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A B S T R A C T

This article presents a Fault Detection (FD) method to deal with propeller faults on multirotor drones in real-
time. Several solutions have been proposed in the literature, however, they depend on additional sensors and/or
dedicated hardware to deal with heavy computational complexity. So, they cannot be implemented in off-the-
shelf commercial devices, i.e., without the aid of additional on-board sensors and/or extra computational
power. The proposed method, instead, requires the on-board Inertial Measurement Unit (IMU) data only: by
combining Finite Impulse Response (FIR), together with sparse classifiers, only a subset of the features is
actually needed online and the FD is thus feasible in real-time.

Design and tests are based on real flight data from a hexarotor, equipped with a conventional ArduPilot-
based controller. The classification accuracy in testing is up to 93.37% (98.21%) with a binary tree (Linear
Support Vector Machine (LSVM)). Moreover, the space and time complexity of the proposed method is low:
on a PixHawk Cube flight controller, it requires less than 2% of the cycle time, and can then run in real-time.
Finally, the proposed fault detection solution is model-free and it can be easily generalized to other multirotor
vehicles.
. Introduction

Unmanned Aerial Vehicles (UAVs) represent a revolution for civilian
nd military purposes because they provide a cost-effective solution
n a variety of applications, such as last-mile delivery, photography,
earch and rescue, infrastructure monitoring, patrolling, intelligence
ctivities, and aerial warfare. As UAVs are pervading commercial and
rivate sectors, including many nonprofessional users for recreational
urposes, the main concerns of people are privacy and security (Tan
t al., 2021). While privacy protection is primarily up to lawmakers
nd regulatory agencies, engineers can play a central role in improving
ecurity. In fact, small-scale UAVs are characterized by a high loss
ate (Shraim et al., 2018) and faults are crucial: according to Wild
t al. (2016), 64% of accidents and incidents involving remotely piloted
AV are caused by equipment problems. In particular, actuator faults
an have severe consequences if not tackled in time, as they can cause
amages and loss of control in flight, and Fault Detection (FD) is the
irst step to mitigate the effects of faults.

The weight of the on-board sensors and payloads represents a
imitation, especially in the case of small-size UAVs, as every additional
quipment diminishes both autonomy and maneuverability. Also, the
ost of the on-board instrumentation should be taken into account, as
t could easily exceed the cost of the UAV itself (Wang et al., 2020b).
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E-mail address: r.felicetti@staff.univpm.it (R. Felicetti).

In the literature (see Section 2), several strategies have been proposed,
but they depend on (i) additional sensors and/or (ii) dedicated hard-
ware to deal with heavy computational complexity. So, they cannot
be implemented in off-the-shelf commercial devices, i.e., without the
aid of additional on-board sensors and/or extra computational power.
Hence, in this paper, we propose a FD strategy to tackle propeller faults
on multirotor UAVs whose main feature is the ease of implementation
in commercial devices with limited computational and sensing capabili-
ties: the number of FD features is small and the computation of both the
features and the decision is straightforward. As a consequence, there is
no need for additional equipment, such as additional sensors or extra
computational power: only the on-board acceleration measurements
from the built-in Inertial Measurement Unit (IMU) are employed for
FD. Although we investigate frequency-domain features, we show that
they can be extracted by means of a few Finite Impulse Response (FIR)
filters, without the need for performing Fast Fourier Transform (FFT)
online. Essentially, the main novelty of this work is the introduction
of an Artificial Intelligence (AI)-based FD algorithm to detect propeller
faults that can run online in commercial devices, without the need for
additional payloads or computational power. The proposed strategy is
also novel because neither predefined maneuvers nor intensive UAV
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modeling are needed: in fact, we show that the proposed method can
be applied successfully in real, manual flight mode conditions.

The article is structured as follows. In Section 2, we review the state
of the art for the FD of actuator faults for UAVs. In Section 3, we intro-
duce the experimental setup, including the hardware specifications, the
customization of the ArduPilot firmware to enhance data acquisition,
the software setup, and finally the acquisition of experimental data
with different propeller faults. The experimental data is described in
Section 4, where data preprocessing is followed by a detailed statistical
analysis to find out solid features for FD. In Section 5, we design
two AI-based FD strategies, i.e., the proposed one that exploits FIR
filtering-based features, together with lightweight classifiers, and, in
contrast, the same kind of classifiers while making use of a collection
of conventional features for FD. The results are then compared in
Section 6, where the accuracy, the execution time during Hardware-In-
the-Loop (HIL) testing, and the testing with an additional faulty blade
are discussed. Conclusions and future works end the article in the last
Section.

2. State of the art

Two main approaches are adopted in the literature to perform
FD for UAVs: model-based and signal-based. As for the model-based
approaches, methods such as Thau observers (Freddi et al., 2012),
linear and Linear Parameter Varying (LPV) proportional–integral ob-
servers (Ortiz-Torres et al., 2020), and banks of nonlinear disturbance
observers (Baldini et al., 2022) are well established in the scientific
literature. Model-based strategies can go beyond FD: fault isolation
and fault estimation are feasible, under specific assumptions, for many
classes of faults. However, model-based approaches require a signifi-
cant modeling effort and they clash with the unavailability of many
parameters in the applications (e.g., inertia, lift and drag coefficients,
friction). Indeed, using model-based approaches, the loss of effective-
ness that may be perceived with a blade chipping is completely masked
by variability in the performance of the brushed motors (Ghalamchi
et al., 2019). Signal-based strategies, instead, do not require complex
system models or assumptions on the fault. Provided that a suitable
amount of data is available, including all of the possible faults of
practical interest, an AI-based FD system can be defined, which consists
of signal-based methods for feature generation and a classification
tool (Gangsar and Tiwari, 2020). Many AI-based FD strategies for UAVs
have been investigated in the last years: Ai et al. (2022) proposed a
random forest to detect sensor faults, Liang et al. (2022) employed
several variants of Kernel Principal Component Analysis (KPCA) to
detect actuator and sensor faults, while Park et al. (2022) suggested
to use deep neural networks to detect and isolate an actuator failure.

However, among the many FD strategies for UAVs (see, for ex-
ample, Fourlas and Karras (2021) for a detailed analysis), vibration
signals are not commonly employed as a diagnostic feature. This is
somewhat surprising, as almost any UAV has built-in accelerometers,
embedded in its flight controller, so the vibration data is available
without the need for additional sensors. In the last years, the use of ac-
celeration signals to check the health status of rotating machinery (Peng
et al., 2005; Gangsar and Tiwari, 2020), as well as machine elements,
such as bearings (Hoang and Kang, 2019), clutches (Chakrapani and
Sugumaran, 2023), and milling cutters (Wu and Lei, 2019), has been
broadly investigated in the literature, together with AI-based FD using
electric measurements (Boztas and Tuncer, 2022; Thomas et al., 2023;
Wang et al., 2023). Clearly, in the case of UAVs, the accelerometers
are installed on the frame, and not on the single actuator as in large,
industrial rotating machinery: this makes FD more challenging, because
the vibration generated by several actuators, as well as sensor noise
and disturbances (such as aerodynamic forces due to maneuvering),
merge into the same acceleration measurements. In the literature, few
FD strategies based on acceleration signals have been proposed for

UAVs. The authors of Zhang et al. (2021) performed a wavelet packet
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decomposition on a quadrotor vibration data to extract FD features,
and the decision was taken by a Long and Short-Term Memory (LSTM)
artificial neural network. The computational effort is relevant and
so it must be performed on a companion computer. In the previous
work (Benini et al., 2019), the authors proposed a FD algorithm,
based on acceleration signals, for a fixed-wing UAV. As the authors
pointed out, the approach worked best in the take-off phase, and it
required dedicated hardware to be run online due to computational
issues. In Ghalamchi and Mueller (2018), the authors investigated the
use of acceleration measurements to detect propeller faults; however,
according to the authors, their approach could be employed when
the quadrotor follows a predefined trajectory. Moreover, the approach
relies on performing the FFT, which is impractical in commercial flight
controllers. It also requires the buffering of a sequence of accelerometer
measurements, so the data can be analyzed offline only. In Ghalamchi
et al. (2019), instead, the authors propose to estimate the unbalance
due to a chipped blade using an Extended Kalman Filter (EKF). The
authors show that fault isolation is feasible, however, for a medium-
sized hexarotor, the convergence time is in the order of minutes, which
could be unsatisfactory for safety purposes.

In most of the literature, only dedicated hardware is considered to
develop and test the FD solutions, whereas, in this work, the FD solution
is deployed on a flight controller board with limited computational
resources. In Bronz et al. (2020), the authors proposed a real-time FD
solution tested on a dedicated board. Sensory information is passed to
the inference computer (RaspberryPi-Zero) at a frequency of 10 Hz,
and piling up the buffer (20 samples and 8 features) takes 2 s. The
inference prediction is called only once the feature trajectory buffer
is completed, so every 2 s and the prediction took about 0.06 s of
computation time. The authors suggested that using an even more pow-
erful embedded board such as Jetson Nano/Xavier-NX could increase
the prediction frequency by at least one order of magnitude. Keipour
et al. (2019) proposed a real-time approach using the recursive least
squares method to detect anomalies in the behavior of an aircraft.
They implemented it in Linux Ubuntu 16.04 (Xenial) using C++11
language and Robot Operating System (ROS) Kinetic Kame. An Nvidia
Jetson TX2 was added to the base platform to deploy the FD solution.
In the work of Simlinger and Ducard (2019), sensor faults did not
occur during the experiments but were introduced artificially to the
recorded experimental data, which was processed in real-time on a
dedicated platform such as Intel Atom processor. Khalastchi et al.
(2011), Zhang et al. (2020), Sun et al. (2017) proposed online/real-time
FD solutions but their solution has not been implemented and deployed
in the real hardware and then tested only in flight simulators, such
as MATLAB/Simulink flight simulation platform. A HIL simulation is
considered to test the FD solution by Xian and Hao (2019). The solution
is implemented by using xPC target. A compact PC/104 computer is
utilized as the target computer, and a laptop PC is employed as the host
computer. The desktop PC was used as a flight visualization computer
which runs FlightGear and Google Earth to show visual data, such as
the orientation and flight path of the quadrotor UAV. In the study
of Kantue and Pedro (2020), for the real-time testing of FD algorithm,
the HIL simulation is achieved by a dedicated embedded board for
the purpose of FD only, i.e., 180 MHz ARM Cortex-M4 with Floating
Point Unit (Teensy 3.6) and 256KB RAM. Chen et al. (2017) proposed a
FD algorithm, tested on a high-performance board, i.e., a Xilinx Zynq-
7000 SoC with ARM processor. Based on the Flight Gear v3.4 flight
simulator, a self-guided Cessna 172P aircraft was used to simulate the
complete autonomous flight. The data generated by the flight simulator
were sampled to 5 Hz. In the simulation, a kind of anomaly is injected
into the vertical velocity indicator, so the vertical speed reading is
abnormal in the flight data. The time required to process 4000 data
points in the high-performance board is 48 ms. A Xilinx Zynq 7045-
based airborne embedded computing platform in a real fixed-wing UAV
platform is used to deploy the FD algorithm by Wang et al. (2020a).
Zynq is a commonly used system on a chip that contains dual-core



A. Baldini, R. Felicetti, F. Ferracuti et al. Engineering Applications of Artificial Intelligence 123 (2023) 106343

A
f
k
f
i
e

3

w
t
s
o
a
D

3

f

a
i
I
e
m
f

3

t
n
r
l

4
(
G
t
s
W
t
p
l

c

1

Fig. 1. Detail of the anti-vibration platform.

RM (cortex-A9 arm) and FPGA. In this study, FPGA was dedicated
or implementing the FD solution. Thus, to the best of the authors’
nowledge, no FD solutions are available in the literature to deal with
aults (more specifically, actuator faults) that are proven to be feasible
n real-time on a conventional flight controller, without the need for
xternal sensors and/or dedicated computing boards.

. Experimental setup

Real flight data from a DJI F550 hexarotor under actuator faults
ere acquired to design and validate the proposed FD algorithm. In

he following, we detail the hardware equipment and the software
etup, including firmware customization to enhance data logging. The
bjective is to create a dataset that includes flights in different healthy
nd faulty conditions: for this purpose, data are logged on a Secure
igital (SD) card so that they are available for offline analysis.

.1. Hardware specifications

The hexarotor has been internally assembled, starting from the
ollowing commercial components.

• Flight controller: PixHawk PX4 Cube Black
• IMU: MPU9250 (InvenSense, 2016)
• Frame: DJI FlameWheel F550
• Battery: Tattu 25C LiPo, 4 cells, 6700 mAh
• Outrunner motors: T-Motor Air Gear 350
• Self-tightening propellers: T-Motor T9545
• Electronic Speed Controller (ESC): Tekko Holybro D-Shot 125
• Remote control: FrSky Taranis X8R (receiver) and X9D (transmit-

ter)

Please note that the flight controller is installed on a commercial
nti-vibration platform with four rubber dampeners (see Fig. 1), which
s a widespread expedient to reduce the vibrations measured by the
MU, thus enhancing the flight control performances. Despite the damp-
ning, in the remainder, we show that high-frequency acceleration
easurements using the on-board IMU are still possible and meaningful

or FD purposes.

.2. Custom firmware and software setup

When enabled, the default ArduPilot data log rate for IMU data on
he SD card is 25 Hz, which is too low to capture high-frequency dy-
amics. The default frequency is hardcoded: in order to increase the log
ate, the logging frequency must be manually increased in the ArduPi-

ot source code. So, first of all, the latest (V4.3.1) ArduPilot version 2

3

was downloaded from the official GitHub repository.1 To modify the
data log frequency, the ‘‘Copter.cpp’’ file was modified in Eclipse.2 In
particular, the scheduled frequency of the task ‘‘twentyfive_hz_logging’’
was increased from 25 Hz to 350 Hz.

The target logging frequency, i.e., 350 Hz, was the result of a trial-
and-error procedure. Clearly, the higher the frequency, the better for
diagnostic purposes. On the other hand, higher rates compromise the
execution of the remaining tasks and thus they can alter the behavior in
flight. In fact, the ArduPilot code is organized into tasks: the scheduler
runs at 400 Hz, while each task is scheduled with a predefined rate
(less or equal to 400 Hz). The scheduler executes the main tasks at
00 Hz, then the secondary tasks are executed in the remaining time
i.e., less than 2.5 ms), if needed (according to the desired task rate).
iven a predefined (hardcoded) estimation of the task duration, if the

ime left in the current iteration is not sufficient to perform a given
econdary task, that secondary task is postponed to the next iteration.
hen the target logging frequency is too large, the first symptom is that

he logging rate is not constant. This means that the scheduler cannot
erform the tasks at the prescribed rate, and the secondary tasks with
ower priority are affected as well.

The source code was compiled using Cygwin.3 and a suitable GCC
ompiler4 In order to load the custom firmware on the hexarotor

and configure it, the Mission Planner Ground Station software was
employed. After the hardware assembly and wiring, the standard setup
was performed, i.e., (custom) firmware installation, accelerometer and
compass calibration, radio configuration, and calibration, and ESC
calibration.

3.3. Dataset acquisition

The dataset consists of 18 flights, that were performed in open air
in favorable climatic conditions (i.e., mild wind). Each flight consisted
of a take-off, flying over four traffic cones that delimit a square, and
then landing. The UAV was piloted manually by a trained operator
and without any strict requirement on the path to be followed or the
flight time. The pilot could decide to hover in place or to perform
additional maneuvers, to simulate obstacle avoidance or focusing on a
fixed spot. Moreover, the battery State Of Charge (SOC) was different
at the beginning of each flight. This makes the dataset more realistic
and challenging. In fact, the battery SOC is not guaranteed to be 100%
in real flight conditions, and manual flight is often preferred in many
applications. Autonomous flights are more reproducible, so it is easier
to perform FD in such a case. In other words, using a predetermined
trajectory and a fully charged battery makes data more predictable and
less realistic, leading to a FD strategy that cannot be generalized to real
flight conditions.

To inject faults in the actuators, mechanical damage to the propeller
was considered. Blade chipping is a common damage in UAVs as a
consequence of the impact of the blade with obstacles. Hence, two kinds
of damaged propellers were realized, by chipping a single blade of the
propeller (see Fig. 2). Given a blade length of 11 cm, we denote with:

• 0% fault: a propeller with two regular blades whose length is 11
cm;

• 5% fault: a propeller with a regular blade and a chipped blade
whose remaining length is 10.45 cm;

• 10% fault: a propeller with a regular blade and a chipped blade
whose remaining length is 9.9 cm.

1 https://firmware.ardupilot.org/Copter/stable/CubeBlack/, last access: 15-
2-2022.

2 https://www.eclipse.org/downloads/, last access: 15-12-2022.
3 https://www.cygwin.com/install.html, last access: 15-12-2022.
4 https://firmware.ardupilot.org/Tools/STM32-tools, last access: 15-12-

022.

https://firmware.ardupilot.org/Copter/stable/CubeBlack/
https://www.eclipse.org/downloads/
https://www.cygwin.com/install.html
https://firmware.ardupilot.org/Tools/STM32-tools
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Fig. 2. Blade chipping. From top to bottom: healthy blade, 5% fault (artificially
chipped blade), 10% fault (artificially chipped blade), chipped blade due to a crash.

As the propeller profiles differ according to the ClockWise (CW) or
CounterClockWise (CCW) rotation direction, a total of four propellers
were damaged to create the complete dataset, i.e.:

• a CW propeller with 5% fault,
• a CCW propeller with 5% fault,
• a CW propeller with 10% fault,
• a CCW propeller with 10% fault.

Three different flight scenarios were considered, for a total of
8 flights. Six flights were performed in nominal conditions, i.e., in
bsence of propeller faults. Then, the 5% fault was injected by installing
he proper chipped propeller, one at a once, on each motor, obtaining
ix flights with a single fault. Similarly, six flights were recorded
njecting a single 10% fault. Please note that both the 5% and 10%
aults are relatively small (for the hexarotor under investigation) and
o they have a negligible impact on the flight dynamics: for this reason,
he pilot was still able to fly the drone, and it was still possible to carry
ut the tests.

. Preliminary data analysis

In this Section, a hypothesis testing is carried out to evaluate
he statistical differences in the frequency domain of the acceleration
ignals between the healthy case and the two faulty cases.

.1. Data preprocessing

As anticipated in Section 3.2, the PixHawk flight controller is not a
ard real time controller: despite the desired logging frequency is set
o 350 Hz, the data is logged at an actual average rate of 344–345 Hz.
oreover, data is not evenly spaced in time. Two approaches have been

ested to synchronize the acceleration signals at 350 Hz for frequency
omain analysis. The first one is based on the implementation of a Zero-
rder Hold (ZOH) model that holds its input for the specified sample
eriod. The second one is based on the resampling of the collected
onuniform data, which consists of upsampling, linear interpolation
t the new query points, applying a FIR antialiasing filter to the
psampled signal, and finally discarding samples to downsample the
iltered signal.

The experimental results obtained by the two approaches are com-
arable, so, in the remainder, the proposed results are related to the

OH-based method, since it requires a lower computational burden. m

4

Fig. 3. Normplot of power spectral density (case 0%, frequency 121 Hz, direction Y);
data distribution in blue plus signs, normal distribution in red dashed line.

The take-off and landing phases are not analyzed and the corre-
sponding signals have been neglected, as well as the data related to the
UAV when on the ground. Such phases can be recognized, for example,
by looking at the commanded Pulse Width Modulation (PWM) signal to
the motors (e.g., 1100 when landed and idle).

.2. Statistical data analysis

The dataset is partitioned into windows of 1 s length without
verlapping. In each time window (i.e., 350 samples), we perform a FFT
ith 512 points, using zero padding and a Hamming window. Please
ote that this preliminary analysis is performed only with the aim of
nvestigating the frequency components in different time windows, and
t different flight (fault) conditions, to ensure that a frequency-based
D method is meaningful; FFT will not, however, be used for feature
xtraction and FD design.

Consider the flight in absence of faults only: we note that most of
he frequencies show a nongaussian distribution, i.e., more than 95%
f the frequencies deviate from normality according to the Anderson–
arling test (𝑝 < 0.01). Similar results hold in presence of a 5% or a 10%

ault. As an example, a normal probability plot is reported in Fig. 3. It
hows the distribution of the Power Spectral Density (PSD) computed
t a single frequency (121 Hz) for the faultless case (0% fault), in the 𝑌
xis acceleration, compared to the normal distribution. The poor fitting
sing a gaussian approximation is evident.

As gaussianity cannot be assumed, the non-parametric Kruskal–
allis (KW) test is considered to verify if the data in the frequency

omain, taken from different fault conditions, are drawn from the same
istribution. In other words, we test if some frequencies show a differ-
nt pattern in presence of a fault, in order to define features for FD. A
ultiple comparison test on PSDs is carried out to provide information

bout which pairs of medians are significantly different, and which are
ot. The null hypothesis has been tested with a significance level set to
.001. Fig. 4 shows the results of the KW test. For each accelerometer,
he plots denote whether each frequency is relevant for FD (i.e., it
hows a significantly different distribution in case of faults, so the null
ypothesis is rejected) or not (null hypothesis is accepted). The Z axis
s omitted because the null hypothesis is accepted for every frequency.

e note that, in both cases, there are two major clusters of relevant
requencies: they are highlighted in red and in orange, respectively.
he signals in such coherent bands are easy to be extracted online by

eans of a Band-Pass Filter (BPF), thus avoiding to employ FFT online.
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Fig. 4. Kruskal–Wallis KW test results.
Fig. 5. P-values in logarithmic scale of direction X, Y, Z.
Fig. 5 reports the average 𝑝-values obtained by the multiple com-
parison test. We note that the band centered in 115 Hz for the 𝑌
acceleration is associated with the most significant 𝑝-values, followed
by the lower band centered in 90 Hz, especially in 𝑌 as well. The band
around 100 Hz shows poor significance as it is related to the main
rotational speed in hovering. Moreover, the vibration in the 𝑍 axis
shows in general a poor significance: in fact, we expect the vehicle to
oscillate mainly in the horizontal plane due to unbalancing.

Also please note that the median rotation speeds of the propellers
lie in 80−100 Hz, in accordance with the speed measurement provided
by the ESC through back-EMF (see Fig. 6). The different mean speed
of the motors is not determined by the faults on the propellers, as the
same pattern can be noticed in the fault-free flights only. Moreover, the
5

dataset is balanced, and all of the motors are faulty for the same number
of flights, as detailed in Section 3.3. The difference in motor speeds
can be ascribed to both the asymmetrical distribution of payloads and,
possibly, to the particular flight trajectory (e.g., yawing CW more than
CCW).

More specifically, the PSD in the meaningful bands increases in
presence of a fault, as shown in Fig. 7. Such increased vibration
in presence of a fault is physically justified by the unbalancing in
the rotating propeller. Although the propeller mass is very small if
compared to the entire UAV, an unbalanced rotating propeller moves
the center of mass according to its current orientation. Moreover,
the shape of the broken tip can also cause additional turbulence and
thus vibrations. Considering the 𝑍 axis instead (Fig. 7(c)), the PSD
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Fig. 6. Probability distribution for the motor speed measurements.

pparently increases around 100 Hz. This can be justified by the loss of
ift caused by the fault, which can slightly alter the average rotational
peed: in fact, we expect the flight controller to compensate for the
hrust loss by slightly increasing the rotational speed of the faulty
otor. However, the statistical analysis has shown poor significance.

n fact, we also expect maneuvering to affect the vertical lift force and
hus the vibration, so the feature could be unreliable for the purposes
f FD.

Also note that disregarding the presence of faults, a peak in power
pectral density can be noticed in the range of 80–100 Hz (clearly
isible in 𝑋, Fig. 7(a)), which is related to the average motor speed.
dditional relevant frequencies for FD can be found in Fig. 4, but

hey lack cohesion, so their extraction without involving not significant
eatures require selective (and thus more complex) filters.

Fig. 8 reports the boxplot of the power spectral densities in two
eaningful bands. Please note that the logarithmic scale, which is

dopted for the sake of readability, graphically reduces the distance
etween the outliers and the median: the same data, plotted on a linear
cale, is characterized by the presence of several huge outliers. Accord-
ng to the statistical analysis, we propose a filtering-based approach
onsisting of the design of a bank of filters to extract frequency-based
eatures thus avoiding the implementation of the FFT on an embedded
oard.

. AI-based fault detection design

In this Section, we design two alternative AI-based FD algorithms.
n the first case, we employ the default features suggested by MATLAB
iagnostic Feature Designer (DFD), i.e., 261 features including time and

requency domain. The DFD is a tool to help by graphical user interface
ith the automatic feature extraction of time-series for diagnostic and
redictive purposes. In the second case, we employ a set of frequency-
omain features, which are extracted by means of FIR filters, without
he need of computing any FFT online.

.1. Classifier training

For a fair comparison, in both cases we train a classifier, in a
upervised manner and using the same procedure, to discern between
hree different groups (i.e., 0%, 5%, and 10% fault cases). To limit
he computational effort, sparse classifiers are designed. As in sparse
lassifiers many features are not employed (or they have a null weight),
nly a subset of the features must be actually calculated online and

ed to the classifier. The size of the such subset of features, which

6

determines the complexity, depends on the classifiers’ hyperparam-
eters, so it can be tailored to the available computational power.
The dataset is divided into two partitions, 70% for training and 30%
for testing, with stratification (i.e., preserving the same proportions
between groups in the test set) to avoid sampling bias. The partitioning
is performed 20 times, where the training and testing datasets are
randomly partitioned and, for each run, the same kind of classifier is
trained. A 5-folds cross-validation is employed to prevent overfitting,
and the main hyperparameters are explored through a grid search.

Avoiding false positives is a priority in the aeronautical field, as
false positives usually trigger safety procedures that must be avoided
when unnecessary (e.g., reconfiguration, emergency landing). Hence,
the following matrix is employed to compute the misclassification
cost:

𝐶 =
⎡

⎢

⎢

⎣

0 10 10
1 0 1
5 1 0

⎤

⎥

⎥

⎦

, (1)

where the row represents the true class (from the top, 0%, 5%, 10%
fault, respectively) and the column represents the predicted class (from
the left, 0%, 5%, 10% fault, respectively). The proposed misclassifi-
cation cost matrix weighs false positives (true class 0% fault, wrong
predicted class) with a factor of 10, while a factor of 5 is employed to
weigh false negatives in case of the most severe fault (true class 10%
fault, predicted class 0% fault). The unitary weight is adopted for any
other misclassification.

5.2. DFD-based design

The DFD-based detection approach basically uses the feature ex-
traction step from the DFD. We calculate a total of 261 features by
using the default ones proposed by the DFD in MATLAB. As shown in
Table 1, we report the 28 time-domain features and the 3 frequency-
domain features. The time-domain features are calculated for the raw
signals, the first-order difference of raw signals, and the residual signals
(evaluated as the raw signals minus the ensemble mean), for a total
of 84 time-domain features. Hence, 87 features are calculated for each
acceleration signal (i.e., 𝑋, 𝑌 , and 𝑍).

5.3. Filtering-based design

The filtering-based approach consists in designing a bank of equirip-
ple FIR filters with a minimum order to extract frequency-based fea-
tures. In order to maximize the performances, many frequency-based
features are proposed in the following.

Taking into account the statistical analysis in Section 4, where the
lower frequencies do not show sufficient statistical significance, we
design a set of band-pass and high-pass FIR filters. The filter properties
are detailed in Table 2.

In particular, 32 High-Pass Filters (HPFs) are designed, where the
stopband frequency is set to

5, 10,… , 155, 160 Hz, (2)

respectively. As for the BPFs, 22 filters are designed. We design 15 filters
characterized by a 10 Hz fixed bandwidth, where the first stopband is
set to

5, 15,… , 135, 145 Hz, (3)

respectively, so that the second stopband is set to

15, 25,… , 145, 155 Hz, (4)

respectively. Moreover, 7 additional BPFs characterized by a 20 Hz fixed
bandwidth are added, where the first stopband is set to
5, 25,… , 105, 125 Hz, (5)
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Fig. 7. Acceleration periodogram.

Fig. 8. Boxplot of power spectral densities.
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Table 1
List of features extracted by DFD app.
# Domain Set of features Subset of features Features

1 Time Signal Statistical Mean value
2 Time Signal Statistical Standard Deviation
3 Time Signal Statistical Skewness
4 Time Signal Statistical Kurtosis
5 Time Signal Statistical Root Mean Square
6 Time Signal Statistical Shape Factor
7 Time Signal Impulsive Clearance Factor
8 Time Signal Impulsive Crest Factor
9 Time Signal Impulsive Impulse Factor
10 Time Signal Impulsive Peak Value
11 Time Signal Harmonic Signal-to-Noise and Distortion Ratio
12 Time Signal Harmonic Signal-to-Noise Ratio
13 Time Time Series Distribution Minimum
14 Time Time Series Distribution Median
15 Time Time Series Distribution Maximum
16 Time Time Series Distribution Quartile Q1
17 Time Time Series Distribution Quartile Q3
18 Time Time Series Distribution Interquartile range
19 Time Model-based Autoregressive Model Model Coefficients (1◦)
20 Time Model-based Autoregressive Model Natural Frequencies (1◦)
21 Time Model-based Autoregressive Model Damping Factors (1◦)
22 Time Model-based Model Fit Mean Squared Error
23 Time Model-based Model Fit Mean Absolute Error
24 Time Model-based Model Fit Akaike’s Information Criterion
25 Time Model-based Model Residual Residual Mean
26 Time Model-based Model Residual Residual Variance
27 Time Model-based Model Residual Residual RMS
28 Time Model-based Model Residual Residual Kurtosis

1 Frequency Spectral Spectral Peaks Peak amplitude
2 Frequency Spectral Spectral Peaks Peak frequency
3 Frequency Spectral Band Power Band Power
r
t
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Table 2
FIR filters specifications.
Specification Band pass High pass

First stopband attenuation 30 dB 30 dB
Second stopband attenuation 30 dB n.a.
Filter bandwidth 10 Hz/20 Hz n.a.
Passband ripple 1 dB 1 dB
Density factor 20 20

respectively, so that the second stopband is set to

25, 45,… , 125, 145 Hz. (6)

ach acceleration signal (𝑋, 𝑌 , and 𝑍) is filtered using the 54 filters
hat have been detailed, thus obtaining 162 filtered signals. For each
iltered signal, we calculate the following features:

• mean value,
• peak value,
• variance,
• mean of absolute values,
• mean of squared values.

ence, 810 features are employed to train the FD classifiers, and then
parsity is enforced to decrease the computational effort.

.4. Computational complexity

Running each filter with a single input value requires a time com-
lexity (𝑁), where 𝑁 is the order of the filter. This operation is
 b

8

epeated whenever a new acceleration sample is available. Let 𝑊 be
he number of samples for each signal in the time window (i.e., 350 in
s), 𝑛𝑠 the number of signals to be filtered (i.e., 3), and 𝑛𝑓 the number
f filters (i.e., up to 54). Then, the overall time complexity to calculate
he filtered signals in a single (1 s) time window is (𝑛𝑓 ⋅𝑁 ⋅ 𝑛𝑠 ⋅𝑊 ).
n other words, once the filters are fixed, the time complexity is linear
ith respect to the number of acceleration samples. Experimentally,

he computation complexity of buffering the signal for 1 s and then
alculating the features is too high to be performed online (i.e., more
han 2.5 ms, thus infeasible in a single scheduler iteration). Therefore,
iltering and calculating the features is necessarily performed online
n an iterative way, i.e., by updating the result as soon as a new
cceleration measurement is available. This allows to split the overall
omputation time from a single iteration ((𝑛𝑓 ⋅ 𝑁 ⋅ 𝑛𝑠 ⋅ 𝑊 )) to many
𝑊 ) smaller computations ((𝑛𝑓 ⋅ 𝑁 ⋅ 𝑛𝑠)) performed in 𝑊 different
terations. Also, using an iterative algorithm to calculate the features,
he output of the filters does not need to be stored for the whole time
indow, thus reducing the space complexity. The five features listed

n Section 5.3 can be calculated iteratively, and then the values after 1 s
re employed for FD. The online update of mean and variance is carried
ut by using the formulas for the computation of higher-order central
oments defined by Pebay et al. (2014), Pébay et al. (2016), Meng

2015). Each of the five feature calculations is linear in the number of
nput samples, and the time complexity of each one is (𝑛𝑓 ⋅𝑛𝑠) for each
f the 𝑊 time intervals where a new acceleration signal is measured.

In case of a Linear Support Vector Machine (LSVM) classifier, the
dditional classification time complexity is (𝑛𝑧), where 𝑛𝑧 is the num-
er of features with a non-zero weight, as the decision boils down to a
eighted sum and a comparison with a fixed threshold. In the case of a

inary classification decision tree, instead, the additional classification
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Fig. 9. Accuracy versus the number of actually employed features.
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time complexity is (ℎ), where ℎ is the tree height. Please note that
he height of a balanced tree is logarithmic in the number of nodes,
nd thus it is logarithmic in 𝑛𝑧, i.e. the number of features that are
sed to make the splits. Thus, given a fixed number of features 𝑛𝑧, we
xpect the classification tree to be faster than the classification through
LSVM.

. Experimental results

In this Section, we compare the results using the algorithms de-
igned in Section 5, i.e., DFD-based features versus FIR filtering-based
eatures.

.1. Filtering-based versus DFD-based detection

For a fair comparison, we train several sparse classifiers, i.e., LASSO
SVMs with a one versus one classification method, LASSO LSVMs
ith an ordinal classification method, and binary classification trees
sing an interaction-curvature training method. For each of them, we
xplore the main hyperparameter that regulates sparsity. In the case
f LASSO LSVMs, the regularization factor 𝜆, that weights the L1
enalty (𝜆∑𝑗 |𝛽𝑗 |, where 𝛽𝑗 is the weight associated to the 𝑗th feature),
etermines the sparsity. Hence, 𝜆 is explored using 300 logarithmically
paced tentative values, from 10−3 to 10−0.5. In the case of binary trees,
he maximum number of splits (‘‘MaxNumSplits’’) hyperparameter is
xplored, as it represents an upper bound for the number of features
hat are actually employed for classification.

Fig. 9 reports the accuracy versus the number of actually employed
nput features (i.e., an indicator for time complexity). As anticipated in
ection 5.1, 20 runs are performed with a different partitioning to show
f the performances are consistent: the solid line represents the average
ccuracy, while the shaded area of the same color defines the interval
etween the best and the worst accuracy using the same number of
eatures over the 20 runs.

First of all, we note that, given a classifier, the FIR features out-
erform the DFD features for every number of input features and for
very classifier. Not only the average value using the FIR features are
onsistently above the average using the DFD features and the same
lassifier, but also the shaded areas are often separated (e.g., in the
ase of a binary tree classifier, the yellow FIR based area is above the
reen DFD based area). The results also show that, for both FIR and
FD features, the binary trees outperform the LSVMs for a very low
umber of features.

Given the evident superiority of the FIR based features, from now
n, we focus on the analysis of FIR based FD algorithms. We note
hat, with just three features and a binary classifier using the FIR
eatures (namely, the peak of the 𝑦-axis accelerations after a 75 Hz
9

nd a 125 Hz HPF, respectively, and the mean of the squared values
of the 𝑥-axis accelerations after a 60 Hz HPF), the accuracy is up to
87.76%. For FIR features, the breakeven with the ordinal LSVM occurs
when at least 34 features are kept: in fact, the performances of the tree
classifiers saturate after approximately 20 features, while the LSVMs
show to be more effective when a larger amount of features is available.
Comparing the ordinal and the one versus one LSVMs, we note that
the one versus one can achieve marginally better results at the price of
increasing the number of features. In fact, the ordinal strategy requires
2 LSVM classifiers to separate three classes, while the one versus one
employs 3 classifiers, so it may require several additional features for
training. No classifier benefits from using more than 100 features, and
the accuracy saturates in the 95–98% range in the case of LSVMs using
FIR features.

6.2. Filtering-based FD performances

In the following, we detail the performances in the testing stage of
three specific classifiers that are depicted in Fig. 9 with a circle. We
recall that the test set is obtained using a 70%–30% partitioning with
tratification.

The confusion matrix in Fig. 10(a) refers to a binary tree classifier
hat uses 16 FIR based features and it shows a 93.37% accuracy in test-

ing (yellow circle in Fig. 9). The false positive rate, i.e., the detection of
a fault when the true class is no fault, is 11.5%. The classifier has been
obtained by setting the hyperparameter ‘‘MaxNumSplits’’ to 18. To cal-
ulate the 16 input features, 14 filters are actually involved (i.e., some
iltered quantities are used more than once, e.g., considering the output
f the HPF with a 60 Hz stopband on the 𝑋 acceleration, both the
ean and the mean of the squared values are actually employed by

he classifier). To analyze the consistency of the result, we note that,
sing 16 features, the average accuracy (i.e., the solid yellow line in
ig. 9) of the trained binary tree classifiers is 87.59% and the standard
eviation is 3.62%.

The confusion matrix in Fig. 10(b) refers to an ordinal LSVM that
mploys 61 features and it shows a 97.19% accuracy in testing (red
ircle in Fig. 9). The false positive rate is reduced to 0%. The classifier
as been obtained by setting the hyperparameter 𝜆 = 9.8852 ⋅ 10−3.
o calculate the 61 input features, 43 filters are actually involved.
he average accuracy of the ordinal LSVMs that employ 61 features

s 95.03% and the standard deviation is 1.04%.
The confusion matrix in Fig. 10(c) refers to a one versus one LSVM

hat employs 114 features and it shows a 98.21% accuracy in testing
blue circle in Fig. 9). The false positive rate is 1.8%. The classifier
as been obtained by setting the hyperparameter 𝜆 = 1.2844 ⋅ 10−3. To
alculate the 114 input features, 64 filters are actually involved. The
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Fig. 10. Confusion matrices in testing (FIR-based features).
Table 3
Classification accuracy and number of input features for the DFD-based and filter-based
FD strategies.

# # Accuracy

Features Features Filters Classifier Best Avg Std

DFD 15 n.a. tree 81.63% 76.10% 2.89%
DFD 24 n.a. ordinal LSVM 86.22% 80.27% 2.57%
DFD 106 n.a. 1 vs 1 LSVM 87.24% 84.55% 1.69%

filters 16 14 tree 93.37% 87.59% 3.62%
filters 61 43 ordinal LSVM 97.19% 95.03% 1.04%
filters 114 64 1 vs 1 LSVM 98.21% 97.21% 0.58%

average accuracy of the one versus one LSVMs classifiers that employ
114 features is 97.21% and the standard deviation is 0.58%.

The proposed results are summarized in Table 3 where, given a
number of features that show a good trade-off between complexity and
accuracy (i.e., the same number of features considered for Fig. 10),
the best, the mean, and the standard deviation of the accuracy is
reported. For the sake of comparison, we also report in Table 3 the
same quantities in the case of DFD based features. The classifiers with
the best accuracy are depicted in Fig. 9 with a circle.

6.3. Hardware-in-the-loop complexity testing

The FD algorithms are tested in HIL using Matlab’s UAV toolbox,
which allows to design the algorithm in Simulink and then to compile
and deploy it to a target flight controller. The target hardware for the
deployment is a Pixhawk 2.1 Cube black, equipped with a 32-bit ARM
Cortex M4 core, 168 MHz, 256 KB RAM and 2 MB Flash.

Please note that the Pixhawk 2.1 Cube black is a legacy hardware
with limited computational power and memory, and newer alternatives
are available off-the-shelf. Indeed, the following expedients are needed
to run the algorithm online on the target device. First of all, storing
the acceleration data for 1 s, and then performing batch filtering and
calculation of the features, has clearly shown to be infeasible for both
time and space complexity reasons. This makes impossible to deploy
the DFD based features, because most of them are too complex, and
also many of them cannot be efficiently implemented in an iterative
way. On the other hand, the filtering-based features can be calculated
iteratively, and then sampled after 1 s to be fed to the FD classifier.
To optimize the space complexity, all the floating point variables are
stored in single precision (IEEE 754 standard), while the integers are
stored using a 16-bit representation. Then, the amount of memory
to store data is approximately 30 KB, where the largest part is due
to the FIR filters’ state. To decrease the computational time, all the
buffers (i.e., the states of the FIR filters) are implemented as circular
buffers. Fig. 11 reports the actual implementation of the calculation
10
Table 4
HIL execution time and number of input features the filter-based FD strategies.

# # HIL execution time
Features Filters Features Task Average

filters 70 140 Feature computation 0.0158 ms
filters 70 140 LSVM classification 0.0154 ms

filters 70 140 Total over 1 s window 5.55 ms

of the iterative features and the binary tree classifier in Fig. 10(a).
The diagrams for the implementation of Figs. 10(b) and 10(c) can be
inferred and they are omitted for brevity.

To test the time complexity, the algorithm to calculate the features
and the classification is run during a flight simulated in HIL. The
Simulink algorithm for the joint flight control and FD are deployed
to the target hardware, the Qgroundcontrol.5 is employed to define
the flight mission, while the UAV Dynamics model runs in Matlab
to simulate the dynamics of the UAV For this purpose, we test the
computational time implementing 70 filters and 140 features, which is
a more demanding task than the most complex classifier in Table 4.
Then, the time to perform the FD computations is recorded. We note
that the computation time is small compared to the resolution (1 ms)
using the Posix time.h library on the flight controller. Hence, the FD
computations are repeated more than once in every iteration to increase
the computation time, and the time is inferred by linear regression.

Fig. 12 reports the experimental HIL time to compute the FIR
filtering and to extract the features. In the abscissa, the number of
repeated (identical) computations of filters and features is detailed.
We note that the task can be repeated 28 times in the same scheduler
iteration without reaching the 1 ms resolution of the time.h library,
while the median time is less than 1 ms up to 48 repetitions. As the
slope of the fitted line is 1.58 ⋅ 10−5, we infer that the average time
to filter and calculate the features is 15.8 μs. This task must be then
repeated 350 times per second.

Fig. 13 reports the experimental HIL time to run the LSVM classifier
with 70 features. Again, we note that the task can be repeated 40 times
in the same scheduler iteration without reaching the 1 ms resolution of
the time.h library. The slope of the fitted line is 1.54 ⋅ 10−5, so we infer
that the average time to run the classifier is 15.4 μs. The classification
task is run only once per second. In Table 4, we report the mean
execution time in HIL.

According to Table 4, the mean execution time to perform the
feature update in flight is 0.0158 ms, while 0.0154 ms are needed to
calculate the classification result via LSVM. In the case of a binary tree,
instead of a LSVM, the time for classification is negligible, consistently
with the discussion in Section 5.4. Please note that the features are

5 http://qgroundcontrol.com/, last access: 27-03-2023.

http://qgroundcontrol.com/
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Fig. 11. Iterative features calculation and binary tree classification.
Fig. 12. FIR filtering and feature extraction (70 filters, 140 features): HIL execution time on a Pixhawk Cube black.
Fig. 13. LSVM classification (140 features): HIL execution time on a Pixhawk Cube black.
t

updated iteratively at 350 Hz, i.e., when a new acceleration signal is
available, while the classification task is performed only once per 1 s
time window, i.e., at 1 Hz frequency. So, the overall computation time
for each 1 s time window is 5.55 ms, that is 0.55% of the CPU time
on average. The maximum computational load is achieved once per
second, in the final frame, when both the feature update and the LSVM
computation occur, for a total of 0.0312 ms on average. Comparing it
to the scheduled time to execute all the tasks in each cycle at 400 Hz
(i.e., 2.5 ms), we can state that all of the three proposed FD algorithms
can safely run on the target hardware, as it takes less than 2% of the
cycle time in the most computationally intensive iteration.

6.4. Testing with a chipped blade due to a crash

In order to validate the behavior of the proposed FD strategies in
real scenarios, we test the three FIR filtering-based classifiers from
Table 3 using a different blade with a fault due to a crash. We remark
that this additional flight data is not employed in the training stage. The
profile of the blade has been shown in Fig. 2. Please note that the shape
11
of the blade is different from both the healthy and the 5% and 10%
blades that have been artificially damaged instead. The severity of the
fault is deemed as intermediate, i.e., more than 5% and less than 10%.
In Fig. 14, we report the output of the three classifiers during a flight
whose duration is 125 s, hence 125 classification outputs are available.
For each time window (1 s) of the test set, the abscissa represents the
window number and the ordinate is the classification result. The testing
windows are sorted in ascending order by the acquisition time, hence
subsequent windows in the same flight are adjacent. As the blade fault
is intermediate, we consider 5% and 10% fault as acceptable answers,
while 0% clearly represents a false negative. Under this assumption,
the accuracy of the three classifiers in testing is reported in Fig. 14 as
well. All of the proposed classifiers warn that a fault is occurring, but
we note that the best performances are achieved by the binary tree,
which is the most simple and with the lowest accuracy in training,
with a striking 100% accuracy over 125 time windows. As the binary
ree selects only a few (i.e., 16) relevant features, it avoids overfitting

better than the more complex LSVMs, thus showing good performances
in real tests. The accuracy of the LSVM classifiers is actually lower than
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Fig. 14. Classification results: testing with a chipped blade due to a crash.
in Table 3, as they can miss the presence of the fault, which means that
the detection delay can increase.

7. Conclusion

Propeller faults on multirotor drones may have a severe impact on
vehicle dynamics. In this study, we have investigated subcritical pro-
peller faults, that have minor effects on the dynamics of the hexarotor
under investigation. Nonetheless, such faults can be detected with high
accuracy, starting from the on-board IMU data and simple classifiers,
while keeping the computational effort small enough to be run in real-
time on a conventional flight controller with severe computational
constraints.

We have found that calculating the features in a batch is infeasi-
ble for both time and space complexity reasons. This makes impos-
sible to deploy the DFD based features, as they cannot be efficiently
implemented in an iterative way.

On the contrary, FIR filtering-based features have proven to be
feasible online even on a legacy flight controller. We obtain up to
93.37%, 97.19%, and 98.21% accuracy using a classification tree (16
nput features), an ordinal LSVM (61 input features), and a one versus

one LSVM (114 input features), respectively.
The HIL tests show that the FD algorithm is feasible, with less than

% of the cycle time to be dedicated to FD in the worst case, and
0.55% of average CPU time. Moreover, the tests with a different

aulty blade, that has been damaged due to a crash, show that the
esults are consistent in real scenarios, with a 100%, 89.6%, and 88.8%
ccuracy using the classification tree, the ordinal LSVM, and the one
ersus one LSVM, respectively. The main challenge, in view of actual
mplementation in the field of UAVs, is to keep a small false positive
ate.

The limitations of the proposed results can be identified in neglect-
ng the external disturbances (in particular, the wind) and the need
or adapting the features (especially for vehicles with a different size)
nd thus retraining the classifier. Although the proposed algorithm is
alidated in realistic flight conditions, i.e., using manual flight mode
nd a different, unknown battery SOC, the fact that the algorithm is
ot tested in presence of wind represents a current limitation. However,
s the features are extracted at high frequencies, we expect that the
nfluence of external wind on these frequencies is marginal, as well
s the maneuvers performed by the pilot because they both affect
he lower frequencies mainly. Finally, as the proposed approach relies
n vibration at specified frequencies, we expect the classifier should
e retrained on new vehicles, especially when the average rotational
peed of the propellers is substantially different from the UAV under
nvestigation, e.g., due to a different UAV size, blade span, and/or the
umber of actuators.

In order to increase the performances of the proposed approach,

n our future works we are going to investigate the use of Wavelet

12
transform instead of conventional FIR filters. In fact, time–frequency
features can be obtained through the Wavelet transform, which could
lead to a shorter detection time and increased accuracy. Also, as higher-
order central moments can be calculated iteratively as well, we are
going to employ skewness and kurtosis to define additional diagnostic
features for FD.
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