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Abstract
In this work, the homogenization theory is applied within the framework of

three-dimensional linear micropolar media. The fundamental results derived by the
asymptotic homogenization method to compute the effective engineering moduli for
a laminated micropolar elastic composite with centro-symmetric constituents are
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Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro y L, Vedado, La
Habana, CP 10400, Cuba, e-mail: reinaldo@matcom.uh.cu

V. Yanes
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summarized, in which the interface between the layer phases is considered imperfect
spring type. The layers are considered with isotropic symmetry. Non-uniform and,
as a particular case, uniform imperfections are assumed, where different imperfec-
tion parameters and cell length in the 𝑦3-direction are assigned for the analysis.
The analytical expressions of the engineering constants related to the stiffness and
torque are given as functions of the imperfection parameters. The behavior of the
engineering coefficients depending on the imperfection is studied. The influence of
the imperfection and the cell length in the direction of the imperfection is observed.
The present study allows to validate other models and experimental results, as well
as the investigation of fracture prediction in laminated composite materials.

1 Introduction

Several investigations in biomechanics have shown that models related to Cosserat-
type media better capture the actual response of biological tissues [1, 2, 3, 4, 5]. The
micromechanical study in Cosserat’s media has had an impact on the mechanics of
bones [6, 7, 8, 9, 10, 11, 12], cardiac tissues [13, 14], etc.

The applicability of laminated structures in various branches of industry is well
known. The investigation of their properties is important to improve and design new
materials. There are micromechanical methods based on multiscale homogenization
schemes that provide information about the properties of heterogeneous laminated
micropolar or Cosserat media, for example: Properties of micropolar multi-layered
media have been calculated using the finite element technique [15, 16, 17]. In these
works, the potentiality of the Cosserat continuum model to predict the mechanical
behavior of layered structures is analyzed. Moreover, Cosserat continuum with 2D
and 3D layered-like microstructure are analyzed by a finite element scheme in [18,
19]. On the other hand, multiscale homogenization approaches applied to micropolar
heterogeneous structures have been carried out by [20, 21, 22, 23, 24, 25, 26],
among others. In these approaches, the generalized stress and strain are linked to the
displacements, strains, and stresses defined in the representative volume element.

Different works address the imperfect interface effects on multi-laminated media
through the linear spring interface with zero thickness and the interphase models,
[27, 28, 29, 30, 31, 32], among other. In the framework of heterogeneous micropolar
or Cosserat elastic media, the problem of the existence of an imperfect interface
between two contiguous phases have been considered. For example, the imperfect
interface model applied to elastic composites [33, 34] is generalized to micropo-
lar media assuming that the couple tractions are continuous across the interface
and proportional to the jumps of the out-of-plane microrotation [35]. In addition,
the boundary element method is used to simulate microstructured Cosserat media
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with both perfect and uniform imperfect interfaces. The asymptotic analysis (see
e.g. [36]) has proven to be a powerful mathematical tool to derive simplified mod-
els for thin films and structures [37, 38]. This technique has also been extensively
used to study the mechanical behavior of layered composites, constituted by two
solids bonded together by a thin interphase, considering different continuum theo-
ries with microstructure, such as micropolar elastiticity [39], poroelasticity [40], and
flexoelectricity [41]. Recently, the effective behavior of multi-laminated micropolar
composites is studied using the asymptotic homogenization method [42, 43]. In both
works, centro-symmetric cubic or isotropic constituents and perfect interface condi-
tions are assumed. Other previous works dealing with the problem of imperfection
in micropolar structures can be found in [44, 45, 46, 47]. Therefore, further analyses
are required in this topic.

In the present work, based on the methodology presented in [42, 43, 48], the main
results derived by the asymptotic homogenization method (AHM) to compute the
effective engineering moduli for a laminated micropolar centro-symmetric compos-
ite are summarized, in which the interface between the layer phases is considered
imperfect spring type. The layers are considered with isotropic symmetry. The im-
perfection is considered non-uniform and as a particular case uniform, controlled
by different imperfection parameters and the cell length in the 𝑦3-direction. The
analytical expressions of the effective engineering moduli associated to the stiffness
and torque are given as a function of the non-uniform imperfect parameters. An
analysis of the behavior of the effective engineering coefficients depending on the
imperfection is performed. The influence of the imperfection and the cell length in
the direction of the imperfection is observed.

2 Heterogeneous problem statement and fundamental equations

A periodic centro-symmetric linear elastic micropolar continuum Ω at the Cartesian
coordinate system 𝒙 =

{
𝑥1, 𝑥2, 𝑥3

}
⊂ R3 is defined by two independent sets of

degrees of freedom given by the displacement 𝑢𝑚 (𝒙) [m] and the microrotation
𝜔𝑠 (𝒙) fields associated to each material point [49]. For the static case, it is formulated
by the linear and angular balance equations(

𝐶𝑖 𝑗𝑚𝑛 (𝒙) 𝑒𝑛𝑚 (𝒙)
)
, 𝑗
+ 𝑓𝑖 (𝒙) = 0,(

𝐷𝑖 𝑗𝑚𝑛 (𝒙) 𝜓𝑛𝑚 (𝒙)
)
, 𝑗
+ 𝜖𝑖 𝑗𝑘

(
𝐶𝑘 𝑗𝑚𝑛 (𝒙) 𝑒𝑛𝑚 (𝒙)

)
+ 𝑔𝑖 (𝒙) = 0, (1)

where 𝐶𝑖 𝑗𝑚𝑛 (𝒙) [N/m2] is the stiffness tensor, 𝐷𝑖 𝑗𝑚𝑛 (𝒙) [N] is the torque tensor,
𝑓𝑖 (𝒙) [N/m3] are the body forces, and 𝑔𝑖 (𝒙) [N/m2] are the body couples functions,
with 𝑖, 𝑗 , 𝑘, 𝑚, 𝑛, 𝑠 = 1, 2, 3. The micropolar strain 𝑒𝑚𝑛 (𝒙) and the torsion-curvature
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𝜓𝑚𝑛 (𝒙) [m−1] tensors are given by

𝑒𝑛𝑚 (𝒙) = 𝑢𝑚,𝑛 (𝒙) + 𝜖𝑚𝑛𝑠𝜔𝑠 (𝒙), 𝜓𝑛𝑚 (𝒙) = 𝜔𝑚,𝑛 (𝒙), (2)

where 𝜖𝑚𝑛𝑠 is the Levi-Civita tensor, 𝑢𝑚 is the displacement vector and 𝜔𝑚 is the
microrotation vector, independent of the displacement. The notation 𝑓, 𝑚 ≡ 𝜕 𝑓 /𝜕𝑥𝑚
and the square brackets contain the physical units of measure for the variable.
In Eqs. (1) and (2), the symmetric part of 𝑒𝑚𝑛 (𝒙) corresponds to the classical
strain tensor whereas its skew-symmetric part accounts for the local reorientation
of the microstructure. Also, the symmetry conditions 𝐶𝑖 𝑗𝑚𝑛 (𝒙) = 𝐶𝑚𝑛𝑖 𝑗 (𝒙) and
𝐷𝑖 𝑗𝑚𝑛 (𝒙) = 𝐷𝑚𝑛𝑖 𝑗 (𝒙) are satisfied.

The system, Eq. (1), together with the boundary conditions on 𝜕Ω

𝑢𝑚 (𝒙) |𝜕Ω1 = 0,
(
𝐶𝑖 𝑗𝑚𝑛 (𝒙) 𝑒𝑛𝑚 (𝒙)

)
𝑛 𝑗 |𝜕Ω2 = 𝐹𝑖 (𝒙),

𝜔𝑚 (𝒙) |𝜕Ω3 = 0,
(
𝐷𝑖 𝑗𝑚𝑛 (𝒙) 𝜓𝑛𝑚 (𝒙)

)
𝑛 𝑗 |𝜕Ω4 = 𝐺𝑖 (𝒙), (3)

where 𝐹𝑖 (𝒙) and𝐺𝑖 (𝒙) are the surface body forces and moments, represent the static
boundary value problem associated with the linear theory of micropolar elasticity
whose coefficients are rapidly oscillating. In Eq. (3), 𝑛 𝑗 is the unit outer normal vector

to 𝜕Ω and the subsets 𝜕Ω𝑖 satisfy 𝜕Ω𝑖

⋂
𝑖≠ 𝑗

𝜕Ω 𝑗 ≠ ∅ (disjoint sets) and 𝜕Ω =
4⋃
𝑖=1
𝜕Ω𝑖 .

In addition to the problem statement (Eqs. (1)–(3)), we deal with the spring model
described above considering imperfect contact conditions at the interface Γ, such as(

𝐶𝑖 𝑗𝑚𝑛 (𝒙) 𝑒𝑛𝑚 (𝒙)
)
𝑛 𝑗 = 𝐾𝑖 𝑗

q
𝑢 𝑗

y
,

q(
𝐶𝑖 𝑗𝑚𝑛 (𝒙) 𝑒𝑛𝑚 (𝒙)

)
𝑛 𝑗

y
= 0, on Γ(

𝐷𝑖 𝑗𝑚𝑛 (𝒙) 𝜓𝑛𝑚 (𝒙)
)
𝑛 𝑗 = 𝑄𝑖 𝑗

q
𝜔 𝑗

y
,

q(
𝐷𝑖 𝑗𝑚𝑛 (𝒙) 𝜓𝑛𝑚 (𝒙)

)
𝑛 𝑗

y
= 0, on Γ

(4)

where J𝑝K = 𝑝 (1) − 𝑝 (2) means the jump of the function 𝑝 across the inter-
face Γ. 𝐾𝑖 𝑗 [N/m3] and 𝑄𝑖 𝑗 [N/m] are the extensional and microtational imper-

fection parameters, such that 𝐾𝑖 𝑗 =
©­­«
𝐾𝑡 0 0
0 𝐾𝑠 0
0 0 𝐾𝑛

ª®®¬ and 𝑄𝑖 𝑗 =
©­­«
𝑄𝑡 0 0
0 𝑄𝑠 0
0 0 𝑄𝑛

ª®®¬. Here,

𝐾𝑡 , 𝐾𝑠 , 𝐾𝑛, 𝑄𝑡 , 𝑄𝑠 , and 𝑄𝑛 are the interface parameters in the normal and tangen-
tial directions, which are considered equals for the sake of simplicity as follows
𝐾𝑡 = 𝐾𝑠 = 𝐾𝑛 and 𝑄𝑡 = 𝑄𝑠 = 𝑄𝑛. An equivalent form of the imperfect contact
conditions (4) has been derived for soft micropolar interfaces in [39], by means of
the asymptotic analysis.
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3 Asymptotic homogenization method and effective engineering
moduli for periodic laminated micropolar media

From now on, let us consider that the three-dimensional heterogeneous centro-
symmetric linear elastic micropolar continuum Ω is described by a parallelepiped
of dimensions 𝑙𝑖 (𝑖 = 1, 2, 3) generated by repetitions of a periodic cell Y, whose
layered direction is along the 𝑦3-axis. At the microscale, the transversal cross-section
of Y is characterized by a bi-laminated composite in the plane 𝑂𝑦2𝑦3, see Fig. 1,
where the constituent material phases are denoted by 𝑆𝛾 (𝛾 = 1, 2) with volume V𝛾 ,
such as Y = S1 ∪ S2, S1 ∩ S2 = ∅, and V1 + V2 = 1. Imperfect contact conditions
(uniform or non-uniform) are assumed at the interface region Γ between the layers
following the Eq. (4).

The non-uniform imperfect interface is defined by partitioning Γ along the 𝑦2
direction, where 𝜃𝑟 ℓ2 is the length of the r-partition (denoted 𝑟Γ) with imperfection
length fraction 𝜃𝑟 (𝑟 = 1, . . . , 𝑁), ℓ2 is the characteristic length of Y along the 𝑦2

direction, and 𝑁 is the number of partitions; such as, Γ =
𝑁⋃
𝑟=1

𝑟Γ. In this context,

𝐾𝑖 𝑗 and 𝑄𝑖 𝑗 are considered piecewise linear functions in each unit cell partition 𝑟Y
(with r fixed), such as
𝑟Y =

{
y ∈ R3 : 0 < 𝑦𝑖 < ℓ𝑖 , and

∑𝑟−1
𝑠=0 𝜃𝑠ℓ2 < 𝑦2 <

∑𝑟
𝑠=1 𝜃𝑠ℓ2, 𝜃0 = 0

}
and Y =

𝑁⋃
𝑟=1

𝑟Y. Also, 𝑟 𝑓 =


1𝑓 in 1Y
...
𝑁 𝑓 in 𝑁Y

, where 𝑓 might be replaced by 𝐾𝑖 𝑗 and 𝑄𝑖 𝑗 or

any function defined in 𝑟Y. On the other hand, as a particular case, an uniform
interface is taken into account when the values of the imperfection parameters in
each cell partition 𝑟Y are equals.

In this framework, the applied methodology based on the AHM for centro-
symmetric micropolar composites with perfect contact conditions [42, 43] is im-
plemented to the case of an imperfect interface. The AHM provides averaged ex-
pressions for the rapidly oscillating elasticity tensors of the original problem and
proposes a homogeneous equivalent medium with the same behavior. Its main as-
sumptions are that all fields are considered as power series of the small and positive
definite dimensionless parameter 𝜀 whose coefficients are dependent on the macro
(𝒙) and micro (𝒚) scales, see, for instance [50, 51, 52]. Both scales are related as
𝒚 = 𝒙/𝜀, where 𝜀 = ℓ/𝐿 ≪ 1 is defined by the ratio between the characteristic size
of the periodicity cell (ℓ) and the diameter of the body (𝐿).

The AHM starts from the substitution of the expansions for the displacements
𝑢𝜀𝑚 (𝒙) and the microrotations 𝜔𝜀

𝑚 (𝒙)

𝑢𝜀𝑚 (𝒙) =
∞∑︁
𝛼=0

𝜀𝛼𝑢
(𝛼)
𝑚 (𝒙, 𝒚), 𝜔𝜀

𝑚 (𝒙) =
∞∑︁
𝛼=0

𝜀𝛼𝜔
(𝛼)
𝑚 (𝒙, 𝒚), (5)
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Fig. 1: (a) Heterogeneous Cosserat composite; (b) Cross-section of a periodic bi-
laminated structure Y at the plane 𝑂𝑦2𝑦3 with non-uniform imperfect interface Γ

partitioned in N disjoint sub-interfaces 𝑟Γ (𝑟 = 1, 2, . . . , 𝑁).

into the problem (Eqs. (1)–(4)), and following algebraic operations and differentia-
tion rules. Here, 𝑢 (𝑖)𝑚 (𝑥𝑥𝑥, 𝑦𝑦𝑦) and𝜔 (𝑖)

𝑚 (𝑥𝑥𝑥, 𝑦𝑦𝑦) (𝑖 = 0, 1, 2, . . . ) are infinitely differentiable
and Y-periodic functions with respect to 𝑦𝑦𝑦. Thus, a sequence of problems given by
partial differential equations is obtained in relation to the power of 𝜀 parameter.
From them, the formulation of local problems on Y, the effective moduli, and the
equivalent homogenized problem with its asymptotic solution is obtained. Details
about the AHM methodology related to micropolar laminated composites are shown
in [23, 25, 42, 43] and are omitted here.

The mathematical statement of the 𝑝𝑞
𝑟L1 and 𝑝𝑞

𝑟L2 (with 𝑝, 𝑞 = 1, 2, 3) local
problems over each partition 𝑟Y are given by

𝑝𝑞
𝑟L1



(
𝐶𝑖3𝑝𝑞 + 𝐶𝑖3𝑚3

𝑟
𝑝𝑞𝑁

′
𝑚

) ′
= 0, in 𝑟Y

q
𝐶𝑖3𝑝𝑞 + 𝐶𝑖3𝑚3

𝑟
𝑝𝑞𝑁

′
𝑚

y
𝑛3 = 0, in 𝑟Γ(

𝐶𝑖3𝑝𝑞 + 𝐶𝑖3𝑚3
𝑟

𝑝𝑞𝑁
′
𝑚

)
𝑛3 = 𝑟𝐾𝑖 𝑗

q
𝑟

𝑝𝑞𝑁 𝑗

y
, in 𝑟Γ〈

𝑟
𝑝𝑞𝑁𝑚

〉
𝑟Y = 0,

(6)

𝑝𝑞
𝑟L2



(
𝐷𝑖3𝑝𝑞 + 𝐷𝑖3𝑚3

𝑟
𝑝𝑞𝑀

′
𝑚

) ′
= 0, in 𝑟Y

q
𝐷𝑖3𝑝𝑞 + 𝐷𝑖3𝑚3

𝑟
𝑝𝑞𝑀

′
𝑚

y
𝑛3 = 0, in 𝑟Γ(

𝐷𝑖3𝑝𝑞 + 𝐷𝑖3𝑚3
𝑟

𝑝𝑞𝑀
′
𝑚

)
𝑛3 = 𝑟𝑄𝑖 𝑗

q
𝑟

𝑝𝑞𝑀 𝑗

y
, in 𝑟Γ〈

𝑟
𝑝𝑞𝑀𝑚

〉
𝑟Y = 0,

(7)

where (•)′ = d(•)/d𝑦3. In Eqs. (6) and (7), 𝑟
𝑝𝑞𝑁𝑚 and 𝑟

𝑝𝑞𝑀𝑚 are the local 𝑝𝑞-
displacements and 𝑝𝑞-microrotations defined in the r-partition of the cell Y, respec-
tively. The periodicity conditions 𝑝𝑞𝑁𝑚 (0) = 𝑝𝑞𝑁𝑚 (𝑙𝑖) and 𝑝𝑞𝑀𝑚 (0) = 𝑝𝑞𝑀𝑚 (𝑙𝑖)
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are satisfied and the unknown functions 𝑟
𝑝𝑞𝑁𝑚 and 𝑟

𝑝𝑞𝑀𝑚 only depend on 𝑦3 as well.

The symbol ⟨𝑝⟩ denotes the Voigt’s average of the property 𝑝, i.e., ⟨𝑝⟩ =
𝑁∑
𝑖=1
𝑝 (𝑖)V𝑖

with 𝑁 the number of phases in Y and
𝑁∑
𝑖=1

Vi = 1. In case of a bi-laminated composite,

⟨𝑝⟩ = 𝑝 (1)V1 + 𝑝 (2)V2 where V1 = 𝛾/ℓ3 and V2 = 1− 𝛾/ℓ3 are the volume fractions
per unit length occupied by the layer 1 and 2, respectively; such as, V1 + V2 = 1. 𝛾
is the 𝑦3 coordinate of the constituents contact.

Once the unknown functions 𝑟
𝑝𝑞𝑁𝑚 and 𝑟

𝑝𝑞𝑁𝑚 are determined, the corresponding
effective properties in terms of the 𝑟-interface-partition formulation can be found as
follows:

𝐶∗
𝑖 𝑗 𝑝𝑞 =

𝑁∑︁
𝑟=0

𝜃𝑟
〈
𝐶𝑖 𝑗 𝑝𝑞 + 𝐶𝑖 𝑗𝑚3

𝑟
𝑝𝑞𝑁

′
𝑚

〉
𝑟Y , (8)

𝐷∗
𝑖 𝑗 𝑝𝑞 =

𝑁∑︁
𝑟=0

𝜃𝑟
〈
𝐷𝑖 𝑗 𝑝𝑞 + 𝐷𝑖 𝑗𝑚3

𝑟
𝑝𝑞𝑀

′
𝑚

〉
𝑟Y . (9)

The local functions 𝑟
𝑝𝑞𝑁

′
𝑚 and 𝑟

𝑝𝑞𝑀
′
𝑚 can be determined as it is shown in [42, 43]

and after their replacement into Eq. (8), the corresponding stiffness and torque ef-
fective properties are obtained as functions of the constituent properties, the imper-
fection parameters and the constituent volume fraction

𝐶∗
𝑖 𝑗 𝑝𝑞

=
〈
𝐶𝑖 𝑗 𝑝𝑞 − 𝐶𝑖 𝑗𝑚3𝐶

−1
𝑚3𝑎3𝐶𝑎3𝑝𝑞

〉
+∑𝑁

𝑟=1 𝜃𝑟
〈
𝐶𝑖 𝑗𝑚3𝐶

−1
𝑚3𝑎3

〉 (〈
𝐶−1
𝑎3𝑏3

〉
+ ℓ−1

3
𝑟𝐾−1

𝑎𝑏

)−1 〈
𝐶−1
𝑏3𝑐3𝐶𝑐3𝑝𝑞

〉
, (10)

𝐷∗
𝑖 𝑗 𝑝𝑞

=
〈
𝐷𝑖 𝑗 𝑝𝑞 − 𝐷𝑖 𝑗𝑚3𝐷

−1
𝑚3𝑎3𝐷𝑎3𝑝𝑞

〉
+∑𝑁

𝑟=1 𝜃𝑟
〈
𝐷𝑖 𝑗𝑚3𝐷

−1
𝑚3𝑎3

〉 (〈
𝐷−1

𝑎3𝑏3
〉
+ ℓ−1

3
𝑟𝑄−1

𝑎𝑏

)−1 〈
𝐷−1

𝑏3𝑐3𝐷𝑐3𝑝𝑞
〉
. (11)

Since both local problems (Eqs. (6) and (7)) and the effective properties (Eqs. (10)
and (11)) have the same structure, only the analytical expressions for the stiffness are
shown. The analytical expressions for effective torque moduli can be found replacing
𝐷 for 𝐶, and 𝑄 for 𝐾 .

3.1 Effective engineering moduli

Assuming that the constituents are centro-symmetric isotropic materials, these are
characterized by 6 independent constants 𝐶1122, 𝐶1212, 𝐶1221, 𝐷1122, 𝐷1212, and
𝐷1221, see [53], through the relations
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𝐶𝑖 𝑗𝑚𝑛 = 𝐶1122𝛿𝑖 𝑗𝛿𝑚𝑛 + 𝐶1212𝛿𝑖𝑚𝛿 𝑗𝑛 + 𝐶1221𝛿𝑖𝑛𝛿 𝑗𝑚, (12)
𝐷𝑖 𝑗𝑚𝑛 = 𝐷1122𝛿𝑖 𝑗𝛿𝑚𝑛 + 𝐷1212𝛿𝑚𝛿 𝑗𝑛 + 𝐷1221𝛿𝑖𝑛𝛿 𝑗𝑚, (13)

where 𝛿𝑖 𝑗 is the Kronecker delta tensor.
The global symmetry after the homogenization process is orthotropic, defined by
eighteen non-zero effective moduli, as it is pointed out in [42, 43]. The nine non-
zero stiffness effective properties are 𝐶∗

1111 = 𝐶∗
2222, 𝐶∗

3333, 𝐶∗
1122, 𝐶∗

1133 = 𝐶∗
2233,

𝐶∗
1313 = 𝐶∗

2323, 𝐶∗
3232 = 𝐶∗

3131, 𝐶∗
1331 = 𝐶∗

2332, 𝐶∗
1212 = 𝐶∗

2121, and 𝐶∗
1221. Similarly,

the other nine torque properties can be derived.
Following the strainâstress relationships for a centro-symmetric micropolar media

according to Eq. (1), and applying the effective relations reported in Eqs. (64)–
(66) of [43] for the corresponding stiffness effective properties (see, Eq. (10)), the
independent effective engineering moduli written as functions of the stiffness matrix
components and the imperfection parameters are given as follows:
Effective Youngâs moduli:

S𝐸
∗
1 = S𝐸

∗
2 =

(
⟨𝐶1111⟩ − ⟨𝐶1122⟩

) (
⟨𝐶1111⟩ + ⟨𝐶1122⟩ − 2

〈
𝐶2

1122 𝐶
−1
1111

〉 )
⟨𝐶1111⟩ −

〈
𝐶2

1122 𝐶
−1
1111

〉 ,

S𝐸
∗
3 =

(
⟨𝐶1111⟩ + ⟨𝐶1122⟩ − 2

〈
𝐶2

1122𝐶
−1
1111

〉 )
𝐵1 ( 𝑟𝐾33)

⟨𝐶1111⟩ + ⟨𝐶1122⟩ − 2
〈
𝐶2

1122𝐶
−1
1111

〉
+ 2

〈
𝐶1122𝐶

−1
1111

〉2
𝐵1 ( 𝑟𝐾33)

.

(14)

Effective shear moduli:

S𝐺
∗
12 = S𝐺

∗
21 =

⟨𝐶1212⟩2 − ⟨𝐶1221⟩2

⟨𝐶1212⟩
,

S𝐺
∗
13 = S𝐺

∗
23 =

(
⟨𝐶1212⟩ −

〈
𝐶2

1221𝐶
−1
1212

〉 )
𝐵2 ( 𝑟𝐾22)

⟨𝐶1212⟩ −
〈
𝐶2

1221𝐶
−1
1212

〉
+
〈
𝐶1221𝐶

−1
1212

〉2
𝐵2 ( 𝑟𝐾22)

,

S𝐺
∗
32 = S𝐺

∗
31 = ⟨𝐶1212⟩ −

〈
𝐶2

1221𝐶
−1
1212

〉
.

(15)

Effective Poissonâs ratios:

S𝜈
∗
21 =

〈
𝐶2

1122𝐶
−1
1111

〉
− ⟨𝐶1122⟩〈

𝐶2
1122𝐶

−1
1111

〉
− ⟨𝐶1111⟩

,

S𝜈
∗
32 = S𝜈

∗
31 =

〈
𝐶1122𝐶

−1
1111

〉
𝐵1 ( 𝑟𝐾33)

⟨𝐶1111⟩ + ⟨𝐶1122⟩ − 2
〈
𝐶2

1122𝐶
−1
1111

〉
+ 2

〈
𝐶1122𝐶

−1
1111

〉2
𝐵1 ( 𝑟𝐾33)

.

(16)
Effective shear-strain ratios:

S𝜁
∗
2112 =

⟨𝐶1221⟩
⟨𝐶1212⟩

, S𝜁
∗
3223 =

〈
𝐶1221𝐶

−1
1212

〉
, (17)
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where the following parameters 𝐵1 ( 𝑟𝐾33) and 𝐵2 ( 𝑟𝐾22) are introduced for better
presentation of the formulae

𝐵1 ( 𝑟𝐾33) =
𝑁∑︁
𝑟=1

𝜃𝑟

( 〈
𝐶−1

1111
〉
+ 1
ℓ3

𝑟𝐾−1
33

)−1
,

𝐵2 ( 𝑟𝐾22) =
𝑁∑︁
𝑟=1

𝜃𝑟

( 〈
𝐶−1

1212
〉
+ 1
ℓ3

𝑟𝐾−1
22

)−1
.

(18)

The effective engineering constants for torque moduli can be written in analogous
form and they are denoted by a subscript 𝑇 , for example: the torsional Youngâs
moduli T𝐸

∗
𝑖
, the torsional shear moduli T𝐺

∗
12, T𝐺

∗
13 and T𝐺

∗
32, the twist Poissonâs

coefficient T𝜈
∗
21 and T𝜈

∗
32, and the twist shear-strain ratios S𝜁

∗
2112 and S𝜁

∗
3223.

4 Numerical results

In this section, the Eqs. (14)-(18) are implemented to analyze the effect of a non-
uniform or uniform imperfect interface Γ on the effective engineering moduli of a
centro-symmetric bi-laminated Cosserat composite (layer 1/layer 2 = SyF/PUF) with
isotropic constituents. The values of the Cosserat elastic parameters listed in Table
1 are used for computations through the relations 𝐶1122 ≡ 𝜆, (𝐶1212 +𝐶1221)/2 ≡ 𝜇,
(𝐶1212−𝐶1221)/2 ≡ 𝛼,𝐷1122 ≡ 𝛽, (𝐷1212+𝐷1221)/2 ≡ 𝛾, and (𝐷1212−𝐷1221)/2 ≡ 𝜖 ,
where 𝜆 and 𝜇 are the Lamé parameters, 𝛼 is the micropolar couple modulus, and the
properties 𝛽, 𝛾, and 𝜖 represent the additional micropolar elastic constants introduced
in micropolar theory, according to the following constitutive law for a micropolar
isotropic centro-symmetric material:

𝜎𝑖 𝑗 = (𝜇 + 𝜅)𝑒𝑖 𝑗 + (𝜇 − 𝜅)𝑒 𝑗𝑖 + 𝜆𝑒𝑘𝑘𝛿𝑖 𝑗 ,
𝜒𝑖 𝑗 = (𝛾 + 𝛽)𝜓𝑖 𝑗 + (𝛾 − 𝛽)𝜓 𝑗𝑖 + 𝛼𝜓𝑘𝑘𝛿𝑖 𝑗 ,

(19)

where 𝜎𝑖 𝑗 and 𝜒𝑖 𝑗 represent the stress and couple-stress tensors components, respec-
tively. These materials data are taken from [53]. For the micropolar constants, the
same notation of [53] is used, being 𝛼 is 𝜅, 𝛽 is 𝛼, 𝛾 remains 𝛾, and 𝜖 is 𝛽.
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Table 1: Constituent material properties. 𝑎 Syntactic foam - hollow glass spheres in
epoxy resin, and 𝑏 Dense polyurethane foam

Material properties 𝜆 (MPa) 𝜇 (MPa) 𝛼 (MPa) 𝛽 (N) 𝛾 (N) 𝜖 (N)

SyF𝑎 2097.0 1033.0 114.8 -2.91 4.364 -0.133
PUF𝑏 762.7 104.0 4.333 -26.65 39.98 4.504

Non-uniform imperfect interface

Here, the non-uniform imperfect interface Γ is defined by a partition of 𝑁 disjoint
sub-interfaces 𝑟Γ characterized by an imperfection length fraction 𝑟𝜃 and by two sets
of imperfection parameters (𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 ) with a considerably large gap between
their values for each partition, see Section 3.
In Table 3, the effective engineering moduli related to the stiffness

(
S𝐸

∗
3 , S𝐺

∗
13, S𝜈

∗
31
)

and torques
(

T𝐸
∗
3 , T𝐺

∗
13, T𝜈

∗
31
)

affected by the imperfection are shown for four SyF
volume fraction (V1) equals to 0.2, 0.4, 0.6, and 0.8. Two different partitions of Γ are
analyzed, one with 𝑁 = 2 partitions and another with 𝑁 = 4 partitions. In the case
of 𝑁 = 2, 𝜃1 = 𝜃2 = 0.5 and the corresponding imperfection parameters are defined
by 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 (𝑟 = 1, 2), whereas, for 𝑁 = 4, 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0.25 and
the imperfection parameters are 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 (𝑟 = 1, . . . , 4) with 𝑖 𝑗 = 22, 33. For
both partitions, three different sets of imperfection parameters (𝑆1, 𝑆2 and 𝑆3) are
considered for 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 , see Table 2. For example, when 𝑁 = 2, 𝑆1 is the set of
values 1𝐾 𝑖 𝑗 = 10−1, 2𝐾 𝑖 𝑗 = 100, 1𝑄𝑖 𝑗 = 10−1, and 2𝑄𝑖 𝑗 = 100. The remaining sets
can be understood in similar form. The characteristic lengths of Y along the 𝑥2 and 𝑥3
directions are ℓ3 = 10−6m and ℓ2 = 1, respectively. In addition, the effective values
associate to the perfect contact case are reported for the same volume fractions.
From Table 3, it can be observed that the influence of the non-uniform imperfect
interface is remarkable in the effective engineering properties, regardless of the V1
volume fraction, and even the microstructure of the imperfection region determined
by the partition 𝑁 affects the behavior of the properties. A non-uniform interface
with values for 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 as in 𝑆1 or lower implies the delamination of the
material, and hence, a loss of the effective properties. However, as the values of the
imperfection parameters increase as in 𝑆2 and 𝑆3, an approach to the existence of a
perfect interface is appreciated, and then the engineering moduli have an increment.
The perfect contact is reached when the values of 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 parameters are
1014 in each 𝑟Γ. The highest values of the engineering constants are achieved in this
perfect case. Furthermore, it can be seen that the effect of the imperfection is more
noticeable in the engineering moduli related to compliance

(
S𝐸

∗
3 , S𝐺

∗
13, S𝜈

∗
31
)

than
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those related to torque
(

T𝐸
∗
3 , T𝐺

∗
13, T𝜈

∗
31
)
, and is even more pronounced for high SyF

volume fraction. As 𝑁 increases, the micro-structure of the imperfection becomes
finer and its effect on the constant engineering behaviors is evident.
On the other hand, in Table 4, the remaining effective engineering moduli, which are
independent of the imperfection effect, are reported for four SyF volume fractions
(V1 = 0.2, 0.4, 0.6, and 0.8). As can be seen in Eqs. (14)-(18), these effective moduli
only depend on the material constituents and their volume fraction, therefore, their
behaviors are related to the hardness or softness of the SyF material properties.
According to Table 1, we can see that SyF is harder than PUF. Thus, for the perfect
case, as V1 volume fraction increases, the effective engineering constants S𝐸

∗
1 , S𝐸

∗
3 ,

S𝐺
∗
13, S𝐺

∗
12 and S𝐺

∗
31 for compliance and the other ones T𝜁

∗
2112 and T𝜁

∗
3223 for torques

increase too. The opposite happens for the remaining Cosserat elastic parameters,
which are softer for SyF and thus for the composite as V1 increases. The effective
engineering constants are stiffer in this case.

Table 2: Sets of values for the 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 imperfection parameters considered in
each partition of 𝑟Γ.

𝑁 = 2 𝑁 = 4
Set 1𝐾 𝑖 𝑗

2𝐾 𝑖 𝑗
1𝑄𝑖 𝑗

2𝑄𝑖 𝑗
1𝐾 𝑖 𝑗

2𝐾 𝑖 𝑗
3𝐾 𝑖 𝑗

4𝐾 𝑖 𝑗
1𝑄𝑖 𝑗

2𝑄𝑖 𝑗
3𝑄𝑖 𝑗

4𝑄𝑖 𝑗

𝑆1 103 104 101 102 103 104 105 106 101 102 103 104

𝑆2 105 106 103 104 105 106 107 108 103 104 105 106

𝑆3 107 108 105 106 107 108 109 1010 105 106 107 108
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Table 3: Variation of the effective engineering moduli related to non-uniform imper-
fect interface for four SyF volume fraction (V1). The moduli S𝐸

∗
3 , S𝐺

∗
13 are measured

in [MPa]; T𝐸
∗
3 , T𝐺

∗
13 in [N]; S𝜈

∗
31, T𝜈

∗
31 are dimensionless.

Moduli V1
𝑁 = 2 𝑁 = 4

Perfect
𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3

S𝐸
∗
3

0.2 0.0055∗ 0.5493 48.8405 0.2774 25.1987 307.7864 581.9802
0.4 0.0055∗ 0.5495 50.4403 0.2775 25.7829 392.7140 853.5091
0.6 0.0055∗ 0.5496 51.5785 0.2776 26.2485 489.5963 1194.0030
0.8 0.0055∗ 0.5497 52.5544 0.2776 26.6766 626.0288 1719.9066

S𝐺
∗
13

0.2 0.0055∗ 0.5437 25.9370 0.2752 14.7569 47.3517 62.7962
0.4 0.0055∗ 0.5457 31.2829 0.2759 17.0148 67.8537 97.8025
0.6 0.0055∗ 0.5470 35.9172 0.2765 19.1634 92.8556 142.0619
0.8 0.0055∗ 0.5481 41.0084 0.2770 21.6470 135.7580 218.5210

S𝜈
∗
32

0.2 3.2×10−6 3.2×10−4 0.0283 2 × 10−4 0.0146 0.1785 0.3376
0.4 1.9×10−6 1.9×10−4 0.0171 9 × 10−5 0.0088 0.1335 0.2901
0.6 1.3×10−6 1.3×10−4 0.0118 6 × 10−5 0.0060 0.1117 0.2724
0.8 0.9×10−6 0.9×10−5 0.0086 5 × 10−5 0.0044 0.1024 0.2813

T𝐸
∗
3

0.2 6 × 10−5∗ 0.0044 0.0219 0.0025 0.0210 0.0227 0.0228
0.4 6 × 10−5∗ 0.0041 0.0151 0.0024 0.0147 0.0155 0.0156
0.6 6 × 10−5∗ 0.0033 0.0083 0.0021 0.0081 0.0084 0.0084
0.8 5 × 10−5∗ 0.0010 0.0012 0.0008 0.0012 0.0012 0.0012

T𝐺
∗
13

0.2 6 × 10−5∗ 0.0055∗ 0.5043 0.0028∗ 0.2585 3.9585 8.2248
0.4 6 × 10−5∗ 0.0055∗ 0.4800 0.0028∗ 0.2477 2.7316 5.1540
0.6 6 × 10−5∗ 0.0055∗ 0.4512 0.0028∗ 0.2360 1.9728 3.3367
0.8 6 × 10−5∗ 0.0055∗ 0.3998 0.0028∗ 0.2179 1.2555 1.7927

T𝜈
∗
32

0.2 -0.0024 -0.1943 -0.9585 -0.1085 -0.9211 -0.9964 -0.9990
0.4 -0.0035 -0.2605 -0.9704 -0.1511 -0.9432 -0.9965 -0.9987
0.6 -0.0065 -0.3955 -0.9833 -0.2483 -0.9677 -0.9975 -0.9989
0.8 -0.0439 -0.8207 -0.9973 -0.6981 -0.9949 -0.9994 -0.9996

∗ The values with more significant digits are given in Appendix A.
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Table 4: Effective engineering moduli calculated for four SyF volume fraction V1.
The moduli S𝐸

∗
1 , S𝐺

∗
12 and S𝐺

∗
31 are measured in [MPa]; T𝐸

∗
1 , T𝐺

∗
12 and T𝐺

∗
31 in [N];

and the others S𝜈
∗
21, S𝜁

∗
2112, S𝜁

∗
3223, T𝜈

∗
21, T𝜁

∗
2112, and T𝜁

∗
3223 are dimensionless.

V1 S𝐸
∗
1 S𝐺

∗
12 S𝐺

∗
31 S𝜈

∗
21 S𝜁

∗
2112 S𝜁

∗
3223

0.2 793.4487 96.8720 95.9654 0.3690 0.8329 0.8960
0.4 1285.0272 176.1125 175.2921 0.3510 0.8149 0.8720
0.6 1776.1720 255.2062 254.6187 0.3427 0.8071 0.8480
0.8 2267.1612 334.2504 333.9454 0.3380 0.8027 0.8240

V1 T𝐸
∗
1 T𝐺

∗
12 T𝐺

∗
31 T𝜈

∗
21 T𝜁

∗
2112 T𝜁

∗
3223

0.2 0.0228 12.9020 12.8438 -0.9997 0.8037 0.8506
0.4 0.0156 9.6077 9.4956 -0.9997 0.8133 0.9036
0.6 0.0084 6.3040 6.1475 -0.9998 0.8306 0.9567
0.8 0.0012 2.9721 2.7994 -0.9999 0.8706 1.0098

Uniform imperfect interface

Now, the effect of an uniform imperfect interface on the effective engineering moduli
is analyzed. The uniform imperfect interface is defined as a particular case of the
previously described non-uniform imperfect ones assuming that the values of 𝑟𝐾𝑖 𝑗

and 𝑟𝑄𝑖 𝑗 imperfection parameters are the same along Γ, such as 𝐾 ≡ 𝑟𝐾𝑖 𝑗 and
𝑄 ≡ 𝑟𝑄𝑖 𝑗 .
The numerical simulations are conducted for different grades of imperfection, such
as the values for 𝐾 are 106, 5 × 106, 107, 3 × 107, 5 × 107, 108, and the latest 1010

(Perfect contact); and for 𝑄 are 105, 2 × 105, 3 × 105, 5 × 105, 106, 5 × 106, and
finally 107 (Perfect contact), respectively. Also, the characteristic lengths ℓ3 = 10−4

and ℓ2 = 1.
In Figs. 2 and 3, only the behaviors of the effective engineering moduli affected by
the imperfection are illustrated for a bi-laminated Cosserat composites (SyF/PUF)
versus SyF volume fraction considering different imperfect parameters. We remark
that these effective engineering moduli are sensitive to the imperfection, that is, they
get weaker and only reach their highest values in the case of perfect contact. Notice
that S𝐸

∗
3 , S𝐺

∗
13, and S𝜈

∗
32 are more sensitive to the imperfection 𝐾 when V1 increases

whereas T𝐺
∗
13, and T𝜈

∗
32 have the same performance for 𝑄 when low values of V1

is attached. However, T𝐸
∗
3 undergoes slight changes caused by the effect of the 𝑄

imperfection. In this sense, a zoom illustrates the slight weakening of the property
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when V1 is closed to 0.4. Despite the imperfection effect, the S𝐸
∗
3 and S𝐺

∗
13 become

stronger as 𝑉1 increase whereas the opposite occurs for T𝐸
∗
3 and T𝐺

∗
13.

On the other hand, it is remarkable the behavior of the effective Poisson S𝜈
∗
32 and

twist Poisson T𝜈
∗
32 moduli. The module S𝜈

∗
32 has a concave upward behavior whereas

T𝜈
∗
32 is concave downward for all 𝑟𝐾𝑖 𝑗 and 𝑟𝑄𝑖 𝑗 imperfection parameters in the

whole V1 interval. Also, S𝜈
∗
32 is positive and T𝜈

∗
32 is negative. These behaviors are

similar to the one reported by Ref. [54] for an elastic solid weakened by porosity and
microcracks. Paraphrasing his statement 4 from the conclusions [54], the Poisson
and twist Poisson moduli can increase, decrease or remain unchanged depending on
the imperfection parameters and the SyF volume fraction. The trend of the plots is
reversed by passing from Fig. 2 to Fig. 3, they are mirror-like. This can be understood
by looking at the values in Table 1, the elastic coefficients are larger for SyF; but the
opposite happens for the micropolar constants, they are larger for PUF.
Notice the existence of a change correlation point for T𝜈

∗
32 in V1 = 0.8333087 (Fig.

3). This point is a consequence of ⟨𝐷1111⟩ + ⟨𝐷1122⟩ − 2
〈
𝐷2

1122𝐷
−1
1111

〉
= 0 in

Eq. (16) for the torque. Thus, 𝑇𝜈∗32 = 𝑇𝜈
∗
31 = 0.5

〈
𝐷1122𝐷

−1
1111

〉−1 ≡ 𝐻 (V1). All the
curves are intercepted in this correlation point and 𝐻 (V1) shows the independence
of T𝜈

∗
32 with respect to 𝑟𝑄𝑖 𝑗 . Moreover, it is worth mentioning that the computed

values for S𝐸
∗
3 and S𝜈

∗
32 in Fig. 3 are comparable with those obtained experimentally in

[53]. Indeed, the experimental values for the torsional micropolar Young’s modulus
and twist Poisson’s ratio are, respectively, equal to 0 and -1. The slight difference,
highlighted in the present plots, is likely due to the presence of the interface and to
numerical approximations.
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Fig. 2: Effective engineering moduli
(

S𝐸
∗
3 , S𝐺

∗
13, and S𝜈

∗
32
)

related to stiffness versus
V1 volume fraction of a bi-laminated Cosserat composite with uniform imperfect
contact conditions.
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Fig. 3: Effective engineering moduli
(

T𝐸
∗
3 , T𝐺

∗
13, and T𝜈

∗
32
)

related to torque versus
V1 volume fraction of a bi-laminated Cosserat composite with uniform imperfect
contact conditions.

Conclusions

In this work, the asymptotic homogenization method is applied to heterogeneous
micropolar media. In particular, the effective engineering expressions with isotropic
symmetry layers are provided for multi-laminated Cosserat media under non-
uniform imperfect contact conditions. The effective engineering properties for
centro-symmetric laminated Cosserat composites are derived as a function of the
material properties, the imperfection parameters, the cell length in the 𝑦3 direction,
and the constituent’s volume fractions. The typical length scales of the periodic cell
and the microstructure imperfection play an important role in the macroscopic be-
havior of the laminate structures. The homogenized Cosserat engineering constants
are characterized by two effective Young’s moduli, three effective shear moduli,
two effective Poisson’s ratios and two effective shear-strain ratios. Actually, only
the transverse properties perpendicular to the layers distribution, i.e. along the 𝑥3
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depends on the imperfection parameter. Finally, numerical results are discussed. In
general, we conclude that:

(𝑖) The stiffness
(

S𝐸
∗
3 , S𝐺

∗
13, S𝜈

∗
31
)

and torque
(

T𝐸
∗
3 , T𝐺

∗
13, T𝜈

∗
31
)

effective engi-
neering constants transverse to the distribution of the laminae are sensible to the
imperfection effects;

(𝑖𝑖) The effective engineering constants related to stiffness and torque, i.e.
Youngâs moduli 𝐸∗

1 = 𝐸∗
2 , shear moduli 𝐺∗

12 = 𝐺∗
21, 𝐺∗

32 = 𝐺∗
31, Poissonâs co-

efficient 𝜈∗21, shear-strain ratios 𝜁∗2112 and 𝜁∗3223 are independent of the imperfection
parameters and the cell length;

(𝑖𝑖𝑖) The volume fraction has an influence on the behavior of the stiffness and
torque effective engineering moduli when the imperfect contact is considered, and;

(𝑖𝑣) The cell length changes the effective engineering constants when imperfect
contact conditions are assumed.
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Appendix

The corresponding full approximation values with more significant digits of the
effective engineering moduli S𝐸

∗
3 , S𝐺

∗
13, T𝐸

∗
3 , and T𝐺

∗
13 labeled with the symbol “*”

in Table 3 are given.
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Table 5: The values with more significant digits of the effective engineering moduli.
The moduli S𝐸

∗
3 and S𝐺

∗
13 are measured in [MPa]; T𝐸

∗
3 , and T𝐺

∗
13 in [N]

Moduli V1
𝑁 = 2 𝑁 = 4

𝑆1 𝑆2 𝑆1

S𝐸
∗
3

0.2 0.00549993 – –
0.4 0.00549995 – –
0.6 0.00549996 – –
0.8 0.00549997 – –

S𝐺
∗
13

0.2 0.00549937 – –
0.4 0.00549957 – –
0.6 0.00549970 – –
0.8 0.00549981 – –

T𝐸
∗
3

0.2 5.48674 × 10−5 – –
0.4 5.48063 × 10−5 – –
0.6 5.46415 × 10−5 – –
0.8 5.25861 × 10−5 – –

T𝐺
∗
13

0.2 5.49995 × 10−5 0.00549501 0.00277542
0.4 5.49992 × 10−5 0.00549196 0.00277411
0.6 5.49988 × 10−5 0.00548791 0.00277255
0.8 5.49979 × 10−5 0.00547929 0.00276982
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