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Abstract: This paper presents a novel algorithm to emulate the Rician K-factor of a wireless commu-
nication environment using a reverberation chamber. In particular, it was focused on the frequency
bands used by 5G technology for data transmission. Unlike the current state of the art, the increase
of the Rician K-factor is not achieved by inserting lossy material in the chamber, but through the
proposed algorithm, which selects a subset of electromagnetic field realizations inside the chamber.
The algorithm was first applied to the results of a simulation obtained by using an analytical model
that predicts the main physical quantities inside a rectangular cavity where a multiple monopole
source stirring action is implemented. Subsequently, the robustness of the algorithm and its applica-
bility was tested on a set of data retrieved from experimental measurements. In all of the considered
scenarios, the validity of the proposed method was demonstrated.
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1. Introduction

The 5G network represents the fifth generation of cellular technology. It was designed
to increase speed, reduce latency and improve the flexibility of wireless services. Currently,
5G technology has a theoretical peak speed of 20 Gbps, while the peak speed of 4G is only
1 Gbps [1].

The antenna system incorporates the Massive MIMO (multiple input, multiple output)
concept, which allows multiple transmitters and receivers to transfer more data simultane-
ously and in different directions, increasing the complexity of the channel model.

Furthermore, 5G New Radio [2], the global standard for a more suitable 5G wireless
air interface, covers spectrums not used in 4G. As an example, in Italy, the frequencies
assigned to 5G are around 700 MHz, 3.5 GHz and 26 GHz. However, 5G technology is
not limited to the New Radio spectrum. It is designed to support heterogeneous networks
that combine both licensed and unlicensed wireless technologies. A complete overview of
5G technology can be found in [3–6].

Considering all the novelties introduced in 5G technology, the necessity arises to
test these new and complex systems in a controlled environment that reproduces the
propagation channels for these new frequencies.

The propagation channel of a wireless system is usually described through its statisti-
cal properties. The Rician K-factor is one of the main indicators used to describe the wireless
channel. In fact, it represents the ratio of the signal power in the line-of sight (LOS) compo-
nent over the scattered power. The K-factor is important for link budget calculations [7,8],
or in optimizing the modulation and coding schemes of a given channel [9,10].

The 5G propagation environments [11] are characterized by very high values of the
Rician K-factor in urban areas (82 according to [12]) and a lower value (3 to 9) for suburban,
rural, and indoor environments [7,12,13].

Finally, it should be noted that other parameters can also be adopted to characterize
a propagation channel emulated inside an RC, such as the time delay spread and the

Electronics 2023, 12, 58. https://doi.org/10.3390/electronics12010058 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010058
https://doi.org/10.3390/electronics12010058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4235-921X
https://orcid.org/0000-0001-5783-2041
https://doi.org/10.3390/electronics12010058
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010058?type=check_update&version=2


Electronics 2023, 12, 58 2 of 13

coherence bandwidth [14]. These parameters are typically tuned by adding absorbing
materials [15], with a consequent effect on the K-factor. The possibility of tuning the
K-factor regardless of other parameter settings represents an advantage in using the RC for
testing wireless systems.

In order to perform a test on 5G equipment before their installation in a real scenario,
preliminary tests can be performed in a more controlled test site, such as within Reverbera-
tion Chambers (RCs), which are able to provide multipath propagation conditions.

RCs are usually characterized by lower values of Rician K-factor [16,17]; in fact, a well
stirred RC has a high value of stirred components of the electromagnetic field and low
values of its unstirred ones. In order to increase the Rician K-factor to emulate wireless
propagation environments, lossy elements are usually inserted. As a consequence, the
quality factor of the RC decreases; this means that the strength of the electromagnetic fields
become lower and, consequently, a higher amplification in the entrance to the chamber is
needed. This implies a higher cost of hardware equipment.

The aim of this paper is to enhance the value of the Rician K-factor by properly
selecting the field realizations inside the RC. In this way, the quality factor of the RC will
not be reduced, since no further lossy elements are inserted.

The traditional methods available to increase the K-factor exhibit some complexity.
In fact, the reduction of the RC quality factor surely acts on the K-factor [18] because the
scattered waves are attenuated when they intercept the lossy objects located in the RC. As a
consequence, the final effect might depend on the number and positioning of the absorbers
with respect to the antennas and stirrers [19]. Furthermore, the direct component should
not be affected by the absorber’s positioning, therefore, a pure line-of-sight positioning
between the transmitting and the receiving antenna is required. Last, but not least, the
amount of direct component also depends on the directivity of the antennas [20]; so, making
the antenna orientation another important variable acting on the K-factor.

The proposed method is applicable to RCs where the field configurations are known a
priori and repeatable, such as mechanical stirring using one or more metallic paddles in
step mode, or the Oscillating Walls Stirred (OWS) RC [21], or, as in our case, to the Multiple
Monopole Source Stirring RC. This particular implementation of a source stirring technique
is achieved thanks to an array of monopole antennas mounted on the walls of the RC
and, subsequently, fed to obtain the stirring action [22]. This technique was successfully
compared to the more classical approach implementing both mechanical stirring and MMSS
in the same chamber [23]. This paper presents an analytical and an experimental approach
for demonstrating the validity of the proposed method.

The paper is organized as follows: Section 2 describes the scenario inside an RC to
simulate an urban environment; Section 3 describes the rationale of our proposal and the
corresponding algorithm; Section 4 shows the results; Section 5 deals with the discussion
of the results and concludes the paper.

2. Scenario

The considered scenario is an RC where Multiple Monopole Source Stirring (MMSS) is
implemented. The RC has dimensions of 800 mm × 900 mm × 1000 mm and is made of
galvanized steel. The stirring technique is obtained using a certain number of monopoles
placed on the chamber’s wall, however in our case, for practical reasons, the stirring of the
chamber is performed by inserting a single monopole each time in one of the 120 holes
present on the walls of the RC, 20 holes in each face. In this way, the reverberation effect is
due to 120 different configurations of the electromagnetic field inside the cavity.

Owing to the reverberating characteristic of the RC, the field inside the chamber has
statistical properties that, under proper preparation of the chamber, resembles the typical
propagation channel of an urban environment. In particular, the environmental channel has
statistical properties that follows a Rician distribution with a specific K-factor depending
on several factors (antenna gain, elevation, etc.) [7–10].
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Placing a dipole antenna inside the MMSS chamber, the insertion loss S21 among each
monopole on the walls and the dipole can be evaluated; hence, it is possible to predict the
performance of the RC in terms of its statistical indicators, in particular, we focused on the
Rician K-factor (K) and the quality factor (Q,).

The Rician K-factor of the chamber [16] can be computed according to (1):

K =
(|〈S21〉|)2

〈|S21 − 〈S21〉|2〉
, (1)

where <·> means averaging the operator over all the chamber field realizations.
The quality factor is computed according to (2) [24]:

Q =
16π2V

ηTXηRXλ3

〈
|S21|2

1− |S11|2

〉
(2)

where V is the chamber volume, λ is the wavelength (m), ηTX and ηRX are the total antenna
efficiency factors for the transmit and receive antennas, respectively.

The same scenario inside the MMSS chamber can be modeled with an analytical
approach [14], so that Equations (1) and (2) can be applied to a simulated S21 parameter.
The limitation of this approach is due to the presence of losses from different sources (walls,
antennas, apertures, gaskets) that cannot be modelled as is. For this reason, a classical
approach in RC chamber [22] modelling is used: the chamber’s walls are simulated with
an equivalent conductivity that permits us to obtain a chamber with the same Q-factor as
the real one, for each frequency [25]. In particular, in our chamber, in order to obtain the
same Q-factor, the conductivity of the walls is modelled with a value that is reduced by a
factor of 10 with respect to the σ of the galvanized steel.

If the RC is well stirred, looking at the scatter plot of S21 obtained with simulations of
the MMSS chamber, the points that represent the complex value of the field in a point inside
the chamber, are almost distributed around the origin of the axis and almost uniformly
distributed on the four quadrants (Figure 1, left). As a consequence, the K-factor is low
because the numerator of Equation (1) is close to zero. In order to increase the K-factor,
and consequently, obtain an environment similar to the urban environment, the traditional
approach introduces losses into the RC. In this way, the Q factor decreases and the scatter
plot of S21 presents a more evident bias and, consequently, K also increases (Figure 1, right),
and the strength of the electromagnetic field in the chamber decreases.

Electronics 2023, 12, 58 3 of 13 
 

 

has statistical properties that follows a Rician distribution with a specific K-factor depend-

ing on several factors (antenna gain, elevation, etc.) [7–10]. 

Placing a dipole antenna inside the MMSS chamber, the insertion loss 𝑆21 among 

each monopole on the walls and the dipole can be evaluated; hence, it is possible to predict 

the performance of the RC in terms of its statistical indicators, in particular, we focused 

on the Rician K-factor (K) and the quality factor (Q,). 

The Rician K-factor of the chamber [16] can be computed according to (1): 

𝐾 =
(|〈𝑆21〉|)2

〈|𝑆21−〈𝑆21〉|2〉
 

,   (1) 

where <∙> means averaging the operator over all the chamber field realizations. 

The quality factor is computed according to (2) [24]: 

𝑄 =
16𝜋2𝑉

𝜂𝑇𝑋𝜂𝑅𝑋𝜆3 ⟨
|𝑆21|2

1−|𝑆11|2⟩  (2) 

where V is the chamber volume, λ is the wavelength (m), 𝜂𝑇𝑋 and 𝜂𝑅𝑋 are the total an-

tenna efficiency factors for the transmit and receive antennas, respectively. 

The same scenario inside the MMSS chamber can be modeled with an analytical ap-

proach [14], so that Equations (1) and (2) can be applied to a simulated 𝑆21 parameter. 

The limitation of this approach is due to the presence of losses from different sources 

(walls, antennas, apertures, gaskets) that cannot be modelled as is. For this reason, a clas-

sical approach in RC chamber [22] modelling is used: the chamber’s walls are simulated 

with an equivalent conductivity that permits us to obtain a chamber with the same Q-

factor as the real one, for each frequency [25]. In particular, in our chamber, in order to 

obtain the same Q-factor, the conductivity of the walls is modelled with a value that is 

reduced by a factor of 10 with respect to the σ of the galvanized steel. 

If the RC is well stirred, looking at the scatter plot of 𝑆21 obtained with simulations 

of the MMSS chamber, the points that represent the complex value of the field in a point 

inside the chamber, are almost distributed around the origin of the axis and almost uni-

formly distributed on the four quadrants (Figure 1, left). As a consequence, the K-factor is 

low because the numerator of Equation (1) is close to zero. In order to increase the K-

factor, and consequently, obtain an environment similar to the urban environment, the 

traditional approach introduces losses into the RC. In this way, the Q factor decreases and 

the scatter plot of 𝑆21 presents a more evident bias and, consequently, K also increases 

(Figure 1, right), and the strength of the electromagnetic field in the chamber decreases. 

 

Figure 1. Cont.



Electronics 2023, 12, 58 4 of 13Electronics 2023, 12, 58 4 of 13 
 

 

 

Figure 1. Scatter plot of 𝑆21 and an indication of the Q and K parameters related to an empty RC 

(up) and the same RC with the insertion of lossy elements (down). 

3. The Proposed Method 

In order to increase the K-factor of the chamber, without reducing the Q-factor, a new 

approach is proposed. The idea is to select the proper field configurations inside the cham-

ber that have an ensemble statistical property that follows the multipath fading urban 

environment property. For this reason, the method is applicable to a stirring technique 

that permits us to obtain repeatable and well controlled field configurations. 

Figure 2 shows the idea. In Figure 2, the scatter plot of an ideal reverberation chamber 

is shown. In particular, the blue points represent the 𝑺𝟐𝟏 for 5000 field configurations in-

side an ideal chamber. The number of configurations is high in order to enhance the sta-

tistical properties and obtain a better visualization of the idea. It can be seen that the blue 

points are uniformly distributed around the center of the scatter plot and describe almost 

a perfect circle around it. In this case, the K-factor is almost zero, and the maximum radius 

of the circle is 1. This configuration does not have any bias and so cannot represent an 

urban environment well. However, by selecting the proper configurations, it is possible 

to obtain the desired statistical properties. This is explained in the selected coloring con-

figuration of Figure 2 shown in yellow, purple or orange. The subintervals of the figures 

are represented by three different possible selections of field configurations. The yellow 

one is obtained by choosing samples that are within a circle of radius R = 0.3 centered in 

point C(−0.4, 0.4). The center of the circle represents the average values of the chosen sam-

ples (the numerator of Equation (1)), whereas R represents the maximum distance in the 

complex plane of the samples inside the circle and the average values of the circle (the 

distance of each sample represents the denominator of Equation (1) before averaging). For 

the other configurations, the orange one is chosen by selecting samples that have the same 

average values of the yellow one, but that are closer to the average value (R = 0.2, C(0.4, 

0.4)). In this case, the K-factor is 16.13, greater than the yellow one that has K = 6.77. The 

purple one is chosen by selecting samples that have the same distance with their average 

value as the orange one, but have a lower average value (R = 0.2, C(0.2, −0.2)). In this case, 

K = 3.8. 

Figure 1. Scatter plot of S21 and an indication of the Q and K parameters related to an empty RC
(up) and the same RC with the insertion of lossy elements (down).

3. The Proposed Method

In order to increase the K-factor of the chamber, without reducing the Q-factor, a
new approach is proposed. The idea is to select the proper field configurations inside the
chamber that have an ensemble statistical property that follows the multipath fading urban
environment property. For this reason, the method is applicable to a stirring technique that
permits us to obtain repeatable and well controlled field configurations.

Figure 2 shows the idea. In Figure 2, the scatter plot of an ideal reverberation chamber
is shown. In particular, the blue points represent the S21 for 5000 field configurations inside
an ideal chamber. The number of configurations is high in order to enhance the statistical
properties and obtain a better visualization of the idea. It can be seen that the blue points
are uniformly distributed around the center of the scatter plot and describe almost a perfect
circle around it. In this case, the K-factor is almost zero, and the maximum radius of the
circle is 1. This configuration does not have any bias and so cannot represent an urban
environment well. However, by selecting the proper configurations, it is possible to obtain
the desired statistical properties. This is explained in the selected coloring configuration of
Figure 2 shown in yellow, purple or orange. The subintervals of the figures are represented
by three different possible selections of field configurations. The yellow one is obtained by
choosing samples that are within a circle of radius R = 0.3 centered in point C(−0.4, 0.4).
The center of the circle represents the average values of the chosen samples (the numerator
of Equation (1)), whereas R represents the maximum distance in the complex plane of the
samples inside the circle and the average values of the circle (the distance of each sample
represents the denominator of Equation (1) before averaging). For the other configurations,
the orange one is chosen by selecting samples that have the same average values of the
yellow one, but that are closer to the average value (R = 0.2, C(0.4, 0.4)). In this case, the
K-factor is 16.13, greater than the yellow one that has K = 6.77. The purple one is chosen by
selecting samples that have the same distance with their average value as the orange one,
but have a lower average value (R = 0.2, C(0.2, −0.2)). In this case, K = 3.8.

This simple example demonstrates that in order to improve the K-factor, it is necessary
both to increase the average value of the chosen samples and to reduce the distance
between the samples and their average. However, in the example, a very large number
of field configurations are available for the selection, so more than one selection ca be
obtained with the same K-factor. On the other hand, in a real chamber environment, the
number of samples are lower, and not uniformly distributed so well. For this reason, the
implementation of the idea optimizes the selection in order to obtain a subinterval with the
maximum number of field configurations.
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Figure 2. Scatter plot of the S21 in an ideal reverberation chamber. The blue point represents all of
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configurations for different values of R and C, giving a different value of K-factor.

In the following, the implementation of the idea applied to a real chamber is described.
In particular, the MMSS chamber is used to demonstrate the feasibility of the method.

In order to make the selections, it is necessary to obtain all of the possible configura-
tions inside the specific chamber. In particular, the S21 paramater is measured using, for
example, a Vector Network Analyzer, or is calculated analytically using the theoretical
model [22]. Inside the MMSS chamber, the S21 is evaluated between each monopole on the
walls of the chamber.

The selection algorithm proposed is the following:

1. The desired Rician K-factor, K*, is chosen.
2. For each i-th S21 sample, the normalized distance with all the others in the complex

plane is computed:

dist(i, k) =

∣∣∣S(i)
21 −

∣∣∣S(k)
21

∣∣∣∣∣∣∣∣∣S(i)
21

∣∣∣ , (3)

3. A threshold for dist called distMAX is set to 1. This threshold corresponds in Figure 2
to the radius R of the selection normalized to the amplitude of the i-th S21.

4. For each i-th S21 sample, all of the other S21 that satisfies the condition
dist(i, k) < distMAX are selected This subinterval of samples represents the neighbors
of i-th S21 having normalized the distance to lower than distMAX and can be indicated
as S21_near(i, distMAX) and their number of elements indicated as N(i)

distMAX
.

5. Among all of the S21_near(i, distMAX) subintervals, the one (i*) that has the largest

number of element N(i)
distMAX

is chosen, and the Rician K-factor related to this subset is
computed, K(i*).
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6. If K(i*) is lower than K* the algorithms reiterate from point 5, increasing distMAX by
0.1 until the condition K(i*) > K* is reached.

7. Once the desired K-factor is obtained, the procedure stops, and the last subinterval
identified is the selection sought.

For a more immediate intelligibility, a flowchart describing the algorithm is given in
Figure 3.
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The proposed algorithm requires two considerations. The first one is that the greater
the number of field configurations, the more efficient the proposed solution. This means
that the more are the elements in the field realization subset that have the desired Rician
K-factor, then the better are the statistics in terms of electromagnetic stirring.

The second consideration is that not all of the values of K* can be reached; however, the
next section shows that by considering the values of K*, which represent wireless propaga-
tion environments according to the literature [8,9], the algorithm returns successful results.
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4. Results

In this section, the application of the proposed algorithm is reported. In partic-
ular, Section 4.1 reports on the analytical simulations and Section 4.2 reports on the
experimental data.

4.1. Analytical Results

Considering the MMSS chamber described in Section 2, the S21 parameters between
the dipole and the 120 monopoles on the walls are evaluated with the analytical model
explained in [22]. The model is based on a modal approach and all of the possible 120 field
configurations, corresponding to each monopole used as feeders of the chamber, are
evaluated. Figure 4 shows the scatter plot of the S21 computed at the frequency of 750 MHz;
the corresponding value of the Rician K-factor is 0.18. As expected, the chamber is well
stirred so the K-factor is low.
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Figure 4. Scatter plot of S21 relative at a 120 electromagnetic field realization, simulated at 750 MHz.
The corresponding value of the Rician K-factor is 0.18.

If we want to increase the Rician K-factor to a value of 7, to simulate a rural environ-
ment of wireless propagation, we can apply the proposed algorithm.

Starting from distMAX = 1, the iterative procedure lasts with a value of distMAX = 2.7.
The procedure stops after obtaining the electromagnetic field realization subset that has a
Rician K-factor value of 7.24, as shown in Figure 5.

The figure also shows the number of field configurations necessary to obtain the
desired statistics: in this example, 19. It is important to highlight that the procedure is not
limited to obtaining the number of field configurations, but it sets, exactly, which are the
configurations to be used. In the MMSS chamber, this corresponds to setting which are the
specific monopoles to switch on during the tests.
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Figure 5. Scatter plot of S21 relative at the subset of 19 electromagnetic field realizations simulated at
750 MHz. The corresponding value of the Rician K-factor is 7.24.

4.2. Experimental Results

The experimental validation of the proposed method is applied to the same chamber
used for the simulations. In this case, two bands reserved to 5G data transmission are
investigated. In particular, the band between 713 and 778 MHz and the one between
3.27 and 3.80 GHz are used in Italy for the data Frequency Division Duplex (FDD) uplink
and downlink [26].

The MMSS RC used is shown in Figure 6. It is possible to note the holes used to
insert the feeding monopoles each time. The figure also shows the transmitting 100 mm
monopole and the receiving discone antenna: both antennas were designed and built in
our laboratories.

Figure 7 shows the placement of the transmitting and the receiving antennas: the
transmitting monopole is manually placed in all of the 120 holes present in the walls of the
chamber. The receiving antenna is placed in the working volume of the RC, a subvolume
spaced a quarter of a wavelength from the walls.

A VNA was used to measure the S21 parameter in 1601 frequency points, equally
spaced in both frequency ranges. The goal was to select, for each frequency, the subset of
chamber field realizations that have a corresponding Rician K-factor greater than 3. Figure 8
shows the Rician K-factor frequency behavior, considering the whole number of possible
configurations (120), and after having applied the algorithm.

Figure 9 shows the number of field realizations selected by the algorithm corre-
sponding to the K-factor, shown in red in Figure 8, for each frequency in the considered
frequency range.
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Figure 7. Insertion of the transmitting monopole (left) and the location of the receiving antenna
(right) inside the RC. Each hole, clearly visible from the inner view, is subsequently used to insert the
transmitting monopole toward the chamber inside.
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The same procedure was applied to the higher frequency range, and the corresponding
results are shown in Figures 10 and 11. For the sake of demonstrating the applicability
of the proposed method to different values of Rician K-factor, the goal for this frequency
range was to have K equal to 5.
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5. Discussion and Conclusions

The proposed method, used to tune the Rician K-factor by selecting a subset of
electromagnetic field realizations, is useful for emulating the statistical properties of the
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propagation environment for 5G wireless communications. The method was applied to a
reverberation chamber where the multiple monopole source stirring technique was imple-
mented, but in the theory, it can be used for any chamber where the field configurations are
uniquely determinable, such as mechanical stirring in tuned mode or OWS RCs.

Its reliability and robustness were demonstrated by using both the prediction of an
analytical model and the data retrieved from experimental measurements, using different
values of the Rician K-factor as a target. Future work will focus on the use and programming
of an electronic switch to manage the feeding monopoles in order to automatize the
procedure, which in the current state of the art is manually managed, thus reducing the
testing time.
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