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A B S T R A C T   

Recent scientific studies are targeted at applying and assessing the effectiveness of Machine Learning (ML) ap-
proaches for cost estimation during the preliminary design phases. To train ML prediction models, compre-
hensive and structured datasets of historical data are required. This solution is inapplicable when such 
information is unavailable or sparse due to the lack of structured datasets. For engineered-to-order products, the 
number of historical records is often limited and strongly influenced by different purchasing or manufacturing 
strategies, thus requiring complex normalisation of such data. 

This method overcomes the above limitations by presenting an ML-based cost modelling methodology for the 
conceptual design that is applicable even when historical data are insufficient to train the prediction algorithms. 
The training dataset is generated through an analytical and automatic software tool for manufacturing cost 
estimation. Such a tool, starting from a 3D model of a product, can quickly and autonomously assess the related 
cost in different scenarios. An extensive and structured training dataset can be easily generated. The proposed 
methodology was based on CRISP-DM (Cross Industry Standard Process for Data Mining). 

Cost engineers of an Oil & Gas company used the method to develop parametric cost models for discs and 
spacers of an axial compressor. The solution guarantees lower error (7% vs 9%) and significant time-saving 
(minutes instead of hours) than estimations based on other approaches. Cost models are more comprehensive 
(capable of analysing different scenarios), explainable (not conceived as a black box), and self-learning (can be 
updated by extending the training dataset).   

1. Introduction and literature review 

Nowadays, the cost of a product is a design driver as important as 
performance, environmental sustainability, and quality. Cost estimation 
demands significant manufacturing information to coordinate with 
many different areas, from design to production (Kadir et al., 2020). 
Knowledge-based methods are required to formalise and collect the in-
formation to be incorporated into software tools. Determining the pro-
duction cost of a product during the preliminary design phases (e.g., 
conceptual design) is essential for a company’s competitiveness (Lukić 
et al., 2016). Conceptual cost estimation should be feasible and fast, 
requesting only the information known during this design step (Ning 
et al., 2020a). 

Cost-estimating methods based on parametric approaches (top- 
down) are the most suitable in these phases of product development 

(Masel et al., 2010). Parametric cost estimation methods work well 
when relationships between design variables (namely, cost drivers) and 
the cost are easily identifiable. Typically, costs are computed as the sum 
of elementary units representing the various resources used throughout 
the entire manufacturing cycle of a specific product, or they are calcu-
lated using an analytical function of variables reflecting multiple prod-
uct attributes (Niazi et al., 2006). 

1.1. Cost estimation relationship methods 

From the industrial standpoint, engineers rely on linear regression 
approaches (cost estimation relationship – CER) to create simple para-
metric functions that relate cost to design features (e.g., mass, size, 
material) (Masel et al., 2010). Many linear regression-based parametric 
cost modelling applications have been published in the scientific 
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literature. Boothroyd and Reynolds (1989) used a parametric costing 
technique to estimate the cost early in the design process, using part 
volume as a parameter. Bertoni et al. (Bertoni and Bertoni, 2020) pro-
posed a method using data parameters from concept design simulation 
through Computer Aided Engineering to estimate the life cycle costs of a 
Product Service System in the conceptual design phase of a collection of 
design alternatives. T. Kamps et al. (2018) proposed two integrated 
models for cost and life cycle assessment of producing low-volume or 
high-variant gear wheels through manufacturing parameters. Langmaak 
et al. (2013) presented a scalable cost model that predicts the unit cost of 
a gas turbine compressor’s bladed disc based on an approach that uses 
process-based CERs to evaluate the cost of jet engine parts. COSYSMO 
3.0 was a parametric cost estimation system that allowed users to un-
derstand numerically how its parameters affect cost estimates (Alstad, 
2019). 

1.2. Machine learning methods 

The recent innovations introduced by Industry 4.0 (e.g., data mining 
and the Internet of Things) provide new tools and opportunities to 
overcome the issues of CER methods (Hammann, 2024; Van Nguyen 
et al., 2023). ML applications have drawn interest because they make 
industrial processes more efficient and make complex parameter cau-
sations easier to understand (Maier et al., 2022). For example, 
deep-learning techniques can automatically learn complex relationships 
between design features and manufacturing costs (Ning et al., 2020b). 
ML models for manufacturing cost estimation can be employed during 
the conceptual design phase to get precise predictions (Hennebold et al., 
2022). 

Recent scientific studies aim at applying and assessing the effec-
tiveness of ML approaches for cost estimation during the preliminary 
design phases (Campi et al., 2021)(Kanyilmaz et al., 2022). ML is typi-
cally more effective in manufacturing cost estimation than conventional 
statistical and mathematical models (Yeh and Deng, 2012). Traditional 
techniques are still unable to forecast unknown feature values for a new 
piece and comprehend the relationships between the features of data 
samples (Dogan and Birant, 2021). Campi et al. also concluded that ML 
techniques are a better solution to linear regression techniques when the 
complexity of the problem increases (Campi et al., 2021). The same 
conclusion was drafted by Cavalieri et al. (2004), who demonstrated the 
excellent results of ML-based cost modelling techniques. 

In the scientific literature, several approaches aim at creating cost 
models where cost formulas are made using regression analysis and 
neural networks (Verlinden et al., 2008). Loyer J. et al. (Loyer et al., 
2016) demonstrated that ML appears to be an effective, affordable, ac-
curate and scalable technique to estimate the cost of mechanical parts of 
a jet engine in the early stage of the design process. Chen et al. (Chen 
et al., 2021) and Bertoni et al. (Bertoni and Bertoni, 2020) give other ML 
applications for cost estimation in aviation. Campi et al. (2021) pre-
sented a cost estimation methodology based on ML (artificial neural 
networks, deep learning, random forest and linear regression) for 
manufacturing cost estimation of axial compressors. Cavalieri et al. 
(2004) demonstrated the effectiveness of ML techniques for evaluating 
the cost of a novel type of brake discs considering the weight, the unit 
cost of raw material, and the number of cores. Wang et al. (2013) built 
an ML model to estimate the cost of parts made by injection moulding. 
ML cost models are often combined with 3D computer-aided design 
(CAD) systems (Yoo and Kang, 2021; Ning et al., 2020a). 

1.3. Challenges from industry and academia 

CER methods used by the industry have several limitations. The cost 
prediction accuracy could be inadequate for the conceptual design phase 
(around 85%). The sparse historical data are often insufficient to pre-
cisely estimate the cost of new products (with different dimensions). For 
example, the models could not permit a comprehensive assessment 

when cost estimates are required in multiple production scenarios (e.g., 
country) (Martinelli et al., 2019). Models built on older data may need to 
be updated, or historical data may need to be cleaned (Weichert et al., 
2019). The activities required to retrieve and normalise historical data 
could require an effort and a time that often is not congruent with the 
rapidity requested during the conceptual design. The recent challenges 
concerning the rapid growth of energy and raw material prices push cost 
engineers to update their analyses continuously. Cost models should be 
able to update over time through self-learning capabilities. 

On the other hand, also ML methods have limitations. First, ML- 
based approaches suit repetitive products manufactured in medium to 
high volumes (Hammann, 2024). In these scenarios, comprehensive sets 
of manufacturing and financial information are available within data-
bases of corporate software tools (e.g., ERP – Enterprise Resource 
Planning or MES – Manufacturing Execution System). Historical data are 
well structured and consistent. It is unnecessary to proceed with com-
plex data cleaning and augmentation operations or normalisation 
(Rapaccini et al., 2023). Conversely, historical data may be sparse and 
poorly organised for engineered-to-order products. The number of re-
cords is often lower and strongly influenced by different purchasing (e. 
g., single sourcing) or manufacturing strategies (e.g., full-buy, farm-out) 
(Hammann, 2024). Here, the state-of-the-art solutions are not 
applicable. 

Although ML techniques are a valid alternative widely used in many 
case studies, enterprises are still hesitant to adopt these techniques. Cost 
engineers consider such models black boxes (Hihn and Menzies, 2015). 
Thus, they often cannot interpret the results (Cavalieri et al., 2004)(Hihn 
and Menzies, 2015). Understanding the relationship between the main 
cost drivers and project costs is mandatory to adequately explain the 
cost model. Statistical learning approaches (e.g., feature selection and 
feature importance) help engineers meet this requirement (Elmousa-
lami, 2021). In this way, it is possible to guarantee an objective selection 
of features without the subjectivity of cost engineers (Rapaccini et al., 
2023). 

1.4. Proposed methodology 

The proposed method stems from the business’s need to quickly and 
accurately estimate the cost of components during the conceptual design 
through a limited set of product parameters. The goal is to provide a cost 
modelling method that allows companies to develop models for con-
ceptual cost estimation without using historical (sparse/unavailable) 
data. 

This paper presents a systematic method for developing ML-based 
parametric models to estimate the cost of engineered-to-order prod-
ucts (and related components) during the preliminary design phase. 
Based on CRISP-DM (Cross Industry Standard Process for Data Mining), 
the approach overcomes the problem of sparse historical data by 
employing an analytical and automatic software tool to generate the 
dataset for training the cost model. The cost estimation tool can estimate 
the production cost by considering the complete manufacturing cost 
through its database of complex cost models, rules and parameters. 
Multiple production scenarios can be quickly evaluated (e.g., different 
production countries, machine hourly rates, raw material costs, energy 
costs) to construct a comprehensive training dataset. The originating 
ML-based model will allow design engineers to quickly estimate the 
manufacturing cost in different conditions (e.g., variation of energy cost, 
localisation/delocalisation, raw material shortage) during the concep-
tual design phase. 

The proposed approach expects a step where cost drivers are sorted 
according to their importance in predicting costs. In this way, the cost 
model is explainable. Design engineers can use the prioritised list of 
design features to reduce the manufacturing cost of products effectively 
(Xie et al., 2023). Cost models developed through the proposed 
approach consider product and process parameters (e.g., dimensions, 
mass, material, production batch, country). The prediction models are 
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suitable for estimating the cost of parts similar to those used for training 
the ML algorithms (e.g., similar shape, dimensions and production 
process). For parts manufactured through different technologies and 
significantly different shapes and sizes, the prediction accuracy is lower 
than that computed by the cost model on the test dataset. 

2. Cost modelling methodology 

The cost modelling methodology employing supervised ML is based 
on the CRISP-DM (Cross Industry Standard Process for Data Mining) 
method (Fig. 1). CRISP-DM is a process model for data science and 
representation. It provides an overview of the data mining life cycle. Its 
flexibility and easy customisation allow for the creation of a data mining 
model that fits the goal of this work. Fig. 1 provides an overview of the 
proposed methodology using a UML Activity Diagram. The steps of the 
CRISP-DM and ML modelling workflows are reported respectively in 
bold and italic. The following sections describe each phase. 

2.1. Business understanding 

The Business Understanding phase focuses on conceptualising the 
project’s objectives and requirements. This phase identifies business 
opportunities or customer needs and assesses if the available resources 
suit them. The present work proposes a cost modelling approach based 
on ML techniques. The parametric cost models should be employed to 
estimate the cost of mechanical parts at the conceptual design stage. So, 
for this methodology, the business understanding phase defines two 
essential requirements (activity A1).  

• The acceptance performance of the cost model: At this phase, defining 
the cost model accuracy (prediction error) is crucial. For example, a 
cost estimate with an error of − 15%/+20% may be acceptable at the 
conceptual design stage (ASTM E2516 – 11 Standard Classification 
for Cost Estimate Classification System).  

• Cost breakdown: The total manufacturing cost is divided into set-up, 
labour, energy, investment and material. Often, it is requested to 
break down the cost to know better how to reduce it. Furthermore, 
the total manufacturing cost can be predicted more precisely by 
adopting specific cost models (one for each cost element). In other 
words, this point clarifies how many dependent parameters should 
be predicted (cost breakdown), so it is possible to define the number 
(N) of parametric cost models to create. 

2.2. Data Understanding 

The Data Understanding phase is usually used to identify, collect, 
analyse and verify the datasets to reach the project goals. In this case, 
this stage represents the initial step to collect all the data and informa-
tion linked to parts of the family to estimate the cost, and it is essential 
for applying the methodology. The architecture of a machine (e.g., a 
cross-section of turbomachinery) consists of many components (e.g., 
disc, spacer, shaft, blade, nozzle, shroud), called items, often configured 
according to master models. So, the first step involves identifying the 
parts (of the same family) from existing machines for which the para-
metric cost model is to be created. For each identified part, two types of 

data are collected (activity B1, Fig. 2).  

a. 3D CAD models: the 3D CAD model for each piece is required for C2 
activity. Parts without a 3D model are excluded from the following 
steps. 

b. Technical information: a part family is described by several geomet-
rical (e.g., dimensions) and non-geometrical parameters (e.g., ma-
terial, part code, description, stage, production batch, unitary 
material cost) called configuration parameters. Such information is 
directly retrieved from PDM/EDM (e.g., material, mass, bounding 
box dimensions). For identifying other parameters (e.g., dovetail 
type of a blade, rotor type of a shaft), feature recognition algorithms 
can be employed when available. At last, manual identification from 
3D models or drawings could be required. 

The data are grouped and ordered in a single first dataset (called 
“Codelist”). All the associated configuration parameters describe each 
part. So, this dataset consists of as many records as the number of 
components and fields as the configuration parameters. 

2.3. Data preparation 

Data preparation is one of the crucial phases of the methodology 
(Fig. 3). It prepares the final dataset(s) for modelling. Hence, a well- 
processed and structured dataset enables the method to obtain accu-
rate algorithms (i.e., parametric cost model). Data quality assessment in 
machine learning involves evaluating the suitability of a dataset for 
specific tasks, considering several factors (Mazurek and Wielgosz, 
2023). Data can be compromised by errors or irregularities introduced 
during collection, aggregation, or annotation, necessitating thorough 
profiling and assessment (Gupta et al., 2021). Several monitoring ac-
tivities, defined through metrics, can be adopted to assess the quality of 
a dataset (Budach et al., 2022). 

• Completeness: many missing values in datasets can affect the pre-
diction accuracy of the ML algorithms. This metric aims to identify 
and eliminate empty values within the dataset.  

• Features Accuracy: machine learning models identify correlations 
within datasets; hence, ensuring error-free values is crucial. Data can 
have incorrect values due to various factors, such as user input er-
rors. Feature accuracy measures how closely the feature values in a 
dataset match their ground truth values.  

• Target Accuracy: refers to the precision and correctness of the labels 
or values of the target variable (the variable the model is trying to 
predict). It is the deviation of its target feature values from their 
ground truth values. 

Fig. 1. Methodology workflow overview.  

Fig. 2. Data Understanding workflow.  

M. Mandolini et al.                                                                                                                                                                                                                             

astm:E2516


Engineering Applications of Artificial Intelligence 136 (2024) 108957

4

• Uniqueness: refers to the degree to which each record in a dataset is 
distinct and not duplicated. It ensures that every entry in the dataset 
represents a unique entity or observation.  

• Class Balance: homogeneous distribution of feature and target values. 
A check ensures no unbalanced numbers of records between the 
feature value groups. Similarly, it is verified that the target variable 
(label) has a homogeneous distribution for training the model.  

• Consistency: data consistency refers to the uniformity and coherence 
of data across a dataset. It ensures the data follows a consistent 
format, structure, and value range, maintaining logical integrity 
throughout the dataset. 

The proposed metrics are general and can be used in different sce-
narios in which ML algorithms are developed (i.e. classification, 
regression and clustering). Nevertheless, depending on the scenario, 
some metrics are more important than others. In detail, this paper is 
defined as a regression study. In this scenario, completeness, feature 
accuracy and target accuracy have an essential influence on the dataset’s 
quality. Uniqueness and balance have moderate importance, while 
consistency has low significance, and it is neglected in this study 
(Budach et al., 2022). 

The data collected within the Codelist groups the available compo-
nents and all their configuration parameters. These components can be 
limited in number, and not all configuration parameters are necessary to 
create the cost model. Therefore, starting with the Codelist, a first pre-
processing feature action is needed. This phase enhances the suitability 
of these features (independent parameters) for modelling. 

The first activity defines all the geometrical and non-geometrical 
parameters that affect the cost (activity C1-a). These parameters are 
called independent parameters (or cost drivers). Cost drivers are 
extracted from parameters of the technical information collected in ac-
tivity B1. The number of geometrical cost drivers could be less or equal to 
the configuration parameters (e.g., some design variables are unrelated 
to the manufacturing cost). Non-geometrical cost drivers (e.g., material 
and its unitary cost, production batch quantity) are independent of the 
geometry but still affect the cost. In general, several non-geometric pa-
rameters influence cost. However, some parameters (e.g., tolerance, 
roughness, supplier, heat treatments, and post-processing operations) 
could not vary within the same family of parts. Therefore, they are 
constants and may not be considered in the dataset creation. 

Activity C1-b represents a crucial step in the Data Preparation phase. 
The accuracy of a parametric cost model can be influenced by several 
factors, including the characteristics of the dataset used for training the 
ML algorithm. The quality of a dataset can be assessed in terms of the 
following.  

a. The number of records: a dataset with a significant number of records 
allows the algorithm to have better training and, hence, better ac-
curacy of the results.  

b. Differentiation between the independent parameter values of each 
record. Having different values guarantees the risk reduction of the 
overfitting. 

The dataset obtained from activity B1 may not meet this requirement. 
For example, parts may not be evenly distributed from the minimum to 
the maximum mass. Besides, the minimum or maximum mass of 

identified components may not be adequate for a robust cost model. 
Thus, this activity (Activity C1-b, data augmentation) aims at extending 
the number of records with different values of independent geometric 
and non-geometric parameters, obtaining a new extended dataset. 
Regarding the size, parts can be scaled (up and down) to extend the 
dimensional variability. At the same time, other non-geometric param-
eters (e.g., material, production facility, unitary material cost, produc-
tion batch) can also be varied to simulate different scenarios. The 
records extension is carried out considering the different metrics guar-
anteeing the dataset’s quality. Scaling geometric parameters and vari-
ation of non-geometric parameters is carried out to avoid creating 
records with identical values. This procedure guarantees the uniqueness 
of the dataset (Uniqueness). In addition, the scaling allows the distri-
bution of geometric parameter values, ensuring the dataset’s homoge-
neity (i.e., features Class Balance). The dataset’s creation is then 
evaluated and controlled by a second annotator. This check makes it 
possible to detect errors and guarantee the accuracy of independent 
parameter values (Features Accuracy). 

Activity C1 involves several techniques to define and prepare the 
independent parameters of the dataset. Since this methodology is based 
on supervised machine learning, preparing the dataset for the modelling 
phase also requires the definition of the dependent parameter/s. Activity 
A1-b clarifies how many dependent parameters should be predicted 
(cost breakdown) so the number (N) of parametric cost models to 
generate. In other words, for each dependent parameter (output) to be 
predicted, a dedicated dataset should be established. 

Activity C2 calculates the cost breakdown for all the parts of the 
extended datasets obtained in C1. Manufacturing cost is assessed 
through a validated analytical cost estimation software tool for me-
chanical components. Commercially available software tools can auto-
matically estimate the manufacturing cost (with related breakdown) of 
parts archives from 3D CAD models designed according to the model- 
based definition (MBD) paradigm. Indeed, such models embed product 
manufacturing information (PMI), which is required to assess the 
manufacturing process and cost correctly. 

The extension of the non-geometric parameters (activity C1) also 
affects the homogeneity of the target variable value distribution (target 
Class Balance). For example, parameters such as batch quantity must be 
chosen to ensure that the corresponding cost values are evenly distrib-
uted within a given cost range. In detail, the cost has a hyperbolic trend 
with batch quantity. The cost difference is small with high production 
batch values, resulting in similar costs despite different batch values. In 
contrast, high-cost differences are obtained between cost estimates 
based on low production batch values. Therefore, a higher density of 
low-production batch values than high-production batch values is 
necessary. 

Before finishing the Data Preparation phase, it is necessary to analyse 
the cost values obtained from the software analysis. The costing tool can 
make errors (i.e., outliers) during the automatic estimation, which must 
be detected and eliminated (activity C3). For example, missing infor-
mation from 3D CAD models, incorrect data entry by humans or issues 
during feature recognition can generate non-coherent datasets. Ana-
lysing the values of the dependent parameters obtained makes it possible 
to assess the accuracy of the target variable (Target Accuracy). In this 
case, comparing the values obtained through automatic costing with the 
ground truth values (i.e. manual costing by an experienced cost 

Fig. 3. Data Preparation workflow.  
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engineer) is not feasible. It is, however, possible to perform automatic 
evaluation analyses (i.e. outlier analysis) to identify and eliminate 
incorrect target variable values. Outlier costs must be removed for every 
dataset obtained in C2. Outliers can be identified through various 
mathematical methods and operators. For the present study, the 
Numeric Outlier Quartile method is applied. The identification of out-
liers is carried out via the interquartile range. It can be defined using the 
expression: 

xi >Q3 + k(IQR) V xi < Q1 − k(IQR) (1)  

with IQR = Q3 − Q1 and k ≥ 0. 
The quartiles divide the analysed data into four equal parts. The first 

quartile (Q1) is the value at the 25th percentile (meaning 25% of the 
data points are below it). The second quartile (Q2) is at the 50th 
percentile, and the third quartile (Q3) is at the 75th percentile. The 
interquartile range (IQR) is the range between the first and third quar-
tiles (Q3 − Q1). So, it allows understanding how the data points are 
spread in the middle of the dataset. The multiplier value k is to specify 
the stringency of the boundaries to define which values are outliers. 
Based on different tests, k -values of 1 or 1.5 are considered suitable for 
this study. Analysing equation (1), the outlier value xi is the one that lies 
outside the interquartile range. 

Outliers must be analysed through indicators that link the cost to the 
most critical independent parameters (e.g., mass). General analyses 
consider material cost vs mass (i.e., €/kg) and machining cost vs 
machined mass (i.e., €/kg). Furthermore, specific indicators can be 
considered (e.g., cost vs blade height). The indicators mentioned above 
have a slight standard deviation for parts that belong to the same family 
and thus have a similar shape. This procedure does not allow for empty 
values within the dataset, guaranteeing its completeness 
(Completeness). 

Once C2 and C3 are completed, the different costs are added to the 
extended datasets, resulting in N datasets: one for each estimated cost. 

2.4. Modelling 

Modelling represents the phase in which various models are built and 
evaluated using multiple techniques (Fig. 4). The main goal is to find the 
best ML algorithms (one for each parametric cost model) to predict the 
manufacturing cost. To do that, K different ML algorithms (e.g., linear 
regression (Su et al., 2012), random forest (Liu et al., 2012), neural 
network (Bishop, 1994), deep learning (LeCun et al., 2015) and gradient 
boosting (Natekin and Knoll, 2013)) must be compared. 

Examining Fig. 4 from a broader perspective, the Modelling phase 
starts by processing one dataset at a time. For each dataset, all K-selected 
algorithms are trained and tested individually. The algorithm with the 

best performance will represent the cost model for that specific dataset. 
This activity ends with N cost models for each dataset based on their 
best-performing algorithms. 

The Modelling phase defines the evaluated algorithm and proceeds 
with the feature selection (activity D1). The main goals of feature se-
lection are to avoid overfitting, enhance model performance (better 
cluster detection for clustering and prediction performance for super-
vised classification), provide faster and more cost-effective models, and 
gain a deeper understanding of the underlying processes that produced 
the data (Saeys et al., 2007). This activity evaluates and defines cost 
drivers (independent parameters) with a high-cost sensitivity. It allows 
obtaining a cost model with only the parameters that drive the cost for 
the chosen algorithm. 

After the feature selection activity, the dataset is ready to be pro-
cessed and used to create the model. Therefore, the dataset is divided 
into two groups (activity D2): the training and testing sets. The first 
group is used to train the model. The second group is for testing the 
developed model. In this step, choosing the proportion in which the 
initial dataset is divided is essential. 80% and 20% are commonly used 
for training and testing sets. 

During the training model phase (activity D3), the algorithm itera-
tively adjusts its parameters based on the input data and corresponding 
outputs to minimise prediction errors, thereby enhancing its predictive 
accuracy. The training phase concludes with the model achieving a state 
of convergence, where further training does not significantly alter the 
parameters, indicating readiness to evaluate test data. 

In the model evaluation phase (activity D4), the trained algorithm is 
assessed using a separate test (testing dataset) to gauge its predictive 
performance and generalisation capability to unseen data. To do this, 
several indicators are used to evaluate the performance of the algo-
rithms. These indicators allow a cost engineer to understand how the 
model performs on new data and, on the other hand, to improve the 
predictive capabilities by tuning hyperparameters. The random forest 
algorithm, for example, is based on two primary hyperparameters: the 
number of trees and maximum depth. Optimising the values of these 
parameters improves the algorithm’s predictive performance. The ac-
tivities D2, D3, and D4 are carried out using a data science software tool. 

According to the requirements defined in activity A1, it is crucial to 
establish the cost models’ overall performance and trends. So, two 
performance indicators were chosen: Mean Percentage Error (MPE) and 
Mean Absolute Percentage Error (MAPE). MPE represents the average 
percentage errors by which model forecasts differ from actual values. 
This indicator makes it possible to assess whether the average trend of 
the model underestimates or overestimates the cost. In cost prediction, 
underestimating is more dangerous than overestimating. The limitation 
is that the negative and positive values cancel each other out when 
averaged. Thus, MAPE is introduced to indicate the model’s accuracy 
performance. MAPE takes the absolute deviation between the actual and 
forecast values. This indicator represents the accuracy in percentage 
terms without considering the direction of errors. These are the main 
errors that can be used to evaluate a cost model. Then, the most 
appropriate one depends on the context and targets defined in the 
business understanding phase. 

Activity D4 calculates the performance metrics for K*N cost models. 
The performance evaluation (activity D5) directly compares these met-
rics to identify the most accurate model for each dataset. The model 

Fig. 4. Modelling workflow.  

Fig. 5. Evaluation workflow.  
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demonstrating the lowest error is then chosen for the evaluation phase. 

2.5. Evaluation 

The cost models from the Modelling phase represent the best pre-
diction result for specific dependent parameters (Fig. 5). The bench-
marking (activity E1) involves comparing the newly developed cost 
model’s performance against established baselines (activity A1-a) or 
industry standards to gauge its relative effectiveness and efficiency. So, 
this activity evaluates if the cost model performance meets the re-
quirements of the Business Understanding phase. 

If the model conforms to the requirements, it can be used to move on 
to the next deployment phase. If the comparison shows non-conformity 
with the requirements, the model cannot be used, so re-assessing the 
conditions is needed. In this case, two steps can be taken. With the first 
rollback, it is possible to increase the number of records in the dataset 
(active C1-b) further to improve the model’s prediction performance. If 
expanding the dataset is inadequate to meet the cost model’s confor-
mity, reviewing the requirements established in the business under-
standing phase (activity A1-a) is necessary. 

2.6. Deployment 

The deployment phase refers to integrating a trained ML model into 
an existing production environment to make it operational and acces-
sible for end-users or systems (Fig. 6). This study allows users to manage 
the parametric cost model and evaluate how each independent param-
eter affects the cost. 

Model interpretability (activity F1) intends to provide a cost model 
that is not a black box but perfectly interpretable. The feature impor-
tance study allows design engineers to know the weight of every cost 
driver (i.e., design variable) and how it affects the cost. Different algo-
rithms can evaluate the feature’s importance (Molnar, 2022). Feature 
Permutation Importance (FPI) makes it possible to independently 
identify the product/process variables that influence cost on the ML 
algorithm. 

Finally (activity F2), models are incorporated into the existing IT 
infrastructure, which could involve embedding the model into a web 
service, a cloud-based application, an enterprise system, or an IoT 
(Internet of Things) device, depending on the use case. This solution will 
allow design team members to use the models during their design 
decisions. 

3. Case study 

The objective of the case study is to apply the proposed cost 
modelling method for discs and spacers of an axial compressor, an 
engineered-to-order product. The design and cost engineering teams of 
Baker Hughes Company were involved in this case study and validation. 
The company needs a method for estimating costs during the conceptual 
design of its products. It should ensure the main benefits listed in the 
introduction (e.g., accuracy higher than the empirical models already 
developed internally based on linear regressions, time-saving, more 
comprehensive analysis). 

During the conceptual design phase, design engineers are responsible 
for defining the cross-section of the turbomachine. Engineers perform 
this task using a configuration software tool, which sketches the 2D 
cross-section view of all the turbomachine components by considering 
configuration parameters (29 for discs and spacers). These parameters 
are the same as those used to create the training datasets. 

The company followed the entire cost modelling procedure. It pro-
vided the required documentation (i.e., 3D CAD models and drawings) 
and technical know-how (i.e., bill of materials, configurations parame-
ters, manufacturing information). The authors supervised the project by 
working alongside designers and cost engineers. Initially, a set of 
reference turbomachines with related discs and spacers was identified to 
create the training dataset. The cost information was obtained by using 
the LeanCOST cost estimation software. This software utilises an 
analytical approach to determine the costs of the parts. Costs are 
calculated starting from the 3D CAD models of the components. The 
company cost engineers previously validated this tool. LeanCOST can 
automatically estimate the costs of 3D CAD models without user inter-
action (batch mode). It can also update previous cost estimations to 
simulate multiple scenarios (e.g., inflation). 

3.1. Business understanding 

In activity A1, the cost estimation error was set within the range 
− 15%/+20% as indicated by E2516 − 11, Standard Classification for 

Fig. 6. Deployment workflow.  

Fig. 7. A half-section view of the disc/spacer with related configuration parameters.  
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Cost Estimate Classification System, Class 4 (i.e., concept study or 
feasibility). The output desired from the cost modelling method consists 
of two cost models, one for the semi-finishing and the other for the 
finishing phases of discs or spacers. Cost estimates obtained with this 
breakdown allow the company to compare predicted with actual costs 
(those incurred when manufacturing or purchasing the parts). 

3.2. Data Understanding 

The cost modelling method is used for turbomachines’ discs or 
spacers family. Five turbomachines were analysed, and 50 discs and 
spacers were identified (activity B1). The 3D CAD models of the finished 
and semi-finished parts were downloaded from the company’s PDM 
system. The turbomachines were chosen considering shape, size 
(power), and material variability. Geometric information was extracted 
from the 3D CAD model. Still, non-geometric information such as batch, 
production country, material, and material cost has also been collected. 
Thirty-four parameters were collected, including the names of the ma-
chines and the corresponding semi-finished and finished part codes. 
These last three parameters are identification (ID) parameters and are 
insignificant for cost prediction. All this collected information was ar-
ranged in a table to create the Codelist. 

3.3. Data preparation 

Through the analysis of drawings and 3D models (activity C1-a), the 
main parameters of standard designs among the various discs/spacers 
were identified. A general simplified shape type of disc/spacer was 
defined (Fig. 7). The support of the company’s cost managers made it 
possible to ascertain that the features with the most significant impact 
on cost were included within the simplified representation. Non- 
geometric parameters of interest in the conceptual design phase were 
also defined. A total of 31 configuration parameters were selected after 
excluding the ID parameters. Hereunder, there are the geometrical and 
non-geometrical parameters. The complete list is available in Fig. 7.  

• NON-GEOMETRIC PARAMETERS:  

o BATCH: this parameter represents the overall number of components 
produced in a single batch. The manufacturing cost directly relates to 
this parameter since it affects fixed costs (e.g., set-up cost). 

Increasing the batch quantity provides a hyperbolic trend in unitary 
manufacturing costs.  

o COUNTRY: the manufacturing cost depends on the country where 
the components are produced. Different countries allow for different 
hourly rates. It is to be noted that analytical cost models estimate the 
manufacturing cost of components. Overhead costs (e.g., trans-
portation, taxes, duties) are not considered.  

o MATERIAL: the material affects the manufacturing cost. On the one 
hand, it defines the baseline unitary cost of the material used for 
producing the components. On the other hand, all the mechanical 
operation technological parameters depend on the material being 
processed.  

o MATERIAL_COST: with this parameter, it is possible to define 
different unitary costs for the same material. This cost range on 
material costs allows accounting for inflation phenomena related to 
the raw material market. Consequently, the proposed method en-
ables the actualisation of the cost according to inflation. The con-
siderations were made based on the experience gained by the 
purchasing department. 

o MASS: defines the mass of the component. Together with the mate-
rial cost, it contributes to determining the total manufacturing cost.  

o N_TIEROD: represents the total number of holes drilled in the disc/ 
spacer. The holes are those defined by the geometric parameter 
PHICB.  

o N_BLADE: number of slots where the blades are fixed onto the disc/ 
spacer. Millings are identified in correspondence with the parameter 
H  

o BLADE_TYPE: different blades can be clamped to the disc/spacer. 
This difference influences the machining on the disc/spacer to enable 
subsequent assembly. 

• GEOMETRIC PARAMETERS: The most relevant geometric parame-
ters affecting the manufacturing cost can be identified as radial and 
axial parameters (e.g., R7, L1). As a family of parts, the geometric 
parameters can be related. In this case, only one is chosen. Regarding 
tolerances, they are constant for all the discs and spacers. The general 
surface roughness is 25 [μm] and 3.2 [μm] for semi-finished and 
finished parts. Tolerances and roughness are included as PMI in the 
3D models. 

Starting from the 50 discs and spacers identified during the Data 

Fig. 8. Excerpt of parameters distribution before and after data augmentation.  
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Understanding phase, different configuration parameters were chosen to 
extend the Codelist (activity C1-b), enabling different scenarios and 
variations that had a significant impact on costs.  

• GEOMETRIC PARAMETERS: first, some discs and spacers were 
selected among those available. The selection was made considering 
the different types and morphologies. To choose the scaling factors, 
first, a dimensional parameter was identified as representative of the 
disc’s and spacer’s size, which could be an index to the geometric 
variability. The chosen parameter is R7A, which represents the 
maximum radius of the disc/spacer. The scaling factors were selected 
to consider discs and spacers engineers can design in the future. Also, 
dimensional jumps were deemed to be acceptable and not excessive. 
In this way, the training dataset considers different geometries, 
which are large and heterogeneous. Part scaling contributed by 
adding 58 parts to the initial baseline, thus obtaining 108 3D CAD 
models.  

• BATCH (1, 2, 3, 4, 5, 6, 8, 12, 25, 50–10 values): the following 
production batches were chosen: 1, 2, 3, 4, 5, 6, 8, 12, 25, and 50. 
The percentage cost deviation between two consecutive production 
batches is 1%. Starting from 108 records, this second step allows the 
Codelist to be extended up to 1080.  

• COUNTRY (BCC, WCC – 2 values): manufacturing costs will be 
simulated in two countries, the best cost country (BCC, e.g., Far East) 
and the worst cost country (WCC, e.g., Europe) only for semi-finished 
parts. Starting from 1080 records, this second step allows the 
Codelist to be extended up to 2160.  

• MATERIAL_COST (xx, yy, zz, – 3 values): for this case study, only one 
material was considered. So, starting from the baseline cost related to 
the selected material, a range from − 50% to +100% was used. 
Beginning from 2160 records, this third step extends the Codelist to 
6480. 

Finally, a dataset with 31 configuration parameters and 6480 records 
was obtained. The Completeness and Uniqueness of the dataset are 
assessed at the end of the scaling procedure by verifying missing data 
and the absence of duplicates. Choosing proper scaling factors leads to 
high-quality datasets regarding Class Balance (for features and targets). 
Feature accuracy was checked as discussed in the method. 

Fig. 8 shows the distribution of values for three identification pa-
rameters (R7A, L1 and MASS), comparing the starting dataset and the 
extended one. R7A is the maximum radial external dimension, L1 is the 
maximum axial external dimension, and MASS is the finished mass of 
the component. The comparison makes it possible to see that the dis-
tribution considers a broader range. 

The cost models to be developed concern semi-finished and finished 
products (activity C2). Two datasets are obtained: the one for the semi- 
finished product comprises 6480 rows. In contrast, the one for the 
finished product is made up of 1080 rows because it does not involve the 
multiplication of the parameters related to the material cost and the 
country of the production site. The reason for dividing the total cost into 

semi-finished and finished lies in the supply strategy. Farm-out (the 
suppliers make the semi-finished product while the finished product is 
produced internally) is the strategy for this case study. 

CAD models are analysed using LeanCOST (by Hyperlean srl, Italy), a 
company’s cost-estimating tool. In this way, it was possible to generate a 
dataset of manufacturing costs by overcoming issues related to sparse-
ness or unavailability of historical datasets. 

Fig. 9 shows the entire manufacturing process estimated by the 
software to produce the finished disc or spacer in detail. 

The outlier analysis of semi-finished and finished parts was per-
formed for the Codelist (activity C3). The cost estimation carried out by 
LeanCOST is unsupervised. Thus, the manufacturing process (e.g., 
missing operations, improper stock selection) and related costs may be 
subject to errors. The goal is to identify parts with an inappropriate 
estimated cost. The ratio between raw material cost and stock mass was 
used for semi-finished parts to identify outliers. In contrast, the ratio 
between finishing cost and machined volume (stock mass minus finished 
mass) was used for finished parts. The Numeric Outlier Quartile is the 
method employed to identify outliers. For semi-finished parts, 16 ge-
ometries out of 108 were excluded, which led to the exclusion of 960 
rows. A dataset of 5520 rows was obtained. For the finished, 12 geom-
etries out of 108 (120 rows) were excluded, resulting in a dataset of 960 
parts. Through this procedure, it was possible to achieve a good level of 
Target Accuracy. 

Finally, two datasets were obtained (Table 1). They have 31 

Fig. 9. The manufacturing process for discs and spacers.  

Table 1 
Statistics of the main configuration parameters for discs and spacers.  

Parameter Max Min Mean Standard deviation 

R1 [mm] 53 0 16 14 
R2 [mm] 324 19 65 59 
R3 [mm] 346 28 86 62 
R4 [mm] 611 88 256 133 
R5 [mm] 811 0 300 182 
R6 [mm] 870 0 350 207 
R7 [mm] 898 151 398 193 
R7A [mm] 900 154 402 196 
RCB [mm] 703 100 293 153 
PHICB [mm] 84 13 34 17 
R11 [mm] 93 4 23 18 
R12 [mm] 83 5 22 15 
R13 [mm] 53 0 14 12 
H_S [mm] 47 0 6 9 
A1 [DEG] 4.5 0 2 1 
L1 [mm] 1024 21 154 179 
L2 [mm] 967 0 92 178 
L4 [mm] 666 7 91 127 
L5 [mm] 48 4 15 8 
L6 [mm] 339 8 52 54 
L7 [mm] 512 17 81 86 
L9 [mm] 33 4 14 7 
N_TR 26 16 22 5 
N_BL 68 0 29 27 
MASS [kg] 14463 9 859 2165  

M. Mandolini et al.                                                                                                                                                                                                                             



Engineering Applications of Artificial Intelligence 136 (2024) 108957

9

configuration parameters and 5520 records (semi-finished), 29 config-
uration parameters and 960 records (finished). The parameters 
“MATERIAL_COST” and “COUNTRY” were removed from the finished 
dataset. ”MATERIAL_COST” was excluded because it does not influence 
the cost of the finishing operations (i.e., machining and quality con-
trols). “COUNTRY” was removed because of the company’s production 
strategy (in-house finishing). Indeed, the finishing operations are only 
performed in one country (their internal plant). 

3.4. Modelling 

The case study aims at developing two cost models, so the following 
steps must be performed twice. For convenience, the results for finished 
and semi-finished products are presented together. 

ML algorithms tested for the case study were selected among those 
managed by RapidMiner Studio (By Altair Engineering, USA), a data 
science software.  

• Generalised Linear Models (GLMs): it offers interpretability and 
simplicity. The model’s coefficients provide clear insights into the 
impact of each feature on the outcome, facilitating a better under-
standing of the relationships. Additionally, GLMs are suitable for 
statistical inference, providing p-values and confidence intervals. 
However, their limitation lies in their assumption of linear re-
lationships, making them less effective in capturing complex, non- 
linear patterns in the data. 

• Deep Learning (DL): DL models, characterised by their neural net-
works, excel in capturing intricate patterns and non-linear relation-
ships within data. They are highly expressive and capable of feature 
learning, eliminating the need for extensive manual feature engi-
neering. Despite their power, they come with drawbacks, such as 
computational intensity requiring substantial resources for training. 
Moreover, the incomprehensible “black box” nature of DL models 

can pose challenges for interpretability, potentially impacting trust 
in the predictions.  

• Decision Trees (DTs): DTs are known for their interpretability, clearly 
visualising the decision-making process. They do not assume specific 
data distributions and can naturally handle non-linear relationships. 
However, DTs are prone to overfitting, capturing noise in the 
training data and exhibiting instability with minor changes. While 
adequate for simple tasks, individual DTs might lack the expres-
siveness to capture more complex patterns in the data.  

• Random Forest (RF): these models mitigate the overfitting issues of 
individual trees and provide more robust predictions. They excel in 
handling non-linear relationships and offer insights into the impor-
tance of features. However, their computational complexity in-
creases with the number of trees, making them resource-intensive. 
Despite being less of a “black box” than DL models, Random Forests 
can still present challenges in interpretation compared to simpler 
models. 

• Gradient Boosted Trees (GBTs): these models build sequentially, cor-
recting errors of previous trees and resulting in high predictive ac-
curacy. They handle missing data effectively and exhibit robustness 
to outliers. However, the computational demands, especially with 
numerous trees, can be a drawback. There is also a risk of overfitting 
noisy data if not properly tuned. While more interpretable than some 
complex models, GBTs still pose challenges compared to simpler 
models like linear regression. 

A multi-objective evolutionary algorithm (provided by RapidMiner) 
was used to find the best feature set (cost drivers) for each model (ac-
tivity D1). It is noted that cost drivers decreased from the initial list of 
configuration parameters, namely 31 for semi-finished and 29 for 
finished. The number of selected cost drivers was 12 for semi-finished 
and 16 for finished (Fig. 12). Thus, each algorithm was tested using 
the best set. 

Fig. 10. ML modelling for the case study.  
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Fig. 10 shows the dataset evolution from the beginning (activity B1) 
to the final Codelists (activity D1). 

In activities D2 and D3, cost models were generated using the Auto 
Model plug-in of RapidMiner Studio, which streamlines the creation and 
validation of prediction models. A 40% hold-out set has been used to 
calculate performance. The software starts with this hold-out set as 
input. Next, using a multi-hold-out-set validation, the software 

determines the performances for seven disjoint subsets. The most potent 
and highest performances are eliminated. The average of the remaining 
five performances is calculated (RapidMiner Documentation, 2023) 
(Fig. 11). 

Table 2 contains MAPE and MPE indicators for the ten cost models 
(five for semi-finished and five for finished) developed by RapidMiner 
(activity D4) (Fig. 11). The best-performing algorithm for both models 

Fig. 11. ML modelling procedure in RapidMiner.  

Fig. 12. Model Interpretation: feature importance for the semi-finished (left) and finished (right) cost models.  
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was GBTs, which was thus selected (activity D5). RapidMiner automat-
ically tuned the hyperparameters to achieve the following values 
(Optimise Parameters Quadratic Operator): number of trees: 150, 
maximal depth: 7 and learning rate: 0.1. 

3.5. Evaluation 

The MAPE of the GBTs algorithm is 1% for the model of semi-finished 
and 3% for finished discs. The models are valid since the MAPE and MPE 
indicators are lower than the thresholds set in business understanding 
(− 15%/+20%). They can be deployed for cost estimation (activity E1). 

3.6. Deployment 

Feature importance analysis allows engineers to highlight the impact 
of cost parameters on the model (activity F1). In the case of the disc 
model of the semi-finished products, the algorithm identified the PHICB 
parameter (Fig. 12) as the most relevant (i.e., the hole through the 
tierods). For finished parts (Fig. 12), RCB (i.e., the distance of tierods 
from the disc axle) is the most important. 

At last (activity F2), the cost models were deployed and stored in a 
dataset to be used by cost and design engineers through the simulator 
module of RapidMiner (Fig. 13). 

4. Validation and results 

Verifying the accuracy of the estimate is the process of cost valida-
tion. By confirming the data and estimating techniques, this procedure 
guarantees the precision and dependability of the outcomes. It is a 
systematic procedure for approving the data and techniques applied 
throughout the cost-estimating process. 

In this study, a formal validation of the cost modelling methodology 
was conducted by considering actual cost data. The cost models ob-
tained through the cost modelling methodology (§3) were used to 
evaluate the rotor discs and spacers of a six-stage gas turbine compressor 
that had never been designed before. The architecture of the new ma-
chine is the same as that of one already developed in the past, but with 
different dimensions. The parts analysed, therefore, have similar shapes 
and production processes but different dimensions. The dimensional 
parameters of the analysed parts were defined by a product configurator 
capable of determining the cross-section of the machine (§3). The system 
engineer responsible for the machine development defines the other 
parameters (e.g., production country, batch). 

Three different cost-estimating methods have been implemented to 
evaluate the benefits of the proposed methodology. A cost engineer 
defined the actual cost through LeanCOST after 3D modelling the parts 
and identifying the PMIs. It is noted that the 3D modelling of the parts 
and the analytical cost evaluation were carried out only for the scope of 
this validation. Such activities are not performed during the conceptual 
design phase but during embodiment and detail. Thus, the economic 
values represent a benchmark since the parts to be analysed are made 
with production technologies characterised by validated analytical cost 
models and process routings. This information is formalised within the 
estimating software tool. 

The estimated costs were defined using the cost models developed 
according to the proposed methodology (TO-BE approach in Fig. 14). 
The prediction models implemented in RapidMiner provide economic 
values based on the dimensional parameters. Finally, the company 
involved a cost engineer in defining the third economic information (AS- 
IS approach in Fig. 14). The value was determined based on the (little) 
historical data, integrated with evaluations from the technician’s im-
plicit experience. The AS-IS and TO-BE cost estimates were compared 
with the benchmark to calculate the MAPE (Table 3). 

To evaluate the time-saving of the proposed methodology, the au-
thors measured the time for cost estimation and the initial investment 
for cost modelling. The effort (time) for cost estimation was 4 h for AS-IS 
(cost engineer analysis) and 1 min for TO-BE (proposed approach). A 
junior cost engineer (less than three years of experience in cost esti-
mation and modelling) was engaged to develop the ML-based model. 
The authors simulated two scenarios. The first implies the development 
of the new cost models (i.e., for semi-finishing and finishing processes) 
from scratch. The second refers to updating the cost models (i.e. adding 
more lines to the codelist) once a new gas turbine is designed and 
developed. The authors registered the effort for each activity (Table 4), 
splitting between time spent by the cost engineer and the computation 
time requested by the software (e.g., cost estimation, data augmenta-
tion, data analysis). 

Data understanding is the most labour-intensive activity. To build 
the training dataset, a cost engineer must first identify and download the 
models and drawings from a PDM system. Then, he has to extract the 
complete geometrical information from 3D models and drawings to 
create a part of the training dataset. No CAD plug-ins (e.g., feature 
recognition tool) were used for the case study to automate the process. 
Data preparation, on the other side, is the most computationally inten-
sive. Most of the effort is requested to run the cost estimation tool (batch 
mode) for the entire set of components. This effort is only marginally 
significant because it runs unattended, often overnight. Updating a cost 
model is much faster than creating a new one because it is assumed that 
the cost engineer should manage fewer parts. 

Table 2 
Cost model indicators of the semi-finished and finished discs and spacers.  

Model Semi-finished discs and spacers Finished discs and spacers 

MAPE MPE 
Positive 

MPE 
Negative 

MAPE MPE 
Positive 

MPE 
Negative 

Generalised 
Linear 
Models 
(GLMs) 

113% 99% 125% 21% 25% 18% 

Deep 
Learning 
(DL) 

34% 24% 40% 16% 20% 10% 

Decision 
Trees (DTs) 

11% 13% 10% 6% 7% 5% 

Random 
Forest 
(RM) 

30% 40% 17% 10% 10% 8% 

Gradient 
Boosted 
Trees 
(GBTs) 

1% 1% 1% 3% 3% 2%  

Fig. 13. Extract of the simulator environment of RapidMiner for semi-finished 
(left) and finished (right) cost models. Values are missing for confidenti-
ality reasons. 
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5. Results discussion 

The results obtained from the case study presented in the previous 
section draft the strengths and weaknesses of the proposed methodology 
through qualitative and quantitative indicators. Weaknesses provide 
indicators for future work presented within the conclusions. 

5.1. Strengths 

5.1.1. Improved accuracy of cost estimations 
The MAPE of the obtained cost models is 1% (semi-finished) and 3% 

(finished). The error is significantly lower than the threshold the busi-
ness understanding requires (− 15%/+20%: “Class I”, as E2516 – 11, 
Standard Classification for Cost Estimate Classification System). Thus, 
the proposed method is promising for conceptual design and feasibility. 
The case study highlights MAPE values slightly higher than those ob-
tained by the test dataset (5% vs 1% for semi-finished and 11% vs 3% for 
finished). These values are due to the slightly different shapes of discs 
and spacers considered in the case study and the limited number of re-
cords for the training dataset. Anyway, MAPE values are still lower than 
the requirements of business understanding. 

The algorithm chosen for obtaining the model is the Gradient 
Boosted Trees, which was the best for realising a cost model for 

turbomachinery components. This result agrees with J.-L. Loyer et al. 
(2016), who examined the efficacy of five statistical models for esti-
mating the manufacturing cost of jet engine components. The investi-
gation demonstrates that modern methods, like GBTs and Support 
Vector Regression, are up to twice as effective as those frequently seen in 
the literature (Multiple Linear Regression and Artificial Neural Net-
works). However, it is not viable to generalise the approach to other 
industrial environments. 

The estimated costs of employing the models obtained from the 
proposed cost modelling approach are much closer to the benchmark 
than the costs manually assessed by a cost engineer (Table 3). ML-based 
cost models can capture semi-finished and finished discs and spacers 
trends. On the other hand, the cost engineer could not precisely evaluate 
finishing operations for discs. Thus, the MAPE for the total 
manufacturing cost (semi-finishing and finishing processes) in the AS-IS 
approach (9%) is higher than TO-BE (7%). This result highlights the 
proposed approach’s benefits in improved cost estimation accuracy. 

5.1.2. Time-saving 
Cost estimating generated using ML-based models with the proposed 

method would be significantly shorter (from hours to minutes) than 
traditional methods. Often, a cost engineer searches for economic values 
in the few and unstructured historical data. To make accurate cost 

Fig. 14. Cost estimates through the AS-IS and TO-BE approaches. Values are missing for confidentiality reasons.  

M. Mandolini et al.                                                                                                                                                                                                                             



Engineering Applications of Artificial Intelligence 136 (2024) 108957

13

forecasts (e.g. in scenarios characterised by high inflation or changes in 
energy costs), the economic data (e.g. deriving from previous purchase 
orders) will have to be integrated with other information deriving from 
different sources (e.g. inflation rates, energy costs). These studies, as 
well as being time-consuming, undermine the estimate’s accuracy and 
strongly depend on the experience of the cost engineer. Even if cost 
estimation through the proposed approach is much faster, a company 
must consider an initial investment for cost modelling (Table 4). 
Comparing the initial effort for cost modelling (56.4 h) and the time- 
saving obtained by employing the so-achieved cost models (43.8 h), it 
is possible to estimate that a company returns from the investment after 
analysing a second configuration or scenario. During the conceptual 
design phase of a gas turbine, a design team typically analyses many 
different configurations (i.e., shapes, dimensions, manufacturing pro-
cesses) and different scenarios (e.g., country, batch, material cost, en-
ergy cost). Thus, the company returns from the investment in a couple of 
months (the product development process is about three years long). 

It is worth underlining that a design team can reduce the time wasted 
due to process inefficiencies by employing the proposed cost modelling 
approach. For example, using regression techniques (e.g., CER) on a few 
historical datasets risks having inaccurate cost models. A wrong esti-
mation could lead a company to make sub-optimal design decisions. A 
company could invest time and resources to engineer solutions that are 
subsequently discarded because they are not cost-effective. The time 

spent on redesign loops could significantly exceed that spent developing 
a parametric cost model, as indicated by the proposed methodology. 
Moreover, the cost wasted by such inefficiencies could be more impor-
tant than the time spent on cost modelling. For ETO and complex 
products, design activities are carried out by large design teams. 

5.1.3. Comprehensive cost estimation 
Creating a reliable dataset for ML algorithm training was made 

possible by software for analytical cost assessment. Its use enabled cir-
cumventing the constraints of creating a parametric cost model by 
sparse and unnormalised historical cost data. By employing an analyt-
ical cost estimation software tool, it is possible to develop coherent (data 
deriving from a unique source and generated from validated analytical 
cost models) and comprehensive (that contains multiple scenarios, such 
as production countries, batch, and material cost) training datasets. The 
proposed approach is independent of any software application. Other 
data science and analytical cost estimation software can be used to 
implement the methodology. 

The availability of a comprehensive and coherent dataset enables 
cost engineers to develop versatile cost models. Such estimation tools 
may accurately and rapidly assess the cost in different scenarios during 
the conceptual design phase. This feature allows engineers to quickly 
find the best design configuration and production scenario before 
investing in further design and engineering activities. 

5.1.4. Explainability of cost models 
The explainability of cost models is an essential feature for design 

and cost engineers. Both users must know the input-output relationship. 
The former can understand the most cost-effective design features dur-
ing conceptual design. The latter can quickly assess the cost in different 
scenarios, being more confident about values estimated by the models. 

Cost engineers recognised the cost drivers defined through the 
feature selection algorithm as the most cost-effective. Moreover, all of 
them are known during conceptual design. For the proposed case study, 
the problem’s dimensionality was decreased using a multi-objective 
evolutionary algorithm as a feature selection method. For semi- 
finished and finished cost models, cost drivers decreased from 31 to 
12 and 28 to 16, respectively. The reduction did not penalise the pre-
diction accuracy of cost models. 

5.1.5. Automatic cost estimation process 
The proposed systematic method can be automated since it requires 

repetitive tasks. The analytical cost estimation tool (e.g., LeanCOST) and 
data science software (e.g., RapidMiner) can be integrated (e.g., through 
the relative application programming interfaces – APIs) to develop an 
orchestrator capable of automating the entire workflow. 

5.1.6. Self-learning 
Dataset maintainability (i.e., self-learning) is an essential feature to 

avoid the problem of making wrong and outdated estimates. The method 
guarantees such a requirement by leveraging the native benefits of ML. 
The technique can update and extend an original cost model by iterating 
the data preparation, modelling and evaluation phases. For example, the 
training dataset can be augmented by 3D scaling the original dataset of 

Table 3 
MAPE of cost estimates was obtained through the AS-IS (estimation carried out 
manually by a cost engineer) and TO-BE (analysis based on ML-based cost 
models developed following the method proposed in this paper) approaches. The 
benchmark values were obtained by a cost engineer working with the analytical 
cost estimation tool.   

TO-BE AS-IS 

Semi- 
finished 

Finished Total Semi- 
finished 

Finished Total 

Disc 1st 
stage 

7% 26% 17% 3% 39% 21% 

Disc 2nd 
stage 

5% 6% 5% 1% 21% 10% 

Disc 3rd 
stage 

8% 10% 9% 6% 12% 9% 

Disc 4th 
stage 

6% 10% 8% 5% 12% 8% 

Disc 5th 
stage 

2% 13% 7% 0% 29% 12% 

Disc 6th 
stage 

2% 24% 8% 6% 50% 16% 

Spacer 1st 
stage 

3% 4% 4% 4% 13% 8% 

Spacer 2nd 
stage 

1% 6% 3% 0% 5% 2% 

Spacer 3rd 
stage 

5% 9% 7% 1% 13% 6% 

Spacer 4th 
stage 

7% 8% 7% 4% 11% 7% 

Spacer 5th 
stage 

6% 5% 5% 0% 2% 1% 

Mean 5% 11% 7% 3% 19% 9%  

Table 4 
Cost modelling effort for generating and updating a cost model for discs and spacers of a gas turbine axial compressor.   

New development Update 

Computation time [h] Cost engiener time [h] Sub-Total time [h] Computation time [h] Cost engiener time [h] Sub-Total time [h] 

Business understanding 0.0 0.0 0.0 0.0 0.0 0.0 
Data understanding 0.0 53.0 53.0 0.0 12.8 12.8 
Data preparation 14.6 3.1 17.6 1.3 3.1 4.4 
Modelling & Evaluation 0.7 0.2 0.8 0.7 0.2 0.8 
Deployment 0.1 0.1 0.2 0.1 0.1 0.2 

Total time [h] 15.3 56.4 71.7 2.0 16.2 18.2  
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CAD models or considering other prices or manufacturing processes. The 
effort required to update a cost model is much lower than needed for its 
first development (Table 4). 

5.2. Weaknesses 

The prediction accuracy worsens when a parametric model assesses 
the cost of parts with significantly different production technologies or 
shapes (compared with the parts of the training dataset). In this situa-
tion, the MAPE of a cost model is inconsistent with its actual accuracy. 
Depending on the distance between the estimated part and the training 
set, a cost engineer must consider a more significant value. The distance 
can be measured regarding how much the chosen part’s production 
process, shape and dimension differs from the training dataset. The 
higher the distance, the higher the error. For example, cost engineers 
could consider a triangular function to correct the cost estimation. A 
typical range is − 15%/+20% for parts with the same technology and 
design. Such a range can increase (e.g., − 30%/+40%) for parts that 
belong to the same family but with an entirely new design and 
manufacturing process. 

The number of records removed during the outlier analysis (around 
12%, Fig. 10) is not negligible. It resulted from issues met by the soft-
ware tool in estimating the cost for the 3D CAD models generated during 
the dataset augmentation (data preparation phase). Data augmentation 
(e.g., 3D scaling of CAD models) should be further investigated to avoid 
generating geometries that are too different from actual parts that the 
software tool cannot properly recognise and cost estimate. 

The proposed methodology is a concept that deserves further 
development so that a company can effectively use it. So far, it consists 
of many manual operations to orchestrate the employed software tools 
and manage data. 

6. Conclusions 

The paper presented a cost modelling methodology for the cost 
estimation of products during the conceptual or preliminary design 
phases of engineered-to-order products. The proposed method uses 
CRISP-DM. The approach is grounded on ML algorithms trained using 
datasets generated through an automatic and analytical software tool for 
cost estimation. This solution eliminates those issues linked to the un-
availability or inconsistency of historical data. Moreover, feature se-
lection and importance algorithms are used to reduce system 
dimensionality and increase the understanding of models. 

The method was used to develop two cost models (semi-finishing and 
finishing phases) of gas turbine parts (disc and spacers). GBTs turned out 
to be the best-performing prediction algorithm. The resulting cost 
models have 1% and 3% MAPE for the semi-finishing and finishing 
phases. Models originating from the proposed approach are suitable for 
estimating the cost of similar parts. However, the authors measured 
higher values (5% and 11%) through a case study. 

Unlike conventional approaches, ML-based cost estimation will take 
much less time (from hours to minutes). Developing parametric cost 
models by employing the proposed approach takes some days for each 
parts family. Companies may shortly return from this initial investment 
because of its benefits (e.g., faster, improved and more comprehensive 
cost estimations). 

Through a comprehensive and coherent training set generated as 
presented, cost engineers can create versatile cost models useable during 
the conceptual design phase for fast (from hours to minutes for each 
part) and precise assessments (the accuracy is much higher than 
required by AACE for feasibility study). Feature selection algorithms 
allow cost engineers to identify the most relevant drivers to improve the 
explainability of models. 

Further research will examine the approach’s applicability for larger 
product families by testing it on different items and industrial contexts. 
Clustering algorithms should be employed to determine the groups of 

components that need to be estimated with specific cost models. Clus-
tering will also help engineers know which cost model to use for one 
part. Moreover, by computing the distance between the part to be esti-
mated and the centre of gravity of each cluster, it will be possible to 
modulate the accuracy of the prediction (the higher the distance, the 
higher the prediction error). 

Data augmentation should be further analysed to reduce the number 
of outliers during the data preparation phase of the methodology. 

Last, the implementation of the approach should be investigated by 
considering solutions to speed up the process of generating, distributing, 
and using cost models. The authors recognised many manual and labour- 
intensive operations during the validation process when creating the 
training dataset. Retrieving metadata of parts from PDM systems or 
employing geometric feature recognition algorithms could speed up this 
phase, thus reducing the effort for cost modelling and improving the 
benefits. 
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