the
complexities of the energy transition more effectively. Indeed they can
identify optimal solutions that balance financial viability, environmen-
tal sustainability, grid resilience, and other relevant objectives. When
there are multi-objectives to optimize, a trade-off among them has to be
found, and there are different techniques to find the set of the trade-off
solutions, among different techniques, 𝜖-constraint method proposed by
Mavrotas [6], and weighted sum method, are the most adopted ones by
scientific community [7]. And as a result of both methods, the Pareto
curve or Pareto frontier is obtained.

The Pareto curve is a graphical representation of non-dominated
solutions in a multi-objective optimization problem. Each point on the
curve represents a solution that is optimal in the sense that no other
solution is better for all objectives. However, selecting the ‘‘ultimate’’
solution from the Pareto front depends on the decision maker’s prefer-
ences and priorities among the different objectives. One way to select
the best solution from the Pareto front is to use a decision-making
method that incorporates the decision maker’s preferences, such as
weighting coefficients for objective functions or a utility function ap-
proach [5]. Another way is to use an interactive method where the
decision maker provides feedback on the solutions presented and the al-

gorithm generates new solutions based on this feedback. It is crucial to



Applied Energy 361 (2024) 122925L. Jin et al.

b
b
t
f
a
t

recognize that determining the ‘‘best’’ solution is subjective and reliant
on the decision maker’s priorities and preferences. This subjectivity
introduces the possibility of implicit biases, emphasizing the impor-
tance of aligning the decision-making process with the decision-maker’s
expertise and experience.

Wang et al. [8] have analyzed such aspects, indeed, they have
compared 10 different methods, adopted for chemical engineering,
each of them to select the best solution on the Pareto curve. among
them, only the Gray Relational Analysis method does not require the
weight functions, i.e. does not require additional inputs from designers
to select the best solution. As specifically dedicated to energy systems
modeling, Khezri et al. [5] have investigated both stand-alone and grid-
connected energy systems. Among different perspectives, they have
discussed the customer satisfaction index, in front of demand-side
management measures, or grid dependency indicator, as a performance
indicator for selecting the best solution of the Pareto curve; Conclud-
ing that battery characteristics are still left out from multi-objective
optimization, due to its complexity and the lack of the suitable tools,
indicating that there is still a research gap in such sense.

Over the years, many researchers have investigated Li-ion battery
numerical modeling, primarily for automotive applications [9], to boost
electrical vehicle penetration. There are two main branches of battery
models, Equivalent Circuit Models (ECM) and Physical-Based Models
(PBM) according to the review paper of Zhao et al. [10]; Where ECMs
deal with the battery based on an equivalent electrical circuit, using
basic electrical components like resistors and capacitors to model the
battery behavior. As a consequence, they are easy to implement and fast
to solve, however, they lack accuracy for real-life battery applications,
especially in dynamic operations. PBMs instead, can deliver a higher
accuracy since they treat the battery physic phenomena, including
Butler–Volmer kinetic equations [11,12], they gave insights about the
internal dynamics of batteries such as Li-ion diffusion, Ohmic effects,
and electrochemical kinetics, and therefore they make possible to assess
battery degradation possible. To make the PBMs even more accurate,
more and more researchers are adopting data-driven and machine-
learning techniques [13], however, they would require a large amount
of test data, which quite often is not possible to have.

The aim of this work is, to propose a novel approach, which assesses
the State of Health (SOH) of the battery, through a Li-ion battery
physical modeling framework (Pybamm [14]), characterized by the
attery manufacturer datasheet data, i.e. no experimental testing on the
attery is required, due to different multi-objective scheduling opera-
ional strategies, each of them is a solution from Pareto curve, assessed
rom HEMS, of a smart home case, where four distinct energy carriers
nd its related systems are included, and finally obtain automatically
he best solution, without any additional input from modelers.

The main contributions of this paper are summarized as follows:

1. The physical model of the battery is characterized using the data
provided by the battery datasheet, declared by the manufacturer,
sometimes even accessible online, meaning that the battery test-
ing is not mandatory and the assessment can be done before the
battery investment.

2. Both electrical and thermal properties, of the Li-ion battery are
included, thus also their coupled phenomena are captured, in
order to calculate the SOH indicator.

3. The Li-ion battery is fully parameterized, using experimental
data declared by the battery manufacturer, supported by numer-
ical assessment, which allows evaluation of many operational
parameters of the battery, often neglected in ECMs, such as
charging mode, voltage fluctuation, C-rate, temperature, etc.

4. Automatic selection of the best solution for the Pareto curve,
without any further indications from the modeler who has built
up the optimization, i.e. no weighting functions of objectives are
3

needed to select the best solution.
The rest of the paper is organized as follows: In Section 2, the
Pybamm framework and the parameterization process of the Li-ion
battery are firstly discussed, to be followed by a description of HEMS,
illustrating how multiple objectives are reported; And finally, the pro-
cess to adopt SOH as an indicator is reported. Results and comments
are in Section 3 to be concluded with Section 4 .

2. Material & methods

In this section, firstly the Pybamm framework and the battery
parameterization concept is discussed, followed by the whole work
methodology. Which is divided into three subsequent phases, that are
(i) battery parameterization, (ii) Pareto curve solutions from HEMS,
and finally (iii) the automatic selection of the best solution from them
using the SOH as an indicator. Each phase is described in detail in the
following subsections.

2.1. Pybamm framework

PyBaMM (Python Battery Mathematical Modeling) is an open-source
battery simulation package written in Python, and developed by a
team of experts, funded by the British funding scheme, the Faraday
Institution [15] and NumFOCUS [16]. The whole repository of the
project can be found on the GitHub page at [17]. It provides a
framework for writing and solving systems of differential equations,
a library of battery models and parameters, and specialized tools for
simulating battery-specific experiments and visualizing the results. Fur-
thermore, different physics-based electrochemical models are included,
like Doyle–Fuller–Newman (DFN) and also the Single Particle Model
with Electrolyte (SPMe), proposed by Marquis et al. [18], using state-
of-the-art automatic differentiation and numerical solvers, such as
CasADi [19], indeed multiple scientific papers are produced by the
same developers, describing the framework modeling process, covering
all aspects considered [18,20–24]. All models are implemented flexi-
bly, and a wide range of models and parameter sets are available. Is also
possible to set specified drive cycles of the battery, using user-defined
current, voltage, or power curves.

There are other battery simulation projects similar to PyBaMM, such
as PETLION and COMSOL Multiphysics [25]. While PETLION is an
open-source software, written in Julia coding language, for millisecond-
scale porous electrode theory-based lithium-ion battery simulations
[26]. COMSOL Multiphysics, instead, is a commercial software for
solving PDEs using the finite element method and offers an additional
battery simulation module, including lithium-ion, lead–acid, nickel-
metal hydride (NiMH), vanadium redox flow, and soluble lead–acid
flow batteries.

PyBaMM stands out due to its flexibility, modularity, and open-
source nature. Its use of Python as the coding language has attracted a
more extensive research community, resulting in more comprehensive
documentation compared to its Julia-based counterpart. Moreover,
it is a modular framework that allows for quick model interchange-
ability, making it valuable in different stages of battery research and
development. The framework is open source, which means anyone
can use, modify, and distribute it, enhancing global battery technol-
ogy research. PyBaMM’s comprehensive model library includes a wide
range of physics-based models, making it a vital tool in diverse battery
research.

2.2. Battery parameterization

The parameterization of the Li-ion battery is the process of including
the Li-ion battery characteristics into the Pybamm framework so that
it can reproduce the battery’s operational properties accurately, even
under different operating conditions. Parameterization, therefore, has
a fundamental role in the proper assessment of battery degradation

under different operating conditions, and it is divided into two steps,
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Fig. 1. Battery numerical models comparison. ECMs offer quick solutions but compro-
mise on accuracy. Conversely, PBMs deliver higher accuracy, albeit at the expense of
increased computational effort.

initialization and parameters tuning, which is based on the exper-
imental data, that the battery manufacturer can provide, stated in
datasheets. The PyBaMM framework provides various parameter sets
that are validated by developers and contributors [27]. It is crucial to
recognize that these sets might not be universally applicable to every
battery on the market. Therefore, this work addresses the necessity
of parametrizing new battery sets using data extracted from manufac-
turers’ datasheets, as elaborated in the following sections. The reason
for the mandatory parameter tuning in this work is twofold. Firstly,
while other researchers have undertaken similar endeavors, such as
extracting parameters from batteries and updating them into the Py-
BaMM database, these efforts often demand a deep understanding of
electrochemistry expertise not commonly possessed by energy system
modelers. Extracting a vast amount of electrochemical and material
details [27] is complex and often not openly accessible, rendering the
process challenging. To overcome these challenges of complexity and
data availability, the parameterization approach presented in this work
adopts a data-driven tuning approach, often used by modelers. This
involves using similar sets of batteries as a starting point (initialization)
and employing commonly used techniques such as the minimization of
Mean Average Error.

2.2.1. Cell level model initialization
The first step of the parameterization is the initialization of the

Pybamm model using the datasheet’s operational data, reported by
Li-ion battery manufacturers:

1. Battery chemistry, which can be Lithium iron phosphate (LFP),
Nickel Manganese Cobalt oxide (NMC) or Nickel–cobalt–alu-
minum (NCA). And based on the chemistry, the Modelers can se-
lect among the built-in parameter sets from the Pybamm frame-
work, all of them can be consulted at [27].

2. Charging mode, although almost every manufacturer is adopting
Constant Current-Constant Voltage (CC-CV) mode, is possible to
have some exceptions.

3. Electrode geometry, which is crucial to assess the electrical
properties such as current densities, however, this information
is not often reported in the datasheet.

From the modeler’s perspective, the numerical model for the bat-
tery has to be selected, among different available ones, with the in-
creasing physics details, but also the computational burden, as il-
lustrated in Fig. 1. The ones based on physics are Single Particle
Model (SPM) [18], Single Particle Model with electrolyte (SPMe) [18],
Doyle–Fuller–Newman Model or Pseudo Two Dimensional (PS2D) [11].
4

The entire initialization process is reported in Fig. 2, and once
completed, is already possible to perform experiments and assess the
operational behavior of the Li-ion battery, however, since the parame-
ter set is based on the built-in ones, some of the properties may differ
from the ones from the datasheet, the reason why the second step of
the parameterization is needed.

2.2.2. Parameters tuning
As the second step of the parameterization, different parameters

of the model have to be tuned, in order to fit the experimental data,
provided by battery manufacturers. The whole workflow is repre-
sented graphically in Fig. 7. From the datasheet provided by battery
manufacturers, the following lab test results are normally reported:

1. Discharge curves at different C-rates.
2. Discharge curves at different temperatures.
3. Aging/degradation curves at 1-C cycles.

The parameters tuning is not trivial, since it is not straightforward
which parameters to tune in order to have the best accuracy, compared
with the experimental data. Additionally, thermal and electrical proper-
ties are strictly connected, by the kinetics of the electrode, governed by
the Butler-Volmer equation, hence, making the parameters tuning even
more arduous and complex. However, it is not impossible, and in this
work, a data-driven approach, through the use of Mean Absolute Error
(MAE) as an index, widely adopted in the machine learning research
field, has been adopted. The process is illustrated in Fig. 3, and it has
two steps:

1. Sensitivity analysis, of all tunable parameters, changing them
from the default value and twice its original value, and observing
the variation of MAE; Generally speaking, for proper sensitivity
analysis, more data points of the parameters should be assessed,
yet, with the vast amount of parameters to be evaluated, the
computational effort would be enormous.

2. Selection of the most important parameters based on the previ-
ous step, and through the grid-search method, where all selected
parameters are defined within their own range, based on the
physical meaning of the parameter, to finally obtain the values
of the selected parameters, that minimize the MAE.

Despite the intrinsic link between electrochemical and thermal
properties, included in the Pybamm, for the sake of this work’s scope,
their parameterization can be decoupled, making the whole process
easier. Indeed, the electrochemical experiments are done at a constant,
standard temperature of 25 ◦C/298 K, where the thermal properties
are not subject to any variation. Subsequently, aging parameterization
can proceed as it requires the outputs of the electrochemical one.
Furthermore, the aging part requires an extended experiment, i.e. more
than 2000 cycles of charging and discharging, meaning that it requires
more computational time, compared to the other two parameterization
steps. Thus, the whole parameters tuning is sequential consisting of
the following steps: (1) electrochemical parameterization, (2) thermal
parameterization, and finally (3) aging parameterization, as illustrated
in Fig. 4.

2.3. HEMS

The HEMS obtains the optimal real-time scheduling of domestic
appliances by acquiring the forecasting of the loads, ambient temper-
ature, solar irradiance, and information about the mobility of electric
vehicles (EVs), based on historical data, as reported in Fig. 5. As can
be seen, the peak demands are 0.50 kW for electricity, 0.185 Nm3 for
gas, 2.5 kW for heat, and 0 Nm3 for hydrogen. Which indicates that no

hydrogen-based appliance is present.
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Fig. 2. Workflow of the initialization of Pybamm model. Cell details such as chemistry (LFP, NMC, etc.), geometry, and charging mode data are extracted from the datasheet.
Modelers have the flexibility to choose the appropriate physics-based model for their application.
Fig. 3. Parameters selection and tuning process. The process of parameter selection and tuning involves an initial analysis of the impact of all tunable variables (72) on discharge
capacity. The focus is on identifying the variables with significant importance, which are then subjected to the tuning process.
The real-time scheduling, with 15 min resolution, requires the
HEMS to be modeled in a simple, yet efficient way. Therefore, a mixed-
integer linear programming-based (MILP) model is developed to em-
brace the functionality of the appliances [28]. The design architecture
of the proposed multi-carrier HEMS is illustrated in Fig. 6.

Accordingly, the proposed HEMS is composed of two renewable
energy sources, with solar irradiance being the primary source, yet de-
livering different energy carriers, Photovoltaic (PV) and Solar Thermal
(ST) systems. Two static energy storage systems, Battery Energy Storage
Systems (BESS) and Thermal Storage Systems (TSS) are designated for
electricity and heating carriers respectively, and EV is also present
5

in the system with similar behavior to the BESS, using the Vehicle-
to-Grid approach, during its availability. The interconnection between
multiple carriers is made possible through energy conversion technolo-
gies. Accordingly, the Heat Pumps (HP) and Absorption Chillers (ACh)
interconnect heating and internal cooling energy carriers to establish
the interplay between the electricity and heating sectors. Also, as the
architecture suggests the bidirectional energy exchange between the
HEMS and external energy carrier is only available for electricity and
district heating carriers. Furthermore, controllable appliances such as
Time-Shiftable Electric Loads (TSEL), Space Cooling Demand (SCD) and
Space Heating Demand (SHD), can provide the HEMS with further
flexibility throughout the day.
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Fig. 4. Workflow of the parameters tuning for Pybamm model: (1) electrochemical parameterization, assessed using experimental discharge curves at different C-rates at 298 K,
(2) thermal parameterization, where discharge curves at different temperatures at 1C are adopted, and finally (3) aging parameterization, using complete cycles at 1C, with 298 K
temperature. As a result of this, the Pybamm model is ready to predict the battery behavior under other working conditions.

Fig. 5. Home monitored historical data. Based on these data it is possible to forecast and schedule.
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Fig. 6. Design architecture of proposed multi-carrier HEMS [28].

The HEMS as the mastermind schedules the controllable appliances
present in the system to accomplish two objectives, minimizing the
operational cost, and mitigating the negative environmental impacts
by reducing the CO2 emission. Therefore, the model incorporates a bi-
objective MILP model. The methodology proposed in this literature is a
follow-up to work presented in [28] where the complete mathematical
modeling for the appliances could be found. However, since the focus of
this work is mainly on the health improvement of BESS by accounting
for a multi-objective function, the objective functions and BESS model
are provided in the following.

min𝐶𝑜𝑠𝑡 =
∑

𝑡∈

{

𝜆𝑝,𝑏𝑡 𝑝𝑒𝑥𝑡,𝑏𝑡 − 𝜆𝑝,𝑠𝑡 𝑝𝑒𝑥𝑡,𝑠𝑡 + 𝜆ℎ,𝑏𝑡 ℎ𝑒𝑥𝑡,𝑏
𝑡

−𝜆ℎ,𝑠𝑡 ℎ𝑒𝑥𝑡,𝑠
𝑡 + 𝜆𝑔,𝑏𝑡 𝑔𝑒𝑥𝑡,𝑏𝑡

}

𝛥𝑡 (1a)

minCO2 =
∑

𝑡∈
𝜉
{

𝑝𝑒𝑥𝑡,𝑏𝑡 + ℎ𝑒𝑥𝑡,𝑏
𝑡 + 𝑔𝑒𝑥𝑡,𝑏𝑡 𝐿𝐻𝑉𝑔

}

𝛥𝑡 (1b)

𝑠.𝑡. 𝑝𝐵𝐸𝑆𝑆,𝑢
𝑡 + 𝑝𝐵𝐸𝑆𝑆,𝑠

𝑡 = 𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠𝑝𝐵𝐸𝑆𝑆,𝑑𝑖𝑠
𝑡 ∀𝑡 ∈  (1c)

0 ≤ 𝑝𝐵𝐸𝑆𝑆,𝑐ℎ
𝑡 ≤ 𝑟𝐵𝐸𝑆𝑆,𝑐ℎ𝑢𝐵𝐸𝑆𝑆

𝑡 ∀𝑡 ∈  (1d)

0 ≤ 𝑝𝐵𝐸𝑆𝑆,𝑑𝑖𝑠
𝑡 ≤ 𝑟𝐵𝐸𝑆𝑆,𝑑𝑖𝑠(1 − 𝑢𝐵𝐸𝑆𝑆

𝑡 ) ∀𝑡 ∈  (1e)
𝑠𝑜𝑒𝐵𝐸𝑆𝑆

𝑡 = 𝑠𝑜𝑒𝐵𝐸𝑆𝑆
𝑡−1

+ 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑝𝐵𝐸𝑆𝑆,𝑐ℎ
𝑡−1 𝛥𝑡 − 𝑝𝐵𝐸𝑆𝑆,𝑑𝑖𝑠

𝑡−1 𝛥𝑡 ∀𝑡 ∈  − {𝑡0} (1f)

𝑠𝑜𝑒𝐵𝐸𝑆𝑆
𝑡 = 𝑠𝑜𝑒𝐵𝐸𝑆𝑆,𝑖𝑛𝑖 ∀𝑡 = 𝑡0, 𝑡𝑛 (1g)

𝑠𝑜𝑒𝐵𝐸𝑆𝑆,𝑚𝑖𝑛 ≤ 𝑠𝑜𝑒𝐵𝐸𝑆𝑆
𝑡 ≤ 𝑠𝑜𝑒𝐵𝐸𝑆𝑆,𝑚𝑎𝑥 ∀𝑡 ∈  (1h)

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑟𝑜𝑚[28] (1i)

Accordingly, Eqs. (1c)–(1h) represents the BESS model. In the
model, the simultaneous charging and discharging of the battery is
prohibited by Eqs. (1d) and (1e) using an auxiliary binary variable,
𝑢𝐸𝑆𝑆
𝑡 .

To solve such a problem the augmented 𝜖-constraint method (AUG-
MECON) is adopted based on methodology introduced in [6]. AUGME-
CON is considered a posterior method in the sense that the decision-
maker decides on the final solution after the Pareto optimal set is
discovered. The advantage of this method over the weighted sum
methods could be summarized in the following [29]:

1. AUGMECON can map the Pareto frontier for both convex and
non-convex problems.
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2. Unlike the weighted sum method the scaling of the objective
function is not needed anymore.

3. Only unique non-dominated solutions are obtained in AUGME-
CON which results in a smaller number of iterations.

4. It uses lexicographic optimization to construct the pay-off table
and determine the ranges of the objective functions to improve
the efficiency of the optimal solution sets.

5. By eliminating the points with the same optimal solutions and/or
infeasible solutions, the solving process is accelerated.

A generic multi-objective problem can be expressed as:

max 𝑓𝑖(𝑥) ∀𝑖 ∈  = {1, 2,… , 𝑖𝑛} (2a)

𝑠.𝑡. 𝑥 ∈  (2b)

The augmented single objective version of such a problem to be solved
by AUGMECON is given in (3a)

max 𝑓1(𝑥) +
∑

𝑖>1
𝜖
(

10−(𝑜𝑟𝑑(𝑖)−1)
𝑠𝑖
𝑟𝑖

)

(3a)

𝑠.𝑡. 𝑓𝑖(𝑥) − 𝑠𝑖 = 𝑒𝑖 ∀𝑖 > 1 (3b)

𝑥 ∈  (3c)

where 𝑓1(𝑥) is one of the multiple objectives (usually the first objec-
tive), 𝑠𝑖 is the slack variable assigned for the objective functions with 𝜖
as the small constant value. Parameter 𝑒𝑖 is the right-hand side (RHS)
value that will be attained from the pay-off table which also reveals
𝑟𝑖 the range of each objective function. The feasibility domain of the
problem is defined by  .

The solution methodology of such a multi-objective problem based
on the AUGMECON is described briefly in Algorithm 1 based on [6].

Algorithm 1 AUGMECON algorithm for the multi-objective optimiza-
tion problem.
1: Acquire objective function lists: 𝑓 (𝑖) ∀𝑖 ∈ 
2: Create the lexicographic optimization-based payoff table (𝑃 ) with

𝑎𝑙𝑖𝑎𝑠(𝑖, 𝑗):

• for 𝑖 ∈  : 𝑃 (𝑖, 𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 (𝑖) ; 𝑓 (𝑖) == 𝑃 (𝑖, 𝑖)
• for 𝑖, 𝑗 ∈  | 𝑖 ≠ 𝑗: 𝑃 (𝑖, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 (𝑖) ; 𝑓 (𝑗) == 𝑃 (𝑖, 𝑗)

3: Obtain objective range 𝑟(𝑖) and the RHS value 𝑒(𝑖, 𝑘) for 𝑘 ∈  grid
points:

𝑟(𝑖) = 𝑚𝑎𝑥(𝑃 (∗, 𝑖)) − 𝑚𝑖𝑛(𝑃 (∗, 𝑖)) ∀𝑖

𝑒(𝑖, 𝑘) = 𝑚𝑖𝑛(𝑃 (∗, 𝑖)) + 𝑜𝑟𝑑(𝑘) × 𝑟(𝑖)∕𝑐𝑎𝑟𝑑() ∀𝑘

4: Transform the problem to a single objective form shown in (3a).
5: Attain all the possible combinations of RHS value 𝑒(𝑖) based on the

fixed number of grid points 𝑘 for objective functions 𝑓 (𝑖) ∀𝑖 > 1:

• 𝐸(𝑐, 𝑖) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑒(𝑖, ∗)) ∀𝑖 > 1
• The total number of combinations will be 𝑐𝑎𝑟𝑑(𝑐) =
𝑐𝑎𝑟𝑑(𝑘)𝑐𝑎𝑟𝑑(𝑖)−1

6: Set RHS value in the problem (3a) to 𝑒(𝑖) = 𝐸(𝑐, 𝑖) ∀𝑐, 𝑖 > 1 and
solve the sub-problem 𝑐 to achieve the Pareto frontier.

As the summary of this section, the model presented in [28] focuses
on optimizing short-term scheduling, with costs covering only oper-
ational expenses, excluding battery degradation in the optimization
process. The Pareto optimal solutions generated by the Augmecon
method prioritize minimizing daily operation costs and CO2 emissions.

2.4. SOH as key performance indicator

From previous sections, both the battery physical model (Sec-
tion 2.1), and the power curve of the battery, for each of the Pareto



Applied Energy 361 (2024) 122925L. Jin et al.
Fig. 7. Workflow of presented methodology, analyzing the Pareto curve using SOH as the performance indicator.
curve solutions (Section 2.3), are obtained. The complete workflow is
depicted in Fig. 7. Where the battery cell power assessment module
serves the purpose of converting power at the module level, sourced
from HEMS, into the cell level. This distinction is vital as Pybamm
operates at the cell level. On top of that, the electrical design of the
battery cell-to-module must be carried out, with the already known
cell characteristics (voltage, current, and capacity), provided by the
manufacturer data-sheet and already parameterized previously. The
design process is initiated by selecting the nominal voltage of the
battery module, which, based on market standards, can typically be 12,
24, or 48 V. Following this, the capacity of the module is determined.
However, for the sake of simplicity and given that designing the
battery management system is not within the scope of this work, it is
assumed that the battery power is equally distributed across each cell,
as illustrated in Eqs. (4)–(6).

𝑁𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑉𝑏𝑎𝑡𝑡
𝑉𝑐𝑒𝑙𝑙

(4)

𝑁𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝐸𝑏𝑎𝑡𝑡

𝑉𝑏𝑎𝑡𝑡 ⋅𝑄𝑐𝑒𝑙𝑙
(5)

𝑝𝑐𝑒𝑙𝑙(𝑡) =
𝑝𝑏𝑎𝑡𝑡(𝑡)

𝑁𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 ⋅𝑁𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
(6)

In Eq. (4), the number of cells in the battery module connected in series,
of each parallel line, is evaluated using the battery voltage. Conversely,
Eq. (5) is employed to determine the number of cell rows connected in
parallel, based on the module energy (𝐸𝑏𝑎𝑡𝑡). Finally, assuming equal
power distribution, Eq. (6) calculates the cell-level power curve derived
from the battery module.

For each Pareto curve solution, there is a distinct power curve,
meaning a distinct experiment for the parameterized model, with its
own SOH indicator of the battery at the end of the evaluation time.

3. Results and analysis

In this section, the analyzed case, where LFP-type battery cells
are adopted, based on the datasheet available, with 15 Pareto curve
solutions based on two objectives, which are economical and envi-
ronmental, for a multi-carrier energy system modeling, are reported.
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Table 1
LFP Li-ion battery specifications.
Parameter Value Units

𝑉𝑛𝑜𝑚 3.2 V
𝑉𝑢𝑝,𝑐𝑢𝑡 3.65 V
𝑉𝑙𝑜𝑤,𝑐𝑢𝑡 2.5 V
𝐼𝑛𝑜𝑚 1.6 A
𝑄𝑐𝑒𝑙𝑙 3.2 Ah
𝑇𝑜𝑝 −20 ÷ 60 ◦C
𝐶𝑟𝑎𝑡𝑒𝑚𝑎𝑥 3 –

Initially, this section illustrates the characteristics of the Li-ion cell
and the parameterization process, focusing on the identification of the
most influential model parameters. Subsequently, the section presents
the results derived from 15 Pareto curve solutions, followed by an
illustrative demonstration of the automatic selection of the optimal
solution.

3.1. Cell characteristics

The cell characteristics are from the data-sheet of CEGASA
PORTABLE ENERGY, available at [30], where its main specifications
are reported in Table 1.

3.2. Parameterization

The initialization process is done through values from Table 1,
with the Parameter set of Prada2013 [23], Using SPMe modeling, as
the best compromise between the accuracy and computational effort
(Fig. 1), indeed it is an intermediate model between the simple single
particle one and the complex two-dimensional model. The selection
of the parameters is established according to the cell’s chemistry,
specifically Lithium Iron Phosphate (LFP). While Pybamm’s developers
offer this dataset, it is important to note that it is a composite of various
sources. It is worth mentioning that even the developers themselves
have acknowledged certain discrepancies within this dataset [27].

As outlined in the methodology section, the dataset’s entire pa-
rameterization process can be logically divided into three distinct
sections. In alignment with this structure, the results and corresponding
comments are also organized accordingly.
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Fig. 8. Electrochemical parameterization, using the data from [30].
3.2.1. Electrochemical parameterization
During the electrochemical parameterization process, two main in-

consistencies from the initialized model and test results at different
C-rates. (i) firstly the dischargeable energy from the cell is different
from the nominal value, due to dataset inconsistencies, and (ii) the
voltage drop slopes (Fig. 8(a)).

Addressing the first inconsistency is relatively straightforward. It
involves adjusting the electrode geometry to match the required dis-
chargeable capacity. Since dischargeable capacity is directly propor-
tional to current density (A/m2), and the current is determined by
an internal formulation that is not easily accessible, altering the elec-
trode’s surface area offers a practical solution to achieve the desired
outcome more efficiently. In contrast, resolving the voltage drop slope
inconsistency is a more intricate process. It necessitates adopting the
comprehensive approach described in Section 2.2.2. The key parame-
ters to fine-tune in this case are the porosities of both the electrode
and separator, which can vary between 0 and 1. These porosities are
critical for ion transport within the battery and have been the subject
of study for researchers like Parikh et al. [31]. Importantly, all three
porosities are interconnected, making it challenging to isolate the effect
of each one. Therefore, a grid search method is indispensable for this
optimization process.

The results after the electrochemical parameterization are illus-
trated in Fig. 8(b), where the MAE is minimized for different C-rates.

3.2.2. Thermal parameterization
Regarding thermal parameterization, while for the Pouch form cells,

many thermal models can be adopted, in the case of a cylindrical cell
like the one adopted in this study, the ‘‘lumped thermal model’’ is the
only choice offered [32]. This model treats the entire cylindrical cell
as a single entity and characterizes it based on the thermal properties
of the cell as a whole. Consequently, it does not capture the internal
thermal behavior of the cell. However, this simplified approach aligns
with the overarching objective of this work, which focuses on a system-
atic approach rather than an in-depth assessment of thermal behavior.
Therefore, this assumption is acceptable for the purposes of this study.

Two different natures of the difference between the reported data
in the data-sheet and the initialized model are observed:

1. The voltage gap, among different discharge curves at different
working temperatures, enlarges when it is far from the reference
temperature, and as

𝛥𝑉 = 𝑓 (𝑇 ) (7)
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Fig. 9. Thermal parameterization represents the subsequent stage of electrochemical
parameterization. Which is adjusted with the voltage gap (𝛥𝑄) and decreasing capacity
(𝑐𝑓 ) functions, based on the experimental data from datasheet.

A solution to this is to adopt a new temperature, adjusted with
a correction factor that can manage such behavior, so that the
model’s input temperature is the new modified temperature. Of
course, with such a process, the updated temperature does not
have a physical meaning, and for temperature variation analysis
the initial temperature is referenced.

𝑇𝑛𝑒𝑤 = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⋅ 𝑐𝑓 (8)

𝑐𝑓 = 1 + 𝑚 ⋅ (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑟𝑒𝑓 ) (9)

Such inconsistency is fixed using a correction factor (𝑐𝑓 ), which
is a linear interpolation, which depends on the 𝛥𝑇 between
the working temperature and the reference temperature (𝑇𝑟𝑒𝑓=
298.15 K)

2. Decreasing trend about the cell available capacity (𝑄), working
at low temperatures:

𝛥𝑄 = 𝑓 (𝑇 ) (10)

In order to take this into account, the available capacity of
the cell at different temperatures is gathered to be described
through a polynomial function (𝑓 (𝑇 )), and as best polynomial
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Fig. 10. The aging parameterization process is divided into two steps. Firstly, the aging phenomena, which capture the trend of the experimental data, are chosen. This is followed
by parameter tuning using the experimental data from the datasheet.
Fig. 11. The Pareto curve is derived from HEMS. In cases 1 to 8, there is no integration
of PV systems, whereas in the remaining cases, PV systems are integrated, albeit at a
higher economic cost.

order, i.e. compromise between the accuracy and complexity of
it, results to be a 4th order, to describe such variation.

The entire thermal parameterization process is illustrated in Fig. 9,
where the comparison is also reported, between the tuned model and
the experimental data. As can be seen, although the different correction
measures, the model cannot accurately describe the discharge curves
at low temperatures (≤ 0 ◦C), where the second part of voltage drop
(𝑑𝑉 ∕𝑑𝑄) happens much earlier than the model predicts. Despite of such
differences, since the objective of the work is not thermal assessment,
the cell is set to work at the reference temperature (298K).

3.2.3. Aging parameterization
Aging parameterization is arguably the most intricate aspect of this

study, primarily owing to the inherent complexity of the phenomena
involved. The aging behavior of Li-ion batteries constitutes a vast and
exceedingly challenging research area, requiring diverse areas of exper-
tise for a comprehensive understanding. Various authors have delved
into the fundamental characteristics of aging in Li-ion batteries [33,34].
Additionally, it is noteworthy that the developers of Pybamm have
conducted a detailed analysis of aging phenomena, which encompass
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the factors contributing to the gradual reduction in a cell’s available
capacity over time. These insights have been thoughtfully incorporated
into the Pybamm framework [35], which are the following ones:

1. Solid-Electrolyte Interface (SEI) layer growth
2. Lithium plating
3. Particle fracture/cracking
4. Loss of active material

It is not frivolous to understand the coupling effects among different
degradation phenomena, and it is out of the scope to investigate them,
thus, in this work, the aim is to have the easiest approach, from
a computational effort point of view, that guarantees a reasonable
accuracy with experimental data. Furthermore, since the aging data
requires extended experimental cycles (>2000), using a standard cycle,
which is composed of a complete charge and discharge at 1C rate,
its parameterization is extremely time-consuming, compared with the
previous ones, which requires only half of the cycle (full discharge).

In the context of aging parameterization, it is crucial to begin
by understanding which phenomena should be incorporated into the
model. This necessitates a comparative analysis of various degrada-
tion behaviors to identify the one that aligns most closely with the
experimental data. In the case study under consideration, the following
aging phenomena have been taken into account: SEI growth, lithium
plating, and alterations in lithium plating porosity. Once these aging
phenomena have been defined, the entire parameterization process is
executed in accordance with the method detailed in Section 2.2.2.

The full aging parameterization process is reported in Fig. 10, where
the tuned model and its comparison with experimental data are also
illustrated. Furthermore, calendar aging is predominant in such cells.
Despite it is not common, calendar aging can prevail over cycle aging,
which was also analyzed by other researchers previously [36,37],
especially when cycle depths and current rates are low.

3.3. HEMS results

From the HEMS, a total of 15 optimal solutions are derived from
the Pareto front, each employing distinct scheduling strategies. It is
important to note that, given the primary focus of this work on the
battery, only the power curve and state of charge of the battery are
considered and extensively discussed in a dedicated section located in
the appendix. Operating conditions of other technologies integrated
into the HEMS are not documented in this study as they fall outside
the scope of our investigation, as previously delineated in Fig. 7.
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Fig. 12. SOH as Pareto indicator: While red solutions have more SOH the blue ones have less SOH, compared with the benchmark case. The differences among the different cases
are extremely low due to the limited time frame of the study.
The Pareto curves generated by HEMS are visually represented in
Fig. 11. This graphical representation allows the identification of, based
on the battery power curves, which solutions effectively utilize Pho-
tovoltaic (PV) production. Notably, solutions (1–7) do not absorb the
PV production, resulting in increased carbon emissions during the day.
Conversely, in other cases, the effort to reduce emissions necessitates
higher economic expenses.

3.4. Pareto curve assessment

With the parameterized Pybamm model, and the battery power
curve from HEMS, is possible therefore to perform the experiments
based on different drive cycles. For the sake of simplicity, the cell-level
power curve is simply the pack-level power curve scaled with the num-
ber of cells, and the whole battery configuration is reported in Table 3.
Thus, 15 different experiments are performed using Pybamm, obtaining
different SOH at the end of the evaluation time frame. Notably, due
to the choice of a constrained evaluation window lasting 24 h, this
duration was insufficient to induce substantial battery degradation. To
facilitate a comparative analysis of these solutions, it is established a
benchmark case.

The process of automatically selecting the ultimate case using a
portable computer took approximately 10 min. Detailed specifications
regarding computational resources and the case study are provided in
the appendix section, Table 4. While the results are visually depicted in
Figs. 12. Fig. 12(a) presents a color map illustrating the SOH difference
among the 15 Pareto frontier solutions, using it as a KPI. In general,
solutions without PV integration tend to have higher SOH compared
to the benchmark case. Notably, Case 8 represents a solution that
effectively divides the Pareto frontier into two distinct zones. However,
it is not a straightforward relationship where more PV penetration
necessarily means lower SOH. In fact, Case 2 has the maximum SOH
despite not having the least PV integration. Therefore, from a real-
time scheduling perspective, the operational strategy employed in Case
2 emerges as the ultimate solution among all optimal scenarios. This
strategy ensures the maximum health of the battery at the end of the
evaluation time.

4. Conclusions

In this study, a novel approach is introduced, to automatically
identify the best solution from a set of optimal solutions within the
Pareto frontier, as a result of multi-objective problems in multi-energy
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systems. The proposed approach specifically focuses on battery tech-
nology, leveraging the State of Health as a key indicator. The SOH
is evaluated using a parameterized physical model through the use
of experimental data from the manufacturer’s datasheet. While similar
works by other researchers have adopted comparable approaches, using
different indicators like grid independence or customer satisfaction,
the focus here is on battery degradation evaluation. This evaluation is
particularly challenging, as highlighted in the literature, making the
proposed methodology a valuable contribution to the field.

Moreover, to assess the potential and limitations of the proposed
methodology, a case study is conducted. In this case study, a two-
objective scheduling problem is solved within a multi-carrier Home
Energy Management System framework, Specifically economic and
environmental objectives are considered. The study incorporates 15 op-
timal solutions obtained from the optimization process, which are then
used to conduct experiments with the parameterized physical battery
model. Through these experiments, the efficacy and applicability of the
proposed methodology are examined and evaluated.

The parameterization of the battery cell is divided into three differ-
ent stages, to capture different physical behaviors of the cell, which
are (i) electrochemical (ii) thermal, and (iii) aging respectively, all
three stages are interconnected, yet they can be done sequentially.
The data-driven approach has been adopted for the parameterization
process, comparing the model’s results and experimental data declared
by the cell manufacturer, in order to tune the model accordingly; While
the electrochemical parameterization is sufficient to tune the several
parameters, for the other two stages instead, additional functions have
to be included, based on the difference among the model and ex-
perimental data, which requires comprehensive knowledge about the
physical model’s equations and structure, supported by a proper data
analysis about the experimental data of the manufacturers in order to
properly correct the behavior. Thus, the parameterization is the most
arduous and time-consuming part of the whole methodology.

The results affirm the suitability of the proposed methodology
for automatically determining the optimal solution, employing SOH
as a performance metric. Overextended operational periods, such as
10 years, with consistent scheduling strategies, this approach can yield
savings of up to 26.67% in battery lifespan. This is particularly sig-
nificant in the context of multi-energy systems economics, given the
frequency of battery replacements and its related investment costs. It
is worth noting that while integrating PV systems can accelerate battery
degradation due to increased usage, it is not immediately evident that
the highest PV integration (case 15) leads to the worst SOH. In fact,
the 10th scenario in the case study represents the worst SOH case,
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Table 2
HEMS results: battery.

Parameter Value Units

Energy 15 kWh
Nominal power 3 kW
Minimum SOC 20 %
Maximum C-rate 0.25 C

as illustrated in Fig. 12(a). Therefore, the utilization of SOH as a key
indicator provides valuable insights. Furthermore, it is important to
highlight that the analysis reported only considers stationary battery
energy storage. However, the same methodology can be extended to
encompass electric vehicles, which can effectively function as a type of
mobile battery storage. This extension could have even more significant
implications for the overall system.

The process of parametrizing the Li-ion cell is undeniably time-
consuming, and its duration cannot be precisely estimated due to its
inherent complexity. However, the Python-based architecture of Py-
bamm offers a practical advantage: once the parameters are determined
and stored, they can be readily applied to any number of experiments
involving the same type of cells. This eliminates the need to repeat the
entire parameterization process for each subsequent study.

In the case study, a one-day evaluation time window was chosen
to validate the methodology, primarily for computational efficiency.
Nonetheless, it is important to note that this relatively short timeframe
has a limited impact on battery degradation. In future research en-
deavors, simulations over a more extended period are planned. While
this approach will entail greater computational demands, it will pro-
vide a more comprehensive understanding of battery behavior over
time. Moreover, although the proposed approach has the novelty of
automatic selection of the best solution from the Pareto curve, it also
establishes a connection between battery operational parameters, such
as SOH, and the optimization and scheduling problem of energy mod-
eling. Nevertheless, it is important to acknowledge that the approach
remains passive, in the sense that the SOH assessment and scheduling
are conducted independently. Thus, there is a possibility to look for
active integration, whereby the SOH derived from the Pybamm model
serves as an indicator directly considered during the energy model-
ing optimization problem. With active integration, it would provide
information that can directly influence the outputs of the optimization
process.
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Appendix
In this section, all support materials for this work are presented.

These materials include details on battery design characteristics, the
rack design of battery modules, computational efforts, case study
specifics, tuned parameters, as well as some experimental results from
Pybamm (including voltage, current, and SOH) (see Figs. 13–15 and
Tables 2 and 5).
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Table 3
Battery module design specs.

Rack configuration #10 modules
in parallel

Module specs

Configuration 4S40P
Voltage 12 V
Capacity 128 Ah

Table 4
Computational specs for the case study.

Computation specs

Model Dell G5 15
CPU Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz
RAM 8 Gb
Computation time 9 min 56 seconds

Case study details

#n of scenarios 15
Time resolution 15 mins
Time horizon 24 h

Table 5
Pybamm model tuned parameters.

Parameter Value Units

Initialization dataset
Prada2013 – –

Electrochemical parameterization
Positive electrode porosity 0.85 –
Separator porosity 0.04 –
Negative electrode porosity 0.3 –

Thermal parameterization
𝑄 = 𝑎𝑇 4 + 𝑏𝑇 3 + 𝑐𝑇 2 + 𝑑𝑇 + 𝑒

a 2.005e−07 –
b −2.25933 e-04 –
c 9.443e−02 –
d −1.732 e+01 –
e 1.177 e+03 –

𝑇𝑛𝑒𝑤 = 𝑐𝑓 ⋅ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑐𝑓 = 1 + 𝑚 ⋅ (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑟𝑒𝑓 )

m 0.006 –
𝑇𝑟𝑒𝑓 298.15 K

Aging parameterization
SEI : ec reaction limited

SEI growth activation energy 0 J/mol
EC initial concentration in electrolyte 4541 mol/m3

SEI open-circuit potential 0.4 V
SEI resistivity 200 000 ohm/m
Initial outer SEI thickness 0.5e−9 m
Initial inner SEI thickness 2.5e−9 m
EC diffusivity 2e−18 m2/s
Inner SEI reaction proportion 0.5 –
SEI reaction exchange current density 1.5e−07 A/m2

Inner SEI partial molar volume 9.585e−05 m3/mol
Ratio of lithium moles to SEI moles 2.0 –
Outer SEI partial molar volume 9.585e−05 m3/mol
SEI kinetic rate constant 8.45e−17 m/s
Positive electrode active material volume fraction 0.295 –

Lithium plating : irreversible
Exchange-current density for plating 0.00205 A/m2

Typical plated lithium concentration 1000.0 mol/m
Initial plated lithium concentration 0 mol/m
Lithium plating transfer coefficient 3.0 –

Lithium plating porosity change : true
Lithium metal partial molar volume 1.3e−05 m3/mol
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Fig. 13. HEMS results and Pareto curve.
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Fig. 14. Pybamm experiments: voltage and current.
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Fig. 15. Pybamm experiments: SOH and C-rate.
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