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Abstract: This paper deals with the stability and occurrence of Hopf bifurcation of a distributed
delay differential cobweb model using the chain trick technique. This is a generalized form of the
fixed delay cobweb model to which it is compared using the same parameter values. The results
from the delay distribution showed that whenever less weight (γ = 0.146) is put on past prices, the
current equilibrium price is adjusted upwards while the reverse is observed when a higher weight
(γ = 0.186) is put on the previous price. It is also observed that if the initial price is set below/above
the equilibrium price, the price adjustment either affects the consumers or benefits the suppliers.
However, the fixed delay cobweb model does not display the consumers or suppliers benefits of
the price dynamics in either direction. These are unique, underlying patterns in price dynamics
discovered when using a distributed delay model compared to traditional fixed delay cobweb models.
Furthermore, our model challenges the traditional cobweb model’s requirement for divergence, as it
is based on the weight assigned to past prices rather than the relationship between the elasticities of
supply and demand, which is the determining factor in the classical model. Based on these insights,
we recommend that future price adjustment models incorporate distributed delays, as they reveal
more intricate price dynamics and provide a more comprehensive understanding of market behavior
than fixed delay models.
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1. Introduction

The dynamics of economic markets reveal an inverse relationship between the price
of a commodity and the quantity demanded, and a direct relationship between the price
and the quantity supplied [1]. Thus, as a commodity’s price rises, the demand decreases
because fewer people can afford it [1,2]. This fluctuation in price, driven by the interaction
between the demand function of the current price and the supply function of the expected
price, is most effectively described by the cobweb model [3]. Various forms of this model
have been applied in research, such as Nerlove’s study of adaptive expectations [4] and
Muth’s work on rational expectations [5], both investigating the theory of price movements.
Hommes [5,6] also examined the chaotic dynamics and bifurcations in cobweb model
solutions, while Gaffney and Pearce [7] explored the model’s dynamics using nonlinear
forms. The classical cobweb model assumes that the supply function reacts to prices with
a one-period lag [8], while demand depends on the current price. The time gap between
supply and demand, often linked to price volatility [9,10], has led to the increasing use of
delay differential equations in modeling price adjustments.

Delay parameters enrich the dynamics of price adjustment models [11] by reflecting
suppliers’ past decisions. For instance, Ma et al. [12] applied a cobweb model with delayed
feedback to control chaos in the price system. Matsumoto et al. [13] and Gori et al. [14],
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respectively, investigated the asymptotic behavior and Hopf bifurcation in cobweb models
with time delays. The time delay parameter has been found to play a crucial role even in
models with varying price expectations [15]. According to Gori et al. [16], quasi-periodic
oscillations occur when the time delay parameter becomes very large for a sufficiently low
elasticity of demand. Additionally, Matsumoto and Nakayama [17] introduced two-time
delays in a cobweb model, revealing a winding stability switching curve.

Anokye et al. [18] recently used a new method to find a unique solution to the
following delay differential cobweb model via the Lambert W-function without considering
any complex branches,

ṗ(t) = γ[α − λ − βp(t)− δp(t − τ)], (1)

p(t) = p0(t) − τ ≤ t ≤ 0

where the function p(t) represents the price at time t, and the positive parameters α, β, γ, δ
and λ are defined as the demand intercept (to ensure that there is demand for the commod-
ity even at the lowest price), elasticity of demand, market adjustment coefficient, elasticity
of supply, and supply intercept, respectively. According to the rules governing the cobweb
model, these parameters assume that α > λ, and for the condition of price convergence,
β > δ; otherwise, β < δ. Additionally, τ > 0 represents a time delay. The model oper-
ates using only the previous price (naive price expectation) to make decisions [19] and
does not incorporate any exogenous factors affecting price. Equation (1) has a unique
positive equilibrium

p∗ =
α − λ

β + δ
,

obtained by setting ṗ(t) = 0 and p(t − τ) = p(t) = p∗ for all t.
There are various forms of delay-related models used in the modeling of dynamical

systems. One such form is distributed delay equations, which are employed to model
delayed systems where the duration of the delay is uncertain [19]. Many researchers focus
on models where the delay can change arbitrarily, as it is often realistic for delays in a
system to vary over time. To capture this variability, distributed delay equations are used,
as the delayed terms in these models represent an expectation [19]. A more general and
realistic [20] approach for modeling processes that might exhibit intrinsic stochasticity on a
smaller scale, but manifest this randomness at a larger scale, is through the use of distributed
delay models. For example, certain physical systems, such as hematopoiesis and lactose
operon dynamics in biological systems, show intrinsic stochastic time delay behavior,
and these phenomena have been modeled using distributed time delay equations [21–25].
Empirical studies have also shown that the placement of delay terms within a model
can significantly influence the system’s behavior as the average time delay increases [26].
Additionally, it has been discovered that when time delays approach the same scale as
pattern formation, they can alter the system’s overall dynamics [26].Therefore, evaluating
how temporal delays impact dynamical system models is crucial.

Since much of the literature on cobweb models has focused on fixed delay
models [19,20,27], and these models often oversimplify or overlook critical price
dynamics [26], as fixed time delays are seen as a simplification of the underlying pro-
cess in dynamical systems, this study considers a distributed delay model. Distributed
delay models are better suited to capturing complex price behaviors because they account
for varying time lags in the supply function and introduce heterogeneity [20,22], making
the models more realistic. Moreover, the dynamics of cobweb models with distributed
delays have not received significant research attention, despite distributed delays being
more general than discrete delays.

In this paper, we generalize Equation (1) by incorporating distributed delays using the
chain trick method. The aim is to assess whether the results from the fixed delay model
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remain consistent across different delay distributions or if they are sensitive to changes in
the delay structure. The model for the study is expressed by

ṗ(t) = γ

[
α − λ − βp(t)− δ

∫ t

−∞
p(r)g(t − r)dr

]
, (2)

p(t) = p0(t) − τ ≤ t ≤ 0

where the delay kernel g(·) is a gamma distribution, i.e.,

g(t) =
(m

T

)m tm−1e−
m
T t

(m − 1)!
. (3)

Here, m is a positive integer and T is a positive real, which corresponds to the average
length of delay. Notice that the distribution function approaches the Dirac distribution
as T → 0, so that one recovers the time delay case. Hence, discrete delay may be seen
as a limiting case of distributed delay. Thus, the fixed delay model (1) is now modified
as a distributed delay model as shown above so that we can investigate the effect of the
distributed time delay and the weight function (of the past price) on the current price. It
should be noted that the assumptions mentioned in model (1) are also relevant to model (2).

The rest of the paper is structured as follows: Section 2 discusses the local stability
analysis, stability switch and bifurcation analysis, and the existence and uniqueness of the
solution of Equation (2). In Section 3, detailed numerical solutions and stability analyses
are performed by comparing model (2) with model (1) given in the literature. Section 4
provides the findings and conclusions derived from the analyses of the two models.

2. Materials and Methods
2.1. Stability Analysis of Solution

To examine the local dynamic behavior of the integro-differential equation system (2)
at the equilibrium point p∗, we use the translation z = p − p∗ and consider the linearization
of (2) at the origin. This may be written as

ż(t) = −βγz(t)− δγ
∫ t

−∞
z(r)g(t − r)dr. (4)

By employing the procedures delineated by Miller [19], we can determine the characteristic
equation of (4) by looking for solutions of the form z(t) = z(0)eµt, µ ∈ C. Substituting this
last expression into (4) yields

µ + βγ + δγ
∫ t

−∞
e−µ(t−r)g(t − r)dr = 0. (5)

Since∫ t

−∞
e−µ(t−r)g(t − r)dr =

∫ +∞

0
e−µvg(v)dv

=
(m

T

)m 1
(m − 1)!

∫ +∞

0
vm−1e−(

m
T +µ)vdv =

(
1 +

µT
m

)−m
.

the characteristic Equation (5) assumes the form

(µ + βγ)

(
1 +

µT
m

)m
+ δγ = 0, (6)

which is a polynomial in µ of degree m + 1. It is difficult to obtain a general solution of (6).
Thus, to gain insight into the dynamic characteristics of our model, we confine the attention
to the special cases m = 1 and m = 2, which are called weak delay kernel and strong delay
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kernel, respectively. The weak kernel posits that the importance of past events decreases
exponentially as one goes deeper into the past, whereas the strong kernel asserts that a
specific instant in the past holds greater significance than all others.

Case m = 1. By substituting m = 1 into (6), we obtain the quadratic characteristic equation

µ2 + b1(T)µ + b2(T) = 0, (7)

where

b1(T) = βγ +
1
T

> 0, b2(T) =
γ(β + δ)

T
> 0.

The local asymptotical stability of the model is guaranteed if both roots of Equation (7)
have negative real parts. According to the Routh–Hurwitz criterion, this holds true if and
only if b1(T) > 0 and b2(T) > 0. We, therefore, have the following result.

Proposition 1. The equilibrium point p∗ of (2) is locally asympotically stable for all T > 0.

Case m = 2. In this case, the characteristic Equation (6) takes the form

µ3 + b1(T)µ2 + b2(T)µ + b3(T) = 0, (8)

where

b1(T) = βγ +
4
T

> 0, b2(T) =
4
T

(
βγ +

1
T

)
> 0, b3(T) =

4γ(β + δ)

T2 > 0.

By the Routh–Hurwitz criterion, the equilibrium is locally asymptotically stable if and only
if b1(T) > 0, b3(T) > 0 and b1(T)b2(T)− b3(T) > 0. Since the coefficients of (8) are all
positive, the stability condition is validated if

β2γ2T2 − γ(δ − 4β)T + 4 > 0. (9)

Proposition 2.
(1) Let β < δ < 8β. The equilibrium point p∗ of (2) is locally asympotically stable for all T > 0.
(2) Let δ = 8β. The equilibrium point p∗ of (2) is locally asympotically stable for all T ̸= T0,

where
T0 =

1
4β2 > 0.

(3) Let δ > 8β. The equilibrium point p∗ of (2) is locally asympotically stable if T < T1 and
T > T2 and unstable if T1 < T < T2, where

T1 =
δ − 4β −

√
δ(δ − 8β)

2β2γ
> 0, T2 =

δ − 4β +
√

δ(δ − 8β)

2β2γ
> 0.

Proof. If 4β − δ ≥ 0, then (9) is clearly satisfied. If 4β − δ < 0, then the statement follows
from γ2δ(δ − 8β) being the discriminant of our inequality and recalling the assumption
δ > β.

2.2. Stability Switches and Bifurcation

The next question that naturally arises is on the dynamics when the equilibrium loses
stability. Hence, we go back to the characteristic Equation (8) evaluated at T = T∗, where
T∗ ∈ {T1, T2}. Since b1(T∗)b2(T∗)− b3(T∗) = 0, by replacing b3(T∗) with b1(T∗)b2(T∗), we
are able to factor (8) as

[µ + b1(T∗)]
[
µ2 + b2(T∗)

]
= 0,
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that can be explicitly solved for µ. One of the three roots is real and negative, whereas the
other two are pure imaginary

µ1 = −b1(T∗), µ2,3 = ±i
√

b2(T∗) = ±iω∗.

In order to apply the Hopf bifurcation theorem, we need to show that the real parts of the
complex roots are sensitive to a change in the bifurcation parameter T. Suppose that µ is
a function of T. Taking the derivative of the characteristic Equation (8) with respect to T,
we have

dµ

dT
= −

b′1(T)µ
2 + b′2(T)µ + b′3(T)

3µ2 + 2b1(T)µ + b2(T)
, (10)

where

b′1(T) = − 4
T2 , b′2(T) = − 4

T2

(
βγ +

2
T

)
, b′3(T) = −8γ(β + δ)

T3 .

Plugging µ = iω∗ in (10), and arranging terms yields

Re
(

dµ

dT

)
µ=iω∗

=
2
[
β2γ2T2

∗ − 2γ(δ − 4β)T∗ + 12
]

(βγT∗ + 10)(βγT∗ + 2)T2∗
. (11)

Plugging β2γ2T2
∗ − γ(δ − 4β)T∗ + 4 = 0 into the numerator of (11), we obtain

sign

[
Re

(
dµ

dT

)
µ=iω∗

]
= sign{−γ(δ − 4β)T∗ + 8}.

For T∗ = T1, we derive
sign{−γ(δ − 4β)T1 + 8} > 0.

Notice, one has

−γ(δ − 4β)T1 + 8 =
−δ(δ − 8β) + (δ − 4β)

√
δ(δ − 8β)

2β2 ,

where the numerator is positive being −δ(δ − 8β) + (δ − 4β)
√

δ2 − 8βδ > 0 if and only if
16β2 > 0. On the other hand, for T∗ = T2, we find

sign{−γ(δ − 4β)T2 + 8} < 0.

Notice, one has

−γ(δ − 4β)T2 + 8 =
−δ(δ − 8β)− (δ − 4β)

√
δ(δ − 8β)

2β2 ,

with the assumption δ − 8β > 0 implying the numerator to be negative. In conclusion,
crossing of the imaginary axis is from left to right as T increases to a certain critical value
T1 (stability loss), and crossing from right to left occurs at a certain value T2 (stability gain).
Our analysis is summarized in the following theorem.

Theorem 1. Let δ > 8β. The equilibrium point p∗ of (2) undergoes a Hopf bifurcation for T = T1
and T = T2.

2.3. Existence and Uniqueness of Solution

We use the Banach fixed point theorem to determine the existence and uniqueness of
the model. We set Tz = z

ż(t) = −βγz(t)− δγ
∫ t

−∞
z(r)g(t − τ)dr. (12)
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Then, we express (12) as

Tz =
1

βγ

[
ż(t) + σγ

∫ b

−∞
z(r)g(t − τ)dr

]
. (13)

Since g(t− τ) is continuous, we have that |g(t− τ)| ≤ k. For the uniqueness of the solution,

Tz1(t)− Tz2(t) =
1

βγ
|σγ|

∫ t

−∞
g(t − τ)[z1(r)− z2(r)]dr

≤ 1
βγ

|σγ|c|z1 − z2|
∫ t

∞
dr

=
1

βγ
σγ|c(t − a)||z1 − z2|.

By induction,

|Tmz1 − Tmz2| ≤
(

1
βγ

)m
|σγ|mcm| (t − a)m

m!
|z1 − z2|,

for m = 1, we obtain

|Tz1 − Tz2| ≤
∣∣∣∣ 1

βγ

∣∣∣∣|σγ|c(t − a)|z1 − z2|. (14)

Assuming that (14) is true for any m, we obtain∣∣∣Tm+1z1 − Tm+1z2

∣∣∣ =

∣∣∣∣ 1
βγ

∣∣∣∣|δγ |
∫ t

−∞
g(t − τ)[Tmz1 − Tmz2]dr

=

∣∣∣∣ 1
βγ

∣∣∣∣|δγ|mcm t − a
(m + 1)!

|z1 − z2|

≤
∣∣∣∣ 1

βσ

∣∣∣∣|σγ|m+1cm+1 t − a
(m + 1)!

· |z1 − z2|.

By the Banach fixed point theorem,

|Tmz1 − Tmz2|αm ≤ |Z1 − z2|.

For contraction,

αm=

∣∣∣∣ 1
βσ

∣∣∣∣|σγ|mcm t − a
m!

< 1.

Then, there exists a contraction, the solution of the model problem exists, and it is unique.

3. Numerical Simulations
3.1. Price Dynamics of Models (1) and (2)

In this section, we adopt the same parameter values used in [18] and compare the
stability analysis of our model (2) with the stability analysis of the existing model (1).
Specifically, we utilize the following parameters: α = 0.8, β = 0.4, λ = 1 and δ = 0.2, from
which we derive an equilibrium price of pe = 3.0, with an initial price of p0 = 5.0. All
numerical simulations are conducted using MATLAB software (MATLAB 2009b).

From Figure 1, it is observed that at a time delay of τ = 1.0 model (1) displayed similar
dynamics, as shown in the previous work by Anokye et al. [18]. The price converged from
an initial price of p0 = 5 to the equilibrium price at pe = 3.
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Figure 1. Price dynamics of cobweb model (1) with τ = 1.

In Figure 2, where a generalized model, i.e., the distributed delay model (2), was
considered with time delay at τ = 1.0 among several delays in the span of [1, 11], the model
(2) exhibited similar dynamics in [18] when the kernel was set at γ = 0.166. The delay
kernel represents the weight the model assigns to the previous price in determining the
current price. Notably, this “weight” refers to the emphasis suppliers place on the past
market price. While lower weight is typically associated with unfavorable prices, higher
weight corresponds to favorable prices.

Figure 2. Price dynamics of cobweb model (2) with delay kernel γ = 0.166.

In Figure 3, it is shown that when the weight is set at γ = 0.146 (i.e., a decrease of
0.02), the equilibrium price is increased to pe = 3.1 from pe = 3.0 (compared to Figure 1).
This demonstrates that the less weight assigned to the past price, the higher the current
market price becomes. Practically, this suggests that when less emphasis is placed on the
previous market price, it results in a lower supply of the product, thereby driving up the
present market price (as indicated by γ = 0.146) above the equilibrium price of pe = 3.0.

Figure 3. Price dynamics of cobweb model (2) with delay kernel γ = 0.146.
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In Figure 4, it is shown that when the weight is increased to γ = 0.186 (i.e., an increase
of 0.02), the equilibrium price decreases from pe = 3.0 to pe = 2.90. This demonstrates
that the higher the weight assigned to the past price, the lower the current market price
becomes. In practical terms, this suggests that more emphasis was placed on the previous
market price (i.e., the delay kernel effect), leading to an oversupply of commodities in the
market, which in turn reduced the equilibrium price. These price dynamics are not present
in the existing model (1), making our model (2) particularly intriguing and insightful.

Figure 4. Price dynamics of cobweb model (2) with delay kernel γ = 0.186.

3.2. Dynamics of Initial Price below the Equilibrium Price

In this section, we set the expected price above the initial market price to evaluate how
the delay kernel should be adjusted to align the price dynamics of model (2) with those
of the existing model (1). Let the expected price be pe = 3.0, with the initial price set as
p0 = 1.0, and time delay parameter τ = 2.5 while keeping all other parameter values the
same as the previous subsection. This setup allows us to examine how adjustments in the
delay kernel can bring the behavior of model (2) into conformity with the dynamics of
model (1) when the initial market price starts below the expected price.

In Figure 5, when the time delay is increased to τ = 2.5 and the initial price is below
the equilibrium price, we can see that the price behavior from model (1) initially moves
above the equilibrium price at the onset of equilibrium (i.e., turning point) before finally
converging to the equilibrium price of pe = 3 from the initial price of p0 = 1. This sharp
movement is a result of the higher time delay incorporated in the supply function of price
in the model.

Figure 5. Price dynamics of cobweb model (1) with τ = 2.5.

When the initial price is set below the equilibrium price, as observed in Figure 6, model
(2) with a time delay at τ = 2.5 consistently leads to a decrease in weight from γ = 0.166
(compared to Figure 2) to γ = 0.146, causing the equilibrium price to move to pe = 3.1
from pe = 3.0 with an initial price of p0 = 1.0. This situation typically favors the suppliers
as less weight is associated with unfavorable past prices from the previous market.
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Figure 6. Price dynamics of cobweb model (2) with p0 < pe and delay kernel γ = 0.146.

When the equilibrium price is set above the initial price, as demonstrated in Figures 5–7
with the same time delay of τ = 2.5, there was a decrease in the equilibrium price from
pe = 3.0 to pe = 2.90 through convergence from an initial price of p0 = 1.0, while the
weight increased from γ = 0.166 to γ = 0.186. This situation, on the contrary, favors
the consumers, as high weight is associated with a favorable price from the past market,
motivating suppliers to increase yield to exceed demand at the market.

Figure 7. Price dynamics of cobweb model (2) with p0 < pe and delay kernel γ = 0.186.

3.3. Dynamics of Initial Price below the Equilibrium Price

This section also addresses the scenario where the elasticity rule is subjected to an
economic test. It is established that for convergence to occur, the price supply elasticity
δ should be less than the demand elasticity β; otherwise, no price equilibrium will be
achieved. We set β = 0.2, δ = 0.8, and τ = 2.5, while keeping the other parameters constant
as used in the previous subsection.

In Figure 8, it is demonstrated that with a time delay of τ = 2.5, when the price
elasticity of supply δ = 0.8 is greater than the price elasticity of demand β = 0.2, the price
will infinitely oscillate around the equilibrium price, meeting the condition for divergence
of the Cobweb model.

Figure 9 shows that for model (2) with the same parameter values as in Figure 8, and a
delay kernel at γ = 0.166, the price exhibits a few oscillations and converges to equilibrium,
even though the elasticity of supply δ = 0.8 is greater than the price elasticity of demand
β = 0.2. This dynamic defies the condition for divergence of the cobweb model, as it
depends on the weight placed on the past price rather than how the elasticity of supply
relates to that of the demand elasticity. The reality is that the weight (i.e., delay kernel)
predicts the occurrence of the price scenarios for stakeholders to take the necessary steps to
keep the commodity price stable.
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Figure 8. Price dynamics of cobweb model (1) with elasticity β < δ.

Figure 9. Price dynamics of cobweb model (2) with elasticity β < δ.

Note that the delay kernel parameter γ = 0.166 is utilized to guarantee that the prices
of both the fixed delay cobweb model (1) and the distributed delay model (2) will converge
to the same market equilibrium price. However, model (1) did not achieve this. Values
lower than γ = 0.166 lead to further price increases, while values greater than γ = 0.166
result in price decreases. This encapsulates the dynamics of the system.

4. Conclusions

This paper explores the stability and occurrence of Hopf bifurcation in a delay-
distributed differential cobweb model using the chain trick technique. This model is
a generalized form of the fixed delay cobweb model, and the two are compared using
identical parameter values. The results indicate that when a lower weight (γ = 0.146)
is assigned to past prices, the current equilibrium price adjusts upwards, while a higher
weight (γ = 0.186) leads to a downward adjustment. Additionally, if the initial price is
set either below or above the equilibrium price, the resulting price adjustments can either
negatively impact consumers or benefit suppliers. Interestingly, the fixed delay cobweb
model does not exhibit these consumer or supplier effects in its price dynamics. These
unique patterns in price behavior observed in the distributed delay model set it apart from
traditional fixed delay models. Moreover, this model challenges the conventional cobweb
theory’s requirement for divergence, as it is influenced by the weight placed on past prices
rather than the elasticity relationship between supply and demand, as seen in existing
models. From a managerial perspective, commodity suppliers, by considering the impact
of past prices (i.e., the weight on previous prices), may make decisions that could affect the
market either positively or negatively. However, a key limitation of this study is that model
(2) operates under the assumption that only past prices (naive price expectations) are used
for decision-making, with all other factors held constant. Other types of price expectations,
such as rational price expectations, were not considered but could be explored in future
research. Consequently, it is recommended that future price adjustment models incorporate
distributed delays to capture these more nuanced dynamics.
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