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cDIISM, Università Politecnica delle Marche, 60131 Ancona, Italy

Abstract

Based on a high-order implicit discontinuous Galerkin method, numerical simulations of a two-dimensional
oscillating foil are performed to explore the origin of basic aspects of the flow such as the generation of inter-
esting flow structures in the wake and the associated aerodynamic forces. Dimensional arguments suggest
that the flow is characterized by non dimensional aerodynamic coefficients depending on the kinematics of
the oscillation, such its frequency and amplitude, and on the dynamics of the flow, such as the Reynolds
number. Most of the studies have concentrated their attention on the role played by the kinematic of the
oscillation with less or no attention to the effect of the Reynolds number. Here, we show that this effect
cannot be neglected in the study of the phenomena at the basis of the generation of lift and thrust. We
found that the Reynolds number plays a fundamental role for the development of thrust by defining critical
values Rec for the switch from drag to thrust conditions. It is also shown that for Re > Rec, the Reynolds
number defines additional subcritical values which are at the basis of flow instabilities leading to smooth
and sharp transitions of the structure of the wake and of the related aerodynamic forces. For the analysis
of the behaviour of the flow, the space of phases composed by the instantaneous lift and thrust (cL, cT ) is
introduced. It is shown how the orbits in the (cL, cT )-space allow us for a clear understanding of the physical
evolution of the flow system and of the cyclical phenomena composing it.

Keywords: Oscillating foils, Reynolds number dependence of thrust, Deflected wake

1. Introduction

The unsteady fluid mechanics developed by oscillating foils is known to generate both thrust and lift. The
understanding of the basic phenomena responsible for the generation of these aerodynamic forces triggered
the interest of many researchers since long time. In particular, the ability of a flapping wing to create
propulsion has been observed for the first time at the beginning of the last century by Knoller (1909) and
Betz (1912) (the so-called Knoller-Betz effect). On the other hand, the first explanation of the generation
of drag or thrust was given by von Kármán (1935) in terms of momentum deficit/excess behind the foil
due to the location and orientation of the wake vortices. For a slowly oscillating foil, the structure of
the wake is similar to the von Kármán vortex street observed behind bluff bodies and is found to induce
a momentum deficit in the wake and, hence, drag. On the other hand, for a rapidly oscillating foil, the
structure of the wake is inverted thus leading to a momentum excess behind the foil and, hence, thrust. It
is however worth noting that, strictly speaking, the presence of an inverted von Kármán vortex street is a
necessary but not sufficient condition for a momentum excess in the wake and, hence, to obtain a propulsive
regime (Godoy-Diana et al., 2008, 2009; Das et al., 2016). Overall, the structure of the wake is recognized
to be of overwhelming importance for the aerodynamic performance of oscillating foils. In this respect, it

∗Corresponding author
Email address: andrea.cimarelli@unimore.it (A. Cimarelli)

Preprint submitted to Journal of Fluids and Structures September 21, 2024



is important to highlight that, for rapidly oscillating foils, symmetry breaking phenomena appear, leading
to the formation of deflected wakes. As shown in Godoy-Diana et al. (2008) and Zheng and Wei (2012),
the basic idea is that of a competing role played by the advection velocity of the vortex street and the
self-advection of counter-rotating vortices in the near wake. The resulting effective velocity rules the trends
of symmetry breaking and symmetry holding. The deflection angle of the wake can change from the near
wake to the far wake regions as shown in Wei and Zheng (2014) where a model based on the Biot-Savart
law is employed to demonstrate that this variation is induced by a changing of the orientation of the dipole
structures of the wake and of their separation.

In accordance with these observations, the velocity of the oscillation has been recognized to represent the
leading parameter governing the aerodynamic performances of the oscillating foil. The Garrick’s linear theory
confirms this expectation (Garrick, 1936). Indeed, by using the inviscid flat-plate theory of Theodorsen
(1935), Garrick (1936) derived exact solutions where the production of thrust is shown to increase with the
square of the non-dimensional flapping velocity. The importance of the velocity of the oscillation has been
later verified in several works, see e.g. Triantafyllou et al. (1991); Lai and Platzer (1999); Floryan et al. (2017)
and references therein. However, from dimensional arguments it is possible to show that the aerodynamic
performances of such a flow system cannot be entirely described by using solely the non-dimensional velocity
of the oscillation. Indeed, for a fixed flapping velocity, the physical problem can be characterized from a
kinematic point of view also by different oscillation amplitudes and from a dynamic point of view by different
ratios between inertial and viscous forces, the Reynolds number. However, a clear assessment of the role
played by the Reynolds number is still lacking. This is due to the fact that most of the studies have been
devoted to the understanding of the flow phenomena of a flapping foil as a function of the flapping velocity
and amplitude, see e.g. Jones et al. (1998); Lewin and Haj-Hariri (2003); Andersen et al. (2017); Floryan
et al. (2017). In particular, Jones et al. (1998) studied the appearance of deflected wake patterns where
both an average thrust and an average lift are produced as a function of the kinematic parameters of the
oscillation. They also suggest that this structure is a result of primarily inviscid phenomena. The changes
of the wake pattern as function of the kinematic parameters of the oscillation have been further studied in
Lewin and Haj-Hariri (2003), where the leading-edge vortex is found to play a primary role on the wake
pattern depending on whether or not it is shed and on how it interacts with the trailing-edge vortex. The
fate of the leading-edge vortex and its positive or negative reinforcement of the trailing-edge vortex is also
correlated with the enhancement or reduction of thrust and of the propulsion efficiency. All these phenomena
have been later rationalized using scaling laws in Floryan et al. (2017).

As already pointed out, only few works rigorously considered the effect of the Reynolds number even
if this dependence is found to be not negligible, see e.g. Visbal (2009); Zheng and Wei (2012); Das et al.
(2016); Senturk and Smits (2019). In fact, the wake deflection angle is found in Zheng and Wei (2012)
to increase with the Reynolds number. Also the thrust performances are found to significantly increase
with the Reynolds number in Das et al. (2016) and Senturk and Smits (2019). On the other hand, the
thrust efficiency is found to reach a maximum for well-defined values of Reynolds number, which in turn
depend on the kinematic parameters of the oscillation (Das et al., 2016; Senturk and Smits, 2019). In
contrast with these results, it is worth mentioning the work of Van Buren et al. (2018) where a substantial
independence of the thrust and power performances on the value of the free-stream velocity is claimed. Of
particular relevance for the study of the Reynolds number effects is the work of (Das et al., 2016) where
the aerodynamic performances of a NACA 0012 foil pitching about its quarter chord for a wide range of
Reynolds numbers (10 < Re < 2000) is performed by using a high-resolution viscous vortex particle method.
In addition to the above mentioned dependency of the propulsion efficiency on the Reynolds number and
increase of thrust with the Reynolds number, it is also found that the von Kármán to reverse von Kármán
wake transition precedes the drag-to-thrust transition independently on the Reynolds number. Further, the
velocity of the oscillation values at which this transition occurs, are found to follow a power law scaling
with the Reynolds number, kh ∼ Re−0.37 , where kh is the heave velocity ratio defined in section 2. Finally,
the peak of propulsive efficiency is found to occur for oscillating velocity values that exceed those for the
onset of the wake deflection, so that the peak propulsive efficiency was always achieved in the deflected wake
regime.

In the present work, we aim at systematically addressing these issues by studying the role of the Reynolds
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number as a function of the kinematic parameters of the oscillation. The basic aspects of the flow such as the
structure of the wake and the associated aerodynamic forces will be assessed. To this end, high-order accurate
numerical simulations based on a discontinuous Galerkin method of a rigid foil in a two-dimensional free
stream with prescribed heaving motions will be studied by systematically varying the Reynolds number for
fixed couples of heave velocity and amplitude. The range of Reynolds numbers covered is 50 ≤ Re ≤ 5000,
which allows us to assess the flow properties in the laminar two-dimensional regime. Indeed, the high
Reynolds number behaviour of oscillating foils is characterized by three-dimensional phenomena due to
the laminar to turbulent transition of the flow. In this regime, the Reynolds number still plays a role for
the aerodynamic performances of the system as shown in Isogai et al. (1999); Ashraf et al. (2011); Dave
et al. (2020) where Reynolds Average Navier-Stokes (RANS) simulations have been used. Here, we limit our
analysis to the instabilities and aerodynamic performances of oscillating foils in the laminar two-dimensional
regime.

The paper is organized as follows. In section 2, the dimensionless groups used to analyse the flow
are introduced while in section 3 the numerical details of the simulations performed are reported. The
aerodynamic performances and the structure of the wake as a function of the dimensionless parameters
governing the flow are analysed in sections 4 and 5, respectively. The role of the Reynolds number is
carefully addressed in section 6 and its relation with the behaviour of the leading-edge vortex shedding is
analysed in section 7. The paper is finally closed by final remarks in section 8 and by Appendix A where
it is shown how results change by dealing with other type of dimensionless groups.

2. Dimensionless groups

We consider the flow around a two-dimensional rigid foil of chord c oscillating in the vertical direction.
The free-stream velocity is a flat unperturbed profile U∞ and the vertical oscillation of the foil follows an
harmonic law,

y(t) = h sin(2πft) , (1)

where h is the vertical displacement, f is the frequency and t the time. In the present work, (x, y) denote
the streamwise and vertical coordinates and the corresponding velocities are (u, v). In terms of velocity, the
vertical oscillation reads,

v(t) = 2πfh cos(2πft) = V cos(2πft) . (2)

where V = 2πfh is the maximum vertical velocity associated with the oscillation. Classical dimensional
analysis techniques lead to the following dimensionless groups for the study of the aerodynamic forces,
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where D and L are the average drag and lift forces, ρ is the density of the fluid, ν is the kinematic viscosity
and s is the span of the foil. In the dimensionless parameters governing the flow,

St =
fc

U∞
; KC =

h

c
; Re =

U∞c

ν
; (4)

we can recognized the chord-based Strouhal number of the oscillation St, the amplitude of the oscillation
KC also known as Keulegan-Carpenter number and the Reynolds number Re. The product of St with KC
is the so-called amplitude-based Strouhal number,

kh = 2π KC St =
V

U∞
(5)

which represents the ratio between the heave velocity V and the free-stream speed U∞ and it is found to play
a central role in describing the transition from drag to thrust (Triantafyllou et al., 1991; Lai and Platzer,
1999; Floryan et al., 2017). For this reason, in the present work we will consider the behaviour of the flow as
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a function of the heave velocity ratio kh rather than of the chord-based Strouhal number St. By considering
the power consumption related to the imposed vertical oscillation, Pin = Fyv with Fy the instantaneous
vertical aerodynamic force, and the net power eventually associated with thrust, Pout = FxU∞ with Fx the
instantaneous streamwise aerodynamic force, it is possible to define a parameter quantifying the average
efficiency of the oscillation as

η =

∫
Poutdt∫
Pindt

, (6)

that in terms of aerodynamic coefficients can be written as η = CD/CP where CP is the power coefficient.
It is worth mentioning, that the drag and lift coefficients and the relative governing parameters introduced

in (3) represent classical non-dimensional groups commonly used in non-oscillating foils. However, other
dimensionless groups can be defined. As an example, based on dimensional parameters solely related with
the kinematics and dynamics of the oscillation, different governing parameters and aerodynamic coefficients
can be obtained with some interesting properties as shown in Appendix A.

3. Numerical technique and simulations

3.1. Solver

The numerical simulations were performed using a high-order implicit discontinuous Galerkin (DG)
method, see Bassi et al. (2005, 2007); Crivellini et al. (2013a,b). The advantage of using such methods is
related to the ability of providing very accurate solutions on stretched, curved and possibly hybrid computa-
tional grids. In this work, we consider a two-dimensional incompressible DG code, suitably extended to deal
with a non-inertial reference frame to account for the foil oscillations. The system of equation is expressed
as a function of the absolute velocity ui observed from a moving reference frame of velocity components Uj ,
such that

∂iui = 0

∂tui + ∂j(ujui) = −∂ip/ρ+ 1/Re ∂2
j ui + Uj∂jui , (7)

where Re = U∞c/ν is the Reynolds number. Note that c and U∞ are hereafter used as reference length
and velocity scales. The DG discretization can be obtained by expressing the system (7) in variational
form, decomposing the domain by elements, and defining an appropriate polynomial space of order p within
each element. In this work the convective numerical fluxes that are used to couple the solution at the
interior faces of the mesh, are computed through the artificial compressibility flux method of Bassi et al.
(2006). On the other hand, the second form of the Bassi and Rebay scheme, see Bassi et al. (2005), has
been used for the viscous terms. Boundary conditions are applied in weak form by properly defining an
external state to compute the numerical fluxes at boundaries. The implicit time discretization is obtained
through the use of a three-stage, order-three linearly-implicit Rosenbrock-type Runge–Kutta scheme named
ROS3P by Lang and Verwer (2001). The linear systems arising from this discertization were handled using
a flexible GMRES solver preconditioned by a p-multigrid algorithm described by Franciolini et al. (2020).
This solution procedure is parallel efficient, which has been relevant for the work.

To validate the solver, we consider the flow around a transversely oscillating cylinder. This test case
has been chosen because of the availability of reference data at well-specified values of the three governing
parameters (KC, kh,Re) reported in Guilmineau and Queutey (2002). This flow has been solved at Re =
185, KC = h/d = 0.2 and at six frequencies f = kf0, where d is the cylinder diameter and f0 is the
natural vortex-shedding frequency (corresponding to a Strouhal number St = f0D/U∞ = 0.195). The
computational domain is a square with the side equal to 100d, while the grid consists of 1809 rectangular
elements with a third order piecewise polynomial representation of the faces at the cylinder wall. As for the
foil simulations reported in the present work, the sixth order polynomial approximation of the solution and
the ROS3P Rosenbrock scheme were adopted. The ∆t was 10−1 for all the case, which means at least 42
time steps for each oscillation period. Figure 1(a) reports the computed force coefficients and the references
values from Guilmineau and Queutey (2002). The agreement is very good including the frequency at which
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Figure 1: Transversely oscillating cylinder at Re = 185, KC = h/d = 0.2. (a) Comparison of the force coefficients with the
reference values digitalized from Guilmineau and Queutey (2002). (b) Iso-lines of vorticity for k = 1, thin lines in black, and
for k = 1.12, thick lines in red, at the lower vertical position; solid lines for positive values, dashed lines for negative values.

the so called vortex switching occurs, i.e. at k = 1.1, which is also very close to the experimental value
reported in Gu et al. (1994) at k = 1.12. As reported in those references, this phenomenon is characterized
by the switch of the vortical structures location with respect to the cylinder side at the extreme vertical
positions of the oscillation, as shown in figure 1(b) for the k = 1 and k = 1.12 cases.

3.2. Simulation settings

The study of the aerodynamic performances of oscillating foils is here performed by considering a NACA
0012 foil at zero incidence. The set of equations is solved by using a sixth order polynomial representation of
the solution, p = 6, which means that the velocity components are 7th order accurate and pressure 6th order
accurate. The unperturbed velocity field U∞ is used as initial condition. A circular computational domain
centred at the leading-edge of the foil is employed of radius r = 25. Considering the nature of the equation
set, the wall boundary is prescribed by imposing Ui, while at the outer boundary the free stream state
(p∞,U∞) is imposed. The boundary layer region is discretized using structured-like quadrangular elements
suitably curved to accurately represent the foil curvature. To this end, a piecewise third-order polynomial
approximation of the faces of the elements is employed. The baseline grid is composed by 7416 elements
that, by considering a p = 6 approximation, leads to solutions with a number of degrees of freedom 207648.
The time step size, ∆t, has been chosen according to the frequency of the oscillation f . For example, most
of the computations were performed with 1/(f∆t) ≃ 80 to ensure the results to be independent of the time
discretization.

Although each simulation involves a number of DOFs not particularly large, a long time integration,
typically of the order of O(1000/f) was found to be necessary to perform well-converged statistics and to
observe the slow inversion of the deflected wake as described in sections 5 and 6. Statistics are indeed
computed by performing a time average. Due to the periodicity of the flow problem, this procedure is
applied to a time window whose width is an integer number of the foil oscillating period. Statistics are
computed by discarding the flow transition from the initial conditions (typically of the order of O(50/f)),
using a number of oscillating periods of the order of O(200/f) for the flow cases with a stationary wake and
of O(1000/f) for the flow cases showing a very slow unsteadiness of the wake.

To prove the accuracy of the results, we have performed a study of the numerical convergence of the
solutions by varying the grid resolution and the domain size. Here, we report the representative case
at Re = 1500, KC = 0.12 and kh = 0.9. Figures 2(a) and (b) report the instantaneous iso-lines of
vorticity obtained by a couple of simulations. In figure 2(a), the result of our baseline numerical settings,
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Figure 2: (a) Comparison of the instantaneous vorticity pattern, ωz = [−0.25, 0.25], obtained with a fine and coarse mesh
denoted respectively with black and red contour lines. (b) Comparison of the instantaneous vorticity pattern, ωz = [−0.25, 0.25],
obtained from two different numerical domain extents denoted respectively with black and red contour lines.

a grid consisting of 7416 elements solved using a p = 6 approximation (207648 DOFs for each equation),
is superimposed to that obtained with 23808 elements and p = 5 (499968 DOFs). The agreement in terms
of instantaneous and local behaviours is clearly very good; a similar result is obtained using different time
step sizes, i.e. ∆t = 1/(80f) or 1/(160f). From a global point of view, the maximum difference of the
aerodynamic performances CT , CL and η measured from the finer and coarser simulations is of the order of
0.3%.

In figure 2(b), the sensitivity of the results to the domain size is shown. Note that, since the wake
at this regime is strongly inclined, this test is particularly relevant. The grid density and the polynomial
approximation (p = 6) are the same in both the cases, but since in one case the domain is significantly larger
than the other, the outer boundary is a circumference of radius 35c against 25c, the number of employed
elements raises from the baseline value 7416 to 12034. The perfect agreement of the local and instantaneous
behaviours, even in correspondence of the outer boundary, justified the use of the smaller domain for all the
the cases reported herein. Also from a global point of view, the maximum difference of the aerodynamic
performances CT , CL and η measured from the larger and smaller simulation domains is of the order of
0.1%.

4. Aerodynamic performances

In this section we briefly highlight the effect of each of the three governing parameters (KC, kh,Re) on
the aerodynamic performances of the flow around an oscillating NACA 0012 foil at zero incidence. The list
of the simulated governing parameters and of the relative aerodynamic performance is reported in table 1.

Let us start with the analysis of the behaviour of thrust, CT = −CD. In figure 3(a), the behaviour of
thrust as a function of the heave velocity ratio kh is shown for different couples of Reynolds numbers Re
and amplitude ratios KC. In accordance with several literature results, thrust appears to increase with
kh, see e.g. Garrick (1936); Triantafyllou et al. (1991); Lai and Platzer (1999); Floryan et al. (2017). In
particular, for small values of the heave velocity ratio, such as for kh = 0.3, the oscillating foil experiences
drag, CT < 0, while for higher values of kh thrust is produced, CT > 0. In this respect, let us point out that
other possible dimensionless groups based on pure kinematic and dynamic properties of the flow oscillation
could unveil the origin of such a scaling of thrust as shown in Appendix A.

As shown by the different curves in figure 3(a), the behaviour of thrust is however affected also by the
values of the other two governing parameters KC and Re. As far as it concerns the effect of the heave
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Case KC kh Re CT CL η

L1 0.12 0.3 500 -0.139 null -1.352
H1 0.12 0.3 1500 -0.051 null -0.464
L2 0.12 0.6 500 -0.018 null -0.029
H2 0.12 0.6 1500 0.087 null 0.132
L3 0.12 0.9 500 0.250 null 0.117
H3 0.12 0.9 1500 0.325 0.279 0.150
L4 0.12 1.2 500 0.680 0.175 0.123
H4 0.12 1.2 1500 0.801 null 0.144
L5 0.12 1.5 500 1.265 -4.475 0.113
H5 0.12 1.5 1500 1.176 null 0.104

Case KC kh Re CT CL η

L6 0.24 0.3 500 -0.119 null -0.866
H6 0.24 0.3 1500 -0.040 null -0.273
L7 0.24 0.6 500 -0.020 null -0.866
H7 0.24 0.6 1500 0.077 null -0.273
L8 0.24 0.9 500 0.199 null 0.114
H8 0.24 0.9 1500 0.260 null 0.143
L9 0.24 1.2 500 0.470 null 0.113
H9 0.24 1.2 1500 0.483 null 0.115
L10 0.24 1.5 500 1.165 null 0.120
H10 0.24 1.5 1500 0.983 null 0.104

Table 1: Parameters, aerodynamic coefficients and efficiency of the simulated flow cases.
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Figure 3: Thrust (a) and efficiency (b) as a function of the heave velocity ratio kh and for different couples of Reynolds number
Re and heave amplitude KC.

amplitude KC, by comparing the curves denoted by circles with those denoted by squares with the same
colour (same Reynolds number Re), it is possible to see a double effect of KC. In particular, when drag is
produced such as for small heave velocity ratio, kh = 0.3, increasing the heave amplitude leads to a slight
decrease of drag. On the other hand, when thrust is produced for higher velocity ratios, the effect of KC
is to decrease thrust. These effects, despite not negligible, are less intense than those of the heave velocity
ratio and hence, do not shade the increasing of thrust with kh at least for the two values KC = 0.12 and
KC = 0.24 considered.

A double effect is observed also for the Reynolds number which depends on the value of the heave
velocity ratio, kh. In particular, for relatively small values, kh ≤ 1.2, the effect of Re is to decrease drag
and to increase thrust in accordance with results from Das et al. (2016). On the contrary, for higher values,
kh = 1.5, the effect of Re is to decrease thrust.

We analyse now the efficiency of the oscillation to obtain thrust, η, as a function of the governing
parameters (KC, kh,Re). Before that, let us notice that due to its definition (6), η is characterized by
negative values when the oscillating foil experiences drag while, on the other hand, is positive when thrust
is generated. Hence, η ranges from −∞ for a drag in a non-oscillating foil to 1 in the ideal case of a
power thrust equals to the power consumption of the oscillation. We start the analysis by considering the
behaviour of η as a function of the heave velocity ratio kh and for different couples of Reynolds numbers
Re and amplitude ratios KC shown in figure 3(b). For small kh the oscillating foil experiences drag so that
negative values of η are measured. On the other hand, for higher heave velocity ratios positive efficiencies
are measured due to the generation of thrust. In particular, the efficiency of the oscillation increases with
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the heave velocity eventually approaching a maximum. The intensity of this maximum and the position in
the space of the heave velocity amplitude kh significantly depends on the value of the other two governing
parameters particularly of the Reynolds number. In fact, a more intense peak of efficiency and a shift of
its location towards smaller values of kh is observed by increasing the Reynolds number (Das et al., 2016).
The effect of the heave amplitude KC is less significant for the efficiency of the oscillation being responsible
for very small variations of η as far as only flow cases characterized by positive efficiencies are considered.

5. Flow topology

In this section, we analyse the effect of the governing parameters on the main flow features generated by
the oscillating foil. To this aim we consider the pattern taken by the instantaneous vorticity ωz = ∂v/∂x−
∂u/∂y in the (x, y)-space. This approach allows us to appreciate the structure of the wake which is known
to play a fundamental role in the determination of the thrust properties (Das et al., 2016). Furthermore,
the phenomenon of deflection of the wake, known to occur in such a flow for certain values of the governing
parameters, can be easily observed. As it will be shown in the following, when the deflection of the wake
is stationary, i.e. no upward/downward switching of the deflection occurs in time, this phenomenon can be
associated with the generation of non-zero average lift, CL ̸= 0. The reader interested on the mechanisms at
the basis of the symmetry breaking of the reverse von Kármán vortex street produced by a flapping foil and
on their modelling is referred to Godoy-Diana et al. (2009); Zheng and Wei (2012); Wei and Zheng (2014)
and references therein. Finally, to better understand the temporal evolution of the developed flow, we will
make use of phase diagrams (cL, cT ), where cL and cT are the instantaneous lift and thrust coefficients, and
prove their suitability for the understanding of the main unsteadinesses of the flow (Bose and Sarkar, 2018).

5.1. Small heave velocity ratio, kh = 0.3

In figure 4, the instantaneous vorticity pattern and the phase diagrams of the simulated flow cases for
small heave velocity ratio kh = 0.3 are shown. Let us recall that for this value of heave velocity, the
oscillating foil experiences drag, CT < 0, for all the combinations of the other parameters KC and Re
considered.

As shown in figure 4(a), for the low heave amplitude and Reynolds number case, KC = 0.12 and
Re = 500, a classical von Kármán street is observed. The phase diagram (cL, cT ) shows the orbit followed
by the lift and thrust coefficients during the oscillating period. The attractor is a periodic limit cycle which
shows that the positive and negative fluctuations of lift during the oscillating periods are symmetric (CL = 0)
and that the fluctuations of thrust are always negative (CT < 0). By increasing the Reynolds number and
retaining the same value of heave amplitude, Re = 1500 and KC = 0.12, the pattern of the wake modifies,
see figure 4(b). In particular, a slightly inverted von Kármán street is observed. Such a phenomenon is
commonly related with the appearance of thrust. Indeed, as shown by the phase diagram (cL, cT ), the orbit
is shifted in the upward direction towards smaller values of drag. Consistently, we measure a reduction of
drag with respect to the lower Reynolds number case, see flow cases L1 and H1 reported in table 1.

Almost the same observations can be done for the two cases at higher heave amplitude KC = 0.24
shown in figure 4(c) and (d). Indeed, we observe a reduction of drag by moving from the lower to the
higher Reynolds number case consisting in a upward shift of the orbit of the limit cycle together with the
appearance of phases of the oscillating period producing a net thrust. The main difference with respect to
the lower heave amplitude case described so far concerns the topology of the wake. Indeed, by increasing
the Reynolds number, the flow pattern of the wake significantly changes from a classical von Kármán street
to a wake composed by the simultaneous shedding for each oscillating period of two vortex pairs and two
single vortices (Williamson and Roshko, 1988).

5.2. Intermediate heave velocity ratio, kh = 0.9

In figure 5, the instantaneous vorticity pattern and the phase diagrams of the simulated flow cases for
intermediate heave velocity ratio kh = 0.9 are shown. Let us recall that for this value of heave velocity, the
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oscillating foil experiences thrust, CT > 0, for all the combinations of the other parameters KC and Re
considered.

As shown in figure 5(a), for the low heave amplitude and Reynolds number case, KC = 0.12 and
Re = 500, an inverted von Kármán street is observed. The corresponding orbit in the phase diagram
(cL, cT ) is a limit cycle where the positive and negative fluctuations of lift are symmetric (CL = 0) and
thrust, cT > 0, is experienced by the foil for almost the entire periodic cycle. By increasing the Reynolds
number Re = 1500 and retaining the same heave amplitude KC = 0.12, an interesting phenomenon of
stationary deflection of the wake is observed. As shown by the phase diagram, such a deflection of the wake
results in a periodic orbit following a non-symmetric limit cycle. As shown in the previous section, another
effect of the increase of the Reynolds number is also of a net increasing of thrust. By comparing the phase
diagrams in figure 5(a) and (b), it is possible to see that such an increase of thrust is almost obtained during
half a period of the asymmetric limit cycle.

For the same value of kh, such a deflection of the wake was not observed in Lewin and Haj-Hariri (2003)
and Jones et al. (1998). Indeed, these works were conducted at a lower Reynolds number corresponding to
our L3 case where, accordingly, we observe a straight wake. In the above mentioned works, a wake inflection
was observed only for kh = 1.5 in conjunction with a periodic phenomenon of upward/downward switching
of the direction of the deflection. In the present case at a lower frequency of the oscillation, kh = 0.9, and
higher Reynolds number Re = 1500, such a periodic inversion of the wake is not observed as it will be on
the contrary observed for kh = 1.5 as shown in the following section.

The same effect of the Reynolds number is not observed for higher heave amplitudes, KC = 0.24, shown
in figures 5(c) and (d). In this case, the increasing of the Reynolds number from Re = 500 to Re = 1500
does not lead to the same phenomenon of deflection of the wake. Indeed, both the periodic orbits follow a
symmetric limit cycle corresponding to a straight wake and zero lift CL = 0. The only effect of the Reynolds
number is a slight modification of the wake which leads to an increase of thrust as can be appreciated by
the upward shift of the phase diagram.

5.3. High heave velocity ratio, kh = 1.5

In figure 6, the instantaneous vorticity pattern and the phase diagrams of the simulated flow cases for
high heave velocity ratio kh = 1.5 are shown. Let us recall that for this value of heave velocity, the oscillating
foil experiences the highest values of thrust measured in the present set of simulations. As it can be seen in
figure 6, the common feature of the flow at high heave velocity is the less coherent pattern taken by the wake.
In particular, for the small Reynolds number, Re = 500, shown in panels 6(a) and (c), a vortex pattern
can be still recognized. On the contrary, for the higher Reynolds number, Re = 1500, shown in panels 6(b)
and (d), a fully chaotic flow feature is observed in the wake. In the space of phases such phenomena result
in phase orbits which not follow any more a limit cycle but are chaotically confined to follow a strange
attractor.

Let us analyse in detail the behaviour of the flow for small Reynolds number and heave amplitude,
Re = 500 and KC = 0.12, shown in figure 6(a). An unstable asymmetric wake can be recognized. However,
as shown by the phase diagram, such a chaotic deflection of the wake appears to be locked in one side, i.e.
no upward/downward switch in time of the deflection of the chaotic wake occurs. In particular, as shown by
the red line, the orbits are such that every two oscillating periods almost the same paths are followed but
no tendency towards an inversion of the asymmetry (deflection of the wake) appears. Analogously to the
stationary deflected wake observed so far at intermediate heave velocity ratio (flow case H3), the present
flow case at high heave velocity (L5) also leads to a non-zero average lift, see table 1. The main difference
between the two cases is the chaotic feature of the high heave velocity regime, so that the deflection of the
wake is stationary in a statistical sense.

By increasing the Reynolds number, Re = 1500 figure 6(b), the most evident effect is an increase of the
complexity of the wake. However, as apparent from the phase diagram, the overall behaviour of the orbits
is such that the region of phases covered is now symmetric and, hence, a statistically zero lift is measured
contrary to the lower Reynolds number case, see table 1. A careful inspection of the phase diagram reveals
that, actually, the flow is locked in a state of chaotically deflected wake for many periods of oscillation of
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Figure 6: Vorticity contours for kh = 1.5 and phase diagrams (cL, cT ). Flow cases L5 (a), H5 (b), L10 (c) and H10 (d). The
range of values shown are ωz = [−1, 1].
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the order of O(100) (see Heathcote and Gursul (2007) where similar values are reported) as shown by the
two opposite and strongly asymmetric paths followed by the orbits (green and red lines). Hence, the picture
is that of orbits locked in significantly asymmetric paths (locked deflected wake) for long periods followed
by a sharp inversion of the asymmetry (inversion of the deflection of the wake). Such a phenomenon of
switching has been already observed in several works, see e.g. Jones et al. (1998); Lewin and Haj-Hariri
(2003); Heathcote and Gursul (2007); Wei and Zheng (2014). However, let us remark that such a coherent
time-dependent pattern behind the chaotic overall behaviour of the flow can be rigorously revealed only by
using the phase diagrams. As already shown in figure 3, the effect of the Reynolds number for high heave
velocity ratios is to decrease thrust. As shown in quantitative terms by the phase diagrams in panels 6(a)
and (b), such a phenomenon is a result of downward shift of the attractor so that the foil for a significant
part of the oscillating period experiences also drag.

Let us now study the effects of the heave amplitude KC. For low Reynolds numbers, Re = 500, the
statistically asymmetric wake observed in panel 6(a) disappears by increasing the heave amplitude from
KC = 0.12 to KC = 0.24, panels 6(a) and (c), leaving space to a statistically symmetric wake thus
recovering a zero average lift, CL = 0. As shown by the phase diagram in panel 6(c), the recovery of
a symmetric wake and zero average lift is not achieved with a low frequency phenomena of inversion of a
strongly asymmetric wake such as for the lower heave amplitude case at larger Reynolds number, KC = 0.12
and Re = 1500, panel 6(b). Indeed, as shown with a red line reporting the behaviour of seven oscillating
periods, for each period of oscillation the orbit is weakly asymmetric so that the entire space of phases is
covered by a smoothly varying asymmetric phenomenon. For the higher Reynolds number case, Re = 1500,
the effect of the heave amplitude is less significant, compare panels 6(b) and (d). As shown by the phase
diagrams, the flow experiences a low frequency unsteadiness of the order of O(100) oscillating periods so
that in both cases, KC = 0.12 and KC = 0.24 for Re = 1500, strongly asymmetric orbits are performed for
long periods (locked deflected wake) which are followed by a sharp switching of the asymmetry (inversion
of the wake deflection).

6. On the effect of the Reynolds number

In the previous section we have shown how a careful inspection of the entire space of parameters governing
the flow around an oscillating foil allows us to rigorously understand the net effect of each of them by keeping
fixed the other two. In the present section, we restrict the field of investigation by solely addressing the role of
the Reynolds number. In particular, we will analyse the effect of the Reynolds number for heave velocity and
amplitude (KC, kh) = (0.12, 0.9). Indeed, in the previous section 5, we found that, by varying the Reynolds
number for these values of KC and kh, interesting flow phenomena appear such as the occurrence of steady
deflected wakes. To this end we performed 41 additional simulations by varying the Reynolds number from
Re = 50 to Re = 5000 keeping fixed the heave amplitude and velocity at (KC, kh) = (0.12, 0.9), see table 2.

In accordance with the analysis of the aerodynamic performances reported in section 4, for kh = 0.9,
the effect of the Reynolds number is to enhance both the thrust and the efficiency of the oscillation. As
shown in the insets of figure 7(a) and (c), this increase is particularly evident by increasing the Reynolds
number up to Re = 850. As shown in the main panels of figure 7, by further increasing the Reynolds number,
Re > 850, the increase of CT and η becomes piecewise continuous being alternated with discontinuous jumps
corresponding to the appearance of interesting flow phenomena. For this reason, in what follows, we will
analyse the main flow features by dividing the entire range of Reynolds numbers considered in five relevant
subregions.

6.1. Region I

As shown in figure 7, by increasing the Reynolds number up to Re = 725 (region I), both thrust and
efficiency are drastically enhanced, while, the lift coefficient is always zero. The strength of the effect of Re
is such that for the lower Reynolds number cases, Re < 200, the oscillating foil experiences drag while for
Re ≥ 200, thrust conditions are recovered. Hence, in analogy with the heave velocity ratio kh that has been
widely used to identify the critical conditions for the development of thrust, also the Reynolds number plays
this role by defining critical values above which thrust conditions are developed.
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Case Re CT CL CP η

C1 50 -0.474 null -1.832 -0.259
C2 100 -0.225 null -1.843 -0.122
C3 200 0.009 null -1.963 0.005
C4 300 0.126 null -2.032 0.062
C5 400 0.196 null -2.078 0.094
C6 500 0.249 null -2.121 0.113
C7 625 0.295 null -2.151 0.137
C8 687 0.318 null -2.182 0.146
C9 700 0.322 null -2.187 0.147
C10 725 0.328 null -2.191 0.150
C11 750 0.333 -0.027 -2.193 0.152
C12 781 0.338 -0.027 -2.194 0.154
C13 812 0.340 0.004 -2.186 0.155
C14 850 0.342 null -2.186 0.157
C15 875 0.335 null -2.167 0.155
C16 937 0.336 null -2.158 0.156
C17 1004 0.340 null -2.149 0.158
C18 1062 0.343 null -2.141 0.160
C19 1102 0.340 null -2.161 0.157
C20 1110 0.327 null -2.089 0.157

Case Re CT CL CP η

C21 1125 0.320 0.010 -2.078 0.154
C22 1187 0.316 0.114 -2.061 0.153
C23 1250 0.316 0.165 -2.049 0.154
C24 1325 0.319 -0.225 -2.040 0.156
C25 1500 0.324 0.260 -2.045 0.159
C26 1650 0.329 0.278 -2.037 0.161
C27 1750 0.332 0.295 -2.040 0.163
C28 1850 0.336 0.308 -2.047 0.164
C29 1925 0.337 0.309 -2.052 0.164
C30 1950 0.337 0.309 -2.054 0.164
C31 1975 0.337 0.307 -2.056 0.164
C32 1985 0.337 0.305 -2.056 0.164
C33 1990 0.337 0.304 -2.056 0.164
C34 1995 0.312 0.012 -1.992 0.157
C35 1997 0.312 0.009 -1.994 0.157
C36 1999 0.312 0.009 -1.994 0.157
C37 2000 0.312 0.009 -1.994 0.157
C38 2100 0.315 0.006 -1.994 0.158
C39 3000 0.338 null -1.993 0.170
C40 4000 0.355 0.026 -1.994 0.178
C41 5000 0.366 0.071 -1.997 0.183

Table 2: Parameters, aerodynamic coefficients and efficiency of the simulated flow cases for (KC, kh) = (0.12, 0.9) and different
Reynolds numbers.

The instantaneous flow topology of the wake and the phase diagrams (cL, cT ) of the transition from drag
to thrust conditions are reported in figure 8. For the lower Reynolds number cases characterized by the
development of drag, Re = 50 and 100, the wake develops a classical von Kármán street which is rapidly
dissipated. On the other hand, by passing the critical Reynolds number for Re = 200, the oscillating foil
produces thrust and the wake is characterized by an inverted von Kármán street. The phase diagrams
(cL, cT ) clearly highlight the transition. The orbits follow a symmetric limit cycle (CL = 0) for all the cases
but by increasing the Reynolds number an upward shift is observed. In particular, for the lower Re case, the
foil experiences drag for the entire oscillating period (CT < 0) while, by increasing the Reynolds number,
the upward shift of the orbits is such that for Re = 200 most of the time the foil experiences thrust leading
to CT > 0.

6.2. Region II

By entering region II, for 725 < Re < 850, the increase of thrust and efficiency with the Reynolds number
is less marked with respect to region I, see figure 7. This range of Reynolds numbers is characterized by the
appearance of an interesting phenomenon whose signature is present in the behaviour of the lift coefficient.
Indeed, by entering this region, CL is found to increase reaching non-zero values of the order of CL ≈ 0.03
and to decrease going to zero again by leaving this region. The origin of such a phenomenon can be analysed
by considering the instantaneous flow topology of the wake and the phase diagrams (cL, cT ) reported in figure
9. Contrary to region I, an initially straight inverted von Kármán street is found to develop a deflection for
x > 8 in region II. As shown by the phase diagram, this deflection of the wake is stationary being the orbits
following an asymmetric limit cycle (CL ̸= 0).

6.3. Region III

As shown in figure 7, by entering region III for 850 < Re < 1110, the lift coefficient is null and both
the thrust and efficiency show a jump toward smaller values from (CT , η) = (0.342, 0.157) at Re = 850 to

15



c
L

c
T

10 5 0 5 10

0

0.2

0.4

0.6

0.8

1

Figure 9: Instantaneous behaviour of the wake shown with isolines of ωz = [−1, 1] for (KC, kh) = (0.12, 0.9) as a function of
the Reynolds number. Region II, Re = 750. The right panel reports the phase map (cL, cT ) of the same flow case.
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Figure 10: Instantaneous behaviour of the wake shown with isolines of ωz = [−1, 1] for (KC, kh) = (0.12, 0.9) as a function
of the Reynolds number. Region III, Re = 875 (a) and Re = 937 (b). The right panels report the phase map (cL, cT ) of the
corresponding flow cases.

(CT , η) = (0.335, 0.155) at Re = 875 before attaining again an increasing behaviour with Re. The disconti-
nuity in the aerodynamic performances at the beginning of this region, is associated with the appearance of
different unsteadiness phenomena. Indeed, in the very first part of region III, for 850 < Re < 875, the zero
value of the lift coefficient is not attained by the recovery of a simple straight wake as it is for region I. Indeed,
as shown in figure 10(a), the wake is found to be still characterized by a deflected inverted von Kármán
street as it is for the non-zero average lift occurring at lower Reynolds numbers in region II. However, the
deflection is now not stationary so that the occurrence of periodic inversions of the deflection of the wake
leads on average to a zero lift. This phenomenon can clearly appreciated by considering the phase diagram
shown again in figure 10(a). Indeed, the orbits are found to lie in a region in the space of phases forming
a symmetric strange attractor. A careful inspection of the paths, green and red lines in the phase diagram
of panel 10(a), reveals that the orbits follow an asymmetric strange attractor (locked deflected wake) for
relatively long times of the order of O(80) oscillating periods before switching to the opposite asymmetric
attractor (inversion of the deflection of the wake) thus recovering on average a symmetric attractor (CL = 0).

In the second part of region III, for 875 < Re < 1004, a second instability mode appears. As shown
in panel 10(b), the wake recovers a straight behaviour leading as a consequence to a null lift coefficient.

16



c
L

c
T

10 5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

y

0 4 8 12 16 20 24

0

2

4

Figure 11: Instantaneous behaviour of the wake shown with isolines of ωz = [−1, 1] for (KC, kh) = (0.12, 0.9) as a function of
the Reynolds number. Region IV, Re = 1850. The right panel reports the phase map (cL, cT ) of the same flow case. In the
bottom plot, the behaviour of the wake for Re = 1125 (green), Re = 1187 (red) and Re = 1850 (black) is shown with isolines
of ωz = [−3, 3].

However, in this case, an unstable mode appears in the wake for x > 11. The strength of this phenomenon
is such that the coherent pattern of the wake is not completely destroyed and, as a consequence, the wake
region remains confined in a relatively thin layer. Interestingly, despite the apparent complex chaotic feature
of the wake for x > 11, as shown by the phase diagram in panel 10(b), the associated instability follows a
well coherent pattern. Indeed, the orbits in the space of phases trace a well-defined limit cycle. As shown
by the different coloured lines corresponding each to a single oscillating period, the emerging limit cycle is
found to be composed by 7 oscillating periods which are exactly repeated over the entire simulation time
without any appearance of deviation from it.

Region III is finally closed by a third instability mode, for 1004 < Re < 1110, which resembles the one
occurring in the first part of the region, i.e. an unsteady deflected wake experiencing inversion whose phase
diagram is a strange symmetric attractor (CL = 0). The only difference comes from the fact that the period
of inversion of deflection of the wake is significantly reduced with respect to that observed in the very first
part of region III, being now of the order of O(45) oscillating periods. Being the differences between these
two parts of region III of solely quantitative nature, the wake pattern and phase diagrams are not shown
for brevity reasons.

6.4. Region IV

By entering region IV, corresponding to the range 1110 < Re ≤ 1990, both thrust and efficiency show
a sharp decrease, see figure 7, before attaining again an increase of their values with the Reynolds number.
In this region, the most evident effect of the Reynolds number takes the form of a significant increase of lift
with Re. As already shown in section 5, these values of non-zero lift are associated with the appearance of
an asymmetric phenomenon of stable deflection of the wake, see the wake pattern and the phase diagram
reported also in the top panels of figure 11.

The origin of the increase of lift with the Reynolds number is shown in the bottom panel of figure 11. As
it can be seen, for Re = 1125 the wake shows a late deflection for x > 14 while for Re = 1187 the deflection
of the wake occurs for x > 4. Hence, we argue that the initial growth of the lift coefficient is given by the
upstream rising of the wake deflection. This behaviour is attained up to Re = 1250 where the deflection
of the wake takes place immediately behind the foil. Indeed, for 1250 < Re ≤ 1990, the increase of the

17



(a)

c
L

c
T

10 5 0 5 10

0

0.2

0.4

0.6

0.8

1

(b)

c
L

c
T

10 5 0 5 10

0

0.2

0.4

0.6

0.8

1

(c)

c
L

c
T

10 5 0 5 10

0

0.2

0.4

0.6

0.8

1

Figure 12: Instantaneous behaviour of the wake shown with isolines of ωz = [−1, 1] for (KC, kh) = (0.12, 0.9) as a function of
the Reynolds number. Region V, Re = 3000 (a), Re = 4000 (b) and Re = 5000 (c). The right panel reports the phase map
(cL, cT ) of the corresponding flow cases.

lift coefficient is ascribed to an increase of the inclination of the deflection. Accordingly, in the bottom
panel of figure 11, it can be seen an increase of the inclination of the wake from Re = 1187 to Re = 1850.
Interestingly, this behaviour of lift and also of thrust and efficiency abruptly changes by entering region V
for Re > 1990.

6.5. Region V

As already mentioned, by crossing the critical Reynolds number Re = 1990, the thrust, efficiency and
lift coefficients experience a sharp transition to the last regime investigated in this work. As shown in figure
7, both thrust and efficiency show a step behaviour from CT = 0.337 and η = 0.164 at Re = 1990 to lower
values CT = 0.312 and η = 0.157 at Re = 1995. After this sharp transition, an increase of both thrust
and efficiency is found to take place again reaching their highest values, i.e. CT = 0.366 and η = 0.183.
On the other hand, also the lift coefficient experiences a step behaviour from CL = 0.304 at Re = 1990 to
CL = 0.012 at Re = 1995. After this sharp transition, the lift coefficient approaches first a weak decrease
behaviour towards the zero value up to Re = 3000 and then increases again showing non zero values.

As shown in panel 12(a), the first part of this final regime is characterized by an almost straight inverted
von Kármán street that in the space of phases follows a symmetric limit cycle analogously to the behaviour
observed in region I. The only difference with region I is of quantitative nature being now the values of
thrust and efficiency larger, see figure 7 and the upward shift of the phase diagram of panel 12(a) with
respect to that of panel 8. For Re > 3000, the lift coefficient starts to increase and, as shown in figure 12(b)
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Figure 13: Instantaneous behaviour of the shedding of vortices shown with isocontours of ωz = [−1, 1] for (KC, kh) = (0.12, 0.9)
and Re = 1990. Six equally spaced instants covering an oscillating period are shown from panel (a) to (f), respectively.

and (c), a stable deflection of the wake occurs. Similarly to region IV, by increasing the Reynolds number,
an upstream rising of the deflection and an increase of the inclination is observed. As shown by the phase
diagrams in figure 12(b) and (c), the main difference with respect to region IV is that the asymmetry of
the limit cycle is less pronounced, in accordance with the lower values of lift reproduced at these Reynolds
numbers. This weak asymmetry of the limit cycle is recognized to be at the basis of the large values of thrust
measured in this region. Indeed, despite the fact that the highest values of thrust reproduced during each
oscillating periods are less intense with respect to those reached in region IV, compare the phase diagrams
of figures 12(b) and (c) with that of figure 11, the more symmetric behaviour of the orbits is such that the
foil express high levels of thrust for a larger fraction of the oscillating period thus leading to higher values
of thrust on average.

7. A note on the leading-edge vortex shedding and the Reynolds-dependent flow transition

It is well known that the wake pattern is essentially determined by the fate of the leading-edge vortices
(LEV), whether or not are shed, and their interactions with the trailing-edge vortices (TEV) (Lewin and
Haj-Hariri, 2003). For this reason, in this section we report a note on their role in the Reynolds-dependent
transitions shown in the previous section. In particular, we consider the sharp flow transition splitting
the flow regimes of region IV and V that occurs by increasing the Reynolds number from Re = 1990 to
Re = 1995. Let us recall that this transition consists in a sudden recovery of a straight inverted von Kármán
street from a stable deflected one.

We start by considering the behaviour of the leading- and trailing-edge vortices and their interactions
for the flow case at Re = 1990. As shown in figure 13(a), vortices are found to detach from the leading edge
during both the up and down stroke. More importantly, figure 13(a) also unveils that the origin of the flow
symmetry breaking, typical of the flow cases with deflected wakes, can be traced back to the flow pattern
induced by the top and bottom leading-edge vortices, LEVT and LEVB respectively. Indeed, both LEVT
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Figure 14: Instantaneous behaviour of the shedding of vortices shown with isocontours of ωz = [−1, 1] for (KC, kh) = (0.12, 0.9)
and Re = 1995. Two equally space instants covering an oscillating period are shown in panel (a) and (b).

and LEVB consist of two counter-rotating vortices embedded each other without a symmetry reflection of
the sign of rotation in the top and bottom sides of the foil. The inner vortex has a negative vorticity and
the outer one has a positive vorticity both for LEVT and LEVB . This fail of reflection symmetry can be
ascribed to the timing of detachment of vortices in the top and bottom sides of the foil as detailed below.

Let us consider the behaviour of the bottom side of the foil. The leading-edge separation bubble at the
bottom of the foil is generated after half of each upstroke period (see the upstream LEVB in panel 13(a))
and remains attached to the body for the rest of it and for the successive downstroke (see the upstream
LEVB in panels 13(b), (c) and (d)) eventually being shed with a finite phase shift 0.17/f after the end of
the downstroke (see the upstream LEVB in panels 13(e) and (f)). In particular, the separation bubble is not
able to follow the downward kinematic of the foil during the downstroke and it moves upstream and upward
thus interacting with the motion of the recirculating bubble in the top of the foil (see the upstream LEVB

in panels 13(b), (c) and (d)). This upward and upstream movement of the bubble is at the basis of the
formation of a vortex with negative vorticity embedded in positive vorticity. Indeed, during the generation
of the separation bubble (see the upstream LEVB in panels 13(a), (b) and (c)), the negative vorticity starts
to surround the bubble as it commonly happen in separated flows, but the upstream and upward advection
of the separation bubble in the final period of the downstroke leads to a deformation of the bubble itself
so that eventually positive vorticity surrounds a negative vorticity core (see the upstream LEVB in panels
13(d) and (e)). A different scenario is observed in the top side of the foil. The separation bubble in the
top of the foil is generated after half of each downstroke period (see the upstream LEVT in panel 13(c)),
exactly as in the bottom side. However, as opposed to the bottom side, the separation bubble in the top
side remains attached to the foil without moving upstream for the rest of the downstroke period and for
the successive upstroke period (see the upstream LEVT in panel 13(d), (e) and (f)) eventually being shed
exactly at the end of the upstroke without phase shift (see the upstream LEVT in panel 13(a) and (b)).

The fail of symmetry reflection in the formation of the leading-edge vortices and the asymmetric time
of their shedding (exactly at the end of the upstroke for LEVT and after the end of the downstroke with
a finite phase delay 0.17/f for LEVB) are at the basis of the symmetry breaking of the wake pattern.
Indeed, as shown in panels 13(e) and (f) the leading-edge vortex from the top side LEVT interacts with
the trailing-edge vortex TEVT immediately after its shedding. On the other hand, the leading-edge vortex
from the bottom side LEVB lately interacts with the trailing-edge vortex TEVB , see panels 13(c) and (d)
where the pairing of the two vortices is shown to occur at locations further downstream with respect to
those of the pairing of LEVT with TEVT shown in panels 13(e) and (f). All these aspects give rise to an
inverted von Kármán street that, during the downstroke is characterized by a couple of counter-rotating
vortices inducing a flow motion pointing in the upward direction, see panel 13(d). On the other hand, the
inverted von Kármán street during the upstroke is characterized by a region of positive vorticity within
two counter-rotating vortices whose action is to dump the induced flow motion pointing in the downward
direction, see panel 13(f). This asymmetry in the flow motion induced by the counter-rotating pairs of
vortices is at the basis of the stable deflection of the inverted von Kármán street observed at Re = 1990.

By slightly increasing the Reynolds number to Re = 1995, both the fail of symmetry reflection in the
formation of the leading-edge vortices and the phase shift in the shedding of the leading-edge vortices from
the top and bottom side of the foil disappear, see figure 14. Indeed, the leading-edge vortices are found to
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be constituted by a triple structure of alternated sign of vorticity with symmetry reflection in the two sides
of the foil that are detached at the end of the each downstroke/upstroke without phase shift. As a result,
the leading-edge vortices from both the two sides, LEVT and LEVB , are found to equally interact with the
respective trailing-edge vortices, TEVT and TEVB , thus leading to a straight inverted von Kármán street,
see panels 14(a) and (b).

This analysis confirms that the asymmetric timing of shedding of the leading-edge vortices is crucial for
the generation of a deflected inverted von Kármán street and, hence, for the related aerodynamic perfor-
mances. In this context, we found that the Reynolds number is a fundamental parameter for these symmetry
breaking phenomenon.

8. Conclusions

The formation of fascinating fluid flow phenomena and the generation of aerodynamic forces of great
significance for a plethora of applications, are at the basis of the scientific interest on the paradigmatic flow
around oscillating foils. However, after decades of research efforts the problem is still recognized as extremely
elusive. The reason is the complex kinematics and dynamics of the flow. Furthermore, the dependency of
the flow on multiple parameters characterizing the foil oscillation, challenge for a rational approach. Indeed,
the flow can be described from a kinematic point of view as a function of the ratio between the heave and
free-stream velocity kh and as a function of the ratio between the heave amplitude and the chord of the
foil KC. On the other hand, from a dynamic point of view, the flow can be described as a function of the
ratio between inertial and viscous forces, the Reynolds number Re. Most of literature results concentrate
their efforts to the study of the flow properties as a function of the couple of parameters (kh,KC) while less
attention has been devoted to the role of the Reynolds number. Here, in order to address the individual role
of each parameter governing the flow performance, we performed high-order accurate numerical simulations
which clearly identify variations in the three-dimensional space of parameters (kh,KC,Re). The aim is to
explore how the Reynolds number influence basic aspects of the flow such as the structure of the wake and
the associated aerodynamic forces at different values of the kinematic parameters (kh,KC). Very interesting
phenomena and behaviours appear with a clearly identified origin in the parameter space thus proving the
importance of using a rational approach such as that used in the present work.

We found that the Reynolds number is responsible for significant variations of the aerodynamic forces
exerted by the oscillating foil. In analogy with the heave velocity ratio kh that has been widely used to
identify the critical conditions for the development of thrust, it is shown that also the Reynolds number plays
this role by defining critical values above which thrust conditions are developed. Furthermore, the Reynolds
number is found to be also at the basis of different transitional phenomena leading to the appearance of
flow instabilities such as stable and quasi-periodically switching deflected wakes. As an example, for a fixed
value of heave velocity and amplitude, (kh,KC) = (0.9, 0.12), we found the presence of a critical Reynolds
number, Rec = 200, such that the oscillating foil experiences drag for Re < Rec while a recovery of thrust
conditions is obtained for Re > Rec. On the other hand for the same flow case , (kh,KC) = (0.9, 0.12), we
found that by varying the Reynolds number for Re > Rec, the structure of the flow and the aerodynamic
forces experience also different smooth and sharp transitions. Among many others interesting phenomena,
it is found that by increasing the Reynolds number, the structure of the flow moves from a straight inverted
von Kármán street to a stable deflected one before sharply recovering again a straight inverted von Kármán
street. Hence, subcritical values of the Reynolds number for smooth and sharp transitions of the flow
structure and performance are also identified.

In this context, the space of phases (cL, cT ) is recognized to be fundamental for the understanding of the
physical evolution of the system and of the cyclical phenomena composing it. Indeed, we have shown how
the analysis of the orbits in the space of phases allows us to understand how the thrust and lift forces are
developed during the oscillating period and how the presence of low frequency unsteadinesses recursively
modify this scenario. It is finally worth pointing out that the identified instabilities are very low-frequency
phenomena. As an example the period of switching of the deflection of the wake is found to be two orders
of magnitude greater than the heave period. The presence of these very slow unsteadinesses challenges for
numerical simulations and the use of the phase diagrams could help to clarify also this issue. Indeed, the
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analysis of the orbits in the space of phases during simulation is also found to be a very useful technique for
the identification of the presence of very slow transitional phenomena transporting the flow from one state
to another one.

Appendix A. On the triads of governing parameters

In section 2, we have introduced the three governing parameters,

St =
fc

U∞
; KC =

h

c
; Re =

U∞c

ν
; (A.1)

which are connected with the following non-dimensionalization of the aerodynamic forces

CD =
D

1/2ρscU2
∞

CL =
L

1/2ρscU2
∞

(A.2)

In the procedure, ρ has been used to drop the dimension of mass,
√
sc to drop the dimension of length

and, finally, c/U∞ to drop the dimension of time. This is the classical procedure commonly adopted for the
study of aerodynamics bodies. However, this approach does not make use of all the dimensional arguments
related with the flow oscillation. Indeed, by using quantities that are solely related to the phenomenon of
oscillation, other non-dimensional groups can be obtained. Indeed, by using ρ to drop the dimension of
mass,

√
ch to drop the dimension of length and finally 1/f to drop the dimension of time, one recovers the

following dimensionless groups,

C ′
D =

D

1/2ρV 2c2
= f

(
V

U∞
,
h

c
,
V c

ν

)
C ′

L =
L

1/2ρV 2c2
= g

(
V

U∞
,
h

c
,
V c

ν

)
(A.3)

where, the governing parameters in this case are,

kh =
V

U∞
= 2πKC St ; KC =

h

c
; β =

V c

ν
= kh Re = 2πKC St Re ; (A.4)

where we recognize that only the physical meaning of the heave amplitude parameter KC remains unaltered
with respect to the groups used in the present work. Indeed, kh is not any more the Strouhal number of
the oscillation but the heave velocity amplitude, kh = V/U∞. The link between these two parameters is
given by the heave amplitude as kh = 2πKCSt. Finally, the parameter β represents a Reynolds number
but it is not connected any more with the free-stream conditions but with the velocity of the oscillation,
β = V c/ν. The two definitions of Reynolds number are connected each other by the kinematics parameters
of the oscillation (heave frequency and amplitude) as, β = 2πKCStRe. These governing parameters are
related with a non-dimensionalization of the aerodynamic performances (A.3) which is different with the
classical one (A.2) commonly used in non-oscillating foils. The two definitions of aerodynamic coefficients
are related each others by the following relations

C ′
D,L =

CD,L

kh2
=

CD,L

(2πKC St)2
(A.5)

thus unveiling that the quadratic behaviour of the classical aerodynamic coefficients with the frequency
of the oscillation (Garrick, 1936; Triantafyllou et al., 1991; Lai and Platzer, 1999; Floryan et al., 2017) is
naturally absorbed in the definition itself of the new aerodynamic coefficients (A.3). It is worth reminding
that this difference is simply due to the fact that in the alternative dimensional analysis we used only di-
mensional arguments related with the flow oscillation. As a consequence, the obtained governing parameters
(kh,KC, β) result to be strictly related to the main features of the foil oscillation and retain a well-defined
physical interpretation while the aerodynamic coefficients are found to absorb relevant scaling. Establishing
whether the alternative dimensional groups (A.3) allow for a detection of relevant asymptotic behaviours of
oscillating foils would require the use of additional simulations and exceeds the scope of the present work
and, hence, is postponed to future dedicated works.
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