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Abstract: This research investigates the stability and occurrence of Hopf bifurcation in a credit risk
contagion model, which includes distributed delay, using the chain trick method. The model is
a generalized version of those previously examined. The model is an expanded version of those
previously studied. Comparative analysis showed that unlike earlier models, which only used the
nonlinear resistance coefficient to determine the rate of credit risk infection, the credit risk contagion
rate is also affected by the weight given to past behaviors of credit risk participants. Therefore, it is
recommended to model the transmission of credit risk contagion using dispersed delays.
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1. Introduction

The traditional perspective on credit risk involves borrowers failing to make timely
payments, resulting in financial losses for the creditors [1]. The industrial and real economy
sectors or firms with limited internal funds depend on the financial sector as a crucial source
of funding, so their risk and return are significantly influenced by the unpredictability of
the financial sector, especially in terms of their profitability and stability. According to
Chen et al. [2], as the system’s stability decreases, the infectious scale of credit risk and the
wavy frequency of credit risk contagion increase. This leads to chaotic phenomena in the
credit risk contagion system, and the increase becomes gradual as the time delay increases.
Any credit risk contagion system includes inherent structural instability, meaning that any
disruptions within the system can cause a qualitative or topological change in its dynamic
properties [2]. Hence, it is crucial to develop a mathematical model with time delays to
capture the dynamics of credit risk contagion in order to understand the impact of the
internal complexity of the credit risk contagion system and to offer both theoretical and
practical guidance for credit risk management [3].

The significance of time delay is widely recognized in mathematical models related to
finance, economics, and population dynamics [4,5]. This is because differential equations
alone cannot fully capture the complexities of economic and financial phenomena [3]. Time
delays commonly occur in real financial markets due to finite information transmission
speed, noise, and the transport of matter and energy [6]. Additionally, mathematical models
incorporating time delays have been suggested in the relevant literature to account for
system behavior at previous time points, such as those observed in economic and biological
systems [4,5,7–9]. The time delay has had notable impacts on the system, causing a switch
in stability from a stable state to an unstable one, as well as leading to fluctuations and
Hopf bifurcation [10,11].
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Chen et al. [12] modeled the mechanism of time delay and nonlinear resistance in credit
risk contagion within the Newman–Watts length scale connection and long-distance con-
nection. They presented its dynamics using the following time-delay differential equation:

·
N(t) = λk1 − N(t) + λk2N(t − τ)− µξ[λk2N(t − τ)]2, t ≥ 0 (1)

N(t) = c, −τ ≤ t ≤ 0

where N(t) denotes the number of CRT activity participants who are affected by credit
risk in the CRT market at time t. The parameters ξ, k1, k2, λ, µ, c, and τ are all positive, and,
respectively, represent the Newman–Watts length scale, the number of instances where the
connection distance from a participant infected by credit risk matches the Newman–Watts
length scale, the number of instances where the connection distance from an infected
participant constitutes a long-distance connection, the effective contagion rate of credit risk
in the credit risk transfer (CRT) market, the nonlinear resistance coefficient of the network
of relationships among CRT market participants, a real parameter, and the time delay in
credit risk contagion within the long-distance connection.

Chen et al. [2] investigated the following stochastic time-delayed system of credit risk
contagion, which is influenced by correlated Gaussian white noise:

·
N(t) = λ1N(t) + λ2N(t − τ)− µξ[λ2N(t − τ)]2 + N(t)ψ(t) + η(t), (2)

where N(t) refers to the number of credit activity participants affected by credit risk in
the financial market, while the terms ψ(t) and η(t) are stochastic and represent noise in
the system. The parameters λ1 and λ2, with λ1 > λ2, respectively, represent the effective
spread of credit risk among various participants in credit activities, reflecting both direct
and indirect business relationships in the financial market. τ represents the time delay for
the spread of credit risk among participants through indirect connections. ξ is the Nelength
scale and µ is the nonlinear resistance factor within the network of relationships among
credit activity participants, indicating the diversity among participants, encompassing their
offerings and psychological tendencies. For recent studies on credit risk contagion models,
see [13–21].

Bianca and Guerrini [22] extended the work of Chen et al. [2] in the form of the
following equation:

·
N(t) = λ1N(t) + λ2N(t − τ)− µξλ2

2[N(t − τ)]2, (3)

where N(t) represents the density of individuals with credit activity in the financial sector
who are at risk of credit exposure, λ1 is the credit risk contagion rate associated with direct
business relations, λ2 is the credit risk contagion rate associated with indirect business
relations, µ is alluded to as the Nelength scale, ξ symbolizes the nonlinear resistance factor
in the network connecting financial market participants involved in credit activity, and
τ ≥ 0 is the time delay of credit risk contagion. Bianca and Guerrini [22] used normal form
theory and the center manifold argument to establish the presence of the Hopf bifurcation,
as opposed to the numerical method employed by Chen et al. in [2]. They also identified the
stability, direction, and period of the bifurcating periodic solutions with specific formulas
and demonstrated that the examination of the deterministic aspect of model (3) is not
limited to the scenario where λ1 > λ2.

In the current literature, time delays are categorized as either fixed or continuously
distributed (referred to as distributed delay). Fixed delays apply to contexts where specific
time gaps are stipulated for involved parties. In contrast, distributed delays are suitable
for scenarios where delays among actors vary. A key challenge lies in the uncertain nature
of these time intervals. Distributed delays represent a weighted average incorporating all
historical data from time zero to the present, making them more accurate in describing
time-delayed systems. As found by Elaiw and Algha in [23], the concept of a distributed
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delay provides a more comprehensive and realistic way to model processes. Compared to
models with a fixed time delay, it is evident that the latter oversimplifies the actual system
process [24]. This assertion is bolstered in a study by Hu et al. [25] when a distributed delay
was proposed to model time-delayed inherent biology systems. It was discovered that this
model was sufficiently general to encompass a variety of characteristics exhibited by the
system. Therefore, we generalize Equation (3) by substituting continuously distributed time
delays for the discrete delays, as shown below, to assess if the distribution of time delays
induces some changes in the rate of credit risk contagion compared to fixed time delay
in the literature, which depends only on the nonlinear resistance coefficient. Thus, from
the dynamics of the distributed delay model, the time delay of the number of individuals
infected by credit risk varies among them, which is an extension of the effect of the discrete
delay parameter in the previous models, which were the same for individuals infected by
credit risk.

This paper is structured as follows. Section 2 deals with the formulation of the model,
while basic properties of the model are derived in Section 3. In Section 4, the discussion
revolves around the stability analysis, stability switch, and Hopf bifurcation analysis of the
model. In Section 5, detailed numerical solutions and a stability analysis are conducted,
comparing our model with the findings of Chen et al. [2]. Finally, Section 6 concludes.

2. Model Formulation

We propose the following credit risk contagion model with distributed delays:

Ṅ(t) = λ1N(t) + λ2

∫ t

−∞
N(r) f (t − r)dr − µξλ2

2

[∫ t

−∞
N(r)g(t − r)dr

]2
, (4)

where the delay kernels f (r) and g(r) are non-negative bounded functions defined on
[0, ∞), satisfying the normalized conditions:∫ ∞

0
f (r)dr = 1,

∫ ∞

0
g(r)dr = 1.

When
f (r) = g(r) = δ(r),

where δ denotes a Dirac delta function, one recovers the discrete delay case (3). Another
case of interest is when the kernels are gamma distributions (see Cushing [26]), namely

f (r) = g(r) =
amrm−1e−ar

(m − 1)!
,

with m being a positive integer that defines the form of the weighting function whose
average delay is T = m/a. Notice that as T → 0, the distribution functions f , g approach
the Dirac distribution. In the literature, researchers focus on the special cases where the
delay kernel functions f and g may take the so-called weak kernel form

f (r) = g(r) = ae−ar (a > 0),

and strong kernel form
f (r) = g(r) = a2re−ar (a > 0).

The term weak kernel suggests that the significance of past events diminishes expo-
nentially as one looks further into the past, while the term strong kernel indicates that a
specific time in the past holds more importance than any other. In the next sections, we shall
consider several special cases given by a combination of the special forms of the kernels.
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3. Existence and Uniqueness of Solution

We use the contraction mapping theorem (see, e.g., [27–29]) to determine the existence
and uniqueness of the solution of Equation (4). Set TN = N and rewrite Equation (4) as

λ1N =
·

N − λ2

∫ t

−∞
Ng(t − r)dr + µξλ2

2

[∫ t

−∞
Ng(t − r)dr

]2
.

Since g(t − r) is continuous, we have that |g − r| ≤ H. Given any N1 and N2,

TN1 =
1

λ1

{
·

N1 − λ2

∫ t

−∞
N1g(t − r)dr + µξλ2

2

[∫ t

−∞
N1g(t − r)dr

]2
}

and

TN2 =
1

λ1

{
·

N2 − λ2

∫ t

−∞
N2g(t − r)dr + µξλ2

2

[∫ t

−∞
N2g(t − r)dr

]2
}

,

implying

TN1 − TN2 =
1

λ1

{
−λ2

∫ t

−∞
(N1 − N2)g(t − r)dr + µξλ2

2

[∫ t

−∞
(N2

1 − N2
2 )g2(t − r)dr

]}

=
1

λ1

{
−λ2

∫ t

−∞
(N1 − N2)g(t − r)dr

+µξλ2
2

[∫ t

−∞
(N1 − N2)(N1 + N2)g2(t − r)dr

]}

=
1

λ1
(N1 − N2)

∫ t

−∞

[
−λ2g(t − r) + µξλ2

2(N1 + N2)g2(t − r)
]
dr,

consequently, we obtain

|TN1 − TN2| =
1

λ1
|N1 − N2|

∫ t

−∞

[
−λ2g(t − r) + µξλ2

2(N1 + N2)g2(t − r)
]
dr

≤ 1
λ1

∣∣∣∣∫ t

−∞

[
−λ2g(t − r) + µξλ2

2(N1 + N2)g2(t − r)
]
dr
∣∣∣∣

≤ β

λ1

[
−λ2g(t − r) + µξλ2

2(N1 + N2)g2(t − r)
]
|N1 − N2|

≤ η|N1 − N2|,

where
η =

β

λ1

[
−λ2g(t − r) + µξλ2

2(N1 + N2)g2(t − r)
]
.

For contraction,

β

λ1

[
−λ2g(t − r) + µξλ2

2(N1 + N2)g2(t − r)
]
≤ 1. (5)

Since (5) holds, according to the contraction mapping theorem, it can be concluded
that there is a single fixed point that serves as the only solution to the original integro-
differential Equation (4). As a result, in cases where the parameters are chosen such that
the kernel is small, ensuring contraction, the existence and uniqueness of the solution to
Equation (4) are guaranteed.



Axioms 2024, 13, 483 5 of 12

4. Stability and Hopf Bifurcation Analysis

Since steady states are unaffected by the delay, Equation (4) admits the following
unique positive equilibrium:

N∗ =
λ1 + λ2

µξλ2
2

. (6)

In the following, we examine the stability and Hopf bifurcation of our model in certain
specific scenarios. Our method utilizes the well-established linear chain trick (refer to [30]),
which enables a reduction in a system with distributed delays to a system of ordinary
differential equations.

4.1. Case f , g are Weak Kernels

Let
f (r) = g(r) = ae−ar, a > 0.

Equation (4) writes as

Ṅ(t) = λ1N(t) + λ2

∫ t

−∞
N(r)ae−a(t−r)dr − µξλ2

2

[∫ t

−∞
N(r)ae−a(t−r)dr

]2
. (7)

Introducing the variable

u(t) =
∫ t

−∞
N(r)ae−a(t−r)dr,

by the linear chain technique, Equation (7) gets converted to the equivalent system below:
·

N(t) = λ1N(t) + λ2u(t)− µξλ2
2[u(t)]

2,

u̇(t) = a[N(t)− u(t)].
(8)

Linearizing (8) at its equilibrium point (N∗, u∗), where u∗ = N∗, with N∗ as in (6), we
obtain the Jacobian matrix:

J =

(
λ1 λ2 − 2µξλ2

2N∗

a −a

)
. (9)

Let ρ denote a characteristic root of (9). The related characteristic equation is of second
order in ρ,

ρ2 + (a − λ1)ρ + a
(

2N∗µξλ2
2 − λ1 − λ2

)
= 0, (10)

resulting in
ρ2 + (a − λ1)ρ + a(λ1 + λ2) = 0.

The determinant of J equals the product of the eigenvalues and is given by

ρ1ρ2 = a − λ1,

while the trace of J is equal to the sum of the eigenvalues

ρ1 + ρ2 = a(λ1 + λ2) > 0.

The model’s local asymptotic stability is assured when both roots have negative real
parts, leading to the following outcome.

Theorem 1. For a > 0, system (8) is locally asymptotically stable if a > λ1, unstable if a < λ1.
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We now use the Hopf bifurcation theorem to demonstrate that a limit cycle could
start at a = λ1. This theorem says that we can prove the existence of a cyclic solution if
the characteristic equation has a pair of purely imaginary roots and the real parts of these
roots switch signs with a bifurcation parameter. Suppose ρ = iω, ω > 0, is a root of (10).
Substituting it into (10), we have

−ω2 + (a − λ1)(iω) + a(λ1 − λ2) = 0.

Separating the real and imaginary parts, we obtain

−ω2 + a(λ1 + λ2) = 0,

(a − λ1)ω = 0,

which yield
a = λ1 = a∗,

ω =
√

λ1(λ1 + λ2) = ω∗.

Accordingly, we conclude that Equation (10) has a pair of purely imaginary roots
ρ = ±iω∗ when a = a∗.

Next, we select a as a bifurcation parameter and consider the eigenvalue as a function
of a, ρ = ρ(a). By implicitly differentiating Equation (10) with respect to a, we obtain

dρ

da
= −ρ + λ1 + λ2

2ρ + a − λ1
,

then,

Re
(

dρ

da

)
ρ=iω∗

= Re
(
− iω∗ + λ1 + λ2

2iω∗

)
= −1

2
.

so that

sign

[
Re
(

dρ

da

)
ρ=iω∗

]
< 0.

As the value of a decreases, the roots of the characteristic equation will transition from
the right side to the left side of the imaginary axis. Based on the prior examination, we can
draw the following conclusions.

Theorem 2. The equilibrium point of (7) bifurcates to a limit cycle through a Hopf bifurcation
when a = λ1.

4.2. Case f , g are Strong Kernels

Let
f (r) = g(r) = a2re−ar, a > 0.

Equation (4) becomes

Ṅ(t) = λ1N(t) + λ2

∫ t

−∞
N(r)a2(t − r)e−a(t−r)dr

− µξλ2
2

[∫ t

−∞
N(r)a2(t − r)e−a(t−r)dr

]2
. (11)

To apply the linear chain trick on the integro-differential Equation (11), we define

u(t) =
∫ t

−∞
N(r)a2(t − s)e−a(t−r)ds, v(t) =

∫ t

−∞
N(r)ae−a(t−r)ds,
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so that (11) transforms into
·

N(t) = λ1N(t) + λ2u(t)− µξλ2
2u(t)2,

u̇(t) = a[v(t)− u(t)],

v̇(t) = a[N(t)− v(t)].

(12)

The equilibrium point of (12) takes the form (N∗, u∗, v∗), with u∗ = v∗ = N∗, N∗
defined in (6). To determine its stability, the characteristic equation of the linearized system
is taken into consideration, leading to the following polynomial equation in ρ:

ρ3 + (2a − λ1)ρ
2 + a(a − 2λ1)ρ + a2(λ1 + λ2) = 0. (13)

The Routh–Hurwitz criterion implies that the real parts of the solutions of (13) are
negative if and only if the following conditions hold:

2a − λ1 > 0,

a2(λ1 + λ2) > 0,

(2a − λ1)a(a − 2λ1)− a2(λ1 + λ2) > 0.

These can be reduced to
a >

λ1

2
= a0

and
2a2 − (6λ1 + λ2)a + 2λ2

1 > 0. (14)

The discriminant of the left-hand side of (14) is given by

∆ = (10λ1 + λ2)(2λ1 + λ2) > 0.

Thus, the inequality (14) is solved by

a <
6λ1 + λ2 −

√
(10λ1 + λ2)(2λ1 + λ2)

4
= a1,

a >
6λ1 + λ2 +

√
(10λ1 + λ2)(2λ1 + λ2)

4
= a2 (15)

Noticing that 0 < a1 < a0 < a2, we arrive at the following result.

Proposition 1. Let a2 be defined as in (15). The equilibrium point of (12) is locally asymptotically
stable if a > a2, unstable if a < a2.

We will now go back to (13) and demonstrate via the Hopf bifurcation theorem that a
limit cycle might begin at a = a2. At the value a = a2, where one has

(2a2 − λ1)a2(a2 − 2λ1) = a2
2(λ1 + λ2),

the characteristic Equation (13) can be rewritten as

ρ3 + (2a2 − λ1)ρ
2 + a2(a2 − 2λ1)ρ + (2a2 − λ1)a2(a2 − 2λ1) = 0,

which factors as
(ρ + 2a2 − λ1)

[
ρ2 + a2(a2 − 2λ1)

]
= 0. (16)
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Thus, one of (16) is real and negative, i.e., ρ = 2a2 − λ1, and the other two are purely
imaginary:

ρ = ±i
√

a2(a2 − 2λ1) = ±iω∗,

where ω∗ > 0. By choosing a as the bifurcation parameter, taking the derivative of (13) with
respect to a, we derive

dρ

da
= −2λ2 + 2(a − λ1)λ + 2a(λ1 + λ2)

3λ2 + 2(2a − λ1)λ + a(a − 2λ1)
.

A direct calculation implies

Re
(

dρ

da

)
λ=iω∗

= Re
(
−−2ω2

∗ + 2a(λ1 + λ2) + 2(a − λ1)iω∗
−3ω2∗ + a(a − 2λ1) + 2(2a − λ1)iω∗

)

= −
λ2

1 + 3a2
2 − 6λ1a2 − λ2a2

(2a2 − λ1)
2 + a2

2(a2 − 2λ1)

= − (10λ1 + λ2)(2λ1 + λ2) +
√
(10λ1 + λ2)(2λ1 + λ2)(6λ1 + λ2)

8(2a2 − λ1)
2 + a2

2(a2 − 2λ1)
,

namely

sign

[
Re
(

dρ

da

)
ρ=iω∗

]
< 0.

As a result, the imaginary axis is crossed by the roots at a = a2 from left to right as a
decreases. In summary, the outcome is as follows.

Theorem 3. Let a2 be as in (15). The equilibrium point of (12) undergoes a Hopf bifurcation at
a = a2.

5. Numerical Simulations

The first part of the numerical analysis of Chen et al. [2] was restricted to the deter-
ministic part of the model (3) using the following parameters: time delay τ = 4, Nelength
scale ξ = 3, spread of credit risk among different participants engaged in credit activities is
closely linked to their direct business relationships λ1 = 0.12, transmission rate of credit
risk among various participants in credit activities is associated with their indirect business
relationships λ2 = 0.07, and the initial number of credit activity participants who are
infected by credit risk in the financial market N0. We keep τ = 4 and vary the nonlinear
resistance coefficient µ and the weight γ on the previous activities of the credit risk par-
ticipant to assess the dynamics of the credit risk contagion in the financial market on the
assumption that λ1 = 0.12 > λ2 = 0.07, as we compare model (4) to model (3) (see [2]).

5.1. Time Process Diagrams of Credit Risk in Financial Market on λ1 > λ2

The actual number of credit activity participants infected by credit risk in the financial
market can be determined by multiplying the simulated value from model (4) by 10 from
the N(t) axis compared to the values in Chen et al. [2].

From Figure 1, it is observed that at a time delay of τ = 4.0 and nonlinear resistance
coefficient of µ = 0.15, the range of credit risk and the infectious scale are diminished
compared to the subsequent simulation analysis of the diagrams in the study.
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Figure 1. Dynamics of credit risk contagion under nonlinear resistance coefficient of µ = 0.15.

It is observed in Figure 2 that as the nonlinear resistance coefficient is reviewed
downward to µ = 0.08 from µ = 0.15, at a time delay of τ = 4.0, the infectious scale and
range of credit risk are gradually increased.

Figure 2. Dynamics of credit risk contagion under nonlinear resistance coefficient of µ = 0.08.

In Figure 3, the nonlinear resistance coefficient is further reviewed downward to
µ = 0.05 with all other parameters held at the same level compared to Figures 2 and 3, and
the rate of credit contagion increased to 26.25 from 8.75 in Figure 1.

Figure 3. Nonlinear resistance coefficient influence on credit risk contagion at µ = 0.05.

5.2. Time Process Diagrams of Credit Risk in Financial Market on λ1 < λ2

In this section, we maintain the parameter values used in Figures 1–3 on the condition
that λ1 = 0.07 < λ2 = 0.12 and vary the weight γ on the previous activities of the credit
risk participant to assess its effects on the credit risk contagion in the financial market as
opposed to the assumption λ1 > λ2 of Chen et al. [2].

It is observed in Figure 4 that at a time delay of τ = 4.0, on the condition that
λ1 < λ2, the weight on the previous activities of the credit risk participant was reduced
from γ = 0.290 to γ = 0.149 to keep the infectious scale at 8.75 compared to Figure 1. This
implies that the generalized model (4) is not adherent to the condition λ1 > λ2 as claimed
in Chen et al. [2].
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Figure 4. Effects of past credit risk activities on credit risk contagion at γ = 0.149.

It is observed in Figure 5 that at a nonlinear resistance coefficient of µ = 0.08 and a time
delay of τ = 4.0, little initial oscillations were observed as the infectious scale converged
to 16.25 on the condition that λ1 = 0.07 < λ2 = 0.12, as the weight on past credit risk
activities is reduced by fifty one (51%).

Figure 5. Effects of past credit risk activities on credit risk contagion at γ = 0.079.

It is indicated in Figure 6 that at a time delay of τ = 4.0, on condition that
λ1 = 0.07 < λ2 = 0.12, the same rate of credit risk contagion of the participants (refer to
Figure 3) can be obtained at a few wavy frequencies if the initial weight on previous credit
risk activity is reduced by fifty four percent (54%).

Figure 6. Effects of past credit risk activities on credit risk contagion at γ = 0.052.

5.3. Real-World Application of the Model

The practical usefulness of model (4) lies in its ability to help financial creditors control
the spread of credit risk contagion. This can be achieved by reviewing the weight assigned
to past activities of various credit activity participants, regardless of whether they are
involved in direct business relationships (λ1) or indirect business relationships (λ2).
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It is obvious in Figure 7 that when the weight on past activities of the credit risk
population is increased from 0.290 to 0.390, the infectious scale of credit risk is reduced to
7.37 from 8.75 compared to Figure 1, even under the restricted condition of λ1 > λ2. In all
cases, the oscillations of the infectious scale decreased drastically compared to the time
process diagrams in Chen et al. [2].

Figure 7. Dynamics of higher weight on contagion rate of credit risk at γ = 0.390.

6. Conclusions

This study examines the stability of a credit risk contagion model that incorporates
distributed delay. The model is a generalized version of the models that were previously
examined. The comparative research revealed that, in contrast to the previous models that
solely used the nonlinear resistance coefficient to calculate the rate of credit risk infection,
the weight placed on the past behaviors of credit risk participants also influences the credit
risk contagion rate. This study establishes that existing models perform best when credit
risk individuals with direct business relationships have a higher contagion rate than those
with indirect business relationships. Nonetheless, regardless of whether the credit risk
individuals’ contagion rate is higher or lower in direct or indirect business relationships,
the distributed delay model can quantify the infection rate. Our model (4) is practically
useful as the financial creditors can check the spread of the contagion rate of credit risk by
reviewing the weight they put on past activities among different credit activity participants
exposed to risk. By doing this, the financial institution can lessen losses brought on by
the borrowers’ failure to make the agreed-upon payments. As a result, modeling the
transmission of credit risk contagion with dispersed delays is advised.
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