
Citation: Nabissi, G.; Longhi, S.;

Bonci, A. ROS-Based Condition

Monitoring Architecture Enabling

Automatic Faults Detection in

Industrial Collaborative Robots. Appl.

Sci. 2023, 13, 143. https://doi.org/

10.3390/app13010143

Academic Editors: Antoni Grau, Jose

Machado and Yolanda Bolea

Received: 6 October 2022

Revised: 9 December 2022

Accepted: 20 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

ROS-Based Condition Monitoring Architecture Enabling
Automatic Faults Detection in Industrial Collaborative Robots
Giacomo Nabissi , Sauro Longhi and Andrea Bonci *

Dipartimento di Ingegneria dell’Informazione (DII), Università Politecnica delle Marche, 60131 Ancona, Italy;
g.nabissi@staff.univpm.it (G.N.); sauro.longhi@univpm.it (S.L.)
* Correspondence: a.bonci@univpm.it; Tel.: +39-071-220-4666

Featured Application: This work aimed to enhance the current state of the art regarding the
Condition Monitoring of industrial collaborative manipulators providing a general architecture
which can be used in many different industrial scenarios. This solution is helpful in overcoming
current limits regarding the definition of algorithms for the automatic detection of failures in
collaborative robots working on flexible manufacturing.

Abstract: The Condition Monitoring (CM) of industrial collaborative robots (cobots) has the potential
to decrease downtimes in highly automated production systems. However, in such complex systems,
defining a strategy for effective CM and automatically detecting failures is not straightforward.
In this paper, common issues related to the application of CM to collaborative manipulators are
first introduced, discussed, and then, a solution based on the Robot Operating System (ROS) is
proposed. The content of this document is highly oriented towards applied research and the novelty
of this work mainly lies in the proposed CM architecture, while the methodology chosen to assess
the manipulator’s health is based on previous research content. The CM architecture developed
and the relative strategy used to process data are useful for the definition of algorithms for the
automatic detection of failures. The approach is based on data labeling and indexing and aims to
extract comparable data units to easily detect possible failure. The end of this paper is provided with
a proof of concept (PoC) applied to an industrial collaborative manipulator where the proposed CM
strategy has been implemented and tested in a real application scenario. Finally, it is shown how
the proposed methodology enables the possibility of defining standard Health Indicators (HIs) to
detect joint anomalies using torque information even under a highly dynamic and non-stationary
environmental conditions.

Keywords: collaborative robots; condition monitoring; Robotic Operating System (ROS)

1. Introduction

The advent of Industry 4.0 concepts has brought about a new way of ensuring machine
availability, namely Condition Monitoring (CM). This method involves the continuous
monitoring of machine data to detect wear, making it easier to schedule repairs and thus
reduce downtime. For some kinds of components (i.e., electric motors, speed reducers,
gears, bearings, etc., used in many types of machinery), CM methods have been extensively
investigated and effectively adopted in industrial environments. However, difficulties in
defining effective CM methods arise in the case of systems such as industrial robots or
more specifically collaborative robots (cobots). This is because their kinematic chain is
comprised of several mechanical components which, even if they have been extensively
studied individually, have superimposed effects in a single system that can significantly
increase the complexity of defining a reliable CM strategy. Moreover, in the case of cobots,
the complexity increases since these are generally used in flexible manufacturing where they
perform dynamic tasks driven by programmable motions rather than fixed tasks, in contrast

Appl. Sci. 2023, 13, 143. https://doi.org/10.3390/app13010143 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010143
https://doi.org/10.3390/app13010143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5386-1651
https://orcid.org/0000-0002-1997-8098
https://orcid.org/0000-0003-0265-1598
https://doi.org/10.3390/app13010143
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010143?type=check_update&version=2

Appl. Sci. 2023, 13, 143 2 of 22

with standard industrial robots. This means that the same cobot can be used in a single
working day for different tasks executing two to three or more programs, each of which
is composed of tens to hundreds of motion command combinations. Therefore, in such
systems, obtaining useful data to diagnose and predict failures is not straightforward for
different aspects and it is currently a challenging topic in the industry. Among various kinds
of cobots, this work will be focused on CM for collaborative manipulators, and during
the rest of the document, when using the term “cobots”, we will refer to this category.
In this regard, this document intends to provide a solution to contribute to the definition
of an open source CM architecture based on Robot Operating System (ROS) and to solve
some problems related to determining automatic fault detection algorithms in collaborative
manipulators. One of the main focuses of this work is providing a technological solution
for CM with collaborative manipulators in situations of industrial interest and for this
reason, the content of this document is highly oriented to applied research. In this regard,
the novelty of this work mainly lies in the proposed CM architecture, while the methodology
chosen to assess the manipulator’s health is based on previous research content. The CM
can be stated as a hot topic with a lot of research and industry interests considering the
current challenges and opportunities in the human–robot collaboration context [1], also
regarding solutions based on augmented reality and virtual reality [2]. Going into more
detail, another issue to point out is what kind of sensor is the best suited for assessing the
health of cobots and which is the best strategy to collect that information. In fact, if data that
we decide to analyze are already available in the system, there is the need to use a device to
communicate with the robot controller, otherwise data acquisition must be managed by
using external sensing units. To sum up, issues related to the application of CM to cobots
can be split into three macro areas:

• Obtain system data. In order to choose which data to monitor to evaluate the health
of cobot components, there is the need to answer precise questions: which data are
useful for healthily evaluating the system? Which components do we need to monitor
in order to avoid production stops and how do we obtain that information? The
answers to these questions can fundamentally lead to two possibilities, the use of
sensors already installed into the system or the use of external sensors. In the first
case, there is a need to establish a connection with the industrial controllers to access
sensing data (for instance, motor currents, joint positions, speeds, torques etc.). In the
second case, however, there is a need to use a device to manage the acquisition of data
from extra sensing units installed on the robot (for instance, the accelerometer, and the
acoustic and laser sensors). As is easy to imagine, in the industry, the choice falls on the
first solution as less expensive, given that it does not require other external components.
Moreover, using the controller’s data allows for the definition of a common strategy
valid in all systems which use that controller. Finally, the communication protocols
used to exchange information with controllers are robust, and thus with a lesser
possibility of losing data. Based upon these considerations, this work presents in
Section 3.1 an ROS-based CM architecture running in a Linux system which enables
the possibility of obtaining signals from industrial controllers.

• Acquire, collect and store data. The common questions that we need to answer to
obtain a consistent dataset from which to extract information for further analysis are
the following: How to manage the data acquisition phase? Which rules do we need
to use to collect, organize and store data? To answer these questions, there is a need
to go deeper into the details of a cobot application; however, it is easy to understand
that it is not trivial to decide on a strategy to acquire data in a system that performs
different combinations of movements, reaching many different positions at different
speeds, sometimes carrying different payloads, all in the same program. In fact, those
systems are thought of for flexible production and may be used for many different
tasks contemporary. Therefore, in Section 3.3, we propose a methodology to solve
these issues and we test its validity in a case study application common in Industrial
scenarios in Section 4.

Appl. Sci. 2023, 13, 143 3 of 22

• Analyze and detect abnormal data. This area is the one that affects the reliability
of a CM system, and the related question is: Which method do we need to use to
automatically extract information on the system’s health? Furthermore, answering
this question is not straightforward since there lots of valid techniques have been
proposed in the literature. Generally, these are divided into model-based, signal-based
and data-driven and they have proven their validity in many different scenarios.
Fundamentally, we need to keep in mind that the methodology chosen should be
the one that decreases the number of missed and false fault detection. However, this
also depends on the kind of failure in the system we want to detect. In this paper,
regarding the case study, we proposed a solution based on common health indicators
(HIs) that are well-known in this area, considering that the purpose of this paper is
to define a general CM architecture which can be applied to different collaborative
robots involved in flexible manufacturing. For this reason, this work is not going to be
focused on defining the best strategy for detecting failures but on how to automate
this process.

The following sections will be devoted to expanding the debate about these common
issues regarding fault detection in collaborative manipulators. The methodology chosen
in this work to assess manipulator health will be presented after introducing recent arts
in this context in Section 2. While the developed CM architecture will be discussed in
Section 3, it also proposes a systematic criterion for organizing data in order to obtain
reliable algorithms for automatic fault detection in cobots. In summary, this work aims to
address these previously introduced problems by proposing a new Condition Monitoring
architecture. This solution is valid for defining an automatic failure detection strategy in
industrial collaborative robots to support flexible manufacturing. The CM architecture
is based on the ROS framework with the potential of being adaptable for many different
industrial cobot brands. In particular, the studies in this paper were conducted to test the
CM architecture on an Omron TM cobot. In this regard, in a dedicated section, we introduce
the ROS package for Omron TM robots [3], developed and tested in collaboration with the
Omron Europe Robotics team. The remainder of the paper is organized as follows: Section 2
presents relevant work in the field of CM of industrial robots, Section 3 discusses the ROS-
based CM architecture presenting the conceptual idea and the methodology behind the
proposed approach, while Section 4 presents the results regarding the application of the
proposed CM architecture using the Omron TM5-900 collaborative robot in a case study.
Finally, the paper’s conclusions along with future works of investigation are summarized
in Section 5.

2. Related Work

When talking about Condition Monitoring, Fault Detection or Predictive Maintenance
in Industrial Robots, more specifically in manipulators, we face the problem of choosing
the best sensor and technique to detect and if possible prediction failures may lead to
production stops with relative downsides. As discussed during the Introduction, there are
two crucial aspects to take into account: (1) there are several mechanical components in
a single system and considering their effects together increases the difficulty in analysis;
and (2) the same system can be used for many different tasks, making it hard to define a
method that may work under every possible working condition. Regarding the first aspect,
the mechanical components most affected by failures are the robot joints [4–6]. Problems
are generally related to the electric motor or to the speed reducer and specifically to some
particular part of these two components (i.e., motor windings, bearings, shaft, breaks, gears
of the reducer, etc.). Sensor data that mainly have provided the best results in this context
are motor current, motor torque, or vibrations [7], also used sometimes in combination
with other system states. For instance, Xu et al. developed a detection method for the bolt
loosening of industrial robot joints based on electromechanical modeling and motor current
signature analysis (MCSA) [8]. Raouf et al. in [9] proposed prognostic health management
for the robotic rotate vector reducer using external sensors mounted on the robot and

Appl. Sci. 2023, 13, 143 4 of 22

managed using an embedded system to electrical MCSA for mechanical fault detection.
Nentwich et al. proposed a new method to evaluate the health indicators for industrial
robots and suggest a new health indicator (HI) based on vibration data measurements [10].
In Ref. [11], an Experimental Comparison of Anomaly Detection Methods for Collaborative
Robot Manipulators is proposed using different information (i.e., joints current, torque,
speed, etc.). In particular, they compare 15 methods for anomaly detection, including
methods based on principle component analysis, local outlier factor, and autoencoders
assessed in a typical pick-and-place application with respect to their capacity to detect a
broad range of exogenous anomalies. Izagirre et al. proposed a non-intrusive methodology
for industrial robot joint health assessment using torque sensor data by creating a digital
signature given a defined trajectory and load combination. The signature of each individual
robot is later used to diagnose mechanical deterioration [12]. In Ref. [13], the authors
proposed a Gaussian mixture model-based unsupervised fault detection framework to
detect the faults in industrial robots using current signals. In Ref. [14], they used torque
estimation for gearbox failure in industrial robots proposing an improvement of detection
performance with respect to machine learning approaches using a technique to curate the
data prior to building a classification model. While in [15], the authors proposed a design
method of trajectories for detecting the excessive clearances of passive joints in a DELTA
robot on the basis of the phenomenon that the actuation torque waveform fluctuates due
to the collision between joint elements. Based on these previous work considerations,
our approach will be based on Motor Torque Analysis (MTA), since in the authors’ ex-
perience, torque analysis also provided interesting results regarding the diagnosis under
non-stationary conditions (i.e., varying speed and load conditions) [16]. In fact, in [17], we
already pointed out the possibility of overcoming limits related to bearing fault diagnosis
under non-stationary conditions using MTA instead of MCSA. Furthermore, in [18], a re-
view regarding the detection and diagnosis methodologies for gearboxes, it is demonstrated
that the most useful signals for diagnosis are currents, torques, or vibrations. Since the
manipulators’ joints are composed of electric drives and speed reducers also for these
cobots, the same considerations above may be considered valid. Moreover, with respect
to vibrations, torque information is already available in robots’ controllers and there is
no need to install an external device on the cobot. This solution is also preferable for
industrial environments where it is difficult to isolate external vibrations from vibrations
caused by a robot’s failure. In Refs. [19–21], it is possible to have a complete overview of
proprioceptive and exteroceptive sensors used in collaborative robot applications. There-
fore, our approach will be focused on developing a ROS CM architecture to communicate
with the robot’s controller. Regarding the second issue, most papers, to the best of the
authors’ knowledge, propose specific solutions that are mainly valid for the particular case
study. In fact, previous work in industrial or collaborative robot fault diagnostics has the
limit of being built for specific motion sequences or programs and may not accurately or
consistently detect faults in other motions, due to discrepancies (different positions, speeds,
loads, etc.). For instance, some papers present results in applications where the system
is used in repetitive tasks [5,11,22,23] (e.g., machine tending, pick and placing, etc.) or
average values are considered to take into account the speed and load variability on similar
applications [14] or in some cases, the isolated movement of a single axis is performed
during measurement [10,24]. Furthermore, because most of them are applied to standard
industrial robots used in repetitive tasks and not to collaborative robots generally used for
flexible manufacturing. However, the repeatability of the task or other assumptions relative
to a specific application allows defining methodologies to trigger signal acquisition under
precise system conditions (same motion command, same load conditions, same speed, etc.)
obtaining comparable datasets. Then, by comparing those data in the case of healthy and
faulty conditions, it is possible to identify a failure pattern and apply a methodology for
the automatic detection of failure. Furthermore, our previous work was based on a similar
assumption, since we were applying a detection technique in a cartesian robot used in
a repetitive pick and place application [25]. Differently, in the case of cobots, solutions

Appl. Sci. 2023, 13, 143 5 of 22

such as that would be ineffective, since most of the time we do not have repeatability in
motion commands or rather only in certain conditions. Therefore, there is a need to define
a strategy to organize data before analyzing them to find hypothetical defecting features.
A different approach was proposed by Park Ye-Seul et al. [26], named “Programmable
Motion-Fault Detection”, which is useful for detection in Collaborative Robot through the
analysis of motion residuals. The proposed approach is based on three steps: construct
a data model that can hierarchically analyze the relationships between sensing values
and cobot operation information, analyze data correlations between the sensing data and
operation data to track programmable motions with anomalies and lastly, and define the
detection criteria of a programmable motion-fault by statistically analyzing the sensing
values with the same program and motion. This work tries to solve similar issues related
to the definition of a methodology for detection valid under different working conditions,
however, their fault diagnosis verification may not accurately represent a real-world in-
dustrial facility environment since it was tested in a simulated dataset. For this purpose,
our work will be focused on the development of a methodology to enhance the current
state of the art regarding the condition monitoring of industrial collaborative manipulators
providing a general architecture which can be used in many different industrial scenarios.
In the following part, the theoretical background regarding the methodology chosen to
detect failures in manipulators and which will be used to assess joint health is introduced
and discussed. In the next section, the ROS-based CM architecture which can be considered
modular and adaptable to different robotic systems used for dynamic tasks is presented.

Joint Health Assessment via Torque Analysis

In this work, the proposed CM architecture is used to assess manipulator joint health
using torque signals. The choice of monitoring joint health is because manipulators may
fall into fault status after enduring long-term heavy manipulations, preventing the accurate
completion of the desired industrial tasks. Among various valid techniques to monitor joint
health, such as the one based on vibrations, or current measurements, this paper focuses
on the use of the system proprioceptive sensor to achieve a non-intrusive methodology.
In particular, the torque information is generally available in collaborative manipulators
because it is also used for limiting the forces expressed by the system in the case of collisions.
Since each manipulator’s joint is mechanically constructed in the same way, composed of
an electric motor and a speed reducer, it is possible to consider a manipulator as a sum of
different electric motors and speed reducers. Based on this assumption, it is possible to
exploit some considerations derived from electric motors. When mechanical failures arise
in the motor or in the transmission system attached to the motor shaft, there are load torque
oscillations caused by the malfunction, as demonstrated in [27]. In particular, the load
torque (Tl) of a rotating machine under a mechanical fault (e.g., bearing fault, mechanical
unbalance, gear defects, etc.) can be modeled as the sum of constant components (Tconst,
which represents the load of the motor) and a time-varying term which depends on the
characteristic frequency fc (which represents an order of the rotational frequency of the
rotor fr). The varying component represents the amount of load torque that arises in case
of mechanical defect. Generally, it is modeled using only the first term of the Fourier series
because higher-order terms are negligible [27]:

Tl(t) = Tconst + Tc cos (ωct) (1)

where Tc is the amplitude of the load torque oscillation and ωc = 2π fc contains the fault
characteristic frequency fc, also called a rotational frequency order. An order refers to
a frequency that is a certain multiple of a reference rotational speed (fr). For a rotating
system, the primary shaft rotation (fr) drives the fundamental frequency, fc = R · fr, where
R is the order’s ratio. For instance, if we have a defecting gear connected to the rotor shaft
which reduces the speed ratio by 5, in the steady-state, we would have a faulty component
fc = 0.2 · fr in the vibration or current or torque spectrum. However, in the case of non-
stationary application (varying speed of the motor and loads), we are no longer expecting

Appl. Sci. 2023, 13, 143 6 of 22

precise defecting frequencies since fr is changing over time but we can still evidence an
increment of the load torque value. Thus, under a mechanical fault, the mechanical equation
of an electric motor can be written as:

dωr

dt
& =

1
J
[Te(t)− Bωr − Tconst − Tc cos (ωct)] (2)

where J is the motor rotor inertia, Te is the electromagnetic torque produced by the motor,
B represents the coefficient of viscous friction, and ωr is the motor rotor speed. Thus, when
the manipulator is working in a healthy state (Tl(t) = Tconst), the motor’s joint produces
a certain torque to fulfill the motion request during program execution. However, when
a joint is under a mechanical defect (Tl(t) = Tconst + Tc cos (ωct)), in order to accomplish
the task the motor needs to provide an increasing amount of torque (Te) to compensate for
the mechanical defect. Thus, in the torque signal, it is expected that an increasing value
can be evaluated to assess the joint health. These considerations were also experienced
in [12,22] where the torque signal was used to analyze the root cause of faulty joints.
Thus, if mechanical wear has a significant effect on the effort of the joint, the hypothesis
is that the faulty joint would require higher torque than a healthy joint to execute a given
trajectory and the methods selected to identify a faulty joint, in this paper, will focus then on
evaluating the increment in the torque applied in the robot joints. Further details regarding
the methodology to evaluate changes in torque signals will be given when presenting the
case study, while the next Section presents the CM architecture developed to apply the
proposed methodology to a real industrial application.

3. Presenting a ROS-Based Condition Monitoring Architecture

As briefly discussed in Section 1, the data are fundamental for monitoring robots’
conditions. The possibility of reducing maintenance costs and downtimes using data that
already available in the robotic systems without the need to install extra sensors is in
the interest of the industry. For this purpose, using the ROS framework, it is possible to
establish communication with industrial controllers to access available data. The choice of
defining a CM strategy using ROS has the potential of being adaptable to many kinds of
industrial controllers and robotics systems. This allows one to easily reuse already devel-
oped codes and testing them in many different robotics applications, quickly transferring
from one system to another. Moreover, since ROS is open source, many tools and codes are
already available to the community, allowing anyone to quickly implement projects and
adjustments to derive a prototype in days. In this section, we present our CM architecture
which is useful for the automatic detection of malfunctions in cobots used for dynamic
tasks. The proposed solution has been developed to work with the controller of the Omron
TM cobots family, which comprises manipulators of different sizes and weights. The CM
architecture uses the ROS package for Omron TM robots developed to:

• Enable communication between the Omron TM controller and a Linux system in
which the ROS master is running.

• Send motion commands through a Python Application Programming Interface (API)
which uses open source trajectory planners.

• Enable the use of grippers and the possibility of simulating robotics applications
using Gazebo.

• Read and storing controller data using Python libraries to manage the acquisition
(i.e., rospy, pickle)

3.1. Omron TM Robots ROS Package

The developed Omron TM ROS package is available on GitHub and specific details
can be found in [3]. This package uses a C++ driver which creates a single ROS node
to enable topics and services to communicate with the controller. The communication
is based on Ethernet Slave TCP/IP protocol and uses a client/server framework. Once
enabled, the robot establishes a Socket TCP listener server to send the robot status and

Appl. Sci. 2023, 13, 143 7 of 22

data to all connected clients or receive the contents from the clients to execute instructions.
In Figure 1, it is possible to see a schematic overview of the described connection. In order
to exchange information with the controller, we upload an XML file to the robot controller,
selecting which cobot states we want to access (Figure 1). The XML file specifies the data
table transmitted by the ethernet slave (cobot) to the master (PC in which ROS is running).
These data selected are accessible from any Linux system where the Omron TM robots ROS
package is installed.

Robot Controller

PC Ubuntu 18.04

Melodic

TCP/IP

Robot softwareOmron TM ros package

ROS node 1

ROS node 2

Communication
ROS

Start

driver

physical layer

software layer

XML �le

<item= Joint_Angle>
<item= Joint_Speed>

<item= TCP_force>
<item=Projectspeed>

.

.

.

Figure 1. Connection schematic view.

3.2. Conceptual Idea

Once the connection with the cobot as an Ethernet TCP/IP client is established, it is
possible to read data or execute instructions (e.g., motion commands) using the Omron
TM ROS package [3]. The idea is to develop a CM architecture that runs in parallel during
the normal functioning of the cobot and define a methodology to automatically analyze
data to detect anomalies or malfunctions in the system. However, as discussed during
the introduction, there are many aspects to consider in order to achieve this goal. For this
purpose, in this Section, first we analyze a simple program to understand critical points in
defining a valid CM strategy showing an example of data acquisition. Then, a solution to
obtain comparable data sequences that are useful for further fault detection and diagnosis
is discussed and presented. Supposing that a simple program named “Test” made by a
sequence of motion commands is executed by the robot, like the following:

1. Point-to-point (PTP) motion from A to B;
2. Line move from B to C;
3. PTP motion from C to A;
4. PTP motion from A to B;
5. Line move from B to D;

Appl. Sci. 2023, 13, 143 8 of 22

6. PTP motion from D to E;
7. PTP motion from E to A;
8. ... etc.

During the execution, we perform acquisitions of position data for a single joint n
involved in these motions (Figure 2).

0

180

-180

90

- 90

A

B

A

B

C

D

E

A

Joint n Position (deg)

t

PTP A to B

No motionLine B to C

PTP C to A

Line B to D

PTP D to E

PTP E to A

Queue Tag = 1 Queue Tag = 1

Figure 2. Example of a single joint n position acquisition during the execution of the “Test” program.
The colors below the graph’s x axis represent the motion commands executed during the acquisition.

Referring to Figure 2, if we think to look for some kind of repeatability in the “Test”
program, this can be found during the execution of the PTP motion from point A to B.
In fact, as discussed in the Introduction, to identify faulty features, we need to compare data
in healthy and faulty conditions. However, having comparable data means acquiring those
data under certain working conditions (i.e., type of movement, speed, target positions,
etc.), otherwise it becomes a struggle to define a technique for the automatic detection of
anomalies. Just to clarify this last sentence, supposing now, to acquire the joint n torque
position during the previously defined sequence of motions (Figure 3). It is possible to
notice in Figure 3 that the torque signal shape is strictly related to the working conditions
of the system and varies according to the movement executed by the cobot. Therefore,
finding a way to analyze the entire signal and defining an algorithm to detect automatically
defecting features (if any) taking into account every possible working condition becomes
really difficult if not impossible. However, if we think to analyze the torque signal only
under certain conditions (e.g., only when the system is executing the PTP motion from
A to B), we can obtain comparable data sequences (blue highlighted parts of Figure 3).
In this way, in the case of a joint n malfunction, detecting and identifying changes in
the values of the joint n torque become easier. Hence, to solve this problem, in the next
section, a method for extracting repetitive data sequences (named “units”) is studied for
the automatic detection of anomalies based on data labeling and indexing.

Appl. Sci. 2023, 13, 143 9 of 22

0

180

-180

90

- 90

A

B

A

B

C

D

E

A

Joint n Position (deg)

t

PTP A to B

No motionLine B to C

PTP C to A

Line B to D

PTP D to E

PTP E to A

Queue Tag = 1 Queue Tag = 1

Joint n Torque (mNm)

Figure 3. Example of a single joint n position and torque acquisition during the execution of the
“Test” program. The colors below the graph’s x axis represent the motion commands executed during
the acquisition.

3.3. Data Labeling and Indexing Method

Since collaborative robots are used in dynamic activities, it is necessary to establish
systematic criteria for organizing data in order to obtain reliable algorithms for automatic
fault detection. Therefore, in this section, we present a method to extract data units from
data acquisitions based on labeling and indexing. Referring to the “Test” program discussed
above, every time we want to send a motion command to the controller, we can add a queue
tag (index) to denote the current robot motion in process and the status of each queue tag
can be monitored. This process is generally used to be sure that the robot motion has been
executed, however, in our approach, it is also used to index the current data acquisition.
In fact, every time we perform acquisitions of the cobot states during normal functioning,
we add some labels and indexes to characterize that data acquisition. This allows us to
easily extract specific data units that belong to the same set (i.e., acquired under the same
working conditions). In greater detail, the additional information (labels and indexes) that
we add to every cobot’s states acquisition are the following:

1. Name of the running program;
2. Type of motion and tag;
3. Program percentual speed execution;
4. Estimated tool center point (TCP) force along Z.

An example of data acquisition can be seen in Figure 4, where in the dash-dotted red
line, units that belong to the same set are highlighted. This data acquisition example is
referred to in the program “Test” introduced above (Section 3.2). The Flowchart describing
the steps to manage the acquisition phase and extract data units during the program “Test”
execution are shown in Figure 5.

Appl. Sci. 2023, 13, 143 10 of 22

Data units extraction

Figure 4. Example of data unit extraction referred to the program “Test” introduced in Section 3.3.

Start the Program “Test” and trigger
the acquisition node

Collect joints position and torque
adding labels and indexes

Serialize and Store data acquisition
using Python for ROS

 Process data acquisition extracting
data units with Labels:

 Program Name = “Test”
 Motion and Tag = “PTP_1”

 % Speed = “80”

Create new csv �les containing only
data units with the same labels

Re
al

-T
im

e
Po

st
-p

ro
ce

ss
in

g

Figure 5. Flowchart representing the steps to extract data units during program execution.

Every label has been chosen for a precise reason: the “Program name” label is used to
classify acquisitions based on the running program (as such, when the robot is performing a
different program, we know to which program the acquisition belongs). The label “Motion
and Tag” is only used to extract some specific data units acquired under certain a priori

Appl. Sci. 2023, 13, 143 11 of 22

chosen conditions. The label “Percentual Speed” is also used to organize data units since
the same motion executed at a different speeds leads to different data values and should
not be analyzed together. Finally, the estimation of the TCP force along the z axis is a
measurement used to understand whether the data units extracted were acquired under a
certain load condition (the force estimation is sufficiently precise to understand whether
the load on the TCP is constant or not). For further details regarding the use of the TCP
force along the z axis, we refer the reader to the case study in Section 4.

4. Applying the CM Framework to a Case Study

The CM framework presented above in this section was adapted to a case study using
the Omron TM5-900 cobot, manufactured by Techman Robot Inc. Taiwan, and marketed by
Omron Corp., Kyoto, Japan (Figure 6). Cobot specification is listed in Table 1. The motion
commands to the cobot can be sent using a Programmable Logic Controller (PLC) or
through the Python API motion library available in the Omron TM robots ROS package [3].
Giving too much detailed information regarding how to define motion commands using
ROS and a trajectory planners library is out of the scope of this work; however, detailed
information can be found in the GitHub read me file regarding the usage of our repository.

Joint 1

Joint 2

Joint 3
Joint 4

Joint 5

Joint 6

Figure 6. Image of the Omron TM5-900 collaborative robot used for the case study.

Table 1. Specifications of collaborative manipulator TM5-900.

Field Data

Reach (mm) 900
Maximum payload (Kg) 4

Typical speed (m/s) 1.4
Angle of the joint 1, 6 (degree) ±270

Angle of the joint 2, 4, 5 (degree) ±180
Angle of the joint 3 (degree) ±155

As a case study, we proposed to test the presented CM architecture in a palletizing
application scenario using the Omron TM5-900 cobot. The program running on the cobot
is a working cycle that comprises different motion commands to send the cobot to pick
objects in a certain location and place them by filling a hypothetical pallet (in Figure 7, it is
possible to see a schematic view of this application). In this program, the cobot starts from a

Appl. Sci. 2023, 13, 143 12 of 22

home position and reaches a “Target1” position. Then, it goes down vertically (TCP z axis)
to grab the object and up to the previous position. From “Target1”, the cobot moves to a
second target position “Target2” and places the object in a certain pallet location repeating
the sequence to build the pallet with a certain number of objects defined by the user. This
application can be considered quite a standard in industrial scenarios and is interesting
to study since we have different motion commands, positions, and load conditions that
require defining a precise strategy to automatically detect faults in the data. The only
assumption used under the testing phase is to palletize objects of approximately the same
weight, picked every time in the same position.

Home Position

Target 1 Target 2

Place 1

Place 2

Place 3

Place 4

Place 5

Place 6

Home Position

Target 1

Pick Position

Target 1

Pick Position

Target 2

Place n (n = 1,..6)

Target 2

Program

PTP (No_Tag)

PTP (1)

PTP (2)

Line (No_Tag)

Line (No_Tag)

(a) (b)

x

y
z

Figure 7. Schematic view of a basic palletizing application with the relative coordinating system on
the top right of image (a). Image (b) shows the program workflow executed.

The robot states that we collect to monitor cobot conditions are the following, pro-
ceeded by the labels defined in Section 3.3:

1. Joint torques;
2. Joint positions;
3. Joint speeds.

The joint positions and speeds are collected to check whether the joint movements
are correct, while the joint torques are used to monitor the system conditions. Using the
proposed ROS-based CM architecture, we send motion commands to execute the program
while collecting controller data to monitor cobot states. Figure 8 shows a simplification
of the whole interaction between ROS nodes. The graph algebra used is based on the
rqt tool which is helpful to obtain a visual representation of the ROS nodes’ interactions.
The nodes are circled, while inside the rectangle is specified on the top the nodes name with
relative topics or services. In this schematic figure, not all the nodes running are shown, as
indeed the secondary nodes are omitted because these are not relevant to understanding
the application. However, using the function on the terminal “rqtgraph” (while the entire
program is running), it is possible to visualize the representation of the entire connections.

Appl. Sci. 2023, 13, 143 13 of 22

Omron_TM_driver

ask_cobot_states

/Omron_TM_driver

/service_response

/joint_states Robot_state_publisher

/action_topics

omron_python_move_interface

/Move_group

/joint_trajectory_action

/action_topics

/planned_path

.

.

.

.

.

.

.

.

.

Figure 8. Schematic view representing the interaction between the principal ROS nodes involved in
the proposed application. The nodes are circled, while inside the squares are specified on the top of
the nodes’ names with relative topics or services.

The “Omron TM driver” node is the one responsible for managing the communica-
tion between the controller and the Linux system in which the ROS master is running
(a schematic view of the connection was represented in Figure 1). The node “ask cobot
state” is subscribed to the services (robot states that we want to monitor) published by
the node “Omron TM driver” which directly access to the controller data and holds the
communication (Figure 8). Inside the “ask cobot states” node, modules and libraries
that implement the CM monitoring strategy discussed above are used. For instance,
the Omron TM Python module creates an interface to send commands to the cobot such
as the CheckQueueTag() function, which is used for monitoring the current motion tag
and sending a true value once the goal for a specific trajectory is reached (this function is
used for indexing the label “Motion and Tag”). Otherwise, the pickle module implements
binary protocols for serializing and de-serializing a Python object structure (which is used
to collect all the data) or the rospy library (Python client library for ROS) to manage the
acquisition and hold a certain communication rate. The “ask cobot state” node is executed
continuously while the nodes “Omron Python move interface” and “move group” are
responsible for the motions command and the program workflow. In particular, the “Om-
ron python move interface” node implements all the logic sending motion commands
and checking the correct execution of the program. The “move group” node manages all
the information regarding the planned path and the “action” topics that are sent to the
robot controller.

4.1. Definition of Data Analysis Methodology

Analyzing this application, two instants have been selected for data units extraction:
during the execution of the motion command PTP(1) where the cobot moves from “Target1”
to “Target2” (Figure 7) carrying the object in order to place it and during the motion PTP(2)
from “Target2” to “Target1” where the cobot is moving without any load. Therefore, once
an acquisition has been performed, we automatically extract units that belong to these two
working conditions before applying any kind of analysis. There are different reasons to
choose to extract data under these working conditions in a palletizing application. Firstly,
the movements that bring the cobot from “Target1” to “Target2” and vice versa are the
most repeated in the program. Secondly, the start and end positions of the movements
are always the same (the cobot must reach the “Target1” before picking and the “Target2”
before placing, and there is no blending into those motions). Moreover, all the joints are
involved in these motions to bring the cobot from start to end positions, and thus we have
complete dynamic data for each joint. Finally, during the execution of PTP(1), we evaluate
the cobot performance while carrying the load and in PTP(2) without it, whilst also taking
into account load influence. Therefore, from every data acquisition, we extract units (using

Appl. Sci. 2023, 13, 143 14 of 22

labels and indexes) that belong to these two selected sets. Data units are then collected and
separately analyzed to define health indicators (HIs) useful for the automatic detection of
malfunctions in the joints.

4.2. Results

In this part, the results obtained using the proposed CM architecture with the Omron
TM5-900 collaborative robot are discussed. Figures 9 and 10 show an example of acquisition
performed at 40 Hz sample frequency for 2750 samples (68.75 s for each acquisition).
The palletizing program was executed at 70% of maximum speed. Figure 9 displays the
joint torque (in black), position (in green) and speed (in blue) of the first three joints acquired
while the cobot is executing the palletizing program, while Figure 10 displays the joint
torque (in black), position (in green), and speed (in blue) of the last three cobot joints. It
is possible to notice that only the fifth joint is not directly involved in any motions of this
program. The torque contribution for this joint is only related to maintaining the current
position during the program execution. In the bottom part of every graph, it is possible to
see colors that refer to the motion command that was executed during the data acquisition
while in the upper right corner the respective legend for each color. From every acquisition,
we extract data units of joints torque, speed, and position with labels:

• Program Name = “Palletizing application”;
• Motion and Tag = PTP(1) and PTP(2);
• % speed = 70.

For completeness, a schematic view of the data unit extraction process can be seen
in Figure 11. The extraction was done using a Python script that reads binaries’ acquisition
files and creates text files only containing data units with the labels values defined above.
This data extraction process is performed automatically once which cobot states and under
which working conditions we want to perform the analyze have been a priori defined.

0 10 20 30 40 50 60
Time [s]

-1.5

-1

-0.5

0

0.5

T
o

rq
u

e
[M

N
m

],
 P

o
si

ti
o

n
 [

ra
d

],
 S

p
ee

d
 [

ra
d

/s
]

joint1
move from current pos
to home pos
move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

Figure 9. Cont.

Appl. Sci. 2023, 13, 143 15 of 22

0 10 20 30 40 50 60
Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

T
o

rq
u

e
[M

N
m

],
 P

o
si

ti
o

n
 [

ra
d

],
 S

p
ee

d
 [

ra
d

/s
]

joint2
move from current pos
to home pos
move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

0 10 20 30 40 50 60
Time [s]

-0.5

0

0.5

1

1.5

2

T
o

rq
u

e
[M

N
m

],
 P

o
si

ti
o

n
 [

ra
d

],
 S

p
ee

d
 [

ra
d

/s
]

joint3

move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

move from current pos
to home pos

Figure 9. First, second, and third joints’ torque (in black), speed (in blue), and position (in green)
acquired at 40 Hz for the 68.75 section (2750 samples each) during the execution of the palletizing
program. The colors below the graph’s x axis represent the motion commands executed during
the acquisition.

0 10 20 30 40 50 60
Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
o

rq
u

e
[M

N
m

],
 P

o
si

ti
o

n
 [

ra
d

],
 S

p
ee

d
 [

ra
d

/s
]

joint4

move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

move from current pos
to home pos

Figure 10. Cont.

Appl. Sci. 2023, 13, 143 16 of 22

0 10 20 30 40 50 60
Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
o

rq
u

e
[M

N
m

],
 P

o
si

ti
o

n
 [

ra
d

],
 S

p
ee

d
 [

ra
d

/s
]

joint5

move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

move from current pos
to home pos

0 10 20 30 40 50 60
Time [s]

-0.5

0

0.5

T
o

rq
u

e
[M

N
m

],
 P

o
si

ti
o

n
 [

ra
d

],
 S

p
ee

d
 [

ra
d

/s
]

joint6

move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

move from current pos
to home pos

Figure 10. Fourth, fifth, and sixth joints’ torque (in black), speed (in blue), and position (in green)
acquired at 40 Hz for the 68.75 section (2750 samples each) during the execution of the palletizing
program. The colors below the graph’s x axis represent the motion commands executed during
the acquisition.

Data unit 1 Data unit 2

Figure 11. Image representing the data unit extraction applied during the execution of the palletiz-
ing program.

Appl. Sci. 2023, 13, 143 17 of 22

Automatic Detection of a Joint Malfunction

A malfunction was simulated on the fourth joint torque data by recreating a possible
faulty behavior to show the effectiveness of our proposed approach. It was decided that a
local fault would be simulated since its identification is highly relevant for the use of the
robot itself considering the global behavior, because even a fault in a single mechanism can
affect the entire planning, repeatability, and accuracy of the tasks. The fourth joint has been
chosen since it is involved in all the movements of the palletizing program and to prove the
effectiveness of the proposed method under a highly dynamic context. As introduced in a
related work in Section, some papers use torque information to detect joint malfunction,
which for this reason, the fault has been simulated on torque data. Moreover, as experienced
in [12], where the torque signal has been studied to perform fault root cause analysis, when
a malfunction in the mechanism of the joint arises, there is a homogeneous increment in the
torque, i.e., the torque increases in the whole trajectory and not only in specific movements
or positions under a fault. This is because mechanical deterioration creates friction in the
joint mechanism affecting the entire movement of the joint. Therefore, a homogeneous
and random distributed increment of 10% has been added onto the fourth joint torque
data to show differences in the detection using the proposed methodology in contrast
with analyzing the entire raw torque signal. For this purpose, Figure 12 shows the entire
acquisition of the fourth joint torque signal under healthy and faulty conditions during
the execution of the palletizing program. Meanwhile, Figures 13 and 14 show, respectively,
the torque signal after using the proposed method for data unit extraction, during the
execution of PTP(1) and PTP(2) moves. Every time the PTP(1) or PTP(2) commands are
executed, data are extracted from the entire acquisition and collected together, as shown
in Figures 13 and 14, where three subsequential data extractions are performed on an
acquisition of 2750 samples at 40 Hz. There are plenty of methodologies that can be used
to analyze these data sequences extracted from the entire acquisition: in this part, we
define three well-known HIs to monitor the system health. In particular, we evaluate
the dominant frequencies peaks, the wavelet entropy, and the signal kurtosis. These
three HIs have been chosen according to [10] where the most effective HIs were derived
from several review papers regarding the CM gearbox and bearing CM [28,29]. However,
the definition of the best methodology to analyze data is beyond the scope of this work,
since in fact, the best methodology to choose depends on which kind of fault we want to
identify. Our purpose is to suggest a general CM architecture that can be used in different
situations with collaborative robots, and here we provide an example based on this case
study. We show below Table 2 with HIs calculated on both data unit extractions and on
Figures 15 and 16, respectively, the Fast Fourier Transform (FFT) applied on the torque data
unit sequences in the case of healthy and faulty behavior. Applying this methodology we
can define basic HIs, generally used for fault detection only under stationary conditions,
which would be ineffective if directly applied to the entire raw torque acquisition. This
is because, as previously discussed, the torque varies according to the system motions
(i.e., speed, load, positions, etc.), and it would thus be impossible select reference values
to distinguish normal from abnormal behaviors. In contrast, using the proposed CM
approach, it is possible to define HIs or rather more complex strategies to automatically
detect malfunctions and monitor the health of the system. The analysis proposed is valid
for any joint, giving equivalent results in terms of monitoring. The fourth joint was chosen
since it is the most involved in all the movements of the palletizing program, but this does
not preclude the choice of applying the same concepts to a different joint. Choosing another
joint will lead to similar conclusions since all the joints are mechanically constructed with
the same components. Potentially, the same analysis can be simultaneously performed on
all the joints of the manipulator. Finally, since the torque signal is sensible to load variations,
we must ensure that every data unit extraction has been performed under similar load
conditions. For this purpose, as introduced above, we use the TCP z axis force estimation.
The force is calculated using algorithms which, from joint torques, can estimate the force on
the TCP [30], and is already available in the controller. Figure 17 shows the instantaneous

Appl. Sci. 2023, 13, 143 18 of 22

estimated TCP force along the z axis related to data unit 1 extraction under the execution of
PTP(1). In dark blue, the force estimation is performed when the robot is carrying a load of
1 kg, while in light blue, the force is performed when the robot executes the same motions
but is unloaded. As it is now possible to notice in Figure 17, the estimated value is not
really precise for control purposes (e.g., adaptive force control) but can be used to check
whether the load conditions during a specific motion sequence are in the same range or
not. To conclude, even if three basic HIs have been defined in this proof of concept (PoC),
the data units extraction of the joint torque could be analyzed using other tools that provide
good results, even under non-stationary conditions. For instance, in [24], the authors
achieved accurate fault diagnosis using time–frequency signal analysis with the discrete
wavelet transform and artificial neural network. Datta et al. suggested using the neural
network and wavelet multi-resolution analysis for diagnosis in Industrial Robots [31], while
in [32], the authors proposed a deep transferable motion-adaptive fault detection method
that uses torque ripples for the fault detection of industrial robot gearboxes. All these more
advanced techniques could be used in the post-processing phase after the collection of
torque data units to automatically detect and diagnose failures. To summarize, with respect
to prior arts, our work proposes a CM architecture with a strategy to extract comparable
data units which can be valid for applications with a low degree of repeatability, where
it is difficult to establish a methodology to analyze data since the manipulator executes
different combinations of motions in a single program—such as in applications where
the trajectory is planned dynamically. This solution can be used in combination with
many different post-processing methodologies for fault detection, isolation and diagnosis
already consolidated in the literature. Using this ROS-based CM architecture can speed up
the analysis and validation steps by helping to test different approaches for FDD (Fault
Detection and Diagnosis) in collaborative manipulators implementing all the algorithms to
control robot motions, data acquisition and data analysis in the same framework. Moreover,
compared to most similar work [26], our solution shows its effectiveness in a real-industrial
scenario without the need to develop data models to track all the programmable motion
anomalies for all the possible combinations of movements in a cobot application.

Table 2. HIs calculated after data unit extraction on signals represented in Figures 13 and 14. The values
refer to data unit 1 and data unit 2 extractions in case of healthy (h) and faulty (f) conditions.

Data Unit Dominant
Frequencies (Hz) Wavelet Entropy Kurtosis

Data unit 1 8.9, 12.1 −1.9 × 105 (h),
−2.4 × 105 (f)

2.38 (h), 2.78 (f)

Data unit 2 10.5, 16.0 −1.3 × 106 (h),
−1.6 × 106 (f)

2.65 (h), 2.81 (f)

0 10 20 30 40 50 60
Time [s]

-0.1

-0.05

0

0.05

T
o

rq
u

e
[M

N
m

] (healthy) joint4

0 10 20 30 40 50 60
Time [s]

-0.1

-0.05

0

0.05

T
o

rq
u

e
[M

N
m

] (faulty) joint4

move from home pos
to target1

move down/up to pick

PTP(1)

move down/up to place1

PTP(2)

move down/up to place2

move down/up to place3

move from current pos
to home pos

Figure 12. Fourth joint torque acquisition in the case of healthy (in black, above) and faulty (in
red, below).

Appl. Sci. 2023, 13, 143 19 of 22

0 1 2 3 4 5 6 7 8 9
Time [s]

-0.02

0

0.02

T
o

rq
u

e
[M

N
m

] (healthy) j4 torque unit1

0 1 2 3 4 5 6 7 8 9
Time [s]

-0.02

0

0.02

T
o

rq
u

e
[M

N
m

] (faulty) j4 torque unit1

PTP(1)

Figure 13. Data unit 1 extraction. In this Figure, three subsequential joint torque units are represented
which were extracted with the label “PTP(1)” from the acquisition of 2750 sample at 40 Hz. In black
and in red, respectively, the 4th joint torque is under healthy and faulty conditions.

0 1 2 3 4 5 6 7 8 9
Time [s]

-0.08

-0.06

-0.04

-0.02

T
o

rq
u

e
[M

N
m

] (healthy) j4 torque unit2

0 1 2 3 4 5 6 7 8 9
Time [s]

-0.08

-0.06

-0.04

-0.02

T
o

rq
u

e
[M

N
m

] (faulty) j4 torque unit2

PTP(2)

Figure 14. Data units 2 extraction. In this Figure, three subsequential joint torque units are represented
which were extracted with the label “PTP(2)” from the acquisition of 2750 sample at 40 Hz. In black
and in red, respectively, the 4th joint torque is under healthy and faulty conditions.

2 4 6 8 10 12 14 16 18 20
Time [s]

0

1

2

3

4

5

T
o

rq
u

e
[N

m
]

(FFT of data unit 1)

X 8.90625
Y 2.86221 X 12.1094

Y 2.49428

Figure 15. FFT applied to data unit 1 extraction. In black, the FFT of the joint torque under healthy
conditions is represented, while in red, it is under in faulty conditions.

Appl. Sci. 2023, 13, 143 20 of 22

2 4 6 8 10 12 14 16 18
Time [s]

0

2

4

6

8

T
o

rq
u

e
[N

m
]

(FFT of data unit 2)

X 10.5623
Y 3.24110

X 16.0262
Y 3.17213

Figure 16. FFT applied to data unit 2 extraction. In black, the FFT of the joint torque under healthy
conditions is represented, while in red, it is under faulty conditions.

0 1 2 3 4 5 6 7 8 9 10
Time [s]

0

5

10

15

F
o

rc
e

[N
]

TCP force (z-axis)

Figure 17. TCP force estimation along z axis during the execution of the PTP(1) motion command
of the palletizing program. In dark blue, the estimation during the execution of three subsequential
PTP(1) motions with a 1 kg load is represented. In light blue, the estimation during the execution of
the same motion commands with cobot unloaded is represented.

5. Conclusions

This document analyzes problems related to the application of an effective CM ar-
chitecture and determining automatic fault detection algorithms in collaborative robots
used in dynamic tasks. In particular, a solution has been provided to contribute to the
definition of an open source CM architecture based on ROS which can be considered valid
for manipulator’s applications with a low degree of repeatability, where it is difficult to
establish a methodology to analyze data since the cobot executes different combinations
of motions in a single program. Previous work in industrial or collaborative robot fault
diagnostics has the limit of being built for specific motion sequences or programs and
may not accurately or consistently detect faults in other motions due to motion discrep-
ancies (different positions, speeds, loads, etc.). In contrast, this document presents a CM
architecture with a relative strategy used to pre-process data helping for the definition of
algorithms for the automatic detection of failures. The suggested approach is based on data
labeling and indexing and aims to extract comparable data units to easily detect a possible
failure in cobots. The end of this paper is provided with a proof of concept (PoC) where
the proposed architecture was implemented and tested in a real application scenario using
the Omron TM5-900 collaborative robot executing palletizing tasks. The results show that

Appl. Sci. 2023, 13, 143 21 of 22

applying the proposed strategy enables the possibility of defining basic HIs that, on the
contrary, would be ineffective if directly applied to monitoring the health of cobot joints.

Author Contributions: Conceptualization, G.N. and A.B.; methodology, G.N.; software, G.N.; valida-
tion, G.N. and A.B.; formal analysis, G.N. and A.B.; investigation, G.N. and A.B.; resources, G.N. and
A.B.; data curation, G.N.; writing—original draft preparation, G.N.; writing—review and editing,
G.N., S.L. and A.B.; visualization, G.N. and A.B.; supervision, S.L. and A.B.; project administra-
tion, A.B.; funding acquisition, A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by HD3Flab Project “Human Digital Flexible Factory of the
Future Laboratory” EU ERDF (European Regional Development Fund), Regional Operative Plan
(POR) MARCHE Region FESR (Fondo Europeo di Sviluppo Regionale) 2014/2020, AXIS 1, Specific
Objective 2, ACTION 2.1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: A special thanks to the Robotics team of Omron Europe (Barcelona), which
contributed with authors to the development, test, and validation of the Omron TM ROS package
used in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Inkulu, A.K.; Bahubalendruni, M.R.; Dara, A.; SankaranarayanaSamy, K. Challenges and opportunities in human robot

collaboration context of Industry 4.0—A state of the art review. Ind. Robot Int. J. Robot. Res. Appl. 2021, 49, 226–239. [CrossRef]
2. Eswaran, M.; Bahubalendruni, M.R. Challenges and opportunities on AR/VR technologies for manufacturing systems in the

context of industry 4.0: A state of the art review. J. Manuf. Syst. 2022, 65, 260–278. [CrossRef]
3. Nabissi, G. Omron TM Robots—ROS. 2022. Available online: https://github.com/GiakNab/Omron_TM_robots-ROS (accessed

on 9 December 2022).
4. Khalastchi, E.; Kalech, M. Fault detection and diagnosis in multi-robot systems: A survey. Sensors 2019, 19, 4019. [CrossRef]

[PubMed]
5. Visinsky, M.L.; Cavallaro, J.R.; Walker, I.D. Robotic fault detection and fault tolerance: A survey. Reliab. Eng. Syst. Saf. 1994,

46, 139–158. [CrossRef]
6. Alobaidy, M.A.A.; Abdul-Jabbar, J.M.; Al-khayyt, S.Z. Faults Diagnosis in Robot Systems: A Review. Al-Rafidain Eng. J. 2020,

25, 164–175. [CrossRef]
7. Jaber, A.A.; Bicker, R. Development of a Condition Monitoring Algorithm for Industrial Robots based on Artificial Intelligence

and Signal Processing Techniques. Int. J. Electr. Comput. Eng. 2018, 8, 996–1009. [CrossRef]
8. Xu, K.; Wu, X.; Wang, D.; Liu, X. Electromechanical coupling modeling and motor current signature analysis of bolt loosening of

industrial robot joint. Mech. Syst. Signal Process. 2023, 184, 109681. [CrossRef]
9. Raouf, I.; Lee, H.; Kim, H.S. Mechanical fault detection based on machine learning for robotic RV reducer using electrical current

signature analysis: A data-driven approach. J. Comput. Des. Eng. 2022, 9, 417–433.
10. Nentwich, C.; Reinhart, G. A Method for Health Indicator Evaluation for Condition Monitoring of Industrial Robot Gears.

Robotics 2021, 10, 80. [CrossRef]
11. Graabæk, S.G.; Ancker, E.V.; Christensen, A.L.; Fugl, A.R. An Experimental Comparison of Anomaly Detection Methods for

Collaborative Robot Manipulators. IEEE Trans. Autom. Sci. Eng. 2022, 1, 1–14. [CrossRef]
12. Izagirre, U.; Andonegui, I.; Egea, A.; Zurutuza, U. A methodology and experimental implementation for industrial robot health

assessment via torque signature analysis. Appl. Sci. 2020, 10, 7883. [CrossRef]
13. Cheng, F.; Raghavan, A.; Jung, D.; Sasaki, Y.; Tajika, Y. High-Accuracy Unsupervised Fault Detection of Industrial Robots Using

Current Signal Analysis. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management
(ICPHM), San Francisco, CA, USA, 17–20 June 2019; pp. 1–8. [CrossRef]

14. Vallachira, S.; Orkisz, M.; Norrlöf, M.; Butail, S. Data-driven gearbox failure detection in industrial robots. IEEE Trans. Ind. Inform.
2019, 16, 193–201. [CrossRef]

15. Ohno, M.; Takeda, Y. Design of target trajectories for the detection of joint clearances in parallel robot based on the actuation
torque measurement. Mech. Mach. Theory 2021, 155, 104081. [CrossRef]

http://doi.org/10.1108/IR-04-2021-0077
http://dx.doi.org/10.1016/j.jmsy.2022.09.016
https://github.com/GiakNab/Omron_TM_robots-ROS
http://dx.doi.org/10.3390/s19184019
http://www.ncbi.nlm.nih.gov/pubmed/31540376
http://dx.doi.org/10.1016/0951-8320(94)90132-5
http://dx.doi.org/10.33899/rengj.2020.127782.1051
http://dx.doi.org/10.11591/ijece.v8i2.pp996-1009
http://dx.doi.org/10.1016/j.ymssp.2022.109681
http://dx.doi.org/10.3390/robotics10020080
http://dx.doi.org/10.36227/techrxiv.19006643.v1
http://dx.doi.org/10.3390/app10217883
http://dx.doi.org/10.1109/ICPHM.2019.8819374
http://dx.doi.org/10.1109/TII.2019.2912809
http://dx.doi.org/10.1016/j.mechmachtheory.2020.104081

Appl. Sci. 2023, 13, 143 22 of 22

16. Bonci, A.; Kermenov, R.; Longhi, S.; Nabissi, G. Motor Torque Analysis for diagnosis in PMSMs under non-stationary conditions.
In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Vasteras, Sweden, 7–10 September 2021; pp. 1–6.

17. Bonci, A.; Indri, M.; Kermenov, R.; Longhi, S.; Nabissi, G. Comparison of PMSMs Motor Current Signature Analysis and Motor
Torque Analysis Under Transient Conditions. In Proceedings of the 2021 IEEE 19th International Conference on Industrial
Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021; pp. 1–6.

18. Han, Z.Y.; Liu, Y.L.; Jin, H.Y.; Fu, H.Y. A review of methodologies used for fault diagnosis of gearbox. Appl. Mech. Mater. 2013,
415, 510–514. [CrossRef]

19. Peshkin, M.; Colgate, J.E. Cobots. Ind. Robot Int. J. 1999, 26, 335–341. [CrossRef]
20. Vicentini, F. Collaborative robotics: A survey. J. Mech. Des. 2021, 143, 040802. [CrossRef]
21. Bonci, A.; Cen Cheng, P.D.; Indri, M.; Nabissi, G.; Sibona, F. Human–robot perception in industrial environments: A survey.

Sensors 2021, 21, 1571. [CrossRef]
22. Bittencourt, A.C.; Saarinen, K.; Sander-Tavallaey, S.; Gunnarsson, S.; Norrlöf, M. A data-driven approach to diagnostics of

repetitive processes in the distribution domain–applications to gearbox diagnostics in industrial robots and rotating machines.
Mechatronics 2014, 24, 1032–1041. [CrossRef]

23. Huan-Kun, H.; Hsiang-Yuan, T.; Huang, M.B.; Huang, H.P. Intelligent Fault Detection, Diagnosis and Health Evaluation for
Industrial Robots. Mechanics 2021, 27, 70–79.

24. Jaber, A.A.; Bicker, R. Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network.
Insight-Non Test. Cond. Monit. 2016, 58, 179–186. [CrossRef]

25. Bonci, A.; Longhi, S.; Nabissi, G.; Verdini, F. Predictive Maintenance System using motor current signal analysis for Industrial
Robot. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Zaragoza, Spain, 10–13 September 2019; pp. 1453–1456.

26. Park, Y.S.; Yoo, D.Y.; Lee, J.W. Programmable Motion-Fault Detection for a Collaborative Robot. IEEE Access 2021, 9, 133123–
133142. [CrossRef]

27. Blodt, M.; Chabert, M.; Regnier, J.; Faucher, J. Mechanical load fault detection in induction motors by stator current time-frequency
analysis. IEEE Trans. Ind. Appl. 2006, 42, 1454–1463. [CrossRef]

28. Caesarendra, W.; Tjahjowidodo, T. A review of feature extraction methods in vibration-based condition monitoring and its
application for degradation trend estimation of low-speed slew bearing. Machines 2017, 5, 21. [CrossRef]

29. Zhu, J.; Nostrand, T.; Spiegel, C.; Morton, B. Survey of condition indicators for condition monitoring systems. In Proceedings of
the Annual Conference of the PHM Society, Fort Worth, TX, USA, 29 September–2 October 2014; Volume 6.

30. Phong, L.D.; Choi, J.; Kang, S. External force estimation using joint torque sensors for a robot manipulator. In Proceedings of the
2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4507–4512.

31. Datta, A.; Mavroidis, C.; Krishnasamy, J.; Hosek, M. Neural netowrk based fault diagnostics of industrial robots using wavelt
multi-resolution analysis. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007;
pp. 1858–1863.

32. Oh, Y.; Kim, Y.; Na, K.; Youn, B.D. A deep transferable motion-adaptive fault detection method for industrial robots using a
residual–convolutional neural network. ISA Trans. 2022, 128, 521–534. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4028/www.scientific.net/AMM.415.510
http://dx.doi.org/10.1108/01439919910283722
http://dx.doi.org/10.1115/1.4046238
http://dx.doi.org/10.3390/s21051571
http://dx.doi.org/10.1016/j.mechatronics.2014.01.013
http://dx.doi.org/10.1784/insi.2016.58.4.179
http://dx.doi.org/10.1109/ACCESS.2021.3114505
http://dx.doi.org/10.1109/TIA.2006.882631
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.1016/j.isatra.2021.11.019

	Introduction
	Related Work
	Presenting a ROS-Based Condition Monitoring Architecture
	Omron TM Robots ROS Package
	Conceptual Idea
	Data Labeling and Indexing Method

	Applying the CM Framework to a Case Study
	Definition of Data Analysis Methodology
	Results

	Conclusions
	References

