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Abstract: In this paper, we propose a strategy for detecting and isolating actuator faults in an
overactuated Remotely Operated Vehicle (ROV) with six degrees of freedom. Fault detection and
isolation are based on the Adaptive Extended Kalman Filter (AEKF), which is a recent extension
of the well-known Kalman Filter designed for nonlinear dynamics and additive disturbances
estimation. The residuals generated by the AEKF act as directional residuals, and fault isolation
is performed by calculating the cosine similarity between the residuals and the columns of the
control effectiveness matrix. The decision is then used in a simple fault-tolerant control allocation
algorithm, without the need to alter the control law. Simulation results show the effectiveness
of the estimation method in the presence of thruster failures.
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1. INTRODUCTION

Remotely Operated Vehicles (ROVs) are typically de-
ployed in unstructured and challenging environments,
where various unforeseeable events can happen. For in-
stance, the marine currents may act as external distur-
bances, physical obstacles might obstruct the path of the
ROV, and aquatic vegetation can impede the operation
of its thrusters (Capocci, 2018). Notably, the presence of
aquatic vegetation can lead to a reduction in the effec-
tiveness of the thrusters, causing a Loss Of Effectiveness
(LOE). Additionally, issues such as voltage drops and
propeller damage can induce partial or total LOE. Thus,
the issue of Fault Detection and Isolation (FDI) is highly
significant in the context of ROVs.

To perform FDI, the residual must actually be a vector
of signals, as FDI is not possible in presence of a scalar
residual (Gertler, 2005), at least if no assumptions on
the fault magnitude and/or spectral characteristics of the
fault signal can be made. For this purpose, two main
classes of residuals are investigated in the literature: struc-
tured residuals and directional residuals (Chen and Pat-
ton, 1999). To perform FDI using structured residuals, the
residuals’ values are tested in parallel against pre-defined
thresholds (Antic et al., 2016). Then, the binary outcome is
compared with the structure matrix, that describes if each
residual is sensitive to each fault or not. So, the informa-
tion lies in the dependencies between residuals and faults
in a binary way. An alternative approach to achieve FDI
involves designing a directional residual vector that aligns
with a predefined direction or subspace specific to a given
fault. In this case, FDI boils down to identifying the known
fault signature direction that best matches the residual

vector (Chen et al., 1995; Patton and Chen, 1997) using
simple tests based on geometry and generalized likelihood
(Hu and Gertler, 2005). Let r(t) be the residual vector.
The residual is said directional if r(t|pj) = αj(t)lj , where
r(t|pj) is the residual affected by a single fault pj(t), lj is a
constant vector that identifies the direction of the response
in the residual space, and αj(t) is a scalar that depends
on the fault size and dynamics (Chen, 1995; Gertler and
Monajemy, 1995). Ideally, the response directions should
be orthogonal (or at least linearly independent): this al-
lows for a straightforward isolation, however, it limits the
number of faults to that of the system outputs (Gertler,
2005). Observers that produce a residual with directional
characteristics are known in the literature as fault (or
failure) detection filters, following the seminal work by
Beard (1971). Fault detection filters map additive fault
vectors to the detection space, spanned by eigenvectors
which are colinear in output space. The detection filter
design process consists of assigning the eigenstructure of
the detection space associated with each fault to achieve
the desired directional properties (Park and Rizzoni, 1994)
by means of a proper choice of the observer gain (White
and Speyer, 1987).

The objective of this paper is to design a fault-tolerant
control scheme for an overactuated ROV with 6 degrees
of freedom (i.e., position and attitude) using a recent ad-
vancement of the well-known Kalman Filter (KF), known
as Adaptive Extended Kalman Filter (AEKF), as a di-
rectional residual generator. As will become clearer in
the remainder of the paper, the conventional KF is not
suitable for FDI in such a ROV because the augmented
system (i.e., considering the joint state and disturbance) is
not uniformly completely controllable regarding the state
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Università Politecnica delle Marche,

Via Brecce Bianche, 60131 Ancona, Italy,
(e-mail: {a.baldini, r.felicetti, a.freddi, a.monteriu}@univpm.it)

Abstract: In this paper, we propose a strategy for detecting and isolating actuator faults in an
overactuated Remotely Operated Vehicle (ROV) with six degrees of freedom. Fault detection and
isolation are based on the Adaptive Extended Kalman Filter (AEKF), which is a recent extension
of the well-known Kalman Filter designed for nonlinear dynamics and additive disturbances
estimation. The residuals generated by the AEKF act as directional residuals, and fault isolation
is performed by calculating the cosine similarity between the residuals and the columns of the
control effectiveness matrix. The decision is then used in a simple fault-tolerant control allocation
algorithm, without the need to alter the control law. Simulation results show the effectiveness
of the estimation method in the presence of thruster failures.

Keywords: Safety of marine systems; Reconfigurable control, sensor and actuator faults.

1. INTRODUCTION

Remotely Operated Vehicles (ROVs) are typically de-
ployed in unstructured and challenging environments,
where various unforeseeable events can happen. For in-
stance, the marine currents may act as external distur-
bances, physical obstacles might obstruct the path of the
ROV, and aquatic vegetation can impede the operation
of its thrusters (Capocci, 2018). Notably, the presence of
aquatic vegetation can lead to a reduction in the effec-
tiveness of the thrusters, causing a Loss Of Effectiveness
(LOE). Additionally, issues such as voltage drops and
propeller damage can induce partial or total LOE. Thus,
the issue of Fault Detection and Isolation (FDI) is highly
significant in the context of ROVs.

To perform FDI, the residual must actually be a vector
of signals, as FDI is not possible in presence of a scalar
residual (Gertler, 2005), at least if no assumptions on
the fault magnitude and/or spectral characteristics of the
fault signal can be made. For this purpose, two main
classes of residuals are investigated in the literature: struc-
tured residuals and directional residuals (Chen and Pat-
ton, 1999). To perform FDI using structured residuals, the
residuals’ values are tested in parallel against pre-defined
thresholds (Antic et al., 2016). Then, the binary outcome is
compared with the structure matrix, that describes if each
residual is sensitive to each fault or not. So, the informa-
tion lies in the dependencies between residuals and faults
in a binary way. An alternative approach to achieve FDI
involves designing a directional residual vector that aligns
with a predefined direction or subspace specific to a given
fault. In this case, FDI boils down to identifying the known
fault signature direction that best matches the residual

vector (Chen et al., 1995; Patton and Chen, 1997) using
simple tests based on geometry and generalized likelihood
(Hu and Gertler, 2005). Let r(t) be the residual vector.
The residual is said directional if r(t|pj) = αj(t)lj , where
r(t|pj) is the residual affected by a single fault pj(t), lj is a
constant vector that identifies the direction of the response
in the residual space, and αj(t) is a scalar that depends
on the fault size and dynamics (Chen, 1995; Gertler and
Monajemy, 1995). Ideally, the response directions should
be orthogonal (or at least linearly independent): this al-
lows for a straightforward isolation, however, it limits the
number of faults to that of the system outputs (Gertler,
2005). Observers that produce a residual with directional
characteristics are known in the literature as fault (or
failure) detection filters, following the seminal work by
Beard (1971). Fault detection filters map additive fault
vectors to the detection space, spanned by eigenvectors
which are colinear in output space. The detection filter
design process consists of assigning the eigenstructure of
the detection space associated with each fault to achieve
the desired directional properties (Park and Rizzoni, 1994)
by means of a proper choice of the observer gain (White
and Speyer, 1987).

The objective of this paper is to design a fault-tolerant
control scheme for an overactuated ROV with 6 degrees
of freedom (i.e., position and attitude) using a recent ad-
vancement of the well-known Kalman Filter (KF), known
as Adaptive Extended Kalman Filter (AEKF), as a di-
rectional residual generator. As will become clearer in
the remainder of the paper, the conventional KF is not
suitable for FDI in such a ROV because the augmented
system (i.e., considering the joint state and disturbance) is
not uniformly completely controllable regarding the state



62	 Alessandro Baldini  et al. / IFAC PapersOnLine 58-4 (2024) 61–66

noise. Practically, if a conventional KF is employed in such
a model, the estimation of the fault becomes unrespon-
sive because its expected uncertainty converges to zero,
making it useless for fault detection. The AEKF has been
conceived in Zhang (2018) precisely to overcome this lim-
itation, while Skriver et al. (2019) proposed its extended
form for nonlinear systems. In our previous work Baldini
et al. (2022a), we focused on how to discern between
actuator faults and other external disturbances by means
of active fault diagnosis, i.e., by injecting an auxiliary
signal in the control inputs. The previous work Baldini
et al. (2022b), instead, was devoted to the estimation of
the fault magnitude by using a bank of nonlinear observers.
However, both works are limited to the system dynamics in
the horizontal plane. In the case of overactuated vehicles,
like the commercial BlueROV2 Heavy (Wu, 2018), where
pitch and roll angles can be commanded independently
with redundant actuators, FDI methods based on a bank
of observers become more complex, as more possibly faulty
actuators require more observers.

The paper is structured as follows. The ROV model
is resumed in Section 2. The proposed control scheme,
detailed in Section 3, is tolerant with respect to the total
failure of a thruster. The FDI strategy, that is based on a
directional residual generated by an AEKF, is described in
Section 4. Simulation results are presented in Section 5 to
show the effectiveness of the fault tolerant control scheme.
Finally, conclusions and future works end the paper.

2. MATHEMATICAL MODEL

To develop a model-based FDI algorithm, we first in-
troduce the kinematics and the dynamics of the ROV
(Section 2.1 and 2.2, respectively) and its control inputs
(Section 2.3), including possible LOE faults affecting the
actuators.

2.1 Kinematics

Let us define the state space variables

η = [ x y z ϕ θ ψ ]
T

ν = [ u v w p q r ]
T

τ = [X Y Z K M N ]
T
,

(1)

where η denotes the position (x, y, z) and orientation (ϕ,
θ, ψ) vector in the inertial earth-fixed frame, ν denotes the
linear (u, v, w) and angular (p, q, r) velocities vectors in
the body-fixed frame, and τ is the vector of the generalized
forces, exerted by the actuators, in the body-fixed frame.
We define the principal rotation matrices in the xyz-
convention in terms of the Euler angles ϕ, θ, and ψ (pitch,
roll, and yaw, respectively) as follows:

Rz(ψ) =


cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1



Ry(θ) =


cos (θ) 0 sin (θ)

0 1 0
− sin (θ) 0 cos (θ)



Rx(ϕ) =


1 0 0
0 cos (ϕ) − sin (ϕ)
0 sin (ϕ) cos (ϕ)


.

(2)

Then, the rotation matrix from the body-fixed frame to
the earth-fixed frame is:

Re
b(η) = Rz(ψ)Ry(θ)Rx(ϕ). (3)

The Euler rate vector η̇ is related to the body-fixed angular
velocity vector ν through the transformation matrix

T (η) =


1 sin (ϕ) tan (θ) cos (ϕ) tan (θ)
0 cos (ϕ) − sin (ϕ)
0 sin (ϕ) / cos (θ) cos (ϕ) / cos (θ)


. (4)

Thus, the kinematics is modelled by:

η̇ = J(η)ν, (5)

where J(η) = diag (Re
b(η), T (η)) and diag(·) returns a

square diagonal matrix with the arguments on the main
diagonal (block diagonal, if the arguments are matrices).

2.2 Dynamics

The well known generic model for marine vehicles from
Fossen (1994) is employed to model the ROV dynamics

(Mrb+Ma)ν̇+(Crb(ν)+Ca(ν))ν+D(ν)ν+g(η) = τ. (6)

Assuming that the origin of the body-fixed frame coincides
with the center of gravity, and assuming that the body
is symmetric w.r.t. the body axes, the inertia tensor is a
diagonal matrix. Hence, the rigid-body inertia matrix boils
down to

Mrb = diag (m, m, m, Ix, Iy, Iz) , (7)

where m is the mass of the ROV and Ix, Iy, and Iz
represent the inertia along the front, right, and down body-
fixed axes respectively, and the rigid-body Coriolis and
centripetal matrix is

Crb(ν) =




0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ixp
mv −mu 0 Iyq −Ixp 0



. (8)

In the case of low speed movements and symmetric ROV,
the simplified expressions in Fossen (1994) can be adopted

Ma = diag (−Xu̇, −Yv̇, −Zẇ, −Kṗ, −Mq̇, −Nṙ) (9)

Ca(ν) =




0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0



,

(10)
where Ma is the added mass inertia matrix, Ca(ν) is the
hydrodynamic rigid-body Coriolis and centripetal matrix,
and the constant parameters Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, and
Nṙ must be experimentally identified. Under the same
assumptions, the linear (Dl(ν)) and quadratic (Dnl(ν))
hydrodynamic damping matrices can be approximated as
follows (Fossen, 1994)

D(ν) = Dl(ν) +Dnl(ν)

Dl(ν) = −diag (Xu, Yv, Zw, Kp, Mq, Nr)

Dnl(ν) = −diag
�
Xu|u| |u| , Yv|v| |v| , Zw|w| |w| ,
Kp|p| |p| , Mq|q| |q| , Nr|r| |r|


,

(11)

where Xu, Yv, Zw, Kp, Mq, Nr, Xu|u|, Yv|v|, Zw|w|, Kp|p|,
Mq|q|, and Nr|r| are constant parameters to be identified
as well.
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noise. Practically, if a conventional KF is employed in such
a model, the estimation of the fault becomes unrespon-
sive because its expected uncertainty converges to zero,
making it useless for fault detection. The AEKF has been
conceived in Zhang (2018) precisely to overcome this lim-
itation, while Skriver et al. (2019) proposed its extended
form for nonlinear systems. In our previous work Baldini
et al. (2022a), we focused on how to discern between
actuator faults and other external disturbances by means
of active fault diagnosis, i.e., by injecting an auxiliary
signal in the control inputs. The previous work Baldini
et al. (2022b), instead, was devoted to the estimation of
the fault magnitude by using a bank of nonlinear observers.
However, both works are limited to the system dynamics in
the horizontal plane. In the case of overactuated vehicles,
like the commercial BlueROV2 Heavy (Wu, 2018), where
pitch and roll angles can be commanded independently
with redundant actuators, FDI methods based on a bank
of observers become more complex, as more possibly faulty
actuators require more observers.

The paper is structured as follows. The ROV model
is resumed in Section 2. The proposed control scheme,
detailed in Section 3, is tolerant with respect to the total
failure of a thruster. The FDI strategy, that is based on a
directional residual generated by an AEKF, is described in
Section 4. Simulation results are presented in Section 5 to
show the effectiveness of the fault tolerant control scheme.
Finally, conclusions and future works end the paper.

2. MATHEMATICAL MODEL

To develop a model-based FDI algorithm, we first in-
troduce the kinematics and the dynamics of the ROV
(Section 2.1 and 2.2, respectively) and its control inputs
(Section 2.3), including possible LOE faults affecting the
actuators.

2.1 Kinematics

Let us define the state space variables

η = [ x y z ϕ θ ψ ]
T

ν = [ u v w p q r ]
T

τ = [X Y Z K M N ]
T
,

(1)

where η denotes the position (x, y, z) and orientation (ϕ,
θ, ψ) vector in the inertial earth-fixed frame, ν denotes the
linear (u, v, w) and angular (p, q, r) velocities vectors in
the body-fixed frame, and τ is the vector of the generalized
forces, exerted by the actuators, in the body-fixed frame.
We define the principal rotation matrices in the xyz-
convention in terms of the Euler angles ϕ, θ, and ψ (pitch,
roll, and yaw, respectively) as follows:

Rz(ψ) =


cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1



Ry(θ) =


cos (θ) 0 sin (θ)

0 1 0
− sin (θ) 0 cos (θ)



Rx(ϕ) =


1 0 0
0 cos (ϕ) − sin (ϕ)
0 sin (ϕ) cos (ϕ)


.

(2)

Then, the rotation matrix from the body-fixed frame to
the earth-fixed frame is:

Re
b(η) = Rz(ψ)Ry(θ)Rx(ϕ). (3)

The Euler rate vector η̇ is related to the body-fixed angular
velocity vector ν through the transformation matrix

T (η) =


1 sin (ϕ) tan (θ) cos (ϕ) tan (θ)
0 cos (ϕ) − sin (ϕ)
0 sin (ϕ) / cos (θ) cos (ϕ) / cos (θ)


. (4)

Thus, the kinematics is modelled by:

η̇ = J(η)ν, (5)

where J(η) = diag (Re
b(η), T (η)) and diag(·) returns a

square diagonal matrix with the arguments on the main
diagonal (block diagonal, if the arguments are matrices).

2.2 Dynamics

The well known generic model for marine vehicles from
Fossen (1994) is employed to model the ROV dynamics

(Mrb+Ma)ν̇+(Crb(ν)+Ca(ν))ν+D(ν)ν+g(η) = τ. (6)

Assuming that the origin of the body-fixed frame coincides
with the center of gravity, and assuming that the body
is symmetric w.r.t. the body axes, the inertia tensor is a
diagonal matrix. Hence, the rigid-body inertia matrix boils
down to

Mrb = diag (m, m, m, Ix, Iy, Iz) , (7)

where m is the mass of the ROV and Ix, Iy, and Iz
represent the inertia along the front, right, and down body-
fixed axes respectively, and the rigid-body Coriolis and
centripetal matrix is

Crb(ν) =




0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ixp
mv −mu 0 Iyq −Ixp 0



. (8)

In the case of low speed movements and symmetric ROV,
the simplified expressions in Fossen (1994) can be adopted

Ma = diag (−Xu̇, −Yv̇, −Zẇ, −Kṗ, −Mq̇, −Nṙ) (9)

Ca(ν) =




0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0



,

(10)
where Ma is the added mass inertia matrix, Ca(ν) is the
hydrodynamic rigid-body Coriolis and centripetal matrix,
and the constant parameters Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, and
Nṙ must be experimentally identified. Under the same
assumptions, the linear (Dl(ν)) and quadratic (Dnl(ν))
hydrodynamic damping matrices can be approximated as
follows (Fossen, 1994)

D(ν) = Dl(ν) +Dnl(ν)

Dl(ν) = −diag (Xu, Yv, Zw, Kp, Mq, Nr)

Dnl(ν) = −diag
�
Xu|u| |u| , Yv|v| |v| , Zw|w| |w| ,
Kp|p| |p| , Mq|q| |q| , Nr|r| |r|


,

(11)

where Xu, Yv, Zw, Kp, Mq, Nr, Xu|u|, Yv|v|, Zw|w|, Kp|p|,
Mq|q|, and Nr|r| are constant parameters to be identified
as well.

Denoting with b the magnitude of the buoyant force, mg
the magnitude of the gravitational force, and xb, yb, and
zb the coordinates of the center of buoyancy in the body-
fixed frame, under the assumption that the origin of the
body-fixed frame coincides with the center of gravity, the
restoring forces and moments due to gravity and buoyancy
can be modeled as

g(η) =




− sin (θ) (b−mg)
cos (θ) sin (ϕ) (b−mg)
cos (ϕ) cos (θ) (b−mg)

byb cos (ϕ) cos (θ)− bzb cos (θ) sin (ϕ)
−bzb sin (θ)− bxb cos (ϕ) cos (θ)
byb sin (θ) + bxb cos (θ) sin (ϕ)



. (12)

To consider the current-induced forces and moments, it is
sufficient to replace ν in (6) with the relative velocity νr =
ν − νc, where νc = [uc vc wc 0 0 0] is the (irrotational)
marine current velocity expressed in the body-fixed frame.
Thus, the differential equations

η̇ = J(η)νr + νec (13a)

ν̇r = (Mrb +Ma)
−1

�
τ − (Crb(νr) + Ca(νr))νr

−D(νr)νr − g(η)


(13b)

represent the nonlinear model of the ROV, where η and
νr are the state space variables, while νec = J(η)νc
is the marine current velocity expressed in the earth-
fixed frame. We assume that η and νr are measured and
available. Position and attitude are usually calculated by
the inertial measurement unit, while the relative velocity
can be measured with doppler velocity loggers and acoustic
doppler current profilers.

2.3 Control inputs

Let Fi ∈ R be the force magnitude required from the
ith thruster. Let also li ∈ R3 be the fixed versor that
represents the orientation of the ith thruster in the body-
fixed frame, so that Fili is the vector representing the
required force of the ith thruster in the body-fixed frame.
For the case of the BlueROV 2 Heavy (Wu, 2018), that is
equipped with 8 thrusters:

τ = BWF (14a)

B = [B1 . . . B8] =


l1 . . . l8

r1 × l1 . . . r8 × l8


(14b)

W = diag (w1, . . . , w8) (14c)

F = [F1 . . . F8]
T
, (14d)

where ri ∈ R3 represents the position of the ith thruster in
the body-fixed frame, × is the cross product, and wi ∈ R
represents the effectiveness of the ith thruster (Baldini
et al., 2017). In other words, if wi decreases from its
nominal value w̄i = 1, the ith actuator is affected by a
LOE. Each force Fi linearly depends on the commanded
thruster speed if low speed movements are assumed (i.e.,
neglecting the dependence of the force on the relative fluid
velocity). Thus, in the remainder, we consider F ∈ R8 to
be the actual control input variable, without detailing the
thruster speed.

3. FAULT TOLERANT CONTROL

Conventional closed-loop control of ROVs makes use a
virtual control input τc ∈ R6 that is required by the

Allocation

Eq. (15)
Control law

ROV

Eq. (13)

FDI

Eq. (18), (22)

AEKF

Alg. 1

𝜂𝜂𝑟𝑟𝑒𝑒𝑒𝑒 𝜏𝜏𝑐𝑐 𝐹𝐹 𝜂𝜂, 𝜈𝜈𝑟𝑟

෡𝑊𝑊

𝜽𝜽

𝑊𝑊

Fig. 1. Fault tolerant control scheme.

control law to pilot the ROV. Six PIDs calculate the
components of τc independently, based on the tracking
error ηref − η ∈ R6, and g(η) is feedforwarded to improve
the control performances (Fossen, 1994). The reference
comprises the target position and the target orientation,
which may be set by the remote operator using a joystick,
and the tracking errors are fed to the PIDs. Then, τc must
be mapped to the actuator commands F , such that τ = τc
holds (at least in nominal actuator conditions). The thrust
allocation algorithm that returns such input F is detailed
in Section 3.1.

In addition to the conventional closed-loop control, we
pursue fault tolerance by adding an AEKF-based residual
generator, a FDI decision-making algorithm, and the fault
tolerant control allocation algorithm detailed in the follow-
ing. The resulting closed-loop control scheme is illustrated
in Fig. 1.

3.1 Fault tolerant control allocation algorithm

A simple thrust allocation algorithm to distribute the
effort τc among the available thrusters is the pseudoinverse
method

F = (BŴ )+τc (15a)

Ŵ = diag (ŵ1, . . . , ŵ8) , (15b)

where Ŵ is an estimation of W and (BŴ )+ is the

pseudoinverse of BŴ . When no estimations are available,
the nominal effectiveness is employed in (15), i.e., ŵi =
w̄i = 1 for i = 1, . . . , 8. If a FDI algorithm evaluates the
ith thruster to be severely damaged, it is sufficient to set
ŵi = 0, hence zeroing the column Bi, i.e., the ith thruster
has no effect. As a consequence, if ŵi = 0 is set, the control
allocation algorithm simply switches the ith thruster off to
minimize the cost function. The reader can refer to Baldini
et al. (2018a) for further details.

4. FAULT DETECTION AND ISOLATION

The residual generator is detailed in Section 4.1, while its
use for FDI is discussed in Section 4.2 and Section 4.3.

4.1 Residual generation

The model (13)-(14) is discretized with a forward Euler
integration, obtaining

x(k + 1) = f(x(k)) +B(k)u(k) +Φ(k)θ(k) +w(k)
(16a)

θ(k + 1) = θ(k) (16b)

y(k) = C(k)x(k) + v(k), (16c)
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where w(k) ∼ (0,Q(k)) and v(k) ∼ (0,R(k)) are zero
mean white gaussian noises. The proposed fault and dis-
turbance model (16b) simply takes the last sample as the
best prediction possible, as no prior information on their
time derivative is available. This kind of fault modeling is
straightforward yet effective in the case of slowly varying
variables (i.e., small time derivatives) and in the case of
piecewise-constant variables, where the time derivative is
zero almost always (Zhang, 2018). The remaining vectors
and matrices are detailed as follows

x(k) =

[
η(k)
νr(k)

]
, f(x(k)) =

[
fη(x(k))
fνr

(x(k))

]
,

fη(x(k)) = η(k) + J(η(k))νr(k)Ts,

fνr
(x(k)) = νr(k)− (Mrb +Ma)

−1
(
Crb(νr(k))+

+ Ca(νr(k)) +D(νr(k))
)
νr(k)Ts),

B(k) =

[
06

(Mrb +Ma)
−1Ts

]
, C(k) = I12,

u(k) = τc(k)− g(η(k)),

Φ(k) =

[
I6Ts 06
06 Ts(Mrb +Ma)

−1

]
,

θ(k) =

[
νEc (k)
θF (k)

]
, F (x̂(k)) =

∂f(x(k))

∂x(k)

∣∣∣∣
x̂(k)

,

where Ij represents the square identity matrix with j rows
and columns and, analogously, 0j is the null matrix. Please
note that the variable u(k) collects both the virtual control
input τ(k) and the known external disturbances g(η(k)),
while θ(k) ∈ R12 groups the marine current νEc (k) ∈ R6

and the actuator fault θF (k) ∈ R6.

As anticipated in the introduction, please note that the
augmented system (16) is not uniformly completely con-
trollable regarding the state noise, because the distur-
bances (16b) are not affected by gaussian noise. Hence,
given the ROV model in the state space form (16), we
employ the AEKF proposed by Skriver et al. (2019) (see

Algorithm 1) to get an estimation θ̂(k) of θ(k).

4.2 Fault detection

We employ the fault estimation θ̂F (k), calculated by the
AEKF, as a residual for fault detection. In absence of
faults, θF (k) is expected to be zero. However, disturbances
and model mismatches affect the estimation, and a proper
detection threshold σdet and weighting matrix Rdet must
be defined to avoid false positives. If

rdet(k) =

√
θ̂F (k)TRdetθ̂F (k) > σdet, (17)

then a fault is detected, and fault isolation is performed.

4.3 Fault isolation

After a fault is detected, we are interested in isolating if
an actuator is severely damaged. Whenever a thruster is
subject to LOE, the nominal generalized force τc and the
actual one τ can differ significantly. In fact

τ = BWF = BW (BŴ )+τc

= BŴ (BŴ )+τc +B(W − Ŵ )(BŴ )+τc

= τc +B(W − Ŵ )F,

(18)

Algorithm 1 AEKF (Skriver et al., 2019)

Input: State-space representation f , B(k), C(k), initial
AEKF matrices P (0|0) = P 0, S(0) = S0, x̂(0|0) = x0,

θ̂(0) = θ0 and Υ(0) = 0.

1: P (k + 1|k) ← F (x̂(k))P (k|k)F T (x̂(k)) +Q(k)

2: Σ(k + 1) ← C(k)P (k + 1|k)CT (k) +R(k)

3: K(k + 1) ← P (k + 1|k)CT (k)Σ−1(k + 1)
4: P (k + 1|k + 1) ← [In −K(k + 1)C(k)]P (k + 1|k)
5: Υ(k+1) ← [In −K(k+1)C(k)]F (x̂(k))Υ(k) + [In −

K(k + 1)C(k)]Φ(k)
6: Ω(k + 1) ← C(k)F (x̂(k))Υ(k) +C(k)Φ(k)

7: Λ(k+1) ←
[
λΣ(k + 1) +Ω(k + 1)S(k)ΩT (k + 1)

]−1

8: Γ(k + 1) ← S(k)ΩT (k + 1)Λ(k + 1)

9: S(k + 1) ← 1
λS(k) − 1

λS(k)Ω
T (k + 1)Λ(k + 1)

Ω(k + 1)S(k)
10: ỹ(k + 1) ← y(k + 1) − C(k)[f(x̂(k)) + B(k)u(k) +

Φ(k)θ̂(k)]

11: θ̂(k + 1) ← θ̂(k) + Γ(k + 1)ỹ(k + 1)

12: x̂(k + 1) ← f(x̂(k)) + B(k)u(k) + Φ(k)θ̂(k) +

K(k + 1)ỹ(k + 1) +Υ(k + 1)[θ̂(k + 1)− θ̂(k)]

Output: State x̂(k + 1) and fault θ̂(k + 1) estimations.

and τ = τc, that is perfect matching between the com-
manded and the actual generalized forces, occurs when
Ŵ = W . Consider the control effectiveness (14) and,
without loss of generality, the control allocation method
in (15). Then , τ − τc from (18) models an additive fault
represents the effects of actuator faults, and we can rewrite

θF (k) = B(W − Ŵ )F =

8∑
i=1

(wi − ŵi)FiBi. (19)

Clearly, θF (k) ∈ Im(B). Under the assumption that no
more than a single actuator fault can occur simultaneously,

θF (k) ∈ Im (Bi) , (20)

where the ith actuator is the one affected by the fault and
Bi is the ith column of B defined in (14b). Consequently,

the residual θ̂F (k) ∈ R6 is directional, the direction is a
subspace with dimension 1, and its basis is Bi. Please note
that each pair (Bi, Bj) is linearly independent whenever
i ̸= j, making the isolation possible.

To isolate the fault, is then sufficient to calculate the

direction of θ̂F (k). Thus, we check the largest cosine
similarity against a threshold σisol, i.e.,

si(k) =
θ̂
T

F (k)Bi sign(Fi)

∥θ̂F (k)∥∥Bi∥
, i = 1, . . . , 8 (21a)

s(k) = max
i

si(k) > σisol, (21b)

where sign(Fi) takes into account the current direction of
the thrust. In fact, the thrusters are bidirectional and Fi

can assume both positive and negative values. So, Bi is
the direction in case of forward thrust (Fi > 0) and −Bi is
the direction in case of reverse thrust (Fi < 0), as in (21).

If (17) and (21b) hold, then a severe fault affecting the
ith thruster is isolated and the thruster is switched off
by setting wi = 0 (see Section 3.1) to prevent further
damage. To decrease the number of false positives, a
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where w(k) ∼ (0,Q(k)) and v(k) ∼ (0,R(k)) are zero
mean white gaussian noises. The proposed fault and dis-
turbance model (16b) simply takes the last sample as the
best prediction possible, as no prior information on their
time derivative is available. This kind of fault modeling is
straightforward yet effective in the case of slowly varying
variables (i.e., small time derivatives) and in the case of
piecewise-constant variables, where the time derivative is
zero almost always (Zhang, 2018). The remaining vectors
and matrices are detailed as follows

x(k) =

[
η(k)
νr(k)

]
, f(x(k)) =

[
fη(x(k))
fνr

(x(k))

]
,

fη(x(k)) = η(k) + J(η(k))νr(k)Ts,

fνr
(x(k)) = νr(k)− (Mrb +Ma)

−1
(
Crb(νr(k))+

+ Ca(νr(k)) +D(νr(k))
)
νr(k)Ts),

B(k) =

[
06

(Mrb +Ma)
−1Ts

]
, C(k) = I12,

u(k) = τc(k)− g(η(k)),

Φ(k) =

[
I6Ts 06
06 Ts(Mrb +Ma)

−1

]
,

θ(k) =

[
νEc (k)
θF (k)

]
, F (x̂(k)) =

∂f(x(k))

∂x(k)

∣∣∣∣
x̂(k)

,

where Ij represents the square identity matrix with j rows
and columns and, analogously, 0j is the null matrix. Please
note that the variable u(k) collects both the virtual control
input τ(k) and the known external disturbances g(η(k)),
while θ(k) ∈ R12 groups the marine current νEc (k) ∈ R6

and the actuator fault θF (k) ∈ R6.

As anticipated in the introduction, please note that the
augmented system (16) is not uniformly completely con-
trollable regarding the state noise, because the distur-
bances (16b) are not affected by gaussian noise. Hence,
given the ROV model in the state space form (16), we
employ the AEKF proposed by Skriver et al. (2019) (see

Algorithm 1) to get an estimation θ̂(k) of θ(k).

4.2 Fault detection

We employ the fault estimation θ̂F (k), calculated by the
AEKF, as a residual for fault detection. In absence of
faults, θF (k) is expected to be zero. However, disturbances
and model mismatches affect the estimation, and a proper
detection threshold σdet and weighting matrix Rdet must
be defined to avoid false positives. If

rdet(k) =

√
θ̂F (k)TRdetθ̂F (k) > σdet, (17)

then a fault is detected, and fault isolation is performed.

4.3 Fault isolation

After a fault is detected, we are interested in isolating if
an actuator is severely damaged. Whenever a thruster is
subject to LOE, the nominal generalized force τc and the
actual one τ can differ significantly. In fact

τ = BWF = BW (BŴ )+τc

= BŴ (BŴ )+τc +B(W − Ŵ )(BŴ )+τc

= τc +B(W − Ŵ )F,

(18)

Algorithm 1 AEKF (Skriver et al., 2019)

Input: State-space representation f , B(k), C(k), initial
AEKF matrices P (0|0) = P 0, S(0) = S0, x̂(0|0) = x0,

θ̂(0) = θ0 and Υ(0) = 0.

1: P (k + 1|k) ← F (x̂(k))P (k|k)F T (x̂(k)) +Q(k)

2: Σ(k + 1) ← C(k)P (k + 1|k)CT (k) +R(k)

3: K(k + 1) ← P (k + 1|k)CT (k)Σ−1(k + 1)
4: P (k + 1|k + 1) ← [In −K(k + 1)C(k)]P (k + 1|k)
5: Υ(k+1) ← [In −K(k+1)C(k)]F (x̂(k))Υ(k) + [In −

K(k + 1)C(k)]Φ(k)
6: Ω(k + 1) ← C(k)F (x̂(k))Υ(k) +C(k)Φ(k)

7: Λ(k+1) ←
[
λΣ(k + 1) +Ω(k + 1)S(k)ΩT (k + 1)

]−1

8: Γ(k + 1) ← S(k)ΩT (k + 1)Λ(k + 1)

9: S(k + 1) ← 1
λS(k) − 1

λS(k)Ω
T (k + 1)Λ(k + 1)

Ω(k + 1)S(k)
10: ỹ(k + 1) ← y(k + 1) − C(k)[f(x̂(k)) + B(k)u(k) +

Φ(k)θ̂(k)]

11: θ̂(k + 1) ← θ̂(k) + Γ(k + 1)ỹ(k + 1)

12: x̂(k + 1) ← f(x̂(k)) + B(k)u(k) + Φ(k)θ̂(k) +

K(k + 1)ỹ(k + 1) +Υ(k + 1)[θ̂(k + 1)− θ̂(k)]

Output: State x̂(k + 1) and fault θ̂(k + 1) estimations.

and τ = τc, that is perfect matching between the com-
manded and the actual generalized forces, occurs when
Ŵ = W . Consider the control effectiveness (14) and,
without loss of generality, the control allocation method
in (15). Then , τ − τc from (18) models an additive fault
represents the effects of actuator faults, and we can rewrite

θF (k) = B(W − Ŵ )F =

8∑
i=1

(wi − ŵi)FiBi. (19)

Clearly, θF (k) ∈ Im(B). Under the assumption that no
more than a single actuator fault can occur simultaneously,

θF (k) ∈ Im (Bi) , (20)

where the ith actuator is the one affected by the fault and
Bi is the ith column of B defined in (14b). Consequently,

the residual θ̂F (k) ∈ R6 is directional, the direction is a
subspace with dimension 1, and its basis is Bi. Please note
that each pair (Bi, Bj) is linearly independent whenever
i ̸= j, making the isolation possible.

To isolate the fault, is then sufficient to calculate the

direction of θ̂F (k). Thus, we check the largest cosine
similarity against a threshold σisol, i.e.,

si(k) =
θ̂
T

F (k)Bi sign(Fi)

∥θ̂F (k)∥∥Bi∥
, i = 1, . . . , 8 (21a)

s(k) = max
i

si(k) > σisol, (21b)

where sign(Fi) takes into account the current direction of
the thrust. In fact, the thrusters are bidirectional and Fi

can assume both positive and negative values. So, Bi is
the direction in case of forward thrust (Fi > 0) and −Bi is
the direction in case of reverse thrust (Fi < 0), as in (21).

If (17) and (21b) hold, then a severe fault affecting the
ith thruster is isolated and the thruster is switched off
by setting wi = 0 (see Section 3.1) to prevent further
damage. To decrease the number of false positives, a

Fig. 2. Position and attitude with reference (dotted line).

Fig. 3. Marine current (dotted line) and its estimation.

runsum test can be performed, so that the isolation is
confirmed if a run of length σrun is generated by the
FDI algorithm (i.e., if the outcome is the same for σrun

consecutive samples). Finally, please note that (20) holds
for any control allocation algorithm, if we assume that
input saturation constraints are satisfied, otherwise addi-
tional spurious terms may appear. Hence, (20) is expected
to hold even more for thruster allocation algorithms that
manage input constraints, such as dynamic control allo-
cation (Zaccarian, 2009; Sarkar et al., 2002), quadratic
programming solvers (Baldini et al., 2022a), and explicit
solutions (Baldini et al., 2018b).

5. SIMULATION RESULTS

We test the fault tolerant control strategy for ROVs on
a six degrees of freedom position and attitude tracking
problem. The full set of parameters represents a BlueROV
2 Heavy (Wu, 2018) and it is reported in Table 1 for sim-
plicity, together with the control parameters. Two faults
are injected: thruster 1 experiences 80% LOE after 40 s
and thruster 7 experiences 60% LOE after 80 s. The entire
simulation lasts for 200 s. To test the FDI algorithm in a
realistic scenario, we enforce a ±5% uniformly distributed
uncertainty on every parameter in Table 1, exception made
for the mass and the buoyancy. The same uncertainty is set
on the nominal thruster effectiveness wi, for i = 1, . . . , 8.
The reference is represented in Fig. 2 by a dotted line,
while the actual position and attitude are represented
by a solid line. Minor attitude errors appear when the
fault occurs: the vertical dotted lines highlight the instants
when the matrix Ŵ is updated due to the identification
of a failure. The marine current and its estimation by the
AEKF are reported in Fig. 3. Please note the estimation is
reliable even when the current is not constant. The fault
estimation θ̂F (k) from the AEKF is reported in Fig. 4. The
estimation lumps slowly varying unknown disturbances
due to parametric uncertainty and abrupt faults. The
black solid line represents the detection residual rdet, that
reaches the threshold (horizontal dotted line) after 40 s and
after 80 s, approximately. In Fig. 5, we report the cosine
similarity (21) for each time instant. However, please note

Fig. 4. Fault detection: estimation, residual, threshold.

Fig. 5. Fault isolation: cosine similarities and threshold.

Fig. 6. Actuator effectiveness and failure estimation.

Fig. 7. Commanded thrust and actual thrust (N).

that it is sufficient to calculate it only when a fault is
detected, i.e., when (17) holds true. The tests indicate
severe damage for thrusters 1 and 7, respectively, as s1 and
s7 overcome the threshold σisol, respectively. The dashed
lines in Fig. 6 report the actual effectiveness wi of each
thrusters. Note that a ±5% uniformly distributed uncer-
tainty is applied to simulate actuator model mismatch.
As stated in Section 3.1, as soon as the FDI rule in (21)
highlights the presence of a severe fault on the actuators 1
and 7, ŵ1 and ŵ7 are set to zero to switch off such thrusters
and compensate the failure. The remaining wi are kept
to the nominal value w̄i = 1, as no better estimation
is available. The forces required to the actuators are
reported in Fig. 7, where F1, . . . , F4 refer to the horizontal
thrusters and F5, . . . , F8 to the vertical ones. The solid line
is the commanded force, while the dotted line is the actual
force, affected by both severe LOE and actuator model
mismatch. When the fault occurs, the actual force of the
thruster is significantly smaller than the commanded one,
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Table 1. Model parameters and control parameters.

m b xb, yb zb Ix, Iy , Iz Xu̇ Yv̇ Zẇ Kṗ, Mq̇ , Nṙ Xu Yv Zw

11.5 114.777 0 −0.02 0.16 −5.5 −12.7 −14.57 −0.12 −4.03 −6.22 −5.18

Kp, Mq , Nr Xu|u| Yv|v| Zw|w| Kp|p|, Mq|q|, Nr|r|
−0.07 −18.18 −21.66 −36.99 −1.55

{Ki,Kd,Kp, N}PIDx,PIDy {Ki,Kd,Kp, N}PIDz {Ki,Kd,Kp, N}PIDϕ
{Ki,Kd,Kp, N}PIDθ

{Ki,Kd,Kp, N}PIDψ{
3 0.2 5 5

} {
3 0.2 0.5 5

} {
4 3 0.5 5

} {
4 3 1 5

} {
2 0.1 0.5 5

}
Rdet σdet σisol σrun λ P 0 S0 θ0 x̂0 R(k) Q(k)

diag
(
4, 4, 1, 8, 8, 8

)
2 0.98 10 0.999 I12 I12 0 0 10−3diag

(
1.6I3, 1.4I3, 3.1I3, 2.8I3

)
I1210−6

triggering the FDI. As soon as the thruster is switched off,
the effort is redistributed among the remaining actuators.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have shown a fault tolerant control
strategy applied to tracking control for a BlueROV 2
Heavy ROV with six degrees of freedom. The scheme
relies on measuring the entire state space and provides
a filtered estimation, through the AEKF, of the state,
the actuator fault, and the marine current. Please note
that the relative velocity must be measured to perform the
fault and current estimation. If only the absolute velocity
can be measured, then the proposed scheme can work
only in absence of marine current, unless some external
estimation of the marine current is provided. In this case,
the AEKF can be designed on the dynamics equations
only, i.e., neglecting the kinematics, with a substantial
decrease in computational effort. However, the estimation
of the marine current is not possible in this case. In our
future works we are investigating the introduction of active
fault diagnosis to discern different faults and the practical
case of multi-rate measurements.
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S., and Monteriù, A. (2018b). A constrained thrust allo-
cation algorithm for remotely operated vehicles. IFAC-
PapersOnLine, 51(29), 250–255.

Baldini, A., Felicetti, R., Freddi, A., Longhi, S., and
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