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Abstract: The actuator fault-tolerant control problem for a variable-pitch quadrotor is addressed under
uncertain conditions. Following a model-based approach, the plant nonlinear dynamics are faced
with a disturbance observer-based control and a sequential quadratic programming control allocation,
where only kinematic data of the onboard inertial measurement unit are required for the fault-tolerant
control, i.e., it does not require the measurement of the motor speed nor the current drawn by the
actuators. In the case of almost horizontal wind, a single observer handles both faults and the external
disturbance. The estimation of the wind is fed forward by the controller, while the actuator fault
estimation is exploited in the control allocation layer, which copes with the variable-pitch nonlinear
dynamics, thrust saturation, and rate limits. Numerical simulations in the presence of measurement
noise show the capability of the scheme to handle multiple actuator faults in a windy environment.

Keywords: variable-pitch quadrotors; fault-tolerant control; fault diagnosis; disturbance observer-
based control; loss of effectiveness

1. Introduction

Multirotor helicopters are a class of Unmanned Aerial Vehicle (UAV) that are employed
in a wide range of applications, resulting in one of the most appealing classes of vehicles
for both research and industry. The standard quadrotor represents the most common
configuration, which is equipped with four fixed-pitch blades connected to independent
motors. Variable-Pitch Quadrotors (VPQs) can instead vary both the rotation speed of each
motor and the blade pitch of each propeller, theoretically doubling the degrees of freedom
of each actuator. VPQs are also known as collective pitch quadcopters or heliquads.

This results in many advantages, from which it is possible to list higher thrust rate of
change, reverse thrust, reverse flight capabilities, and scaling well with size [1–3]. More-
over, the popular ArduPilot control suite supports VPQs using the Heliquad configuration.
Despite this, VPQs still represent a market niche, where few commercial devices (e.g., the
Assault Reaper 500, the Stingray 500, and the WLtoys Assassin V383, for recreational use)
are available. In most of the scientific literature, however, custom prototypes (e.g., [4–6])
are developed to test algorithms and control strategies. Fixed-pitch quadrotors and VPQs
have similar dynamics, while relevant differences arise in the control effectiveness matrix.
This allows for identical control laws for both configurations, but VPQs require a more
complex control allocation algorithm. The additional degrees of freedom, provided by the
pitch angles, can be exploited to satisfy additional constraints, such as minimizing energy
consumption, handling the presence of faults and failures (as defined in [7]), etc.

Specifically, the control allocation algorithm, which manages the redundancy while
respecting constraints, strictly depends on two key factors: the thrust model and the choice
of the control inputs.
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As regards the thrust model, several mathematical models have been proposed in the
literature to catch the relation between motor speed, pitch angle, as well as propeller size
and shape [3,5,6,8,9].

As for the choice of the control inputs, a VPQ instead has eight inputs available in
general (i.e., four motor speeds and four pitch angles), a relevant input redundancy which
is perfectly suited to provide actuator fault tolerance while satisfying actuation constraints.
Two issues must be faced in this case. The increased number of actuators entails higher
manufacturing costs and smaller payloads due to the extra weight. Moreover, the non-
linearity of the control allocation problem makes it harder to solve online. In any case, the
solution in which both the pitch angle and the motor speed can independently concur in
providing the requested thrusts and torques is investigated in the literature, as carried out
in [9,10] and, partially, in [6,11].

Alternatively, some simplifications have been proposed in the literature. The simpler
solution is to assume constant motor speeds and use pitch angles as control inputs, as
proposed in [1,3,8,12,13]; in this case, four inputs are available, so the allocation problem
is very simple and there is no redundancy at all. Employing a single central motor to
drive the four propellers makes a decrease in costs, weight, and inertia possible. However,
assuming the rotational speed is constant is just a choice to simplify the control scheme,
and employing a time-varying speed, even with a single central motor, is feasible (see, for
example, [12,14]). Taking into account a variable centralized motor speed allows for some
input redundancy (five inputs) and thus enables for fault-tolerant control, which is the
focus of this paper.

Any fault that can affect a conventional quadrotor can affect VPQs as well, and they
can involve any part of the rotor system (e.g., ESC, motor, propeller). The most common
class of actuator fault is a Loss of Effectiveness (LOE), i.e., the produced thrust is lower than
the expected one. In fact, LOE may be the consequence of many issues: battery voltage
drop [15], increased drag due to the blade pitch [5], and of course any physical damage to
the blades [16]. However, as for the specific case of fault diagnosis and tolerant control for
VPQs, few works can be found in the literature. In [17], the presence of a pitch lock-in-place
is considered for a VPQ, and both fault diagnosis and fault-tolerant control are developed.
The authors of [14] focus on the effects of a lock-in-place in a centrally powered VPQ, but no
fault diagnosis or fault-tolerant control are proposed. Finally, in [18], a fault detection and
fault-tolerant control strategy to face both pitch lock-in-place and motor LOE is proposed.

A major issue in control of multirotors is the presence of wind. In the UAV literature,
both active and passive fault-tolerant control schemes have been employed to cope with
the presence of wind. In [19], the authors model the aerodynamic effects, define the upper
bounds, and then deal with the wind by means of a robust sliding mode control; in [20],
extended state observers are instead employed to mitigate the effects of wind. The presence
of external disturbances is also detrimental to the fault diagnosis task, as the effects of
both the disturbances and faults may trigger a fault detection algorithm. In this paper, we
show that horizontal wind can be managed for both the purposes of fault diagnosis and
disturbance rejection by means of a single observer that estimates the actuator faults and
the effects of the wind.

The main contribution of this paper is proposing a novel, complete fault-tolerant
control scheme for a VPQ under actuator faults and wind, which consists of three main
tasks: fault and disturbance estimation, non-linear control with disturbance rejection, and
fault-tolerant control allocation. The proposed control strategy fills a gap in the literature
because, to the best of the authors’ knowledge, there are no fault-tolerant control schemes
for VPQs that take into account common external disturbances such as the wind. With
respect to the authors’ previous works [17,18], in this paper, we consider the effects of wind
that introduce significant complexity in the first two tasks, i.e., fault estimation and control.
As an additional contribution, we propose a generalized strategy that is well-suited for
both centrally powered VPQs and VPQs with four independent motors. In fact, the fault
and disturbance estimation strategy, as well as the non-linear control law, does not depend
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on the choice of the control inputs (i.e., centralized or independent propeller speed). On
the other hand, the control allocation algorithm must exploit redundancy to achieve fault
tolerance, so the choice of the control inputs is relevant; however, the proposed control
allocation algorithm is designed such that it suffices to enable an equality constraint to deal
with a centrally powered VPQ (instead of a conventional one with four separate motors).

The paper is structured as follows. In Section 2, the mathematical model of the vehicle
is detailed, including the characterization of variable-pitch propellers and the model of
actuator faults to be faced. Section 3 is devoted to the design of a Non-linear Disturbance
Observer (NDO) to estimate faults and disturbances. In Section 4, a double-loop controller
to track position and orientation, despite the presence of external disturbances, is intro-
duced. In Section 5, a control allocation strategy that redistributes the control effort by
taking into account the presence of actuator faults is detailed. Simulation results to show
the effectiveness of the overall fault-tolerant control strategy are proposed in Section 6.
Finally, conclusions and future works end the paper.

2. Mathematical Model

The overall kinematics and dynamics of a generic multirotor, thus including variable-
pitch quadrotors, can be approximated as that of a unique rigid body with six degrees of
freedom [21]. Let us consider an earth-fixed frame RE = (OE, xE, yE, zE), which is assumed
to be inertial, and a body-fixed frame RB = (OB, xB, yB, zB), which is placed in the center
of mass of the vehicle. For simplicity, we assume the center of mass coincides with the
geometric center of the quadrotor, as depicted in Figure 1.

Figure 1. Quadrotor configuration and frames.

From now on, the standard basis vectors of R3 are denoted with e1, e2, e3. Let us denote
with pF = col(xF, yF, zF) the position of the center of mass with respect to RE, and with
ω = col(p, q, r) the angular velocity of the vehicle. Neglecting the second-order effects
(i.e., rotor dynamics, blade flapping, gyroscopic and inertial effects due to the rotors), the
quadrotor kinematics and dynamics can be expressed as [21]

mp̈F = −kt ṗF −mge3 + RFB
m + FE

w

Jω̇ = −krω−ω× Jω + τB
m

η̇ = T(η)ω,

(1)

where m is the total system mass, J = diag(Jx, Jy, Jz) is the tensor of inertia along the xB,
yB, and zB axes, kt and kr are the linear and angular friction coefficients, η = col(ϕ, θ, ψ)
is the vector of the attitude angles (roll, pitch, and yaw, respectively) that characterize the
rotation from RB to RE.

R =

 cψ cθ cψ sϕ sθ − cϕ sψ sϕ sψ + cϕ cψ sθ

cθ sψ cϕ cψ + sϕ sψ sθ cϕ sψ sθ − cψ sϕ

−sθ cθ sϕ cϕ cθ

, (2)
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where cos(·) = c(·) and sin(·) = s(·) are introduced for the sake of brevity, FB
m and τB

m are
the overall force and torque due to the motors (decomposed in RB), FE

w is the force due to
the wind (decomposed in RE), and T(η) is the kinematic coordinate transformation related
to the adopted roll–pitch–yaw rotation, that is [22]:

T(η) =

 1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)

0 sin(ϕ)
cos(θ)

cos(ϕ)
cos(θ)

. (3)

Let us denote with fi ∈ R the actual lift thrust produced by the i-th actuator. In VPQs,
as in conventional quadrotors, all the actuators are oriented upwards and they produce
collinear lift forces only, as depicted in Figure 2.

Figure 2. Propeller lift thrusts of the variable-pitch quadrotor.

Denoting with uz the overall lift force, given by uz = f1 + f2 + f3 + f4, we have

FB
m = col(0, 0, uz)

τB
m = col(τp, τq, τr).

(4)

In other words, the overall lift thrust is along zB only, because none of the actuators
can generate a horizontal force in RB. Then, substituting (4) in the first row of (1), we obtain
the following model:

mp̈F = −kt ṗF −mge3 + uzRe3 + FE
w

Jω̇ = −krω−ω× Jω + τB
m

η̇ = T(η)ω.

(5)

The four-dimensional vector col(uz, τB
m) = col(uz, τp, τq, τr) is the so called virtual

input vector.

2.1. Input Mapping

Consider the i-th motor. We denote with fi ∈ R the lift thrust generated by the pro-
peller attached to the motor, with di ∈ R the generated drag, and with Ωi ∈ R the angular
rate of the propeller, taken to be positive when the rotation of the motor matches that of
the propeller (clockwise or counter-clockwise). Let us consider the case of rectangular,
untwisted blades (which are suitable for variable-pitch drones) with uniform inflow. Let us
assume the blade pitch is limited in order to avoid propeller stalling, which is an undesired
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effect to be avoided in practice. Then, both the lift force and drag of each rotor can be
expressed as a function of the rotational speed [3]:

fi = cLi Ω
2
i (6)

di = cDi Ω
2
i , (7)

where cLi and cDi are the lift and drag coefficients that depend on the blade geometry. In
the case of fixed-pitch propellers, cLi and cDi are constant. In a variable-pitch propeller,
however, as the pitch angle αi ∈ R changes, the lift and drag coefficients change as well.
Two main approaches to characterize the dependency of cLi and cDi on αi can be found in [9],
and they can be categorized into grey-box (e.g., [3]) and black-box (e.g., [5]) approaches. In
this work, we follow the grey-box approach of [3], which makes use of the blade element
theory and the momentum theory to obtain

cLi = cTi (αi)ρπR4
a (8)

cDi = cQi (αi)ρπR5
a, (9)

where Ra is the propeller radius, ρ is the air density, while cTi (·) and cQi (·) are dimensionless
lift and drag coefficients, which are functions of αi. Following [9,23], which assume steady-
state linearized blade aerodynamics, we consider the implicit relations

αi = k1cTi + k2

√
|cTi | (10)

cQi = k3

√
|cTi |3 + k4, (11)

where k1 = 6
σClαi

, k2 = 3
2
√

2
, k3 = 1√

2
, and k4 = 1

8 σCd0i
. In detail, σ = Nbc

πRa
is the

blade solidity, Nb = 2 is the number of blades, c is the chord length, Clαi
is the 2D lift–

curve–slope of the airfoil section, comprising the rotor, and finally, Cd0i
is the zero-lift

drag coefficient (see [9] for further details). Without loss of generality, we consider a ’+’
quadrotor configuration (see Figure 1), so the overall input mapping is

uz
τp
τq
τr

 =


cL1(α1)Ω2

1 + cL2(α2)Ω2
2 + cL3(α3)Ω2

3 + cL4(α4)Ω2
4

−lcL2(α2)Ω2
2 + lcL4(α4)Ω2

4
−lcL1(α1)Ω2

1 + lcL3(α3)Ω2
3

−cD1(α1)Ω2
1 + cD2(α2)Ω2

2 − cD3(α3)Ω2
3 + cD4(α4)Ω2

4

, (12)

where l is the arm length. The mapping (12) is nonlinear in αi and Ωi, which are the actual
control inputs for each motor i, for a total of eight inputs.

2.2. Explicit Lift and Drag Functions

Equations (10) and (11) are implicit functions of αi, so they are not practical for online
computation. In the literature, such functions are solved iteratively by means of numer-
ical approaches [9]. In this section, instead, we introduce two equivalent equations that
determine the coefficients cTi and cQi in terms of explicit functions of αi.

The lift function cTi (αi) in (10) is expected to be an odd function of αi [9]. In fact,
from (8), we obtain

cTi (αi) =
1
k1

αi +
1
2

sign(αi)

(
k2

2
k2

1
− k2

k2
1

√
k2

2 + 4k1|αi|
)

, (13)

which is an explicit odd function of αi. The drag function cQi (αi) in (11) is expected to be an
even function of αi [9]. Then, noting that cTi (|αi|) = sign(αi)cT(αi), (11) can be rewritten as

cQi (αi) = k3

√
sign(αi)cTi (αi)3 + k4, (14)
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which is an explicit even function of αi. We also calculate in advance the derivatives of (13)
and (14) with respect to αi, as they are going to be employed in the remainder of the paper.
We have

c′Ti
(αi) =

1
k1
− k2

k1

1√
k2

2 + 4k1|αi|

c′Qi
(αi) =

3
2

k3c′Ti
(αi)sign(αi)

√
sign(αi)cTi (αi)

c′Li
(αi) = c′Ti

(αi)ρπR4
a

c′Di
(αi) = c′Qi

(αi)ρπR5
a,

(15)

where the second row is obtained with the use of

dcTi (|αi|)
dαi

= sign(αi)
dcTi (αi)

dαi
. (16)

2.3. Actuator Faults and Control Input Definition

A total of eight control inputs are considered, which are the pitch angles αi and the
squares of the desired rotor speeds, denoted as ui, for i = 1, . . . , 4. All the control inputs
are collapsed in the vectors

α = col(α1, α2, α3, α4),

u = col(u1, u2, u3, u4).
(17)

In the absence of faults, the relation Ω2
i = ui holds. For each actuator i, a possible LOE

is considered, so that the resulting angular speed may be lower than the desired one, i.e.,

Ω2
i = wiui. (18)

Each wi, for i = 1, . . . , 4, is an unknown and time-varying quantity which models
the fault magnitude on the i-th actuator. It is constrained in wi ∈ [0, 1], where wi = 1
corresponds to the faultless scenario. For the sake of brevity, the fault magnitudes are
collected in the vector

w = col(w1, w2, w3, w4). (19)

3. Wind and Fault Estimation

We assume the wind acts on the xE − yE plane only, that is, FE
w = fwxe1 + fwye2. In

other words, we neglect the updraft, and we claim that the horizontal wind does not
generate any significant torque due to the symmetry of the vehicle. Thus, six target
independent variables need to be estimated; these are fwx, fwy and w1, w2, w3, w4, and they
are summarized in the extended uncertainty vector w̄ = col( fwx, fwy, w1, w2, w3, w4). By
handling the joint vector w̄ as an external disturbance, a disturbance observer for the
estimation ˆ̄w of w̄ is then designed, which in our purpose can be defined as a dynamical
system in the form

˙̂s = F(ŝ, x̄, ū) (20)
ˆ̄w = H(ŝ, x̄, ū), (21)

for which ‖ ˆ̄w− w̄‖ → 0 as t → ∞, and where ŝ is the observer state, x̄ = col(pF, ṗF, ω, η)
and ū = col(u, α) compactly refers to the quadrotor state and the control inputs, and
where F(·) and H(·) are smooth function to design. Several disturbance observers have
been proposed in the literature. Here, we follow the NDO proposed in [24], which can be
summarized as follows.

1. Define an auxiliary variable s which directly depends on the estimation target w̄.
Usually, the auxiliary variable s = w̄− λ(x̄, ū) is chosen, for some smooth function
λ(·).
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2. Find the dynamics ṡ of the auxiliary variable s. In this step, the disturbance observer
design problem is turned into a state observer design problem.

3. Based on the auxiliary dynamics ṡ, design a state observer for the estimation ŝ of s.
4. Define ˆ̄w by using the inverse function of the chosen auxiliary variable definition.

For design purposes, the model is conveniently rewritten in Section 3.1. Then, the
design of the NDO is proposed in Section 3.2.

Remark 1. The estimation of the actuator faults and the external force generated by the wind is
obtained by the disturbance observer, where only kinematic data are required, i.e., without the need
of measuring motor speeds, motor currents, etc.

Remark 2. The design of λ(·) involves the solution of a set of partial differential equations.

Remark 3. If the dynamics of w̄ is uncertain, the ultimate boundedness of ‖ ˆ̄w− w̄‖ is demanded
instead of convergence.

3.1. Model Manipulation

Note that the input mapping (12) and the action of the fault (18) can be rewritten as
uz
τp
τq
τr

 =


cL1(α1) cL2(α2) cL3(α3) cL4(α4)

0 −lcL2(α2) 0 lcL4(α4)
−lcL1(α1) 0 lcL3(α3) 0
−cD1(α1) cD2(α2) −cD3(α3) cD4(α4)




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 , Bc(α)


Ω2

1
Ω2

2
Ω2

3
Ω2

4

 (22)

and 
Ω2

1
Ω2

2
Ω2

3
Ω2

4

 =


w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4




u1
u2
u3
u4

 = diag(w)u = diag(u)w, (23)

resulting in the overall relation col(uz, τB
m) = Bc(α)diag(u)w.

The quadrotor kinematics and dynamics in (5) can be equivalently expressed as

d
dt

[
pF
η

]
=

[
ṗF

T(η)ω

]
(24)

d
dt

[
ṗF
ω

]
=

[
− kt

m ṗF − ge3
−kr J−1ω− J−1(ω× Jω)

]
+

1
m

[
e1 e2
0 0

][
fwx
fwy

]
+

[ 1
m Re3 0

0 J−1

][
uz
τB

m

]
. (25)

Then, defining z1 = col(pF, η) and z2 = col( ṗF, ω), we can rewrite the overall quadro-
tor model in order to show that the non-linear model is affine with respect to the uncertainty
w̄. In fact, we have

ż1 = h1(z1, z2)

ż2 = h2(z2) + P(z1, u, α)w̄,
(26)

where

h1(z1, z2) =

[
ṗF

T(η)ω

]
, h2(z2) =

[
− kt

m ṗF − ge3
−kr J−1ω− J−1(ω× Jω)

]
, (27)

and P(z1, u, α) =
[

P1 P2(z1, u, α)
]
∈ R6×6, with

P1 =
1
m

[
e1 e2
0 0

]
∈ R6×2, P2(z1, u, α) =

[ 1
m Re3 0

0 J−1

]
Bc(α)diag(u) ∈ R6×4. (28)
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Finally, P is almost everywhere nonsingular, since

det(P) =
1

m2 det
([ 1

m cos(ϕ) cos(θ) 0
0 J−1

]
Bc(α)diag(u)

)
= u1u2u3u4

cos(ϕ) cos(θ)
m3 Jx Jy Jz

det(Bc(α)),
(29)

where det(Bc(α)) 6= 0 almost everywhere (assuming l > 0). Noting that each ui is positive
in real flight conditions, cos(ϕ) cos(θ) is different from zero in non-aerobatic flight, and
det(Bc(α)) 6= 0, then the inverse of P is well-defined in practical flight conditions.

3.2. Disturbance Observer Design

The NDO is designed on model (26). Indeed, the NDO design in DOBC is well-known
for control affine systems [25], so the idea is actually based on the affine uncertainty, which
is w̄ in our problem. Consider the auxiliary variable s = w̄− λ(z1, z2, u, α), where λ(·) is a
function to design. For the sake of brevity, we denote λ = λ(z1, z2, u, α). By differentiation,
we have

ṡ = ˙̄w− ∂λ

∂z1
h1(z1, z2)−

∂λ

∂z2
(h2(z2) + P(z1, u, α)w̄)− ∂λ

∂u
u̇− ∂λ

∂u
α̇

= ˙̄w− ∂λ

∂z1
h1(z1, z2)−

∂λ

∂z2
(h2(z2) + P(z1, u, α)(s + λ))− ∂λ

∂u
u̇− ∂λ

∂u
α̇

= − ∂λ

∂z2
P(z1, u, α)s + Rs + ˙̄w,

(30)

where Rs is a known term given by

Rs = −
∂λ

∂z1
h1(z1, z2)−

∂λ

∂z2
(h2(z2) + P(z1, u, α)λ)− ∂λ

∂u
u̇− ∂λ

∂u
α̇. (31)

The disturbance observer is then designed as

˙̂s = − ∂λ

∂z2
P(z1, u, α)ŝ + Rs (32)

ˆ̄w = ŝ + λ, (33)

where ŝ and ˆ̄w are estimations for s and w̄, respectively. The function λ(·) is investigated
through the estimation error dynamics. On this purpose, let us consider the error variables
s̃ = s− ŝ and ˜̄w = w̄− ˜̄w. The error dynamics is

˙̃s = − ∂λ

∂z2
P(z1, u, α)ŝ + ˙̄w (34)

˜̄w = s̃. (35)

With the choice λ(z1, z2, u, α) = HP(z1, u, α)−1z2, where −H is Hurwitz, the overall
estimation error boils down to

˙̄̃w = −H ˜̄w + ˙̄w, (36)

which is an asymptotically stable linear time-invariant system, perturbed by the unknown
input ˙̄w.

4. Control Law Design

A classical inner/outer loop approach is employed to calculate the desired virtual
inputs [26,27], where the small angle approximation is adopted (ϕ ≈ 0 and θ ≈ 0). More-
over, in order to avoid a conflict between the inner and the outer loop, a spectral separation
is required; to achieve this, in practice, a higher rate is employed for the inner loop with
respect to the outer loop [28].
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4.1. Outer Loop Design

Given the time-varying position references xFr and yFr (for xF and yF, respectively), the
outer loop is designed to calculate the references ϕr and θr (for the angles ϕ and θ, respectively)
in order to track the position reference. Exploiting the small angle approximation [26,27], that
is, ϕ ≈ 0 and θ ≈ 0, we have[

eT
1

eT
2

]
Re3 ≈

[
sin(ψ) cos(ψ)
− cos(ψ) sin(ψ)

][
ϕ
θ

]
, R2(ψ)

[
ϕ
θ

]
. (37)

Substituting (37) in (5), it follows that[
ẍF
ÿF

]
=

[
eT

1
eT

2

]
p̈F = − kt

m

[
ẋF
ẏF

]
+

uz

m

[
eT

1
eT

2

]
Re3 +

1
m

[
fwx
fwy

]
≈ − kt

m

[
ẋF
ẏF

]
+

uz

m
R2(ψ)

[
ϕ
θ

]
+

1
m

[
fwx
fwy

]
.

(38)

As the inner loop runs at a higher rate with respect to the outer loop, we can assume
the inner loop is fast enough to track ϕr and θr [26]. Hence, by solving (38) for the variables
ϕ and θ, we obtain the ideal references ϕr and θr for uz 6= 0, that is,[

ϕr
θr

]
=

m
uz

RT
2 (ϕ)

(
kt

m

[
ẋF
ẏF

]
− 1

m

[
f̂wx
f̂wy

]
+

[
vx
vy

])
, (39)

where vx and vy are injection inputs, defined as

vx = ẍFr − αx1(ẋF − ẋFr)− αx0(xF − xFr) (40)

vy = ÿFr − αy1(ẏF − ẏFr)− αy0(yF − yFr). (41)

The parameters αx1, αx0, αy1, αy0 are chosen according to the desired pole placement
problem. In fact, if the angles ϕ and θ follow references (39)–(41), we can show by substitu-
tion in (5) that the outer loop tracking error dynamics becomes:

ëx + αx1 ėx + αx0 ex =
1
m

f̃wx (42)

ëy + αy1 ėx + αy0 ey =
1
m

f̃wy, (43)

where ex = xF − xFr, ey = yF − yFr, f̃wx = fwx − f̂wx and f̃wy = fwy − f̂wy.

4.2. Inner Loop Design

Let zFr and ψr be the reference signals for zF and ψ that we want to track, and let ϕr
and θr be the reference signals for ϕ and θ (provided by the outer loop in (39)). From (5), it
follows that

z̈F = − kt

m
żF − g +

uz

m
cos(ϕ) cos(θ) (44)

η̈ = Ṫ(η)ω− krT(η)J−1ω− T(η)J−1(ω× Jω) + T(η)J−1τB
m, (45)

so we can set the reference values uz,r and τB
m,r (for uz and τB

m, respectively) as

uz,r =
m

cos(ϕ) cos(θ)

(
kt

m
żF + g + vz

)
τB

m,r = JT(η)−1
(
−Ṫ(η)ω + krT(η)J−1ω + T(η)J−1(ω× Jω) + vη

)
.

(46)
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The terms vz ∈ R and vη ∈ R3 are auxiliary inputs, and they are set as

vz = z̈Fr − αz1(żF − żFr)− αz0(zF − zFr) (47)

vη = η̈r − αη1(T(η)ω− η̇r)− αη0(η − ηr), (48)

where the scalars αz1, αz0 and the matrices αη1, αη0 are set according to the desired pole
placement. If the variables uz and τB

m follow references (46)–(48), we can show by substitu-
tion in (5) that the inner loop tracking error dynamics becomes

ëz + αz1 ėz + αz0 ez = 0 (49)

ëη + αη1 ėη + αη0 eη = 0, (50)

where ez = zF − zFr and eη = η − ηr.

5. Control Allocation

In this section, we show how the virtual input (i.e., uz and τB
m) can be distributed

among the motors (i.e., u) and the pitch servos (i.e., α). Let us consider a non-linear
optimization problem in the optimization variables α and u:

min
α,u

J(α, u) (51)

s.t. h(α, u) = 0 (52)

g(α, u) ≤ 0, (53)

where J(α, u) in (51) is a cost function to be determined, while (52) and (53) represent generic
non-linear and nonconvex constraints. In the literature, the control allocation problem
in multirotors is usually tackled with lightweight methods, such as pseudo-inverse and
redistributed pseudo-inverse [29,30]. Such methods are motivated by the need for high
rates, but they are not effective in the presence of constraints and rate limits. Moreover,
they need a significant simplification of the problem formulation (i.e., linear or quadratic
cost functions, linear equality constraints, potentially also removing inequality constraints).
In the following, we set up the control allocation problem and we detail a method to solve
it efficiently by means of a locally convex Quadratic Programming (QP) reformulation (as
carried out, for example, in [31] for a marine vessel).

The method that is detailed in this section to solve the non-linear allocation problem (51)–(53)
represents a simplified version of the generic Sequential Quadratic Programming (SQP)
strategy (see, for example, [32]) to solve non-linear optimization problems. The main
differences are

• SQP employs the Hessian of the Lagrangian in the cost function, while we employ
the Hessian of the original cost function. In other words, we always set the Lagrange
multipliers’ initial guess to zero for simplicity, so that the Hessian of the Lagrangian
coincides with the Hessian of the original cost function.

• Once the search direction is found, a full step is performed in the proposed method,
and no merit function is computed.

• The stopping criterion in the proposed method boils down to performing just a single
iteration (i.e., a single QP is solved as in Real-Time Iteration [33], instead of a sequence
of QP problems as done in SQP), and so no convergence criteria are needed.

These modifications introduce some loss of accuracy in the solution, but they reduce
the number of evaluations, in order to perform the allocation faster in view of online
implementation.
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5.1. Equality Constraints

The equality constraints (52) originate from (22)–(23), namely

h(α, u) = B
[

diag(w)diag(c̄L(α))u
diag(w)diag(c̄D(α))u

]
−
[

uz
τB

m

]
(54)

= B
[

diag(w)diag(u)c̄L(α)
diag(w)diag(u)c̄D(α)

]
−
[

uz
τB

m

]
= 0, (55)

where

B =


1 1 1 1 0 0 0 0
0 −l 0 l 0 0 0 0
−l 0 l 0 0 0 0 0

0 0 0 0 −1 1 −1 1

 (56)

and

c̄L(α) = col(cL(α1), cL(α2), cL(α3), cL(α4))

c̄D(α) = col(cD(α1), cD(α2), cD(α3), cD(α4))

c̄′L(α) = col(c′L(α1), c′L(α2), c′L(α3), c′L(α4))

c̄′D(α) = col(c′D(α1), c′D(α2), c′D(α3), c′D(α4)).

(57)

Please note that cL(αi) and cD(αi) have been defined in (8), while c′L(αi) and c′D(αi)
have been defined in (15). The time-varying numeric values for uz, τB

m, and w in (54) are
given by (46) (uz,r, τB

m,r) and (33) ( ˆ̄w), respectively; in other words, the actual lift force and
torques must satisfy those required by the inner loop, also taking into account the actual
fault estimation.

Please note that the equality constraints are non-linear and nonconvex with respect to
the optimization variables α and u. Non-linear optimization problems are hard to solve
online due to computational limits, as well as because the existence of the solution is not
guaranteed in general. To solve efficiently the problem online, the equality constraints (52)
are linearized, as in SQP, so that a QP problem can be obtained. Using the first-order Taylor
approximation around (α0, u0), we have

h(α, u) ≈ h(α0, u0) +
∂h(α0, u0)

∂α
(α− α0) +

∂h(α0, u0)

∂u
(u− u0), (58)

where α0 and u0 represent the current value of α and u, respectively. Then, (54) can be
approximated by [

∂h(α0, u0)

∂α

∂h(α0, u0)

∂u

]
︸ ︷︷ ︸

Aeq

[
∆α
∆u

]
︸ ︷︷ ︸

x

= −h(α0, u0)︸ ︷︷ ︸
beq

, (59)

where ∆α = α− α0, ∆u = u− u0, and

∂h(α0, u0)

∂α
= B

[
diag(w)diag(u0)diag(c′L)
diag(w)diag(u0)diag(c′D)

]
∂h(α0, u0)

∂u
= B

[
diag(w)diag(c̄L(α0))
diag(w)diag(c̄D(α0))

]
h(α0, u0) = B

[
diag(w)diag(c̄L(α0))u0
diag(w)diag(c̄D(α0))u0

]
−
[

uz
τB

m

]
.

(60)

As w is not available, to build the control allocation problem online we replace it in
(60) with its estimation contained in ˆ̄w.
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Remark 4. In the case of a centralized motor, it suffices to add the constraint ∆u1 = ∆u2 = ∆u3 =
∆u4; provided that the same initial value is employed for u, then u1 = u2 = u3 = u4 holds. In
other words, (59) is replaced by

∂h(α0, u0)

∂α

∂h(α0, u0)

∂u
0 0 0 0
0 0 0 0
0 0 0 0

1 −1 0 0
0 1 −1 0
0 0 1 −1


︸ ︷︷ ︸

Aeq

[
∆α
∆u

]
︸ ︷︷ ︸

x

=


−h(α0, u0)

0
0
0


︸ ︷︷ ︸

beq

. (61)

5.2. Inequality Constraints

The inequality constraints of interest to be included in (53), in practice, are saturation
constraints and rate limits, i.e.,

α ≤ α ≤ α

u ≤ u ≤ u

∆α ≤ α− α0 ≤ ∆α

∆u ≤ u− u0 ≤ ∆u.

(62)

Such inequality constraints are affine with respect to the optimization variables α and
u, so they are tractable in online optimization.

Replacing (52) with its approximation (59) (or (61), for a single centralized motor) and
expressing the constraints (62) in the variable x = col(∆α, ∆u), we obtain an optimization
problem in the form

min
x

J(x)

s.t. Aeqx = beq

x ≤ x ≤ x,

(63)

where
x = col(max(α− α0, ∆α) , max(u− u0, ∆u))

x = col(min(α− α0, ∆α) , min(u− u0, ∆u))
(64)

are defined to express the inequality constraints (62) in a more compact way. Please note
that (63) is a QP problem by construction, provided that the cost function J(x) is quadratic.

5.3. Cost Function

The main term to be considered in a cost function for UAVs, especially in the case of
multirotors, is the energy consumption E(x). A quadratic form for E(x) is often assumed
in the UAV literature [29,30]; such a choice is mainly motivated by simplicity, as it usually
leads to a QP problem. Motivated by the need for autonomy in UAVs, more detailed
representations, coming from physically accurate consumption models, have been proposed
in the literature as well. The most employed models are second-order polynomials [9]
and irrational functions [34], as well as more generic non-linear functions [6]. All of the
previous choices fit well with the proposed framework, as it is always possible to locally
approximate the cost function with a quadratic cost function, as done for example in [31].
For the purpose of this work, the steady-state thruster consumption from [34] is employed.
Given a generic matrix M = [mij] ∈ Rm×n and k ∈ R, let us introduce, with a slight abuse
of notation, the short |M|k = [|mij|k] (i.e., the k-th power of the absolute values of the
entries of M, in an element-wise fashion). Then, the steady-state thruster consumption for
a quadrotor can be rewritten as

E(x) =
4

∑
i=1

qu,i|ui|3/2 = |uT |3/4Qu|u|3/4, (65)
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where |u|3/4 and |uT |3/4 should be intended element-wise as already anticipated. Fur-
thermore, qu,i is assumed to be constant for simplicity (see [34] for further details) and

Qu = diag(qu,1, . . . , qu,4), (66)

with qu,i > 0 for i = 1, . . . , 4. Hence, we can define the cost function

J(x) = E(x) + ∆αTQ∆α∆α + ∆uTQ∆u∆u + (α− αp)
TQα(α− αp), (67)

where Q∆α, Q∆u, Qα, Qu are symmetric positive definite matrices. The first term of (67),
which takes into account energy consumption, is detailed in (65). The second and the third
quadratic terms of (67) discourage variations in the control inputs to minimize actuator
wear and tear. The last term of (67) defines preferred values αp for the pitch angles α.
This term becomes necessary in order to compensate for the first term (i.e., the one that
discourages energy consumption), because the actuator is more energy-efficient when the
pitch angle is large in magnitude. Thus, in the absence of the fourth term, the pitch angle is
often stuck to its saturation limit to minimize energy consumption. In such a case, the only
way to increase the lift further is to increase the motor speed, as the pitch angle cannot be
increased in magnitude, so the maneuverability of the vehicle worsens.

Considering the second-order Taylor approximation for E(x), i.e.,

E(x) ≈ |uT
0 |3/4Qu|u0|3/4 +

3
2
|uT

0 |1/2Qu∆u +
3
8

∆uTQudiag
(
|u0|−1/2

)
∆u, (68)

and performing some manipulation, (67) becomes

J(x) =
1
2

xT

[
2(Qα + Q∆α) 04×4

04×4 2Q∆u +
3
4 Qudiag

(
|u0|−1/2

)]
︸ ︷︷ ︸

H

x

+

[
2(α0 − αp)TQα

3
2

(
|u0|1/2

)T
Qu

]
︸ ︷︷ ︸

f T

x + c,

(69)

where c is a constant term (i.e., a term that does not depend on x), which is irrelevant for
the solution of the optimization problem, so it can be neglected.

5.4. Scaling and Infeasibility

The problem formulation according to (59) (or (61), for a single centralized motor),
(64), (69), that is,

min
x

1
2

xT Hx + f Tx

s.t. Aeqx = beq

x ≤ x ≤ x,

(70)

shows two drawbacks. First of all, the existence of a feasible solution is not guaranteed, so
problem infeasibility must be dealt with. Moreover, the problem is ill-conditioned, because
the magnitude of ∆α and ∆u is very different; according to (17)–(18), α is typically in the
range of decimals (in radians), while u is typically in the range of tens of thousands (in
radians per second squared), and the same occurs for ∆α and ∆u.

To improve the problem conditioning, diagonal scaling is performed [32]. We define a
new optimization variable

z = P−1x, (71)
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where P = diag(max(|x|, |x|)) is a diagonal matrix such that the components of z share the
same magnitude, as they become constrained in [−1, 1] according to the rate limits in (62)
(please note that the box constraint estimation [−1, 1] is conservative; tighter constraints
may apply).

In order to deal with infeasible problems, we soften the equality constraint by adding a
vector of unconstrained artificial variables ζ into the equality constraint, while minimizing
the norm of the artificial variable. The overall problem (70), after the change of variables
and the softening of equality constraints, becomes

min
z,ζ

1
2

zT PT HPz + f T Pz + ζTQζ ζ

s.t. AeqPz + ζ = beq

P−1x ≤ z ≤ P−1x,

(72)

which can be finally rewritten in the classical form that is usually required by QP solvers, i.e.,

y∗ = arg min
y

1
2

yT Ȟy + f̌ Ty

s.t. Ǎeqy = b̌eq

Ǎy ≤ b̌

y ≤ y ≤ y,

(73)

where

y =

[
z
ζ

]
Ȟ =

[
PT HP 08x4
04x8 Qζ

]
f̌ T =

[
f T P 01x4

]
Ǎeq =

[
AeqP I4

]
b̌eq = beq y =

[
P−1x

ζ

]
y =

[
P−1x

ζ

]
,

(74)

ζ and ζ are large enough to guarantee feasibility (e.g., ζ = −ζ = M, M→ ∞), while Ǎ and
b̌ are empty matrices, because no inequality constraints are left, with an exception made for
the upper and lower bounds that are usually introduced separately.

Once the solution y∗ of (72)–(74) is calculated, the solution to the control allocation
problem is

x∗ =
[

∆α∗

∆u∗

]
=
[
P 08x4

]
y∗

α∗ = α0 + ∆α∗

u∗ = u0 + ∆u∗.

(75)

Remark 5. The choice of a quadratic penalty for ζ is made for simplicity, as it introduces a small
number of additional variables and it makes the cost function smooth and hence easier to solve
online. This strategy is similar to the quadratic penalty method in [32] and, more precisely, to the
weighted least squares in [35]. As a drawback, such a penalty term is not exact, i.e., the solution of
the penalized problem is not equivalent to the solution of the original problem [32,36]. In particular,
the higher the penalty through Qζ , the more the solutions of the two problems coincide, but also
the worse is the conditioning. Thus, Qζ is a trade-off between ideal solution quality and acceptable
conditioning. We claim that this issue is not crucial, because several approximations are introduced
to simplify the problem, and so the solution is not exact anyway. Alternatively, it is possible to
introduce additional positively constrained slack variables and to employ exact penalty functions,
such as `1 and `∞ penalties, at the price of dealing with the nonsmoothness of the cost function
(see [32] for further details).
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6. Numerical Simulation

A numerical simulation is performed using MATLAB, where the inner loop and the
outer loop run at 400 Hz (i.e., ArduPilot’s loop rate) and 10 Hz, respectively. A zero-
order hold is performed between consecutive samples. The quadrotor parameters are
set according to [18] and they are reported in Table 1. Different from [18], the friction is
neglected and the thrust-to-weight ratio is slightly increased (from 2.5 to 3.131) in order to
face severe faults.

Table 1. Variable-pitch quadrotor parameters.

Parameter Variable Value Unit

Total system mass m 1.37 [kg]
Inertia about xB, yB Jx,Jy 7.5 × 10−3 [kg·m2]

Inertia about zB Jz 1.3 × 10−2 [kg·m2]
Arm length l 0.3 [m]

Lift curve slope clα 5.23 [−]
Zero lift drag coefficient cd0 0.01 [−]

Propeller radius Ra 0.18 [m]
Propeller chord c 0.03 [m]
Rotor solidity σ 0.106 [-]

Gravitational acceleration g 9.81 [m/s2]
Air density ρ 1.225 [kg/m3]

Linear friction coefficient kt 0 [N· s/m]
Angular friction coefficient kr 0 [N · s ·m]

Minimum pitch angle αmin 0.05 [deg]
Maximum pitch angle αmax 15 [deg]
Pitch angle rate limit ∆αmax 60 [deg/s]

Minimum desired square rotor speed umin 0 [rad2/s2]
Maximum desired square rotor speed umax 2 × 105 [rad2/s2]

Motor square speed rate limit ∆umax 1.6 × 105 [rad2/s3]

The control parameters were set empirically through a coarse grid search (as such,
better performances could be achieved with a finer tuning). The closed-loop poles for the
inner loop are placed in −2 and −2.1 for zF, in −10 and −11 for ϕ and θ, and finally in
−5 and −5.1 for ψ. The outer loop poles are instead placed in −1 and −2 for both xF and
yF. A properly scaled white Gaussian sensor noise is simulated according to an MPU-9250
IMU TDK InvenSense [37], which is a common device in quadrotor flight controllers (i.e.,
in Pixhawk 4).

6.1. Independent Motors’ Speed

Let us first consider a VPQ equipped with four independent motors and four indepen-
dent pitch servos. The simulation is performed for a total of 30 s under the external wind
force reported in Figure 3, which also reports the correspondent estimations provided by
the observer, where the gain matrix has been set as H = 5I, with I being the identity matrix.
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Figure 3. Horizontal wind estimation (independent motors’ speed).

Due to the stochastic nature of the wind, achieving the boundedness of the estimation
error replaces the ideal goal of a perfect convergence, which is here achieved in the case
of bounded derivatives of the wind force. The estimation of the faults and the wind
is practically started after a finite time from the beginning of the flight (i.e., after 1 s of
simulation in this example), in order to make the initial conditions of the observer practically
irrelevant.

Faults components and their estimations are reported in Figure 4.

Figure 4. Fault estimation (independent motors’ speed).

Two trapezoidal faults are injected. The first one affects motor 1 after 10 s (the LOE
magnitude is 60%, i.e., w1 = 0.4) and a second one affects motor 3 after 15 s (the LOE
magnitude is 30%, i.e., w3 = 0.7). In the range t ∈ [0, 1], each ŵi is set equal to 1, matching
the reasonable assumption of no faults at the initial time (or, without loss of generality, we
assume that we know the fault status at the beginning of the flight). Note that, since each
estimation is provided independently from the NDO, the same results can be achieved in
the case of simultaneous faults.

The tracking reference components and the related state variables are reported in Figure 5.
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Figure 5. Tracking performances (independent motors’ speed).

The references on xF and yF are sinusoidal signals, the reference on zF forces the
quadrotor to face both ascending and descending profiles, while the yaw angle is kept
at zero. The system is forced to change the velocity constantly in both magnitude and
direction, with a linear speed magnitude up to 7 m/s. All the references are smoothly
tracked with an acceptable error (the plotted variables are the actual state variables instead
of the noisy ones), with the exception of the yaw component (ψ), which exhibits a temporary
increasing error when the fault worsens.

The references ϕr and θr generated by the outer loop are reported in Figure 6.

Figure 6. Inner loop tracking performances on desired angles (independent motors’ speed).

Please note that, when the fault is rapidly worsening, the tracking capabilities in the
inner loop are affected. The inner/outer loop approach, which employs a higher frequency
of the inner loop and a zero-order hold, allows us to track the references, despite the
presence of noise, faults, and disturbances.

The control inputs u and α are reported in Figure 7.
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Figure 7. Control inputs u and α (independent motors’ speed).

All the actuators are subject to the same saturation constraints. This allows us to
plot the bounds with horizontal dashed lines in Figure 7 (upper bounds in this case). In
particular, the saturation limits have been set as

α = col(αmin, αmin, αmin, αmin)

α = col(αmax, αmax, αmax, αmax)

u = col(umin, umin, umin, umin)

u = col(umax, umax, umax, umax)

∆α = −∆α = col(∆αmax, ∆αmax, ∆αmax, ∆αmax)

∆u = −∆u = col(∆umax, ∆umax, ∆umax, ∆umax),

(76)

where umin, umax, αmin, and αmax are detailed in Table 1. Considering α = α, u corresponds
to a thrust-to-weight ratio equal to 3.131.

At the beginning, when no fault is present, the opposite actuators (1 and 3, 2 and 4)
show similar motor speeds and pitch angles, due to symmetry. As soon as the fault on
motor 1 occurs, the opposite actuators 1 and 3 behave differently; in response to the severe
fault acting on motor 1, the control allocation algorithm demands a high speed and a large
pitch angle to compensate for the missing lift force.

6.2. Centralized Motor

In this section, we consider a VPQ equipped with a single centralized motor and
four independent pitch servos. The simulation conditions and the wind components are
the same as the previous simulation, including the same random seed. Figure 8 reports
the wind effect and its estimations provided by the observer; no noticeable differences
can be noted, as expected, because the fault estimation does not directly depend on the
actual inputs.
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Figure 8. Horizontal wind estimation (centralized motor).

The same consideration holds for the faults and their estimations (Figure 9).

Figure 9. Fault estimation (centralized motor).

The tracking reference components and the related state variables are reported in
Figures 10 and 11. The performances are similar; minor differences in the outer loop
tracking capabilities can be detected.

Finally, the control inputs u and α are reported in Figure 12.
First of all, please note that the motor speeds coincide, as expected. Furthermore, in

response to the fault acting on motor 1, the control allocation algorithm demands a high
motor speed to compensate for the missing lift force. As there is only one centralized motor,
the speed of every propeller must increase. Analogously, please note that, the larger the
fault, the higher the average value of the pitch angle.
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Figure 10. Tracking performances (centralized motor).

Figure 11. Inner loop tracking performances on desired angles (centralized motor).

Figure 12. Control inputs u and α (centralized motor).
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As the motor speed is higher on average in the case of the centralized motor
(Figures 7 and 12), the energy consumption is higher. This is unavoidable, because in the
case of the centralized motor, the input redundancy is lower than in the case of independent
motors. In Table 2, we summarize the overall normalized (i.e., Qu = I) consumption during
the flight, as proposed in (65).

Table 2. Consumptions: independent motors’ speed vs. centralized motor.

Scenario Consumption (|u|3/2)

Independent motors 6.144× 109

Centralized motor 7.551× 109

7. Conclusions

Unlike standard quadrotors that are equipped with four fixed-pitch blades and four
independent motors, VPQs can vary both the rotation speed and the blade pitch of each
propeller, thus increasing the degrees of freedom for control purposes. In addition to
higher thrust rate of change, reverse thrust and reverse flight capabilities, and scaling well
with size, VPQs enable for fault-tolerant control strategies thanks to their inherent input
redundancy, whether they are equipped with four independent motors or a centralized one.
We have shown that a single observer can estimate both actuator loss of effectiveness and
the external disturbance given by horizontal wind. According to the disturbance observer-
based control framework, the estimation of the wind is fed forward in the outer (position)
control loop. The estimation of the actuator loss of effectiveness is instead employed in the
control allocation algorithm. It manages each propeller’s pitch and motor speed to generate
the force and the torques commanded by the inner (attitude and altitude) control loop.
Simulation results show that the estimation of both the disturbance and the actuator loss
of effectiveness is practically feasible in the presence of conventional measurement noise
in commercial devices. We remark that the fault estimation is performed from kinematic
data of the onboard inertial measurement unit only, without the need to measure the motor
speed nor the current drawn by the actuators.

Comparing centralized and independent motors, the former is less efficient in terms
of energy consumption, especially in the case of faults, because all the propellers must spin
faster. Clearly, many other factors should be considered to evaluate the energy consumption
properly, such as possible weight and cost reduction. In any case, both centralized and
independent motors can tolerate actuator faults using the proposed scheme. The proposed
control scheme could also deal with pitch lock-in-place, provided that reliable information
on the stuck fault is available (e.g., measuring the current pitch angle or estimating it
through a fault detection algorithm). Practically, it is sufficient to constrain the faulty pitch
servo to the current value, and the control allocation algorithm can accommodate for the
stuck fault using the remaining control inputs. However, in the case of a single centralized
motor, the reduced amount of redundancy makes it less robust to lock-in-place faults and
severe loss of effectiveness.
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