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Weyl cycles on the blow-up of P4 at eight points

Maria Chiara Brambilla, Olivia Dumitrescu and Elisa Postinghel

Dedicated to Ciro Ciliberto, whose work inspired us throughout the years

Abstract We define the Weyl cycles on -=
B , the blown up projective space P= in B

points in general position. In particular, we focus on the Mori Dream spaces -3
7

and

-4
8
, where we classify all the Weyl cycles of codimension two. We further introduce

the Weyl expected dimension for the space of the global sections of any effective

divisor that generalizes the linear expected dimension of [2] and the secant expected

dimension of [4].

1 Introduction

Let -=
B be the blown up projective space P= in B points in general position. When

the number of points B is small, the space -=
B has an interpretation as certain moduli

space, see e.g. [1] and [5]. Mori Dream Spaces of the form -=
B were classified via the

work of Mukai [19, 20] and techniques of birational geometry of moduli spaces. In

previous work, in order to analyze properties of the pairs (-=
B , �) with � a Cartier

divisor, the authors of this article developed techniques of polynomial interpolation
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theory in [2] for B = = + 2 and in [4] for B = = + 3 respectively, via the study of the

base loci.

An analogous approach, based on interpolation theory, is developed in this paper

to define and to study the subvarieties determining the birational geometry of the

Mori Dream Spaces -3
7

and -4
8
. We will use this study as an opportunity to reveal

the geometry hidden in the Weyl group action on fixed linear cycles of -=
B and its

consequences. For instance, we expect that for all Mori Dream Spaces of type -=
B ,

Weyl cycles determine the birational geometry of such spaces, the cones of effective

and movable divisors and their decomposition into nef chambers.

In this article we propose a definition of Weyl cycles on -=
B as follows (see

Definition 1 for details).

(1) We call Weyl divisor any effective divisor � in Pic(-=
B ) in the Weyl orbit of an

exceptional divisor �8 ∈ Pic(-=
B ).

(2) We call Weyl cycle of codimension 8 an element of the Chow group �8 (-=
B )

that is an irreducible component of the intersection of Weyl divisors, which are

pairwise orthogonal with respect to the Dolgachev-Mukai pairing on Pic(-=
B ).

For an arbitrary number B of points, Weyl divisors are always extremal rays of

the cone of effective divisors of -=
B . The correspondence between (−1)-curves of

P
2 and Weyl curves in -2

B (i.e. Weyl divisors) was proved by Nagata [21], while

giving a counterexample to the Hilbert 14-th problem. Moreover in the case of P2,

Weyl curves have been widely investigated since they are involved in the well-known

Segre-Harbourne-Gimigliano-Hirschowitz conjecture, see e.g. [6, 7] or, more widely,

in the classification of algebraic surfaces (Castelnuovo’s contraction theorem), the

base of the minimal model program. The notion of divisorial (−1)-classes on -=
B

was introduced by Laface and Ugaglia in [16] and recently studied by the second

author and Priddis in [14].

In the case of -3
B , Laface and Ugaglia introduced the notion of elementary (−1)-

curves and studied their properties in [17]. The case of Weyl cycles of -4
8

has been

studied in [11] with a different approach: indeed in such paper Weyl orbits in -4
8

(as well as in -3
7
) of the proper transforms of linear cycles blown up along lines

spanned by any two points are described. The classification of Weyl cycles obtained

in [11] for the cases -3
7
, -4

8
, yields the same classification we determine here for

Weyl curves in -3
7

and for Weyl surfaces (see Equations (1)) in -4
8
. Therefore we

conclude that Definition 1 and the definitions used in [11] are equivalent for cycles

of codimension 2 in -3
7

and -4
8
. We believe that these two definitions are related

in general, namely for Weyl cycles in -=
B for arbitrary =, B, and we will study their

connection in forthcoming work.

In this article we emphasize that basic methods of intersection theory, applied

to pairs of orthogonal Weyl divisors, give an iterative method to compute the Weyl

cycles of codimension 2 in -3
7

and in -4
8
. Moreover, we show that every Weyl cycles

is swept out by families of rational curves parametrized by Weyl cycles of larger

codimension, see Proposition 3, Corollary 1 and Lemma 5. This allows us to give

a formula for the multiplicity of containment of each Weyl cycle in the base locus
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of an effective divisor. We expect these formulas to give rise to the equations of the

walls of the movable cone of divisors and its decomposition in nef chambers.
Our main result, contained in Section 5.3, is a classification of all the Weyl

surfaces of -4
8
. We compute the class of each such surface in the Chow ring of

-4
8, (1)

, the blow up of -4
8

along the strict transforms of all lines through two base

points and all rational normal quartic curves through seven base points. There are
five such classes, up to index permutation, as listed in the following formula (see
Section 5.2 for the precise notation):

(1
1,4,5 : ℎ − 41 − 44 − 45 −

∑

8, 9∈{1,4,5}

(48 9 − 58 9 )

(3

1,̂8
: 3ℎ − 341 −

7∑

8=2

48 − (4�
8̂
− 5�

8̂
) −

7∑

8=2

(418 − 518)

(6
6,7,8 : 6ℎ − 3

5∑

8=1

48 −

8∑

8=6

48 −
∑

8, 9∈{1,2,3,4,5},8≠ 9

(48 9 − 58 9) −

8∑

:=6

(4�
:̂
− 5�

:̂
)

(10
1,2 : 10ℎ − 641 − 642 −

8∑

8=3

348 − 3(412 − 512) −

2∑

8=1

8∑

9=3

(48 9 − 58 9) −

8∑

:=3

(4�
:̂
− 5�

:̂
)

(15
8 : 15ℎ −

7∑

8=1

648 − 348 −
∑

1≤8< 9≤7

(48 9 − 58 9) −

7∑

8=1

(4�
8̂
− 5�

8̂
) − 3(4�

8̂
− 5�

8̂
)

(1)

Recall that the birational geometry of -4
8

has been investigated in [20] and [5].

Casagrande, Codogni and Fanelli studied in detail the relation between the geometry

of -2
8

and -4
8

and in [5, Theorem 8.7] they described five types of surfaces in -4
8

playing a special role in the Mori program. We emphasize that this list agrees with

our classification of Weyl surfaces, (1). All the surfaces of table (1), except for the

first one, are normal on -4
8, (1)

, but non-normalon P4. In particular some of them have

isolated singularities at the points ?8 (when the coefficient of 48 is 2 or larger) and

ordinary triple point singularities along lines !8 9 or rational normal quartic curves

�
8̂

(when the coefficient of (48 9 − 58 9 ), or of (4�
8̂
− 5�

8̂
), is 3, cf. (10

1,2
and (15

8
). In

classical language, the description of (15
8

can be expressed as: there exists a surface

of degree 15 in P4 passing through seven general points with multiplicity 6 and

through another general point with multiplicity 3, containing lines !8 9 and curves

�
:̂
, where 1 ≤ 8, 9 , : ≤ 7 and triple at every point on the rational curve �

8̂
. Some

of the conditions imposed by the curve containment could be redundant when the

curve is already in the base locus forced by the points (as in the first case (1
8, 9 ,:

), but

perhaps not all of them. Indeed, while the surface class 3ℎ − 341 −
∑7

8=2 48 moves in

a positive dimensional family and the curve �
8̂

can not be contained in all elements

of such family (that contains also the union of 3 planes), imposing the containment

of the surface class (3

1,̂8
after further blowing-up.

Finally, we propose here a notion of expected dimension for a linear system

which takes into account the contribution to the speciality given by the Weyl cycles

contained in the base locus. In Definition 2, we introduce, for -=
=+4

and = = 3, 4, the

Weyl expected dimension of a divisor �, as follows:
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wdim(D) := j(-,O- (�)) +

=−1∑

A=1

∑

�

(−1)A+1

(
= + :�(�) − A − 1

=

)
,

where � ranges over the set of Weyl cycles of dimension A and :�(�) is the

multiplicity of containment of the cycle � in the base locus of �. This notion

extends the analogous definitions of linear expected dimension of [2] and secant

expected dimension of [4]. We prove that any effective divisor � in -3
7

satisfies

h0(-3
7
,O-3

7
(�)) = wdim(�), see Theorem 1, and we conjecture that the same holds

in -4
8
, see Conjecture 1.

The paper is organized as follows. In Section 2, we introduce the notation, recall

basic facts on the blown up of P= at B general points, -=
B , and on the action of standard

Cremona transformations on Pic(-=
B ). In Section 3 we introduce the definition of

Weyl cycles and we give some general result on Weyl curves in -=
B . Section 4 is

devoted to the preliminary case of -3
7
, where we classify Weyl divisors and Weyl

curves and we describe their geometry. Section 5 concerns the case of -4
8
. The

main result, i.e. the classification of the Weyl surfaces is contained in Section 5.3.

In Section 5.4, we give the classification of Weyl divisors and their geometrical

description. The last Section 6 is devoted to the dimensionality problem.

Acknowledgements: We thank the referee for their useful comments and sug-

gestions. We thank Cinzia Casagrande for many useful discussions and Luis J.

Santana-Sánchez for several comments on a preliminary version of this article.

The first and third authors are members of INdAM-GNSAGA. The second author

is supported by the NSF grant DMS - 1802082. The third author was partially

supported by the EPSRC grant EP/S004130/1.

2 Preliminaries

We denote by -=
B the blown up of P= at B general pointsI = {?1, . . . , ?B}. The Picard

group of -=
B is Pic(-=

B ) = 〈�, �1, . . . , �B〉, where � is a general hyperplane class,

and the �8’s are the exceptional divisors of the ?8’s. For any subset � ⊆ {1, . . . , B}

of cardinality ≤ =, we denote by !� the class, in the Chow ring of -=
B , of the strict

transform of the linear cycle spanned by �. If |� | = =, then !� = � −
∑

8∈� �8 ∈

Pic(-=
B ) is the class of a fixed hyperplane.

The Dolgachev-Mukai pairing on Pic(-=
B ) is the bilinear form defined as follows

(cf. [19]):

〈�, �〉 = = − 1, 〈�, �8〉 = 0, 〈�8 , � 9〉 = −X8, 9 .

The standard Cremona transformation based on the coordinate points on P= is

the birational transformation defined by the following rational map:

Cr : (G0 : · · · : G=) → (G−1
0 : · · · : G−1

= ),
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see e.g. [10, 14] for more details. Given any subset � ⊆ {1, . . . , B} of cardinality

=+1, we denote by Cr� and call standard Cremona transformation the map obtained

by precomposing Cr with a projective transformation which takes the points indexed

by � to the coordinate points of P=. A standard Cremona transformation induces an

automorphism of Pic(-=
B ), denoted again by Cr� by abuse of notation, by sending a

divisor

� = 3� −
∑

<8�8 (2)

to

Cr� (�) = (3 − 2)� −
∑

8∈�

(<8 − 2)�8 −

B∑

9∉�

< 9� 9 , (3)

where 2 :=
∑

8∈� <8 − (= − 1)3. The canonical divisor −(= + 1)� + (= − 1)
∑B

8=1 �8

is invariant under such an automorphism. The Weyl group ,=,B acting on Pic(-=
B )

is the group generated by standard Cremona transformations, see [10]. We say that

a divisor (2) is Cremona reduced if 2 ≤ 0 for any � of cardinality = + 1.

In [14, Theorem 3.2] the authors observed that the intersection pairing between

divisors is preserved under Cremona transformation.

Lemma 1 Let �, � be two divisors and let l ∈ ,=,B be an element of the Weyl

group. Then 〈l(�), l(�)〉 = 〈�, �〉.

Here we point out that the scheme-theoretic intersection of two divisors is in

general not preserved under Cremona transformation. Let �, � be two divisors and

let l = Cr� be a standard Cremona transformation. Then

l(� ∩ �) ∪ Λ ⊆ l(�) ∩ l(�)

where Λ is a union of linear cycles of the indeterminacy locus of l. The following

lemma provides an explicit recipe for Λ.

Lemma 2 Let � ⊆ {1, . . . , B} have cardinality = + 1, and let � = �1 ∪ �2, with

|�1 | = < + 1 and |�2 | = = − <. Let � = 3� −
∑
<8�8 be a divisor in -=

B . If

(= − < − 1)3 −
∑

8∈�2 <8 = 0 ≥ 1, then the <-plane !�1 is contained in Cr� (�)

exactly 0 times.

Proof Set 2 =
∑

8∈� <8 − (=−1)3. By [2] and [13, Proposition 4.2], we can compute

the multiplicity of containment of the <-plane !�1 in Cr(�):

∑

8∈�1

(<8 − 2) − <(3 − 2) =
∑

8∈�1

<8 − <3 − 2 = (= − < − 1)3 −
∑

8∈�2

<8 = 0,

concluding the proof. �
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3 Weyl cycles in Pn blown up at s points

In [14, Definition 4.1] a smooth divisor � in Pic(-=
B ) is called (−1)-class (or

(−1)-divisorial cycle) if � is effective, integral and it satisfies 〈�, �〉 = −1 and

〈�,− -=
B
〉 = = − 1. In [14, Theorem 0.5], it is proved that � is a (−1)-class if and

only if it is in the Weyl orbit of some exceptional divisor �8 . Notice that if 8 ∈ � , then

Cr� (�8) = !� \{8} is a hyperplane through = base points.

Here we generalize the definition of (−1)-classes to cycles of higher codimension

in -=
B , as follows. We will say that two divisors� and � are orthogonal if 〈�, �〉 = 0.

Definition 1 We introduce the following.

(1) A Weyl divisor is an effective divisor � ∈ Pic(-=
B ) which belongs to the Weyl

orbit of an exceptional divisor �8 .

(2) A Weyl cycle of codimension 8 is a non-trivial effective cycle � ∈ �8 (-=
B ) which

is an irreducible component of the intersection of pairwise orthogonal Weyl

divisors.

Remark 1 Let B ≥ = + 1 and 1 ≤ < ≤ = − 1. Any <-plane ! spanned by < + 1 points

is a Weyl cycle. Indeed, it is easy to check that ! is the intersection of A = = − <

pairwise orthogonal hyperplanes spanned by = points. By Lemma 1, any effective

cycle � contained in the Weyl orbit of a <-plane ! spanned by < + 1 base points is

a Weyl cycle. In particular the Weyl planes and Weyl lines studied in [11] are always

Weyl cycles, according to Definition 1.

We point out that two distinct non-orthogonal Weyl divisors intersect in a cycle

which may not be a union of Weyl cycles according to our definition. For example,

in -3
5

the plane through ?1, ?2, ?3 and the plane through ?1, ?4, ?5 intersect in a line

through ?1 which is not a Weyl cycle.

3.1 Weyl curves

We collect here some results on Weyl cycles of codimension = − 1 in -=
B , which we

call Weyl curves. The following examples show explicitly that the strict transforms

of lines through two points and of the rational normal curves of degree = through

= + 3 points are Weyl curves in -=
B , according to Definition 1.

Example 1 Let ! = !12 be the line through ?1 and ?2, then ! = �1 ∩ · · · ∩ �=−1

where �8 = !�8 and �8 = {1, 2, . . . , = + 1} \ {8 + 2} for any 1 ≤ 8 ≤ = − 1.

Example 2 For any 8 = 1, . . . , = − 1, consider the pairwise orthogonal Weyl divisors

�8 = 2� − 2�1 − . . . − 2�=−1 − �= − �=+1 − �=+2 − �=+3 + �8 . One can easily check

that �1 ∩ · · · ∩�=−1 is the union of !1...=−1 and the rational normal curve of degree

= through = + 3 points.
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We recall that the Chow group of algebraic curves �=−1 (-=
B ) is generated by

ℎ1, 41
8 , the classes of a general line in -=

B and of a general line on the exceptional

divisor �8 , respectively. The following formula describes the action on curves of the

standard Cremona transformation Cr� , based on the set � if � = Xℎ1 −
∑B

8=1 `84
1
8 ,

then [12] implies

Cr� (�) = (=X − (= − 1)
∑

9∈�

` 9 )ℎ
1 −

∑

9∈�

(X −
∑

8∈�\{ 9 }

`8)4
1
9 −

∑

9∉�

` 94
1
9 . (4)

Remark 2 Given a divisor� in -=
B and a line !8 9 = ℎ

1−41
8 −4

1
9 , then the multiplicity

of containment of the line !8 9 in the base locus of � is exactly max{0,−� · !8 9 },

where · denotes the intersection product in the Chow ring of -=
B (cf. [13, Proposition

4.2]). If = = 3, 4, the same holds for any curve � in the Weyl orbit of the line !8 9 ,

thanks to formulas (4).

4 P3 blown up in 7 points

In this section we consider Weyl cycles of -3
7
, the blow up of P3 at 7 points in

general position. Recall that -3
7

is a Mori Dream Space and that the cone of effective

divisors is generated by the divisors of anticanonical degree 1
2
〈�,− -3

7
〉 = 1. These

are exactly the Weyl divisors and they fit in five different types, modulo index

permutation.

Proposition 1 The Weyl divisors in -3
7

are, modulo index permutation:

(1) �8 (exceptional divisor);

(2) � − �1 − �2 − �3 (planes through three points);

(3) 2� − 2�1 − �2 − �3 − �4 − �5 − �6 (pointed cone over the twisted cubic);

(4) 3� − 2(�1 + �2 + �3 + �4) − �5 − �6 − �7 (Cayley nodal cubic);

(5) 4� − 3�1 − 2(�1 + �2 + �3 + �4 + �5 + �6 + �7).

Proof It is easy to compute the Weyl orbit of a plane through 3 points, by applying

formula (3). �

Proposition 2 The Weyl curves in -3
7

are the fixed lines !8 9 = ℎ
1 − 41

8 − 4
1
9 and the

fixed twisted cubics � 9̂ = 3ℎ1 −
∑7

8=1 4
1
8 + 4

1
9 .

Proof For every pair of orthogonal Weyl divisors as in Proposition 2, one can check

that the intersection is always the union of fixed lines and twisted cubics.

We give here some details only in one example, that is the case of a cubic Weyl

divisor and a quartic one. Since the divisors are orthogonal, we can assume that

�1 = 3� − 2�1 − 2�2 − 2�3 − 2�4 − �5 − �6 − �7

and
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�2 = 4� − 3�1 − 2(�1 + �2 + �3 + �4 + �5 + �6 + �7)

and we easily see, by using Remark 2, that the intersection is

�1 ∩ �2 = �
5̂
∪ �

6̂
∪ �

7̂
∪ !12 ∪ !13 ∪ !23.

All the other cases can be analogously analyzed. �

From the previous result we can conclude that our Definition 1 of Weyl curves in

-3
7

is equivalent to the definition of Weyl line of [11].

In the following result we describe the intrinsic geometry of the Weyl divisors of

-3
7
, showing that they are covered by pencils of rational curves parametrized by a

Weyl curve.

Proposition 3 Let � be Weyl divisor on -3
7
. If � ⊂ � is a Weyl curve, then there is

a pencil of rational curves {�@ : @ ∈ �} with �@ · � = 0 sweeping out �.

Proof We will consider the divisors (2)-(5) from Proposition 2. It is easy to check

what Weyl curves are contained in �, using Remark 2. For each such containment

� ⊆ �, we will find a suitable pencil of curves, parametrised by�, sweeping out �.

(2) Let us consider the fixed hyperplane � = � − �1 − �2 − �3 and the Weyl

line !12 ⊂ �. Such plane is swept out by the pencil of lines through ?3 and with a

point @ ∈ !12: {�1
3
(@) : @ ∈ !12}. Since the cycle class of �1

3
(@) is ℎ1 − 41

3
, then we

obtain �1
3
(@) · � = 0.

(3) The quadric surface � = 2� − 2�1 − �2 − �3 − �4 − �5 − �6 contains the

fixed twisted cubic �3
1,...,6

= 3ℎ1 −
∑6

8=1 4
1
8 . Since it is the strict transform of a

pointed cone, it is swept out by the pencil of lines {�1
1
(@) : @ ∈ �1,...,6}. We have

�1
1
(@) · � = 0.

Notice also that � can be obtained from�−�1−�2−�3 through the transforma-

tion Cr1,4,5,6 (cf. (3)). The latter preserves the line !12 and, for every @ ∈ !12, it sends

the line �1
3
(@) to the cubic curve �3

1,3,4,5,6
(@), see formula (4). Therefore we see

that � is also swept out by the pencil {�3
1,3,4,5,6

(@) : @ ∈ !12}. Moreover, since the

general element of�1
3
(@) is not contained in the indeterminacy locus of Cr1,4,5,6 , the

intersection number is preserved 0 = �1
3
(@) · (� −�1 −�2 −�3) = �

3
1,3,4,5,6

(@) ·�.

(4) This surface is obtained from (3) via the standard Cremona transforma-

tion Cr2347. The image of the first pencil sweeping out (3) is the pencil of cubics

{�3
1,...,4,7

(@) : @ ∈ �1,...,6} and it sweeps out (4). The images of the second pencil

sweeping out (3) is {�5
3,4

(@) : @ ∈ !12}, where �5
3,4

(@) is a quintic curve with cycle

class 5ℎ−
∑7

8=1 48 − 43 − 44 and passing through @ ∈ !12: this pencil sweeps out (4).

As before, we can argue that �3
1,...,4,7

(@) · � = 0 and �5
3,4

(@) · � = 0.

(5) This surface is obtained from (4) via Cr1,5,6,7, On the one hand we obtain

that (5) is swept out by the pencil of quintics {�5
1,7

(@) : @ ∈ �1,...,6}. On the

other hand the surface is covered by the pencil of septic curves �7
2
(@) with class

7ℎ − 2
∑7

8=1 48 + 42 passing through @ ∈ !12: {�7
2
(@) : @ ∈ !12}. In both cases,

the intersection product · is preserved under Cremona transformation because the

general curve in the pencil is not contained in the indeterminacy locus.
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5 P4 blown up in 8 points

5.1 Curves in ^
4
8

Notation 1 We consider the following classes of moving curves in �3 (-4
8
), each

obtained from the previous via a standard Cremona transformation (see formula (4)

and a permutation of indices. They each live in a 4-dimensional family.

• ℎ1 − 41
8 , for any 8 ∈ {1, . . . , 8},

• 4ℎ1 −
∑

8∈� 4
1
8 , for any � ⊂ {1, . . . , 8} with |� | = 6,

• 7ℎ1 −
∑

8∈� 241
8 −

∑
8∉� 4

1
8 , for any � with |� | = 3,

• 10ℎ1 − 481 − 3482 −
∑

8≠81 ,82
241

8 , for any 81 ≠ 82, 81, 82 ∈ {1, . . . , 8},

• 13ℎ1 −
∑

8∈� 241
8 −

∑
8∉� 341

8 , for any � with |� | = 3.

• 16ℎ1 −
∑

8∈� 441
8 −

∑
8∉� 341

8 , for any � with |� | = 2.

The families of curves in Notation 1 correspond to facets of the effective cone of

divisors on -4
8
, see [5]. Here we include a proof via our geometrical approach.

Proposition 4 Let � = 3� −
∑
<8�8 be a divisor in -4

8
. If � is effective, then we

have:

• <8 ≤ 3, for every 8 ∈ {1, . . . , 8},

•

∑
8∈� <8 − 43 ≤ 0, for any � ⊂ {1, . . . , 8} with |� | = 6,

•

∑
8∈� 2<8 +

∑
8∉� <8 − 73 ≤ 0, for any � with |� | = 3,

• <81 + 3<82 +
∑

8≠81 ,82
2<8 − 103 ≤ 0, for any 81 ≠ 82, 81, 82 ∈ {1, . . . , 8},

•

∑
8∈� 2<8 +

∑
8∉� 3<8 − 133 ≤ 0, for any � with |� | = 3.

•

∑
8∈� 4<8 +

∑
8∉� 3<8 − 163 ≤ 0, for any � with |� | = 2.

The first two inequalities were also proved in [2, Lemma 2.2].

Proof Notice that each 4-dimensional family of Notation 1 covers -4
8
\
⋃

8 �8 , indeed

for each general point in -4
8
\
⋃

8 �8 we find one curve of the family that passes through

it. Now, if � · (ℎ1 − 41
8 ) = 3 − <8 < 0, then � contains each line in the family in its

base locus, but this contradicts the assumption that � is effective. This proves the

first inequality. The remaining inequalities are proved similarly. �

5.2 Further blow up of P4.

For any 1 ≤ 8 ≤ 8, we denote by�
8̂
the rational normal quartic curve passing through

seven base points and skipping the 8th point. Consider now

-4
8, (1)

?
→ -4

8 ,

the blow up of -4
8

along the 28 lines !8 9 and the 8 curves �
8̂
. The strict transforms

on -=
B of a line passing through two points and that of the unique rational normal
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curve of degree = passing through = + 3 points are (−1)-curves, i.e. rational curves

with homogeneous normal bundle O(−1)⊕(=−1) . Since these curves are rational, the

projection on the first factor of their exceptional divisors is P1. Since their normal

bundle is homogeneous, a twist by a line bundle will make it trivial, so the projection

onto the 2nd factor is P2.

The Picard group of -4
8, (1)

is Pic(-4
8, (1)

) =< �, �8 , �8 9 , ��
8̂
>, where, abusing

notation, we denote again by �8 the pull-back ?∗(�8) and by � the pull-back ?∗(�),

while �8 9 and ��
8̂

are the exceptional divisors of the curves. Notice that �8 is a P3

blown up in 14 points, coming from the intersection with 7 lines and 7 rational normal

quartic curves, that lie on a configuration of twisted cubics, while �8 9 � P
1 × P2 and

��
8̂
� �

8̂
× P2.

For any � ∈ Pic(-4
8
), of the form � = 3� −

∑8
8=1 <8�8 , the strict transform �̃ of

� under ? satisfies

�̃ := � −
∑

:8 9�8 9 −
∑

:�
8̂
��

8̂
. (5)

where :8 9 and :�
8̂

are defined in Remark 2.

Let us consider now the Chow group of 2-cycles of -4
8, (1)

:

�2(-4
8, (1) ) = 〈ℎ, 48 , 48 9 , 58 9 , 4�

8̂
, 5�

8̂
〉.

where ℎ is the pullback of a general plane of P4, 48 is the pull-back of a general plane

contained in �8 , 58 9 � P
2 is the fiber over a point of the line and 48 9 � P

1 × P1 is

the transverse direction, 5�
8̂

is the fiber over a point of the curve �8̂ and 4�
8̂

is the

transverse direction. In the Chow ring �∗(-4
8, (1)

) we have the following relations:

�2
= ℎ, �2

8 = −48 , ��8 = 0, �8� 9 = 0 (6)

��8 9 = �8�8 9 = 58 9 , �8� 9 : = 0 (7)

�2
8 9 = −48 9 − 58 9 , �8 9�8: = 0, �8 9�:; = 0 (8)

�4
= ℎ2

= 1, �4
8 = 42

8 = −1, 58 948 9 = 4
2
8 9 = −1 (9)

5 2
8 9 = 48 58 9 = 0, ℎ48 = ℎ 58 9 = 0, 4848 9 = ℎ48 9 = 0. (10)

5.3 Classification of the Weyl surfaces

The section contains one of the main results of this paper. We construct five Weyl

surfaces in -4
8

and we prove that they are the only such cycles, modulo index

permutation. For any surface, we also give its exact multiplicity of containment in a

given divisor and its class in the Chow ring of -4
8, (1)

.

Proposition 5 Let (1 = (1
1,4,5

be the plane !145 through three points in P4.
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• Given an effective divisor � = 3� −
∑
<8�8 in -4

8
, let

:(1 (�) = max{0, <1 + <4 + <5 − 23}.

Then the surface (1 is contained in the base locus of � exactly :(1 (�) times.

• The class of the strict transform (̃1 of (1 in the Chow group �2 (-4
8, (1)

) is

ℎ − 41 − 44 − 45 −
∑

8, 9∈{1,4,5}

(48 9 − 58 9 ).

Proof The first part of the statement follows from [2] and [13, Proposition 4.2].

Consider the fixed hyperplanes�0 := � −�1 −�3 −�4 −�5 and �0 := � −�1 −

�2 − �4 − �5. Let �̃0 and �̃0 be their strict transforms on -4
8, (1)

, see (5). Clearly we

have (1 = �0 ∩ �0, and (̃1 = �̃0 ∩ �̃0. By using relations (6), (7), (8), we compute

�̃0 ∩ �̃0 = ℎ − 41 − 44 − 45 −
∑

8, 9∈{1,4,5} (48 9 − 58 9 ). �

Using Lemma 2 we obtain the following.

Lemma 3 Given a subset � = {81, . . . , 85} ⊆ {1, . . . , 8} and a divisor � = 3� −∑
<8�8 in -4

8
. If

3 − <81 − <82 = 0 ≥ 1,

then the 2-plane !838485 is contained in Cr� (�) exactly 0 times.

Lemma 4 Let � = {81, 82, 83, 84, 85} and � = {81, 82, 86} be two subsets of {1, . . . , 8},

such that |� ∩ � | = 2. If Cr� is the standard Cremona transformation based on � ,

then the plane !� is Cr� -invariant, that is Cr� (!� ) = !� .

Proof Consider the hyperplanes � = !81828386 and � = !81828486 . We have � ∩ � =

!818286 = !� . Clearly Cr� (�) = � and Cr� (�) = � and hence also Cr� (!� ) =

Cr(� ∩ �) ⊆ Cr� (�) ∩ Cr� (�) = � ∩ � = !� . �

Proposition 6 Let � := {1, 2, 3, 6, 7} and consider the Cremona transformation Cr� .

Let (1 = !145. Then (3 := Cr� ((
1) is the strict transform of cubic pointed cone over

the rational normal curve �
8̂

and the point ?1.

• Given a divisor � = 3� −
∑
<8�8 , let

:(3 (�) = max{0, 2<1 + <2 + <3 + <4 + <5 + <6 + <7 − 53}.

Then the surface (3 is contained in the base locus of � exactly :(3 (�) times.

• The class of the strict transform (̃3 of (3 in the Chow group �2 (-4
8, (1)

) is

3ℎ − 341 −

7∑

8=2

48 − (4�
8̂
− 5�

8̂
) −

7∑

8=2

(418 − 518)

Proof The plane (1 = !145 is swept out by the pencil of lines {�1 (@) : @ ∈ !14},

where the cycle class of �1(@) is ℎ1 − 41
5

and it passes through the point @ ∈ !14.
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Using formulas (4) and the same idea as in the proof of Proposition 3, we compute the

images of the line !14 = ℎ1 − 41
1
− 41

4
and of the pencil of lines {�1 (@) : @ ∈ !14} of

class ℎ1−41
5

via the transformation Cr� . We have Cr� (!14) = !14 and Cr� (�
1 (@)) =

�4 (@) where �4 (@) is a rational curve with class 4ℎ1 − 41
1
− 41

2
− 41

3
− 41

5
− 41

6
− 41

7

and passing through @. Thus we get that the surface (3 is swept out by the pencil

{�4 (@) : @ ∈ !14}. Therefore � contains any curve�4 (@), and hence (3, in its base

locus at least max{0, <1+<2+<3+<5+<6+<7+max{0, <1+<4−3}−43} times.

Notice that we have <1 +<2 +<3 +<5 +<6 +<7 − 43 ≤ 0, since � is effective, by

Proposition 4. Hence the claim follows.

Now we prove the second statement. Given �0 and �0 defined in the previous

proposition, recall that �0 ∩ �0 = (1. We consider now their images �1 = Cr� (�0)

and �1 = Cr� (�0):

�1 = 2� − 2�1 − �2 − 2�3 − �4 − �5 − �6 − �7

�1 = 2� − 2�1 − 2�2 − �3 − �4 − �5 − �6 − �7.

Clearly (3 ⊆ �1∩�1. By Proposition 5 we easily see that the only plane contained

in �1 ∩ �1 is !123. Moreover it is easy to check that the intersection �1 ∩ �1 does

not intersect the indeterminacy locus of the Cremona transformation Cr� in any

other 2-dimensional component. Hence �1 ∩ �1 is the union of the plane !123 and

an irreducible cubic surface with one triple point in ?1 and 6 simple points. We

conclude that (3 is exactly such cubic surface.

We now shall describe the class of (3 in �2(-4
8, (1)

). Let �̃1 and �̃1 be the

corresponding strict transforms under the blow up of lines and rational normal

curves in -4
8, (1)

. By (5), we have

�̃1 = 2� − 2�1 − �2 − 2�3 −

7∑

8=4

�8 − 2�13 −
∑

8∈{1,3},:∈{2,4,5,6,7}

�8: − ��
8̂

�̃1 = 2� − 2�1 − 2�2 −

7∑

8=3

�8 − 2�12 −
∑

1≤8≤2,3≤:≤7

�8: − ��
8̂
.

By using relations (6), (7), (8), we compute the intersection:

�̃1∩�̃1 = (ℎ−41−42−43−
∑

8, 9∈{1,2,3}

(48 9− 58 9)) + (3ℎ−341−

7∑

8=2

48−(4�
8̂
− 5�

8̂
)−

7∑

8=2

(418− 518)) .

Finally by Proposition 5, we can conclude. �

We will denote by (3

8, 9̂
the cubic surface with a triple point at ?8 and multiplicity

zero at ? 9 .

Proposition 7 Let � := {2, 3, 4, 5, 8} and consider the Cremona transformation Cr� .

Then (6 := Cr� ((
3) is a surface of degree 6 with five triple points.

• Given an effective divisor � = 3� −
∑
<8�8 , let



Weyl cycles on the blow-up of P4 at eight points 13

:(6
(�) = max{0, 2(<1 + <2 + <3 + <4 + <5) + <6 + <7 + <8 − 83}.

Then the surface (6 is contained in the base locus of � exactly :(6
(�) times.

• The class in �2 (-4
8, (1)

) of strict transform (̃6 of (6 in -4
8, (1)

is

6ℎ − 3

5∑

8=1

48 −

8∑

8=6

48 −
∑

8, 9∈{1,2,3,4,5},8≠ 9

(48 9 − 58 9 ) −

8∑

:=6

(4�
:̂
− 5�

:̂
).

Proof We know from the previous proposition that the surface (3 is swept out by

a pencil of rational normal quartic curves {�4 (@) : @ ∈ !14}. By (4), we obtain

that the image of the pencil is {�7 (@) : @ ∈ !14}, where �7 (@) is a rational septic

curve with class 7ℎ1 −
∑8

8=1 4
1
8 − 4

1
2
− 41

3
− 41

5
and passing through @ ∈ !14. Since

the surface (6 is swept out by this, we can say that � contains (6 in its base locus at

least max{0, <1 +2<2 +2<3+<4 +2<5+<6 +<7 +<8 +max{0, <1 +<4 −3}−73}

times. Since � is effective, by Proposition 4 we have <1 + 2<2 + 2<3 + <4 + 2<5 +

<6 + <7 + <8 − 73 ≤ 0, hence the claim follows.

Now we prove the second statement. Given �1 and �1 defined in the previous

proposition, recall that �1 ∩ �1 = !123 ∪ (
3. We consider now �2 = Cr� (�1) and

�2 = Cr� (�1) to be their image under the Cremona transformation and we get:

�2 = 3� − 2�1 − 2�2 − 3�3 − 2�4 − 2�5 − �6 − �7 − �8

�2 = 3� − 2�1 − 3�2 − 2�3 − 2�4 − 2�5 − �6 − �7 − �8.

We now analyse the intersection �2 ∩�2. Note that Cr� (!123) = !123, by Lemma 4.

By Proposition 5 we see that the only planes contained in�2∩�2 are !123, !234, !235.

Finally we check that the intersection of �2∩�2 with the indeterminacy locus of Cr�
does not contain any other 2-dimensional component, besides the planes !234 and

!235. Hence the intersection �2 ∩ �2 splits into four components: the three planes

!123, !234, !235 and a sextic surface with five triple points at ?1 and three simple

points. Hence we conclude that (6 is exactly the sextic irreducible surface.

We now describe the class of (6 in -4
8, (1)

. Let �̃2 and �̃2 be the corresponding

strict transforms under the blow up of lines and rational normal curves in -4
8, (1)

, see

(5). We have

�̃2 = 3� −
∑

8∈{1,2,4,5}

2�8 −3�3 −

8∑

8=6

�8 −
∑

8∈{1,2,4,5}

2�38 −

8∑

8=6

�38 −
∑

8, 9∈{1,2,4,5},8≠ 9

�8 9 −

8∑

8=6

��
8̂

�̃2 = 3� −
∑

8∈{1,3,4,5}

2�8 − 3�2 −

8∑

8=6

�8 −
∑

8∈{1,3,4,5}

2�28 −

8∑

8=6

�28 −
∑

8, 9∈{1,3,4,5},8≠ 9

�8 9 −

8∑

8=6

��
8̂

Computing their complete intersection, we have:

�̃2 ∩ �̃2 = (ℎ − 41 − 42 − 43 −
∑

8, 9∈{1,2,3},8≠ 9

(48 9 − 58 9))+
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+(ℎ − 42 − 43 − 44 −
∑

8, 9∈{2,3,4},8≠ 9

(48 9 − 58 9 )) + (ℎ − 42 − 43 − 45 −
∑

8, 9∈{2,3,5}

(48 9 − 58 9))+

(6ℎ − 3

5∑

8=1

48 −

8∑

8=6

48 −
∑

8, 9∈{1,2,3,4,5},8≠ 9

(48 9 − 58 9 ) −

8∑

:=6

(4�
:̂
− 5�

:̂
))

where we use relations (6), (7), (8), and we conclude. �

We will denote by (6
8, 9 ,:

the sextic surface with five triple points at {?ℎ} for

ℎ ≠ 8, 9 , :.

Proposition 8 Let � := {1, 2, 6, 7, 8} and consider the Cremona transformation

Cr;� . Then (10 := Cr� ((
6) is a surface of degree 10 with two sextuple points and six

triple points.

• Given an effective divisor � = 3� −
∑
<8�8 , let

:(10 (�) = max{0, 3(<1 + <2) + 2(<3 + <4 + <5 + <6 + <7 + <8) − 113}.

Then the surface (10 is contained in the base locus of � exactly :(10 (�) times.

• The class of the strict transform (̃10 of (10 in �2(-4
8, (1)

) is

10ℎ − 641 − 642 −

8∑

8=3

348 − 3(412 − 512) −

2∑

8=1

8∑

9=3

(48 9 − 58 9 ) −

8∑

:=3

(4�
:̂
− 5�

:̂
).

Proof We know from the previous proposition that the surface (6 is swept out by the

pencil of rational septic curves {�7 (@) : @ ∈ !14}. By (4), we obtain that the image

of the pencil is {�10 (@) : @ ∈ !14}, where �10 (@) is a rational curve with class

10ℎ1−241
1
−341

2
−241

3
−41

4
−241

5
−241

6
−241

7
−241

8
and passing through @ ∈ !14. Since

the surface (10 is swept out by this pencil, we can say that � contains (10 in its base

locus at least max{0, 2<1 +3<2 +2<3 +<4 +2<5 +2<6 +2<7 +2<8 +max{0, <1 +

<4−3}−103} times. Since 2<1+3<2+2<3+<4+2<5+2<6+2<7+2<8−103 ≤ 0,

the claim follows by Proposition 4.

Now we prove the second statement. Given �2 and �2 defined in the previous

proposition, recall that �2 ∩ �2 = (6 ∪ !123 ∪ !234 ∪ !235. We consider now �3 =

Cr� (�2) and �3 = Cr� (�2) to be their image under the Cremona transformation and

we get

�3 = 5� − 4�1 − 4�2 − 3�3 − 2�4 − 2�5 − 3�6 − 3�7 − 3�8

�3 = 4� − 3�1 − 4�2 − 2�3 − 2�4 − 2�5 − 2�6 − 2�7 − 2�8.

It is easy to check, by applying the previous propositions, that the intersection�3∩�3

contains the planes !123, !126, !127, !128 and the cubic surfaces (3

2,̂4
and (3

2,̂5
. Notice

that Cr� (!123) = !123 by Lemma 4, and Cr� (!234) = (3

2,̂5
, Cr� (!235) = (3

2,̂4
, by

Proposition 6. By computing the intersection of �3 ∩ �3 with the indeterminacy

locus of Cr� we see that there are no other 2-dimensional components, besides the
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planes !126, !127, !128. Hence we conclude that (10 is an irreducible surface with

degree 10 and two sixtuple points at ?1 and ?2 and 6 triple points.

Finally we describe the class of (10 in -4
8, (1)

. Let �̃3 and �̃3 be the corresponding

strict transforms under the blow up of lines and rational normal curves in -4
8, (1)

,

see (5). Computing their complete intersection, as in the previous case we get our

claim. �

Proposition 9 Let � := {3, 4, 5, 6, 7} and consider the Cremona transformation

Cr� . Then (15 := Cr� ((
10) is a surface of degree 15 with one triple point and seven

sextuple points.

• Given an effective divisor � = 3� −
∑
<8�8 , let

:(15 (�) = max{0, 3(<1 + <2 + <3 + <4 + <5 + <6 + <7) − 2<8 − 143}.

Then the surface (15 is contained in the base locus of � exactly :(15 (�) times.

• The class of the strict transform (̃15 of (15 in �2(-4
8, (1)

) is

15ℎ −

7∑

8=1

648 − 348 −
∑

1≤8< 9≤7

(48 9 − 58 9 ) −

7∑

8=1

(4�
8̂
− 5�

8̂
) − 3(4�

8̂
− 5�

8̂
).

Proof We know from the previous proposition that the surface (10 is swept out by

the pencil of rational septic curves {�10 (@) : @ ∈ !14}. By (4), we obtain that the

image of the pencil is {�13 (@) : @ ∈ !14}, where�13 (@) is a rational curve with class

13ℎ1−241
1
−341

2
−341

3
−241

4
−341

5
−341

6
−341

7
−241

8
and passing through @ ∈ !14. Since

the surface (15 is swept out by this pencil, we can say that � contains (15 in its base

locus at least max{0, 2<1+3<2+3<3+2<4+3<5+3<6+3<7+2<8+max{0, <1+

<4−3}−133} times. Since 2<1+3<2+3<3+2<4+3<5+3<6+3<7+2<8−133 ≤ 0

the claim follows by Proposition 4.

Now we prove the second statement. Given �3 and �3 defined in the previous

proposition, recall that

�3 ∩ �3 = (10 ∪ !123 ∪ !126 ∪ !127 ∪ !128 ∪ (
3

2,̂4
∪ (3

2,̂5
.

We consider now �4 = Cr� (�3) and �4 = Cr� (�3) to be their image under the

Cremona transformation.

�4 := 7� − 4�1 − 4�2 − 5�3 − 4�4 − 4�5 − 5�6 − 5�7 − 3�8

�4 := 6� − 3�1 − 4�2 − 4�3 − 4�4 − 4�5 − 4�6 − 4�7 − 2�8.

Now the intersection �4 ∩ �4 contains (3

3,̂8
= Cr� (!123) (by Proposition 6), (3

6,̂8
=

Cr� (!126) (by Proposition 6), (6
148

= Cr� ((
3

2,̂4
) (by Proposition 7), (6

158
= Cr� ((

3

2,̂5
)

(by Proposition 7). Moreover we have the components: (3

7,̂8
, (6

128
, and it can be

easily proved that (3

7,̂8
= Cr� (!127) and (6

128
= Cr� (!128). Finally we check that the
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intersection of �4 ∩ �4 with the indeterminacy locus of Cr� does not contain any

2-dimensional component. Hence we conclude that (15 is an irreducible surface of

degree 15 and with a triple point at ?8 and seven sextuple points.

Finally, as in the previous case, we compute the complete intersection of the strict

transforms �̃4 and �̃4, and we get our statement.

Remark 3 We point out that the five Weyl surfaces described above correspond to

the same list computed by Casagrande, Codogni and Fanelli in [5, Theorem 8.7].

Remark 4 Notice that the cone of effective surfaces of -4
8

is not invariant under the

Weyl action, as already observed by [8]. In particular in [8, Theorem 4.4] the authors

proved that the cone of effective 2-cycles of -4
8

is linearly generated, namely each

effective cycle can be written as a sum of linear cycles. Indeed, for instance, the class

of (3 in the Chow ring of -4
8

is 3ℎ − 341 −
∑7

8=2 48 , but so is the class of the union

of the three planes !123, !145 and !167. However, the three planes do not contain

the rational normal curve, whereas (3 does. From this observation it is clear that the

cone of effective cycles of codimension 2 of -4
8, (1)

will not be linearly generated.

Therefore, in order to identify the irreducible surface (3 we need to work in the

Chow ring of -4
8, (1)

.

Remark 5 Notice that, in Propositions 5,6,7,8,9 we used a specific sequence of Cre-

mona transformations to obtain each Weyl surface of -4
8

from the previous. This

choice is clearly not unique, in fact there are multiple paths going from one Weyl

surface to another. Similarly, for each Weyl surface ( we found a suitable pencil of

curves over a Weyl curve� ⊆ ( that covers it. This description is also not unique, in

particular for every Weyl curve � ⊆ (, we can find one such pencil.

Proposition 10 The five surfaces (1, (3, (6, (10, (15 are the only Weyl surfaces in

-4
8
.

Proof The statement can be proved by direct inspection. In Proposition 11 below we

classify all the Weyl divisors in -4
8
. Then we consider all the possible intersection of

two orthogonal Weyl divisors and, by using Propositions 5, 6, 7, 8, 9, and computing

degrees and multiplicities, we have checked that all the irreducible components of

the intersections are surfaces of type (1, (3, (6, (10, (15. �

By the previous proposition we conclude that any Weyl surface of -4
8

is contained

in the orbit of a plane through 3 points. Hence our Definition 1 of Weyl surface in

this case coincide with the definition of Weyl plane given in [11].

From the proofs of Propositions 5, 6, 7, 8, 9, we get the following consequence.

Corollary 1 Every Weyl surface on -4
8

is swept out by a pencil of rational curves

{� (@) : @ ∈ �} over a Weyl curve �.
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5.4 Weyl divisors.

Recall that -4
8

is a Mori Dream Space and in particular the cone of effective divisors

is finitely generated by the divisors of anticanonical degree 1
3
〈�,− -4

8
〉 = 1. A

simple application of formula (3) gives the following classification of all the Weyl

divisors in -4
8
; they are exactly the generators of the effective cone, see also [20].

Proposition 11 The Weyl divisors in -4
8

are, modulo permutation of indices:

(1) �8 , (the exceptional divisor)

(2) � −
∑4

8=1 �8 , (hyperplane through four points);

(3) 2� − 2�1 − 2�1 −
∑7

8=3 �8 , (quadric cone, join of a rational normal quartic and

a line);

(4) 3� −
∑7

8=1 2�8 , (the 2-secant variety to a rational normal quartic);

(5) 3� − 3�1 −
∑5

8=2 2�8 −
∑8

8=6 �8 , (cone on the Cayley surface of P3);

(6) 4� −
∑4

8=1 3�8 −
∑7

8=5 2�8 − �8, with |� | = 4 and 9 ∉ �;

(7) 4� − 4�1 − 3�2 −
∑8

8=3 2�8 , (cone on a quartic surface of P3);

(8) 5� − 4�1 − 4�2 −
∑6

8=3 3�8 − 2�7 − 2�8;

(9) 6� − 5�1 −
∑4

8=2 4�8 −
∑8

8=5 3�8;

(10) 6� −
∑6

8=1 4�8 − 3�7 − 2�8;

(11) 7� −
∑3

8=1 5�8 −
∑7

8=4 4�8 − 3�8;

(12) 7� − 6�1 −
∑8

8=2 4�8;

(13) 8� − 6�1 −
∑6

8=2 5�8 − 4�7 − 4�8;

(14) 9� −
∑4

8=1 6�8 −
∑8

8=5 5�8;

(15) 10� − 7�1 −
∑8

8=2 6�8 .

We conclude this section with the following geometrical descriptions of the Weyl

divisors on -4
8
. As pencils of curves with cycle class as in Notation 1 sweep out

Weyl surfaces of -4
8
, nets of such curves sweep out Weyl divisors.

Lemma 5 Let � be a Weyl divisor on -4
8

containing a Weyl surface (. Then there is

a net of curves {� (@) : @ ∈ (} with � (@) · � = 0 sweeping out �.

Proof Notice that every divisor (2)-(15) of Proposition 11 satisfies the hypotheses.

For one such divisor, let ( ⊂ �. By Propositions 5-6-7-8-9, we can find a sequence

of standard Cremona transformations such that the image of ( is a plane (1. Applying

the same sequence of transformations to �, we obtain a Weyl divisor,�1, containing

such plane. Modulo reordering the points, the possible outputs for the image of �

are the divisors (2), (3), (5), (6), (7), (8), (9), (11) of Proposition 11. For each such

output, we shall exhibit a sequence of Cremona transformations that preserve the

plane (1 and takes � to a hyperplane containing (1. Without loss of generality, we

will assume that (1 is the class of the plane passing through the first three points. In

the following tables, for every (i), on the left hand side we will describe the class of

the Weyl divisor and on the right hand side the class of the curve � (@) of the net:
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(11) 7 5 5 5 3 4 4 4 4 19 4 4 4 3 4 4 4 4

(9) 6 5 4 4 3 4 3 3 3 16 4 3 3 3 2 3 3 3

(8) 5 4 4 3 2 3 3 3 2 13 3 3 2 2 3 3 3 2

(7) 4 4 3 2 2 2 2 2 2 10 3 2 1 2 2 2 2 2

(5) 3 3 2 2 2 2 1 1 1 7 2 1 1 2 2 1 1 1

(3) 2 2 2 1 1 1 1 1 0 4 1 1 0 1 1 1 1 0

(2) 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0

This concludes the proof. �

6 Weyl expected dimension

Let = = 3, 4. For A ∈ {1, 2, 3}, let !� (A) be a linear cycle of dimension A spanned

by A + 1 base points. Recall that ,=,=+4 denotes the Weyl group of -=
=+4

. Consider

the following set of Weyl A-cycles: ,= (A) := {F(!� (A) ) : F ∈ ,=,=+4}, and let

:�(�) denote the multiplicity of containment of the A-cycle � in the base locus of

the divisor �.

By Remark 2 we know that for any Weyl curve � ∈ ,= (1), then :� = max{0,−� ·

�}. For every Weyl divisor � ∈ ,= (=−1) (i.e. those listed in Propositions 2 and 11),

we have that :� = −max{0, 〈�, �〉}, see [2, Proposition 2.3] and [13, Proposition

4.2] for details. Finally, for = = 4, by the results of Section 5.3 we know that,4 (2) is

the set of the Weyl surfaces (i.e. those listed in equation (1)) and the multiplicity of

containement :�(�) of any Weyl surface � ∈ ,4 (2) in the base locus of an effective

divisor � is computed in Propositions 5, 6, 7, 8, 9.

We introduce now the notion of Weyl expected dimension.

Definition 2 Let = = 3, 4 and � be an effective divisor on - = -=
=+4

. We say that �

has Weyl expected dimension wdim(�), where

wdim(D) := j(-,O- (�)) +

=−1∑

A=1

∑

�∈,= (A)

(−1)A+1

(
= + :�(�) − A − 1

=

)
.

We now show that the Weyl expected dimension is invariant under the action of

the Weyl group.

Proposition 12 Let = = 3, 4 and � an effective divisor on -=
=+4

. The Weyl dimension

of � is preserved under standard Cremona transformations.

Proof Let � = 3� −
∑=+4

8=1 <8�8 . We need to prove that wdim(�) = wdim(Cr� (�))

for Cr� a standard Cremona transformation. Let � ′ = 3� −
∑

8∈� <8�8 be the divisor

obtained from � by forgetting 3 points. From [2, Corollary 4.8, Theorem 5.3] we

have that wdim(� ′) = wdim(Cr� (�
′)), where the formula wdim(� ′) only takes

into account the Weyl cycles of � based exclusively at the points parametrized by �

that are therefore fixed linear subspaces through base points.
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We claim that, for all the remaining Weyl cycles � of �, interpolating at least

a point away from the indeterminacy locus and for which :�(�) ≥ 1, we have

:�(�) = :Cr(�) (Cr(�)). If � is a curve, the claim is true because :�(�) =

−� · � = −Cr(�) · Cr(�). If � is a divisor, the claim is true because :�(�) =

−〈�, �〉 = −〈Cr(�),Cr(�)〉. It only remains to show the claim for � = ( a surface

of -4
8
. It follows from the proofs of Propositions 5, 6, 7, 8, 9 and Remark 5 that

for a Weyl curve � ⊆ ( such that ( is swept out by a pencil {� (@) : @ ∈ �},

then :( (�) = −� (@) · � + :� (�). Since � is effective, then � (@) · � ≥ 0 by

Proposition 4, so :� (�) = −� · � ≥ 1. Since :( (�) = −� (@) · � − � · � =

−Cr(�@) · Cr(�) − Cr(�) · Cr(�) = −Cr(� (@)) · � + :Cr (�) (Cr(�)) and Cr(�) is

swept out by {Cr(� (@)) : @ ∈ Cr(�)}, we conclude. �

This yields an explicit formula for the dimension of any linear system in -3
7
.

Theorem 1 For any effective divisor � ∈ %82(-3
7
), we have

h0(-3
7 ,O-3

7
(�)) = wdim(�).

Proof For the sake of simplicity, we will abbreviate h0(-3
7
,O-3

7
(�)) with h0(�).

Consider a sequence of standard Cremona transformations which takes � to a

Cremona reduced divisor � ′: it is well-known that h0(�) = h0(� ′). By the previous

proposition we have that wdim(�) = wdim(� ′). Since � ′ is Cremona reduced, by

[9, Theorem 5.3] we know that � ′ is linearly non-special, i.e. its dimension equals

its linear expected dimension introduced in [2]: h0(� ′) = ldim(� ′) = wdim(� ′)

where the last equality is easy to check for Cremona reduced divisors in -3
7
. Hence

we conclude that h0(�) = wdim(�). �

For the case of -4
8
, we propose the following conjecture.

Conjecture 1 For any effective divisor � ∈ %82(-4
8
), we have

h0(-4
8 ,O-4

8
(�)) = wdim(�).

Solving Conjecture 1 would complete the analysis of the dimensionality problem

for all the Mori Dream Spaces of the form -=
B , which are -=

=+3
, -2

8
, -3

7
and -4

8
.

Indeed we recall that the case of B ≤ = + 2 was solved in [2] and the case of B = = + 3

is studied in [15] and [22]. It is clear that the notion of Weyl dimension extends both

that of linear expected dimension of [2] and that of secant expected dimension of

[4]. In fact, first of all, notice that linear cycles of dimension at most = − 1 spanned

by the collection of B points are Weyl cycles, according to our definition. This holds

because hyperplanes passing through = base points are always Weyl divisors. We

recall that for B = = + 2, the only Weyl divisors are the exceptional divisors and the

hyperplanes spanned by = base points. We conclude that for B = =+2 the linear cycles

spanned by base points are the only Weyl cycles, hence we have that for divisors

in -=
=+2

, the Weyl expected dimension equals the linear expected dimension, so the

analogous of Conjecture (1) in -=
=+2

holds by [2]. Moreover, by [2, Corollary 4.8] we
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can say that the analogous of Conjecture 1 holds in arbitrary dimension for a small

number of points. Secondly, in [4] the authors considered cycles � (!� , fC ), joins

over the C secant variety to the rational normal curve of degree = passing through

= + 3 points, and they gave a secant expected dimension for an effective divisor. It

matches the Weyl expected dimension for = = 4. For -4
7
, these varieties are just the

unique rational normal quartic curve through the 7 points and the pointed cones over

it, namely cone over rational normal curve, labeled (3

1,̂8
as in notation (1). Therefore,

we propose the following conjecture.

Conjecture 2 The varieties � (!� , fC ) are the only Weyl cycles on -=
=+3

.
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