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Abstract In this paper, we consider a model of eco-
nomic growth with a distributed time-delay investment
function, where the time-delay parameter is a mean
time delay of the gamma distribution. Using the linear
chain trick technique, we transform the delay differ-
ential equation system into an equivalent one of ordi-
nary differential equations (ODEs). Since we are deal-
ing with weak and strong kernels, our system will be
reduced to a three- and four-dimensional ODE sys-
tem, respectively. The occurrence of Hopf bifurcation
is investigated with respect to the following two param-
eters: time-delay parameter and rate of growth param-
eter. Sufficient criteria on the existence and stability
of a limit cycle solution through the Hopf bifurcation
are presented in case of time-delay parameter. Numer-
ical studies with the Dana and Malgrange investment
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function show the emergence of two Hopf bifurcations
with respect to the rate growth parameter. In this case,
we have been able to detect the existence of stable
long-period cycles in the economy. According to the
time-delay and adjustment speed parameters, the range
of admissible values of the rate of growth parameter
breaks down into three intervals. First, we have stable
focus, then the limit cycle and finally again the sta-
ble solution with two Hopf bifurcations. Such behav-
ior appears for some middle interval of the admissible
range of values of the rate of growth parameter.

Keywords Kaldor–Kalecki growth model · Dis-
tributed time delay · Bifurcation analysis · Hopf
bifurcation · Linear chain trick

1 Introduction

In economics, many processes depend on past events,
so it is natural to use time-delay differential equations
to model economic phenomena. Two main areas of
applications are business cycle and economic growth
theories. In recent decades, the analysis of the effect
of investment delay has been the focus of extensive
examination as a tool for endogenous cycles to explain
business cycles and growth cycles. Differential equa-
tions with time delay (discrete or distributed) and their
mathematical methods have been seen to be the most
adequate tools to model the business cycle and growth
in an economy where the investment delay plays a cru-
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cial role [1–5], as well as in physics, finance and biology
[6–9].

The mechanism of the supercritical Hopf bifurcation
leading to a stable limit cycle is a well-known route to
the self-sustainable cyclic behavior. It can be employed
for both ordinary differential equations and delay dif-
ferential equations. Many examples of its use can be
found in economics [10–14] and in other sciences [15–
17].

One of the most influential models of business cycle
with time delay is the Kaldor–Kalecki model [18],
which is based on the Kaldor model, one of the ear-
liest endogenous business cycle models [19–21]. The
Kaldor is a prototype of a dynamical system with cyclic
behavior in which nonlinearity plays a crucial role in
generating endogenous cycles. The nonlinearities are a
common feature used to model the complexity of eco-
nomic systems [22]. In turn, the investment delay was
assumed to be the average time of making investment
as it was proposed by Kalecki [23].

The investment decisions are taken given the cur-
rent state of economy. These past investment decisions
lead to the change of capital stock in a present econ-
omy and may cause fluctuations in economic variables.
This kind of time delay, i.e., the time required for build-
ing new capital, is an intrinsic (response) type of time
delay, which could be also found in neuron due to the
autapse connection [24]. Time-delay systems with both
response and propagation time delay were studied in
many domains of science [25].

The Kaldor–Kalecki business cycle model has been
the topic of several studies as well as augmentations.
One of these was to incorporate an exponential trend to
describe growth of an economy [26]. This new Kaldor–
Kalecki growth model was formulated in a similar man-
ner; the Kaldor growth model was developed from the
Kaldor business cycle model [27].

The Kaldor–Kalecki model has been extensively
studied. While mostly the discrete delay was investi-
gated, some Kaldor–Kalecki models with distributed
delays were also proposed. The Kaldor–Kalecki mod-
els with fixed delay include both models with one delay
and two delays [28–32].

In the existing literature, time delays can be mod-
eled by assuming either fixed time lags or continu-
ously distributed time lags (distributed delay hence-
forth). The former refers to economic circumstances
where there is a set amount of time gap, institution-
ally or socially defined, for the agents concerned. The

latter is suitable for economic situations where differ-
ent lengths of delays are distributed across the various
agents. A major difficulty is that time delays are not
known exactly. On the other hand, distributed delays are
based on the weighted average of all past data from time
zero up to the current time period. Thus, distributed
delays provide a more realistic description of economic
systems with time delay. There is also some exper-
imental evidence which indicates that they are more
accurate than those with instantaneous time lags (see
[33]). Cushing [34] introduced and used distributed
delays in mathematical biology, while Invernizzi and
Medio [35] presented distributed delays into mathemat-
ical economics. Some examples in context of economic
growth are provided in [36] and [37].

In [38], we proposed an economic growth model
where the average time of investment completion is
replaced by a distributed time length of investment. The
gamma distribution function for the investment delay is
assumed. This allows to consider different time lengths
of investment accomplishment. The resulting model is
described by a dynamical system with a distributed time
delay.

While the delay differential equation methods are
developing rapidly, the mathematical methods for ordi-
nary differential equations are superlative, especially
when distributed delays are considered. Therefore, it
is convenient to approximate systems with distributed
delays with those of ordinary differential equations.
One way to do it is provided by the so-called lin-
ear chain trick [39–41]. Consequently, an infinite-
dimensional dynamical system is approximated by
a finite-dimensional dynamical system, where the
dimension of the system can be chosen. For an exam-
ple of this method applied to delayed chemical reac-
tion networks, see [42]. We note that another way to
approximate a delay differential equation system with
a ordinary differential equation system is via the Padé
approximation [43,44].

The main aim of this paper is to study the emer-
gence of a bifurcation due to the change of the parame-
ter values in the approximated Kaldor–Kalecki growth
model. We consider two simplest cases of three- and
four-dimensional dynamical systems obtained through
the linear chain trick from the Kaldor–Kalecki growth
model with the distributed delay, corresponding to the
weak and strong kernels, respectively. For both mod-
els, we establish conditions for the existence of Hopf
bifurcation with respect to the time-delay parameter
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Bifurcations in an economic growth model 1265

and the rate of growth parameter. It is found that both
parameters play role in a scenario leading to the Hopf
bifurcation and arising cyclic behavior.

In the numerical part of this paper, we determine in
detail the ranges of parameter values for which cycli-
cal behavior is possible. In this analysis, we use the
investment function obtained by Dana and Malgrange
for the French economy [27]. As in the theoretical part
of the paper, we choose the time-delay parameter and
the rate of growth parameter, as well as the adjustment
parameter, for the bifurcation investigations. It is shown
how some combinations of these three-parameter val-
ues can trigger the cycles through the Hopf bifurca-
tion mechanism. In the three-parameter space of the
model, we were able to obtain the surface (a section
of a paraboloid) separating the regions with stable and
cyclic solutions.

2 Model

In Economic growth cycles driven by investment delay,
Krawiec and Szydłowski [26] formulated the model
based on the Kaldor business cycle model with two
modifications: exponential growth introduced by Dana
and Malgrange [27] and Kaleckian investment time
delay [18]. This model of economic growth is described
by the following system of differential equations with
time delay τ ≥ 0,

ẏ(t) = α[I (y(t), k(t)) − γ y(t) + G0] − gy(t), (1)

k̇(t) = I (y(t − τ), k(t)) − (g + δ)k(t), (2)

where I (y(t), k(t)) = k(t)�(y(t)/k(t)) is the invest-
ment function depending on product y and capital stock
k, with

�(y/k) = c +
d

1 + e−a(vy/k−1)
,

and α, γ , g, δ, G0, g and a, c, d, v are positive constants.
It can be found that the system has a unique fixed

point (y∗, k∗) with positive coordinates, where

y∗ = x∗k∗ and k∗ =
αG0

gx∗ + α [sx∗ − (g + δ)]
,

with x∗ the unique solution of the equation

�(x∗) = g + δ.

Because of the S shape of function �(x), we have that
x∗ always exists and the values of y∗ and k∗ depend

only on x∗. (In our case, c < g+δ < c+d.) Notice that,
for economic considerations, the investment function
I (y(t), k(t)) is such that

I ∗
y = Iy(y∗, k∗) =

adve−a(vx∗−1)

[1 + e−a(vx∗−1)]2
> 0 (3)

and

I ∗
k = Ik(y∗, k∗) = g + δ − x∗ I ∗

y < 0. (4)

In this paper, we generalize their model by replacing
the time delay in Eq. (2) with a distributed delay as
follows:

ẏ(t) = α[I (y(t), k(t)) − γ y(t) + G0] − gy(t), (5)

k̇(t) = I





t
∫

−∞

y(r)κ(t − r)dr, k(t)



 − (g + δ)k(t),

(6)

where κ(·) is a gamma distribution, i.e.,

κ(ξ) =
(m

T

)m ξm−1e− m
T

ξ

(m − 1)!
,

with m a positive integer that determines the shape of
the weighting function. T ≥ 0 is a parameter associated
with the mean time delay of the distribution. Notice
that as T → 0 the distribution function approaches
the Dirac distribution, and thus, one recovers the time-
delay case.

The introduction of distributed delays leads to a
form of the characteristic equation for which it is hard
to derive general stability conditions. For this reason,
in the literature dealing with these delays, researchers
focus on some special cases with small values of m. For
m = 1 (weak kernel), the quantity is assigned to current
quantity density, while past density has (exponentially)
decreasing influence. For m = 2 (strong kernel), the
maximum weight is assigned to the quantity density at
the time t − T . For m > 2, the shape of the weighting
function takes a unimodal form which becomes taller
and thinner as m increases.

More precisely, the case m = 2 can be interpreted
as the fact that the investment decisions are made based
primarily on the values of the realized income (the prod-
uct y) in a neighborhood of t − T . The incomes more
distant in time enter the decisions, but with a gradu-
ally decreasing weight. Economic agents are less and
less influenced by the value of incomes that are dis-
tant over time. Instead, the income closest to t enters
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relatively unimportant as investment decisions require
both processing times and the availability of informa-
tion. Income too close to t may not be common knowl-
edge across the manufacturing sector, i.e., their weight.
For a more complete exposition of what these weights
economically are and what they do, refer to references
[35,45,46].

Henceforth, we will consider only the cases m = 1
(weak delay kernel) and m = 2 (strong delay kernel).
According to the so-called linear chain trick technique,
we set new variables so that the integro-differential
equation (6) is replaced by a sequence of linear ordi-
nary differential equations. (For a detailed explanation,
see section 2a in [41, p. 13–15].) As a result, systems
(5)–(6) are converted to a differential system without
the delay. More precisely, defining the new variable

u(t) =
t

∫

−∞

y(r)

(

1

T

)

e− 1
T

(t−r)dr,

one has the system (case m = 1)

ẏ(t) = α[I (y(t), k(t)) − γ y(t) + G0] − gy(t), (7)

u̇(t) =
1

T
[y(t) − u(t)] , (8)

k̇(t) = I (u(t), k(t)) − (g + δ)k(t), (9)

while defining the new variables

p(t) =
t

∫

−∞

y(r)

(

2

T

)2

(t − r)e− 2
T

(t−r)dr

and

w(t) =
t

∫

−∞

y(r)

(

2

T

)

e− 2
T

(t−r)dr,

one obtains the system (case m = 2)

ẏ(t) = α[I (y(t), k(t)) − γ y(t) + G0] − gy(t), (10)

ṗ(t) =
2

T
[w(t) − p(t)] , (11)

ẇ(t) =
2

T
[y(t) − w(t]), (12)

k̇(t) = I (p(t), k(t)) − (g + δ)k(t). (13)

We will now analyze the stability and Hopf bifurca-
tion of systems (7)–(9) and (10)–(13) by determining
eigenvalues of linearized systems around the critical
point (y∗, y∗, k∗) and (y∗, y∗, y∗, k∗), respectively.

3 The time-delay bifurcation analysis

Case m = 1

The characteristic equation of the linearized systems
(7)–(9) at the critical point (y∗, u∗, k∗), where u∗ = y∗,
is given by

∣

∣

∣

∣

∣

∣

∣

∣

α I ∗
y − αγ − g − λ 0 α I ∗

k
1

T
−

1

T
− λ 0

0 I ∗
y I ∗

k − (g + δ) − λ

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

(14)

where λ denotes a characteristic root. A direct calcula-
tion implies that Eq. (14) leads to

λ3 + a1(T )λ2 + a2(T )λ + a3(T ) = 0, (15)

where

a1(T ) =
1

T
− A, a2(T ) = −

A

T
− B,

a3(T ) =
1

T

(

−B − α I ∗
k I ∗

y

)

.

with

A = α
(

I ∗
y − γ

)

− g − x∗ I ∗
y and

B =
[

α
(

I ∗
y − γ

)

− g
]

x∗ I ∗
y .

The necessary and sufficient condition for the local sta-
bility of the equilibrium point is that all characteris-
tic roots of Eq. (15) have negative real parts, which,
from the Routh–Hurwitz condition, is equivalent to
a1(T ) > 0, a3(T ) > 0 and a1(T )a2(T ) > a3(T ).
Then, a2(T ) > 0 is necessarily satisfied.

Let us examine whether these inequalities hold.
First, we notice that A < 0. In fact, by contradic-

tion, if A = 0, then a2(T ) = −
[

x∗ I ∗
y

]2
< 0.

On the other hand, if A > 0, then B > 0, and so
a2(T ) < 0. The fact A < 0 implies that a1(T ) > 0
holds always true, while the inequality a3(T ) > 0 is
valid if and only if B + α I ∗

k I ∗
y < 0. Thus, a3(T ) > 0

is always satisfied when B ≤ 0, and it is verified for
g + δ − (g + αγ )x∗ < 0 when B > 0. Finally, let us
consider a1(T )a2(T ) > a3(T ). Since

a1(T )a2(T ) − a3(T ) =
(AB)T 2 + (A2 + α I∗

k
I∗
y )T − A

T 2
,

the sign of a1(T )a2(T ) − a3(T ) depends on the sign
of (AB)T 2 +(A2 +α I ∗

k I ∗
y )T − A, which is a quadratic

polynomial in T . We have now several cases.
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Bifurcations in an economic growth model 1267

(i) If B = 0, then a1(T )a2(T ) − a3(T ) > 0 holds
true if A2 + α I ∗

k I ∗
y ≥ 0 or if A2 + α I ∗

k I ∗
y < 0

and T < A/(A2 + α I ∗
k I ∗

y ). I ) = T ∗
0 .

(ii) If B > 0, then AB < 0 and −A > 0. By
Descartes’ rule of signs, we find that the polyno-
mial (AB)T 2 + (A2 + α I ∗

k I ∗
y )T − A has exactly

one positive root T = T ∗
1 . Hence, a1(T )a2(T )−

a3(T ) > 0 if 0 < T < T ∗
1 .

(iii) If B < 0, then AB > 0 and −A > 0. Apply-
ing again the Descartes’ rule of signs, we see
that (AB)T 2 + (A2 + α I ∗

k I ∗
y )T − A has (two)

sign changes only if A2 + α I ∗
k I ∗

y < 0, meaning
that this polynomial may have two positive roots
T ∗

2 < T ∗
3 . If this happens, then a1(T )a2(T ) −

a3(T ) > 0 if 0 < T < T ∗
2 and T > T ∗

3 .

Let T = T∗ such that a1(T∗)a2(T∗) − a3(T∗) = 0,
namely T∗ = T ∗

j ( j = 0, 1, 2, 3). The curve T = T∗
divides the parameter space into stable and unstable
parts. Choosing T as a bifurcation parameter, we apply
the Hopf bifurcation theorem to establish the existence
of a cyclical movement. This theorem asserts the exis-
tence of the closed orbit, if the characteristic equation
(15) has a pair of pure imaginary roots and a nonzero
real root, and if the real part of the imaginary roots is
not stationary with respect to the changes of the param-
eter T . At the critical value T = T∗, Eq. (15) factors
as

[λ + a1(T∗)]
[

λ2 + a2(T∗)
]

= 0,

so we have the following three roots λ1,2 =
±i

√
a2(T∗) = ±iω∗ and λ3 = −a1(T∗) < 0. Next,

let us investigate the sign of the real parts of this roots
as T varies. A differentiation of (15) with respect to T

yields
[

3λ2 + 2a1(T )λ + a2(T )
] dλ

dT

= −
[

a′
1(T )λ2 + a′

2(T )λ + a′
3(T )

]

, (16)

where

a′
1(T ) = −

1

T 2
< 0,

a′
2(T ) =

A

T 2
< 0,

a′
3(T ) = −

1

T 2

(

−B − α I ∗
k I ∗

y

)

= −
a3(T )

T
< 0.

Then, from (16), we get

Re

(

dλ

dT

)

T =T∗

=
−a′

1(T∗)a2(T∗) − a1(T∗)a′
2(T∗) + a′

3(T∗)

2
[

a2(T∗) + a2
1(T∗)

] .

Since

−a′
1(T∗)a2(T∗) − a1(T∗)a

′
2(T∗) + a′

3(T∗)

= −
A

T 3
∗

(

BT 2
∗ + 1

)

,

we obtain

sign

[

Re

(

dλ

dT

)

T =T∗

]

= sign
(

BT 2
∗ + 1

)

.

If B ≥ 0, we observe that Re (dλ/dT )T =T∗ > 0 (with
T∗ = T ∗

0 , T ∗
1 ) holds always true, whether if B < 0,

then Re (dλ/dT )T =T ∗ > 0 (with T∗ = T ∗
2 , T ∗

3 ) if
0 < T < 1/

√
−B, and Re (dλ/dT )T =T ∗ < 0 if

T > 1/
√

−B.
The previous analysis leads to the following conclu-

sions.

Theorem 1 Let A < 0, with A defined as in (15).

(1) If B = 0 and A2 + α I ∗
k I ∗

y < 0 or if B > 0 and

B+α I ∗
k I ∗

y < 0, then there exists T = T∗ > 0 such

that the equilibrium point (y∗, y∗, k∗) of (7)–(9)
is locally asymptotically stable for all T < T∗ and

unstable for T > T∗. Systems (7)–(9) undergo a

Hopf bifurcation at (y∗, y∗, k∗) when T = T∗.

(2) If B < 0, then there exists 0 < T ∗
2 < T ∗

3 such

that the equilibrium point (y∗, y∗, k∗) of (7)–(9)
is locally asymptotically stable for all T < T ∗

2
and T < T ∗

3 , and unstable for all T ∗
2 < T < T ∗

3 .

A comparison of 1/
√

−B with T ∗
2 and T ∗

3 yields

that systems (7)–(9) undergo a Hopf bifurcation at

(y∗, y∗, k∗) when T = T ∗
2 or T = T ∗

3 or T = T ∗
2

and T = T ∗
3 .

For systems (7)–(9), Fig. 1 presents the bifurcation
diagram for the time-delay parameter T .

Case m = 2

The characteristic equation of the linearized systems
(10)–(13) at the critical point (y∗, p∗, w∗, k∗), where
p∗ = w∗ = y∗, takes the form
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α I ∗
y − αγ − g − λ 0 0 α I ∗

k

0 −
2

T
− λ

2

T
0

2

T
0 −

2

T
− λ 0

0 I ∗
y 0 I ∗

k − (g + δ) − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(17)
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Fig. 1 The bifurcation
diagram for model for
systems (7)–(9) m = 1 with
investment function (25) for
the delay parameter T . The
solid line indicates a critical
point with asymptotic
stability, and the dot-dashed
line corresponds to an
unstable critical point with a
limit cycle around it

where I ∗
y and I ∗

k are defined as in (3) and (4), which
leads to the following fourth-order algebraic equation
in λ

λ4 + a1(T )λ3 + a2(T )λ2 + a3(T )λ + a4(T ) = 0,(18)

where

a1(T ) =
4

T
− (M + N ),

a2(T ) =
4

T 2
−

4(M + N )

T
+ M N ,

and

a3(T ) =
4

T

[

M N −
M + N

T

]

,

a4(T ) =
4(M N + P)

T 2
,

with

M = α
(

I ∗
y − γ

)

− g, N = I ∗
k − (g + δ) < 0,

P = −α I ∗
k I ∗

y > 0. (19)

According to the Routh–Hurwitz conditions for sta-
ble roots, the equilibrium point (y∗, y∗, y∗, k∗) of sys-
tem (14) is locally asymptotically stable if a1(T ) >

0, a3(T ) > 0, a4(T ) > 0 and a1(T )a2(T )a3(T ) >

a2
3(T ) + a2

1(T )a4(T ), namely if

4

T
− (M + N ) > 0, M N −

M + N

T
> 0,

M N + P > 0 (20)

and

ϕ(T )

=
[

(M + N )(M N )2] T 4 + [(M + N )2(P − 4M N )]T 3

+
{

4(M + N )
[

(M + N )2 + 2M N − 2P
]}

T 2

+
{

16
[

P − (M + N )2]} T + 16(M + N ) < 0.

Taking in mind that N < 0 and P > 0, we derive
that conditions (20) hold always true if M ≤ 0. On the
other hand, when M > 0, they are valid if M + N < 0,
M N +P > 0 and T < (M+N )/(M N ). The condition
ϕ(T ) < 0 is difficult to handle, unless M = 0. In fact,
in this case,

ϕ(T ) =
(

N 2 P
)

T 3 +
[

4N
(

N 2 − 2P
)]

T 2

+
[

16
(

P − N 2
)]

T + 16N

is such that ϕ(0) < 0 and ϕ(+∞) = +∞. Hence,
there exists at least a positive value of T , say T ∗

0 , such
that ϕ(T ) = 0. We need now to recall Descartes’ rule
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of signs and its corollary, which state “the number of
positive roots of the polynomial ϕ(T ) is either equal
to the number of sign differences between consecutive
nonzero coefficients, or less than it by an even num-
ber” and “the number of negative roots is the number
of sign changes after multiplying the coefficients of
odd-power terms by −1, or fewer than it by an even
number”, respectively. Applying these rules to the poly-
nomial ϕ(T ), we get that ϕ(T ) has one positive zero
and the number of negative zeros must be either 2 or
0. Therefore, ϕ(T ) < 0 if T < T ∗

0 . When M = 0,
the equilibrium point (y∗, y∗, y∗, k∗) of (14) is locally
asymptotically stable for T < T ∗

0 .
Assume there exists T∗ > 0 such that ϕ(T∗) = 0,

i.e.,

a1(T∗)a2(T∗)a3(T∗) − a2
3(T∗) − a2

1(T∗)a4(T∗) = 0.

In this case, we can rewrite the characteristic equation
(18) as
[

a1(T∗)λ
2 + a3(T∗)

] [

a1(T∗)λ
2 + a2

1(T∗)λ

+a1(T∗)a2(T∗) − a3(T∗)] = 0.

so that we have two purely imaginary roots

λ1,2 = ±i

√

a3(T∗)

a1(T∗)
= ±iω∗,

and two other roots,

λ3,4

=
−a2

1(T∗) ±
√

a4
1(T∗) − 4a1(T∗) [a1(T∗)a2(T∗) − a3(T∗)]

2a1(T∗)
,

which have real parts different from zero since

λ3 + λ4 = −a1(T∗) < 0

and

λ3λ4 = [a1(T∗)a2(T∗) − a3(T∗)] /a1(T∗) > 0.

Differentiating the characteristic equation (18) with
respect to T , we have

[

4λ3 + 3a1(T )λ2 + 2a2(T )λ + a3(T )
] dλ

dT

= −
[

a′
1(T )λ3 + a′

2(T )λ2 + a′
3(T )λ + a′

4(T )
]

,

i.e.,

dλ

dT
= −

a′
1(T )λ3 + a′

2(T )λ2 + a′
3(T )λ + a′

4(T )

4λ3 + 3a1(T )λ2 + 2a2(T )λ + a3(T )
,

(21)

where

a′
1(T ) = −

4

T 2
, a′

2(T ) = −
8

T 3
+

4(M + N )

T 2
,

and

a′
3(T ) = −

4M N

T 2
+

8(M + N )

T 3
,

a′
4(T ) = −

8(M N + P)

T 3
.

Letting λ = iω∗ in (21), a direct calculation yields

Re

(

dλ

dT

)

T =T∗

= −
a1(T∗)ϕ′(T∗)

2
{

a3
1(T∗)a3(T∗) + [a1(T∗)a2(T∗) − 2a3(T∗)]

2
} ,

where

ϕ′(T∗) = a′
1(T∗)a2(T∗)a3(T∗)

+a1(T∗)a
′
2(T∗)a3(T∗) + a1(T∗)a2(T∗)a

′
3(T∗)

−2a3(T∗)a
′
3(T∗) − 2a1(T∗)a

′
1(T∗)a4(T∗)

−a2
1(T∗)a

′
4(T∗).

Let us notice that sign
[

Re (dλ/dT )T =T∗

]

= sign
[

−ϕ′(T∗)
]

, as well as recall that sign
[

Re (dλ/dT )T =T∗

]

> 0 and sign
[

Re (dλ/dT )T =T∗

]

<

0 correspond to crossings of the imaginary axis from
right to left and from left to right, respectively.

Summarizing all the previous analysis, we have the
following results.

Theorem 2 Let M be defined as in (19).

(1) Let M = 0. There exists T ∗
0 > 0 such that the

equilibrium point (y∗, y∗, y∗, k∗) of (14) is locally

asymptotically stable for T < T ∗
0 , unstable for T >

T ∗
0 , and bifurcates to a limit cycle through a Hopf

bifurcation at the equilibrium point when T = T ∗
0 .

(2) Let M 	= 0. The equilibrium point (y∗, y∗, y∗, k∗)
of (14) is locally asymptotically stable if M < 0
and ϕ(T ) < 0 or if M > 0, M + N < 0, M N +
P > 0, T < (M + N )/(M N ) and ϕ(T ) < 0.

If there exists T = T∗ such that ϕ(T∗) = 0 and

ϕ′(T∗) 	= 0, then a Hopf bifurcation may occur at

the equilibrium point as T passes through T∗.
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4 The rate of growth bifurcation analysis

Let us consider the dynamics of systems (7)–(9) with
respect to the change of the parameter g (the rate of
economic growth).

Proposition 1 The critical point of systems (7)–(9)
(and equivalently systems (1)–(2) always exists for the

rate of growth parameter g in the interval c − δ < g <

c + d − δ.

It is shown earlier that systems (1)–(2) have a unique
fixed point for c < g + δ < c + d. The economy
with the investment function I (y, k) = k�(y, k) has
a fixed point or a limit cycle solution only for some
rates of growth within the interval (c − δ, c + d − δ).
The parameters c and d of the investment function (and
also the capital stock depreciation parameter) put some
limit on minimal and maximal rates of growth.

Let us consider the characteristic equation of the lin-
earized systems (10)–(13) at the critical point
(y∗, u∗, k∗), in the form

∣

∣

∣

∣

∣

∣

∣

α(I∗
y (g) − γ ) − g − λ 0 α(g + δ − x∗(g)I∗

y (g))
1
T

− 1
T

− λ 0

0 I∗
y −x∗(g)I∗

y (g) − λ

∣

∣

∣

∣

∣

∣

∣

= 0

(22)

or

λ3 + a1(g)λ2 + a2(g)λ + a3(g) = 0, (23)

where

a1(g) =
1

T
− α(I ∗

y (g) − γ ) + g + x∗(g)I ∗
y (g),

a2(g) = −
1

T
[α(I ∗

y (g) − γ ) − g − x∗(g)I ∗
y (g)]

− [α(I ∗
y (g) − γ ) − g)x∗(g)I ∗

y (g)

a3(g) =
1

T
[−[α(I ∗

y (g) − γ ) − g]x∗(g)I ∗
y (g),

− α I ∗
k (g)I ∗

y (g)],

where λ is a root of the characteristic equation.
The discriminant of the characteristic equation is

� = 18a1a2a3 − 4a3
2a3 + a2

2a2
3 − 4a3

3 − 27a2
3 . (24)

Proposition 2 If expression (24) is positive, then the

all eigenvalues are real, and if it is negative, there is

one real, one pair of conjugate complex eigenvalues.

For the zero value of expression (24), the critical point

is non-hyperbolic.

For real eigenvalues, we have the following propo-
sition

Proposition 3 In the interval c − δ < g < c + d −
δ, there are two subintervals with the positive values

of the discriminant (24); these are two subintervals of

the values of the rate of growth parameter g. In these

subintervals, there are three negative real eigenvalues.

The subintervals of the parameter g with two neg-
ative and one positive eigenvalues are non-physical
regions as the critical point (y∗, u∗, k∗) does not lie
in a positive quadrant.

For complex eigenvalues, we have the following
proposition

Proposition 4 In the interval, c − δ < g < c + d − δ

and negative values of the discriminant (24) for the

increasing value of the rate of growth parameter g there

are two supercritical Hopf bifurcations. For the value

g = g1,Hopf, the limit cycle is created, and for the value

g = g2,Hopf, the limit cycle is destroyed (g1,Hopf <

g2,Hopf).

Therefore, as the rate of growth parameter is increas-
ing in the interval gmin = c − δ < g < c + d − δ =
gmax, the eigenvalues change as follows. In the first
subinterval (gmin; g1), there are three real eigenvalues
(two negative, one positive). In the second subinter-
val (g1; g1,Hopf), there are three real eigenvalues (three
negative). In the third subinterval (g1,Hopf; g2,Hopf),
there are one real eigenvalue (negative) and one conju-
gate complex eigenvalue (positive real parts). In the
fourth subinterval (g2,Hopf; g2), there are three real
eigenvalues (three negative). And finally, in the fifth
subinterval g2, (gmax) there are three real eigenvalues
(two negative, one positive).

For some example values of parameters, we can
determine the values of the rate of growth parame-
ter for which the eigenvalues change their character
or sign. We assume the values of investment function
parameters obtained by Dana and Malgrange, namely,
c = 0.01, d = 0.026, a = 9, v = 4.23. We fix also
the following model parameters α = 1, γ = 0.15,
δ = 0.007, G0 = 2 and T = 1. The rate of growth
parameter g is taken within the interval gmin = c−δ <

g < c + d − δ = gmax. The results are presented in
Table 1.

For systems (7)–(9), Fig. 2 presents the bifurcation
diagram for the rate of growth parameter g.
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Table 1 The intervals of values of rate of growth parameter g and respective signs of eigenvalues of the characteristic equation (22)

Real eigenvalues Complex eigenvalues Rate of growth parameter

1 Negative Pair with negative real part (0.003, 0.0101198)

1 Negative Pair with positive real part (0.0101199, 0.0203258)

1 Negative Pair with negative real part (0.0203259, 0.029)

It is assumed that c = 0.01, d = 0.026, a = 9, v = 4.23 (the investment function), α = 1, γ = 0.15, δ = 0.007, G0 = 2 and T = 1
(rest model parameters)

Fig. 2 The bifurcation
diagram for model for
systems (7)–(9) m = 1 with
investment function (25) for
the rate of growth parameter
g (the delay parameter
T = 1). The solid line
indicates critical point with
asymptotic stability, and the
dot-dashed line corresponds
to the unstable critical with
a limit cycle around it

5 Numerical analysis of the Hopf bifurcation

The original Kaldor model exhibited limit cycle behav-
ior due to the Hopf bifurcation caused by the increase
of the parameter α value [20]. Later, it has been aug-
mented by introducing both the investment lag T and
exogenous growth trend g. The increase of the invest-
ment time-delay parameter value also generates the
limit cycle [18]. However, the dependence the Hopf
bifurcation on the rate of growth parameter has been
not elaborated so far. Both Chang and Smyth in the
Kaldor model [20] as well as Dana and Malgrange in
the Kaldor model with exogenous growth trend inves-
tigated the parameter α as the bifurcation parameter
[27].

For numerical studies, we use the program XPPAUT
[47] and conduct the numerical analysis of both models:
m = 1 and m = 2. The investment function is assumed
to have the following parameter values: c = 0.01, d =
0.026, a = 9 and v = 4.23 [27]

I (y, k) = k�(y, k) = 0.01+
0.026

1 + e−9(4.23y/k−1)
. (25)

Montgomery analyzed the averaged construction
period in the US economy and found that the value-
weighted average construction in 1961–1991 was 16.7
months with projects completed in the interval from 0
to 48+ months [48]. Therefore, we consider the delay
parameter T ∈ (0, 5). For bifurcation analysis, we also
assume α ∈ (0.5, 1.0) and g ∈ (0.005, 0.025). For
the rest of parameters, we take γ = 0.15, δ = 0.007,
G0 = 2 [27].
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Fig. 3 The phase portrait
for systems (7)–(9) (m = 1)
with investment function
(25) for the delay parameter
T = 1, the rate of growth
parameter g = 0.016 and
the parameter α = 0.75.
The stable limit cycle is
shown (black) and two
arbitrary chosen trajectories
(red and blue). (Color figure
online)

Case m = 1

In this case, we consider the three-dimensional model
(7)–(9) for the state variables (y, u, k) and study numer-
ically the stability of the critical point (y∗ = u∗, k∗)
in order to find the values of parameter T for which
the critical point loses the stability and the limit cycle
is created through the Hopf bifurcation mechanism. In
the phase portrait presented in Fig. 3, the limit cycle is
shown with two arbitrary chosen trajectories attracted
to it.

A detailed study will be conducted on the depen-
dence of the bifurcation value of T from the model
parameters α and g as well as the dependence of the
bifurcation value of g from the model parameters α and
T .

The bifurcation surface in the parameter space
(a, g, T ) is presented in Fig. 4. For each pair of
fixed values of parameters a and T in the interval of
(0.70, 0, 78) and (0.1, 1.5), respectively, the two bifur-
cation values of the parameter g have been obtained in
the program XPPAUT [47]. The region below the sur-
face corresponds to the asymptotic stability of the crit-
ical point (y∗, u∗, k∗). The region inside instead corre-
sponds to parameter values for which systems (7)–(9)
have an unstable critical point with a limit cycle around
it.

To conduct a more detailed analysis, we now con-
sider relations between two parameters with a third
parameter fixed. First, the relation of T on α for
g = 0.016 is shown in Fig. 5. We find that the asymp-

Fig. 4 The Hopf bifurcation surface in the space of parameters
(α, g, T ) for systems (7)–(9) m = 1 and with investment function
(25). Outside of the surface is the region of asymptotic stability,
while inside of the surface is the region of parameters values for
which a limit cycle solution exists

totic stability region exist only if α < 0.7644 (with
g = 0.016). In the interval of α ∈ (0.6, 0.764), we find
the relation Tbi(α) is

Tbi = −11.137983 +
8.512805

α
. (26)

Second, we investigate the dependence of the param-
eter T on the parameter g with the fixed value of α.
We take the three values of parameter α. The stability
regions on the plane (g, T ) are shown for α = 0.6 and
α = 0.9 in Fig. 6. As the value of the parameter g

increases, region B is growing.
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Fig. 5 The plane of parameters (α, T ) for system m = 1 and
g = 0.016 with investment function (25). Region I is the region
of asymptotic stability, while region II is the region of parameters
value for which a limit cycle solution exists

The bifurcation line separating regions A and B is
described by a quadratic equation

Tbi = a2g2 + a1g + a0. (27)

Finally, we analyze the time paths of the model for
the economic variable y for different values of the time-
delay parameter for the amplitude and period of cycles.

In region I, there exists a stable equilibrium reached by
trajectories in an oscillating manner. It is the region of
asymptotic stability of the model. In Fig. 7, there are
two cases for α = 0.6, 0.9 with three solutions y(t)

obtained for given T = 0.5, 1.5, 3 and the same initial
function y(t) = 1, k(t) = 100 where t ∈ (−T, 0). We
can see that the dumping of oscillations is weaker as
the time delay T increases.

Case m = 2

In this case, we consider the four-dimensional model
(10)–(13) for the state variables (y, p, w, k). In this
model, the critical point values of (y∗ = p∗ = w∗, k∗)
are the same as the critical point values of (y∗ = u∗, k∗)
of three-dimensional model presented in the previous
section.

In a similar way as in the previous section, we ana-
lyze the occurrence of the Hopf bifurcation for the
parameter T depending on parameters α and g. The
relation of T on α for g = 0.016 is shown in Fig. 8. The
asymptotic stability region exists only if α < 0.7644
(with g = 0.016). It is the same result as in the case of
model m = 1.

Next, we study the cycle characteristics for some
values of the parameter α with different values of the

Fig. 6 The plane of parameters (g, T ) for system m = 1 with investment function (25). Here, it is assumed that α = 0.6 (left panel)
and α = 0.9 (right panel). Region A is the region of asymptotic stability, and region B is the region of limit cycle solution, and they are
separated by the bifurcation line Tbi(g)
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Fig. 7 Trajectories of model m = 1 with investment function (25) for the parameter g = 0.016 and α = 0.6 (left panel) and α = 0.9
(right panel)

Fig. 8 The plane of parameters (α, T ) for system m = 2 and
parameter g = 0.016 with investment function (25). Region I
is the region of asymptotic stability, while regions II and III are
regions of parameter values for which a limit cycle solution exists

delay parameter T . Figure 9 shows the solutions of y

for two cases of α = 0.6, 0.9 and three values of the
parameter T = 0.5, 1.5, 3.0. The amplitude and period
of cycles are decreasing as the parameter T increases
for α = 0.6.

Comparison of m = 1 and m = 2

The models presented can be treated as the approxi-
mation of the delay Kaldor–Kalecki growth model. To
find how good are the subsequent approximations, we
compare the bifurcation values of the parameter T in
models m = 1 and m = 2.

First, we consider the bifurcation diagram in the
parameter plane (α, T ) presented in Fig. 10. It occurs
that for the given value of parameter α the Hopf bifur-
cation value of the parameter Tbi is lower for the model
m = 2. This difference is zero for T = 0 and then
increases as the value Tbi increases for the fixed value
of the parameter α. On the other hand, for the fixed
value of the parameter T , the bifurcation value of the
parameter αbi is greater in the model m = 2. For the
parameter g = 0.016, the difference is close zero at
α = 0.7644 and equals 0.04 at α = 0.6, while for
the parameter g = 0.011, the difference is 0.234 at
α = 0.6. It is demonstrated in Fig. 10 for g = 0.016
(left panel) and g = 0.011 (right panel).

We compare trajectories of y(t) for systems m = 1
and m = 2 with the same initial conditions. In Figs. 11
and 12, there are trajectories y(t) for assumed the
parameter g = 0.016 and combinations of parame-
ters α and T . We find that for the same parameters α, g

and T , the period of cycles is smaller for model m = 2
and amplitude is also smaller, although the difference
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Fig. 9 Trajectories of model m = 2 with investment function (25) for parameter g = 0.016 and α = 0.6 (left panel) and α = 0.9 (right
panel)

Fig. 10 The plane of parameters (α, T ) for systems (m = 1) and
(m = 2) with investment function (25). Here, it is assumed that
g = 0.016 (left panel) and g = 0.011 (right panel). The dashed
line is for model m = 1, and the dotted line is for model m = 2.

These bifurcation curves separate region I of asymptotic stability
on the left side of curves and region II of limit cycle solution on
the right side of curves

is very small. For example, for α = 0.9, g = 0.016 and
T = 3, the period of cycle in model m = 1 is 114.85
and in model m = 2 is 116.45, while amplitudes are
12.9555 and 12.966, respectively. Taking models with
greater m, we should obtain the cycles with longer peri-
ods and amplitudes.

We can explore further approximations of the model
and compare values of the bifurcation parameter g for
successive m in Table 2.

123



1276 L. Guerrini et al.

Fig. 11 Trajectories of models m = 1 and m = 2 with investment function (25) for the same initial condition (y = p = w = 15, k =
100) (left panel) for α = 0.6 and g = 0.016. The left panel for T = 0.5 and the right panel for T = 3

Fig. 12 Trajectories of models m = 1 and m = 2 with investment function (25) for the same initial condition (y = p = w = 15, k =
100) (left panel) for α = 0.9 and g = 0.016. The left panel for T = 0.5 and right panel for T = 3

Table 2 The Hopf bifurcation points gbi,1 and gbi,2 for subsequent approximations

Model gbi,1 = 1 gbi,2 = 2

m1 0.01011989 0.02032586

m2 0.01011919 0.02032671

m3 0.01011909 0.02032693

m4 0.01011906 0.02032703
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6 Conclusions

The Kaldor–Kalecki growth model with distributed
delay is investigated. To simplify our analysis, the
gamma distribution has been considered to have only
weak and strong kernels. Using the linear chain
trick, the delay differential equations describing our
model are replaced by three-dimensional and four-
dimensional dynamical systems, respectively.

The model is found to have an equilibrium only for
some interval of values of the rate of growth parame-
ter. This interval depends on the values of investment
function which are chosen for analyzing the model.

The birth of a limit cycle (the Hopf bifurcation) is
conducted due to the change of two parameters: the
time delay T and the rate of growth g. Additionally, we
take into consideration the speed of adjustment param-
eter α which is the bifurcation parameter of the original
Kaldor model. In order to have a better insight of the
dynamics, the bifurcations are analyzed in the three-
dimensional space of these parameters.

Considering the dynamics of the model under the
change of the growth rate parameter, we discover
numerically two bifurcation values of the rate of growth
parameter when the Hopf bifurcations occur. Increas-
ing the value of this rate of growth parameter, for a
smaller value of this parameter the limit cycle emerges
and then for a larger value of this parameter the limit
cycle is destroyed to a stable focus through the Hopf
bifurcations. Therefore, the cyclic behavior takes place
in some interval of the rate of growth parameter values.
Outside of this interval, the system through damping
oscillation goes to a stable stationary solution. Similar
dynamic behavior with two Hopf bifurcations separat-
ing stable, unstable and stable regions appeared in the
macroeconomic model extending the Calvo and Obst-
feld framework [49].

There are two oscillating regimes. For lower and
higher rates of growth, the oscillations are damped and
asymptotically stationary state is reached. For interme-
diate rates of growth, the self-sustained oscillations of
constant amplitude are present. For some model param-
eters, this intermediate interval of rate of growth values
is obtained to be (0.01011989, 0.0238466) for three-
dimensional and four-dimensional systems. The range
of this intermediate interval depends on the model
parameters: α, γ and δ.

All numerical analyses have been done with Dana
and Malgrange’s investment function for the French
macroeconomic data [27].

– The Kaldor–Kalecki model with distributed delay
is reduced to the ordinary differential system using
the linear chain trick technique.

– Depending on the value of the parameter m of the Ŵ

distribution function, the reduced system is (m+2)-
dimensional ordinary differential equation system.

– For the increasing time-delay parameter, there is
the supercritical Hopf bifurcation.

– For the increasing rate of growth parameter, first
the limit cycle emerges and then the limit cycle
disappears. Therefore, there are two supercritical
Hopf bifurcations with two bifurcation values of
the rate of growth parameter.

– For some values of parameters α and T , in the
allowed range of the rate of growth parameter val-
ues, for both lower and higher values of the rate
growth parameter the model has the stable station-
ary point, while for the middle range of parameter
values there is the limit cycle.

– The period of cycle increases and decreases as the
rate of growth parameter increases in the range of
unstable solution.

– Comparing the models with different m, the stable
region in the parameter space is slightly diminished
as m is greater.
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