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Abstract

This paper presents a method for the detection of series arc faults in electrical

circuits, which has been developed starting from the recurrence quantification

plots that allow to quantify the periodic behavior of time-series and to analyze

the recurrences of a dynamical system presented by its phase space trajectory.

Starting from this, the authors have found that it is possible to exploit recurrence

quantification plots by using the gray-level co-occurrence matrix from which

the extracted textural image features represent a proper set of indicators for

suitably detecting arc faults. The database of this research is collected from 13

different types of load according to IEC 62606 standard. The proposed method’s

effectiveness is shown by means of experimental tests, which were carried out in

both arcing and non-arcing conditions and in the presence of different loads.

Keywords: arc fault, recurrence quantification plot, gray-level co-occurrence

matrix, image analysis, series arc
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µx, µy Mean deviations of Px(i) and Py(j)

σx, σy Standard deviations of Px(i) and Py(j)

τ Time delay5

Θ Similarity function

AC Alternating current

ACF AutoCorrelation Function

C(i, j) Co-occurrence probabilities between gray level i and j

d, θ Trigonometric functions10

f0 Fundamental frequency

Fd Sampling frequency after downsampling

Fs Sampling frequency

GLCM Grey Level Co-Occurence Matrix

HC Number of Half Cycle15

HXY 1 GLCM entropy 1

HXY 2 GLCM entropy 2

I(x, y) gray image of size Nx pixels by Ny pixels

L Quantized gray levels

m Embedding dimension in the phase space20

P (i, j) Number of co-occurrences of gray level i and j

RQ Recurrence Quantification

RQA Recurrence Quantification Analysis

RQP Recurrence Quantification Plots
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S Similarity Matrix25

TW Time window duration

TDV − CNN Temporal Domain Visualization Convolutional Neural Network

1. Introduction

Arc faults are electric arcs that originated in different home areas or vir-

tually in any electrical fixture that occur accidentally in series or parallel and30

generally caused by wire’s long-term work with load or overload, junction’s loose

connection, external intrusion raised insulation damage, etc. [1]. If an arc fault

is maintained for a long time, the energy produced by the arc may lead to the ig-

nition of a fire accident. According to the Forum for European Electrical Safety

(FEEDS), an estimated 270000 (reported or not) domestic fires of electrical ori-35

gin (about 20 to 30% of all domestic fires) still occur every year throughout

the EU, estimated to cause an average of 1000 fatalities and 20000 injuries each

year and annual property damage of 6.25 billion euro [2]. Whereas according to

the National Fire Protection Association (NFPA), 44880 home fires involving

electrical failure or malfunction are reported each year in 2012-2016, with 44040

civilian deaths and 1250 civilian injuries each year, as well as an estimated 1.3

billion in direct property damage a year [3].

Arc faults usually present as signature an indistinctive stochastic change of

current magnitude [4], which makes difficult to detect this kind of fault with the

common circuit protectors. In addition, in the literature, it is put in evidence45

that the features of arc faults are various and complex, especially in the presence

of nonlinear or switching loads [4], therefore arc fault detection and appliances

classification require customized and advanced techniques which are able to ex-

tract arc fault signatures [5]. Normally, the current time-series vary according to

loads and circuit state (normal and arcing). The wave shapes of normal current50

behave variously on different load types: some are almost sinusoidal, others have
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flat shoulders or catastrophe points. When an arc fault is occurring, many ab-

normal behaviors arise, such as impulse, or spiking, increment of high-frequency

harmonic component, decrement of the conduction angle, abrupt change of AC

signal, time-domain waveform distortion and amplitude decreases. The variety,55

complexity and chaotic nature of the current time-series during arc fault and

the number of possible scenarios impose a great challenge on designing reliable

arc fault detection methods [6, 7].

Different arcing fault detection based on single or multi-criteria approaches

have been presented in literature. The widely used methods are correlation60

analysis, crest factor, Kalman filter, inter-period correlations of current, alge-

braic derivative [4, 8, 9, 10, 11]. Others are based on time-frequency analysis

and mainly the wavelet transform. In this case, the detection performances

are strongly linked to the sampling frequency, the level of signal composition

and the mother wavelet according to the domestic appliance in the circuit65

[12, 13, 14, 15, 16]. With the rise of processing power for the embedded system,

internet of things and the promising results of machine learning in many fields,

several works propose arc fault detection methods based on machine learning or

deep learning techniques [17, 18, 19, 20, 21]. Machine learning-based algorithms

in conjunction with classical methods can bring better performance for arc fault70

detection. Machine learning approaches are mainly based on pattern classifica-

tion in order to detect the arc fault and, consequently, identify the appliance

involved in the fault [22, 23]. Duc Vu et al. [20] proposed an original method-

ology for the choice of optimal arc fault features (transforms or direct feature

extraction) in a first step and then for combining them using a machine learn-75

ing technique. The method consists of creating an arc fault feature pool and

finding a combination of those features which satisfy the desired performance.

The method is tested efficiently with twenty-one specific transforms associated

with 10 different descriptors. A major interest would be to be able to also locate

the arc fault on the line, and more precisely identify the load which presents80

a fault for electrical troubleshooting for example. Many methods related to

non-intrusive load monitoring have been presented in the literature in order to
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appliance recognition [24, 25, 26], and the most recent ones are based on a ma-

chine learning approach [27, 28, 29, 30] but none is associated with a detection

method. There are few methods in the literature that combine both arc detec-85

tion and load classification. Wang et al. [6] proposed a processing procedure

with a sparse representation with a fully connected neural network methodology

for series arc fault identification. The general classification reaches 94.3% with

10 tested classes. Chu et al. [16] proposed a temporal domain visualization step

associated with a convolutional neural network (TDV-CNN). Every half-cycle of90

the measured current is transformed into a grey image. The detection accuracy

reaches 98.7% and can be used to distinguish various load types. Yang et al. [12]

developed a signal processing method to extract the high frequency radiation

characteristics, the current waveform periodic integral characteristics, and the

current waveform slope characteristics of the arc faults. Then the recognition95

algorithm is based on multi-information fusion and support vector machines.

Arc fault identification is made on single and combined loads.

In this work, a method for the detection of series arc faults in electrical

circuits and appliances classification is proposed by exploiting the Recurrence

Quantification (RQ) plots. The Recurrence Quantification Analysis (RQA) is100

a methodology that allows quantifying the periodic behavior of time-series and

analyzing the recurrences of a dynamical system presented by its phase space

trajectory. RQ plots can be analyzed by using the gray-level co-occurrence

matrix from which the extracted textural image features represent a proper set

of indicators for suitably detecting arc faults. The effectiveness of the proposed105

method is shown by means of experimental tests, which were carried out in

both arcing and non-arcing conditions and in the presence of different loads.

The main contribution and novelty of this paper consists of the exploitation of

the recurrence plots to discriminate the occurrence of arc faults and classify the

load types. The recurrence quantification analysis demonstrated to be a reliable110

tool to analyze AC signals for electric motor fault detection [31, 32] and power

system analysis [33]. The recurrence plots are analyzed by using an efficient

image analysis technique such as Gray-Level Co-Occurrence Matrix (GLCM).
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Moreover, the authors propose a solution based on the physical knowledge of

such arc signals, in order to set the time delay that usually is found by the115

application of mutual information [34].

The rest of this paper is organized as follows. Section 2 introduces the

preliminary theory of RQA, and details of textural features extraction and clas-

sification for detecting arc faults. The general experimental test bench used to

generate a series arc faults in an electrical network in order to record the cur-120

rent electrical signatures is described in Section 3. In Section 4, the proposed

methodology is evaluated with real data of various load types and work states;

the comparison with other methods is also provided. Section 5 presents the

conclusion.

2. Methodology125

As a nonlinear time-series analysis technique, the proposed one has been

developed from a phase space point of view [35, 36]. It is well-known that

time-delay coordinates allow to synthesize additional dynamic variables using

a time-series measurement from a single variable. Considering a time-series

of N samples obtained from the sensor measurement [y(1), y(2), . . . , y(N)], its130

corresponding phase space can be constructed through a time-delay approach

according to Takens’ embedding theorem [37]. The dynamics in these time-delay

coordinates produce a new attractor with the same topology. In particular, the

following matrix is constructed by stacking delayed time-series of y as rows:

Y (1) = [y(1), y(1 + τ), . . . , y(1 + (m− 1)τ)]

Y (2) = [y(2), y(2 + τ), . . . , y(2 + (m− 1)τ)]

. . .

Y (N − (m− 1)τ) =

[y(N − (m− 1)τ), y(N − (m− 2)τ), . . . , y(N)]

(1)

where τ is the time delay, andm is the embedding dimension in the phase space.135

The representation of time-series in phase is based on dynamical systems theory,
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and the time-delay embedding process is able to reconstruct a topologically

identical state space to the original state space of the system [37, 38, 39]. Hence,

the features that capture the similarities and differences of the reconstructed

state space are capturing similarities and differences of the underlying state140

structure of the system [40].

In this paper, a novel features extraction based on similarity matrix and sta-

tistical properties of the image derived from GLCM is proposed. This theoretical

relationship between the reconstructed state space and the original state space

to detect arc faults is then exploited. In order to investigate the m-dimensional

phase space trajectory through a two-dimensional representation, the similarity

matrix is exploited:

Si,j = Θ (‖Y (i)− Y (j)‖) (2)

where i, j ∈ [1, N− (m−1)τ ], Θ is a similarity function, and ‖ ·‖ is a norm. The

plot generated by Eq. (2), is a graphical description of the dynamic properties of

a time-series and it can be exploited to extract features to detect arc faults. RQA

is a related approach that extracts the recurrence matrix from the similarity

matrix as follows:

Rεi,j = Θ (ε− ‖Y (i)− Y (j)‖) =

1 : ‖Y (i)− Y (j)‖ ≤ ε

0 : ‖Y (i)− Y (j)‖ > ε

(3)

where ε is a threshold parameter. Recurrence quantification analysis converts

the similarity matrix into a binary image (i.e., the Recurrence Quantification

Plots), depending on whether the value of each pixel is lower than the prede-

fined threshold ε. Recurrence quantification plots have demonstrated to be a145

valuable data visualization and analysis tool for time-varying dynamical sys-

tems in a wide group of application areas, e.g. for engineering, finance, biology

and other disciplines [41, 42, 43]. The characteristics of the system, which can

be represented by some statistical parameters, such as recurrence rate, deter-

minism, divergence, Shannon entropy, laminarity, and trapping time, extracted150

from line structure and point density of the recurrence plot in a quantitative
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manner, are referred as RQA. The extracted features from RQA can be exploit

to detect faults and anomaly by means of a classifier [32]. However, the setting

of the threshold ε is not trivial, and the binary transformation of the similarity

matrix (i.e., the RQP), consequently, it leads to a loss of information that could155

instead be exploited for fault detection. For this reason, in this work, the simi-

larity matrix has been directly exploited to extract features to detect arc faults

through its graphical description.

Feature extraction plays a crucial role in fault diagnosis. The different types

of fault can generate different characteristics in the current measurements. Here,160

GLCM is investigated and its based features are extracted to capture spatial

distribution information underlying the reconstructed state space. As described

in [44], GLCM represents the conditional joint probabilities of all pair com-

binations of gray levels in the spatial window of interest with respect to two

parameters: inter-pixel distance d, and direction θ. Given a gray image I(x, y)165

of size Nx pixels by Ny pixels, the spatial relationship of the pixel pair (i, j)

with specified pair (d, θ) is defined by trigonometric functions. The joint proba-

bilities measurement is expressed as P (i, j, d, θ) = [C(i, j)|(d, θ)], where C(i, j),

the co-occurrence probabilities between gray level i and j, can be given by:

C(i, j) =
P (i, j)

L∑
i=1

L∑
j=1

P (i, j)

(4)

where L is the quantized gray level, and P (i, j) represents the number of co-170

occurrences of gray level i and j, given by:

P (i, j) =#[((x1, y1), (x2, y2)) ∈ (Lx × Ly)

× (Lx × Ly)|I(x1, y1) = i, I(x2, y2) = j]
(5)

where x2 = x1+d cos(θ), y2 = y1+d sin(θ), i, j ∈ [1, . . . , L], # denotes the num-

ber of the pixel pairs (i, j) satisfying the conditions, and (x1, y1) is the coordi-

nate with gray level i, (x2, y2) the coordinate with gray level j, Lx the horizontal

spatial domain (1, . . . , Nx), Ly the vertical spatial domain (1, . . . , Ny).175

From the gray-tone spatial-dependence matrices, a set of 21 measures of

textural features has been defined. Some of these measures relate to specific
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textural characteristics of the image such as homogeneity, contrast, and the

presence of organized structure within the image. Other measures characterize

the complexity and nature of gray-tone transitions which occur in the image.

The considered textural features are defined in the Table 1, where L is the

number of distinct gray levels in the quantized image, and

Px+y(k) =

L∑
i

L∑
j

i+j=k

P (i, j), k = 2, . . . , 2L (6)

Px−y(k) =
L∑
i

L∑
j

|i−j|=k

P (i, j), k = 1, . . . , L− 1 (7)

Px(i) =

L∑
j

P (i, j) (8)

Py(j) =

L∑
i

P (i, j) (9)

HXY 1 = −
L∑
i

L∑
j

P (i, j)log(Px(i)Py(j)) (10)

HXY 2 = −
L∑
i

L∑
j

Px(i)Py(j)log(Px(i)Py(j)) (11)

where µx, µy are the means and σx, σy the standard deviations of Px(i) and

Py(j), respectively. More details about the significance of the previous equations

can be found in [44].

The proposed method is shown in Figure 1, in particular the flowchart shows

the steps of the proposed arc fault detection and classification algorithm. The180

input of the proposed methodology is the acquisition of a time window of AC

measurement, the second step regards the transformation of the acquired signal

in phase space through a time-delay τ and an embedding dimension m (see

Eq. (1)). From phase space, a similarity matrix is constructed using in this

work the Euclidean distance. By the previous steps, the original AC signal is185

transformed into two-dimensional gray-scale image. The features are extracted

from the image by GLCM and to perform this task the parameters d, θ and L

9



Table 1: Texture Features Extracted from GLCM
# Feature Equation

f1 Autocorrelation [45]
L∑
i

L∑
j

(i · j)P (i, j)

f2 Cluster Prominence [45]
L∑
i

L∑
j

(i+ j − µx − µy)4P (i, j)

f3 Cluster Shade [45]
L∑
i

L∑
j

(i+ j − µx − µy)3P (i, j)

f4 Dissimilarity [45]
L∑
i

L∑
j

|i− j|P (i, j)

f5 Entropy [45, 44] −
L∑
i

L∑
j

P (i, j)log(P (i, j))

f6 Maximum probability

[45]

max
i,j

P (i, j)

f7
Inverse Difference Mo-

ment [44],

L∑
i

L∑
j

P (i,j)
1+|i−j|2

or Homogeneity II [45]

f8
Inverse difference [46] L∑

i

L∑
j

P (i,j)
1+|i−j|

or Homogeneity I [45]

f9 f7 Normalized
L∑
i

L∑
j

P (i,j)
1+(|i−j|/L)2

f10 f8 Normalized
L∑
i

L∑
j

P (i,j)
1+|i−j|/L

f11 Contrast [45]
L∑
i

L∑
j

|i− j|2P (i, j)

f12 Energy [45]
L∑
i

L∑
j

P (i, j)2

f13
Correlation [44], L∑

i

L∑
j

(i·j)P (i,j)−µxµy

σxσyor Correlation II [45]

f14 Difference entropy [45,

44]

−
L−1∑
i=0

Px−y(k)log(Px−y(k))

f15 Difference variance [45,

44]

L−1∑
i=0

i2Px−y(k)

f16
Information measure

HXY−HXY 1
max(HX,HY )of correlation I [45, 44]

f17
Information measure

(1− exp[−2(HXY 2−HXY )])
1/2

of correlation II [45, 44]

f18 Sum average [45, 44]
2L∑
i=2

iPx+y(k)

f19 Sum entropy [45, 44] −
2L∑
i=2

Px+y(k)log(Px+y(k))

f20 Sum of squares [45, 44]
L∑
i

L∑
j

(i− µ)2P (i, j)

f21 Sum variance [45, 44]
2L∑
i=2

(i− f19)2Px+y(k)
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have to be set. The extracted features are exploited to train a classifier that

predicts the presence or absence of arc faults and and the type of appliance.

Figure 1: Flowchart of the proposed fault classification algorithm.

2.1. Linear Discriminant Analysis190

The regularization operation allows overcoming the issues related to high

dimensionality, where the applicability of the classifier is a demanding task
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since, in this situation, direct high dimension matrix operations are required

[47]. To overcome these issues, the unbiased estimate of the pooled-in covariance

matrices considered in the classifier were replaced with:195

Σα = (1− α) Σ + αdiag(Σ) (12)

where Σ is the empirical, pooled covariance matrix and α is the amount of

regularization. For training the classier, the hyperparameter δ has to be set.

δ is a non-negative scalar shrinkage parameter that specifies a threshold: if

a coefficient of the model has magnitude smaller than δ, the coefficient is set

to 0. Then α ∈ [0, 1) and δ ∈ [0,∞) are two parameters to optimize over a200

2-dimensional grid using crossvalidation on the training samples.

2.2. Setting the hyperparameters

The time delay τ is set equal to the delay corresponding to the first minimum

point the of AutoCorrelation Function (ACF) of the AC time series. Considering

Fs the sampling frequency, Fd the sampling frequency after downsampling, f0205

the fundamental frequency (50 Hz), n the number of samples and HC the

number of half-cycles, the minimum point of the autocorrelation function for

the monitored appliances is τ = n/HC/2 or equivalently τ = Fd/f0/4. This is

explained by the fact that a sinusoidal signal and its autocorrelation shows that

optimal delay should be a quarter of its period since it provides for π/2 shift210

in phase. Table 2 summarizes the time delay for different values of sampling

frequency, acquisition time and appliances. The last column of the table shows

the time delay τ considered in the experimental analysis.

As an example, the ACFs of AC signal regarding blow heater for different

sampling frequencies Fd are shown in Figure 2 and the minimum points of the215

autocorrelation functions correspond to those defined in the Table 2. Figures

2(a), 2(b), 2(c), 2(d), 2(e) and 2(f) show the sample autocorrelation function at

sampling frequency Fd=25, 5, 4, 3.125, 2.5 and 2 kHz, respectively.

The hyperparameters m, L and d are considered as tradeoff between im-

proved prediction accuracy of the classification and increased computation bur-220
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Table 2: Settings of the algorithm
Fd Time Samples (n) Half-Cycles (HC) Time delay (τ)

25 kHz 0.02 s 500 2 125

5 kHz 0.1 s 500 10 25

5 kHz 0.08 s 400 8 25

5 kHz 0.05 s 250 5 25

4 kHz 0.1 s 400 10 20

4 kHz 0.08 s 320 8 20

4 kHz 0.05 s 200 5 20

3.125 kHz 0.1 s 313 10 16

3.125 kHz 0.08 s 250 8 16

3.125 kHz 0.05 s 157 5 16

2.5 kHz 0.1 s 250 10 12

2.5 kHz 0.08 s 200 8 12

2.5 kHz 0.05 s 125 5 12

2 kHz 0.1 s 200 10 10

2 kHz 0.08 s 160 8 10

2 kHz 0.05 s 100 5 10

den of the algorithm. In particular, for the experimental analysis, the values

m = 3, L = 25, and 16 inter-pixel distances (d) have been considered and set by

using the training dataset. The parameters θ has been fixed to 45◦ because of

the specific pattern of the images in the shape of diagonal stripes; as an exam-

ple, the unthresholded RQ plots for blow heater, Dell desktop computer, Titan225

710 W drill and for Philips vacuum cleaner, are displayed in Figure 7, showing

the particular shape of diagonal stripes.

3. Test setup

Figure 3 shows the general experimental test bench used to generate a series

arc fault in an electrical network in order to record the current and voltage230

electrical signatures and to build the database.

The AC mains power source (230 V - 50 Hz) supplies a load which may be

a single appliance or is composed of several associated appliances connected in

parallel. The various household appliances considered in this study are resistive

(Boiler), with switching units (PC computer), include universal motor (Vacuum235

cleaner, drill) or dimmer-based (Halogen).

The measurements are performed with a Lecroy HDO 6104 oscilloscope (2
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Figure 2: ACF of blow heater a) Fd =25 kHz, b) Fd =5 kHz, c) Fd =4 kHz, d) Fd =3.125

kHz, e) Fd=2.5 kHz, f) Fd=2 kHz.

GHz bandwidth). A sub-sampling is performed if the method of analysis requires

to operate at a lower frequency. The line current is measured at the output of

the power source (Lecroy AP 30 probe – 100 MHz bandwidth). To ensure that240

the fault is continuously present in the circuit, the measurement of the arc

voltage across the fault is also recorded (TT-SI 9010, 70MHz bandwidth). The

data files are then transferred to a computer for a Matlab analysis. The link

given in [48] gives access to the database of electrical signatures which can be

14



Figure 3: Experimental test bench.

used under certain conditions. The arc fault is created according to the protocol245

defined in the UL 1699 or IEC 62606 standards [49, 50].

Figure 4: Cables preparation.

Two copper cables (20 cm length), with a slit across the insulation (5 cm

length), are closely tied together and then wrapped. A carbonized conductive

path is created between the two conductors (see Figure 4). The prepared sample

cable can be inserted directly into the circuit to reproduce the arcing fault. The250

series arc fault is ignited into the circuit at two different times via the switching

of a relay. The various household appliances considered in this study are listed

in Table 3 along with the labels associated to each appliance or load type. The

dataset description can be found in [48].

3.1. Data Preprocessing255

The primary database is created by the raw data collection of 5 s. Besides

having the primary database of 1 MHz sampling rate, to check the accuracy of
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Table 3: List of appliances and corresponding labels
APPLIANCE LOAD

APPLIANCES LOAD

CLASSES CLASSES

Pump Universal motor 1 1

Dell Desktop Computer Converter: switching power supply 2 2

Dolce Gusto Espresso Machine Resistive 3 3

Titan 710 W Drill Universal motor 4 1

Peugeot 550 W Drill Universal motor 5 1

Mewal Halogen Lamp Converter: single-phase rectifiers 6 4

Blow Heater Resistive 7 3

Severin 2200 Kettle Resistive 8 3

Moulinex Mini Food Processor Universal motor 9 1

Multi-functional Printer Universal motor 10 1

Sabre Electric Jigsaw Universal motor 11 1

Bluesky Optimo 1200 W Vacuum Cleaner Universal motor 12 1

Phillips 1250 W Vacuum Cleaner Universal motor 13 1

arc detection with a different sampling frequency, six databases were created

by sampling at 25 kHz, 5 kHz, 4 kHz, 3.125 kHz, 2.5 kHz, 2 kHz, respectively.

In each of the databases, the training and testing split is the first half part of260

the raw signal for the training (400 samples for each appliance) and the last

part for testing (400 samples for each appliance). The dataset is composed

of 5200 observations of arcing and 4800 observations of normal load current

resulting in a total of 10400 observations. All data are labeled in such a way so

that the proposed algorithm can not only able to identify the arc and normal265

load currents but also it can specify the load type (i.e., resistive, inductive,

switching, dimmer). The load categories, their corresponding labels, and the

number of respective training and test samples are depicted in Table 3. The

primary database is not normalized. Each observation of data having from 1

to 10 half-cycles of the current wave is converted into an image from which a270

vector of features is extracted. The 21 descriptors considered to describe the

textural characteristics of the images are summarized in Table 1, for a total of

336 features, which is each descriptor for each inter-pixel distances d. Others six

statistical features are extracted by the raw AC signal, which are the maximum,

the minimum, the mean, the median, the standard deviation and the kurtosis275

of the AC signal.
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4. Experimental Results and Analysis

In this section the experimental analysis of the proposed approach and the

comparison with the classical RQ analysis are presented.

4.1. Experimental results280

Figure 5 shows the non-stationary trends of the arc voltage and line current

signatures of vacuum cleaner with 1200 W nominal power when an arc fault

occurs over time and Figure 6 shows the corresponding downsampled current

signal and the monitoring of two different GLCM features. In particular, Figure

6(a) shows the feature f17 (information measure of correlation II), whereas Fig-285

ure 6(b) shows the feature f9 (inverse difference moment normalized). Features

are calculated with a window of length 0.1 s, overlap of 0.99 s and decimation

to 4 kHz. It is worth to note as the features change the mean value when the

arc faults occur.

Figure 5: Voltage and current signals of vacuum cleaner 1200 W

A preliminary visual inspection of the similarity matrices for different appli-290

ances without arc faults is shown in Figure 7, where unthresholded recurrence

plots of blow heater, desktop computer, drill and vacuum cleaner are shown in

Figures 7(a), 7(b), 7(c), 7(d), respectively. It is worth to note as unthresholded

Recurrence Plots (RPs) of different loads presents a different image pattern
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(a) GCLM feature: Information Measure of Correlation II

(b) GCLM feature: Inverse Difference Moment Normalized

Figure 6: GLCM features monitoring for vacuum cleaner 1200 W

highlighting the possibility of using this information to detect arc faults and295

load type. The corresponding time series of AC signals are shown in Figures

7(e), 7(f), 7(g), 7(h), respectively. The figures are obtained with decimation of

5 kHz and 0.1 s of time acquisition.

The experimental results are summarized in Table 4, where the results are

shown in terms of F1 score, a commonly used criterion measuring the per-300

formance of a classification method [51]. The tests are reported for different

cases varying the decimation factor and length of time window as shown in

Table 2. The considered time window duration is TW = [0.05, 0.08, 0.1] s,

whereas the decimation by a factor of r = [200, 250, 320, 400, 500], i.e., Fd =

[5, 4, 3.125, 2.5, 2] kHz. In addition, the tests were carried out considering also305

one complete cycle of the current wave (i.e, 2 half-cycle) at 25 kHz of sampling
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frequency.

The first two columns show the false positive and false negative rates related

to the arc faults detection (i.e., 2 classes, regardless the identification of the

appliance). The third column of the Table 4 shows the detection of arc fault310

(i.e., 2 classes, regardless the identification of the appliance), the F1 score is

0.98/0.99 for most of considered time window duration and decimation factor.

The fourth column of the Table 4 shows the appliances classification during

the occurrence of an arc fault (i.e., 13 classes), with a F1 score varying from

almost 0.82 to 0.96. The F1 score is always more than 0.89 when the sampling315

frequency is bigger than 4 kHz. The fifth column of the Table 4 shows the

appliances classification without the occurrence of an arc fault (i.e., 13 classes),

the F1 score is close to 1.00. The last column of the Table 4 shows the appliances

classification with and without the occurrence of an arc fault (i.e., 26 classes),

with a F1 score varying from 0.89 to 0.96. The F1 score is always more than320

0.94 when the time window is longer than 0.1 s. It is worth noting as the case 25

kHz does not give the best results, this is due to a small number of half-cycle,

i.e. 2, highlighting as the method is robust in the case of several half-cycles

analyzed.

Table 4: Arc fault detection and appliances classification: F1 score (26 classes)

False

Positive %

False

Negative %

ARC vs NORMAL

(2 CLASSES)

ARC

(13 CLASSES)

NORMAL

(13 CLASSES)

ALL APPLIANCES

ARC vs NORMAL

(26 CLASSES)

0.05 s - 2 kHz 0 0.31 0.99 0.82 0.98 0.89

0.05 s - 2.5 kHz 0.02 0.33 0.99 0.85 0.98 0.91

0.05 s - 3.125 kHz 0 0.63 0.99 0.87 0.98 0.91

0.05 s - 4 kHz 0 1.83 0.98 0.89 0.98 0.92

0.05 s - 5 kHz 0 2.08 0.98 0.90 0.99 0.93

0.08 s - 2 kHz 0 0.10 0.99 0.88 0.99 0.92

0.08 s - 2.5 kHz 0.12 0.13 0.99 0.90 0.99 0.93

0.08 s - 3.125 kHz 0 1.21 0.98 0.92 0.99 0.93

0.08 s - 4 kHz 0 0.85 0.98 0.93 0.99 0.95

0.08 s - 5 kHz 0 2.69 0.97 0.93 0.99 0.94

0.1 s - 2 kHz 0 0.04 0.99 0.89 0.99 0.94

0.1 s - 2.5 kHz 0.63 0.04 0.99 0.92 0.99 0.94

0.1 s - 3.125 kHz 0.83 0.56 0.99 0.93 0.99 0.95

0.1 s - 4 kHz 0.06 0.08 0.99 0.94 0.99 0.96

0.1 s - 5 kHz 0 1.85 0.97 0.96 0.99 0.96

0.02 s - 25 kHz 2.27 3.29 0.97 0.89 0.99 0.93

AVG±STD 0.25±0.59 1.00±1.04 0.98±0.01 0.90±0.04 0.99±0.01 0.93±0.02
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The confusion matrix for 4 kHz and 0.1 s of time acquisition is shown in325

Figure 8. The first 13 labels refer to the appliances with arc faults ordered as

listed in Table 3, whereas the labels from 14 to 26 refer to the normal appliances.

Here, it is possible to notice only three missed detection (type II error) for fault

class 2 (Dell Desktop Computer). The error is highlighted in red color in the

confusion matrix. In addition, the classification of the appliances heater and330

kettle (i.e., resistive loads) in arc fault condition finds to be a difficult task.

Considering only one class for appliances heater and kettle (i.e., a total of 24

classes), it is possible to reach better classification results as shown in Table 5.

For the sake of simplicity only the case of 4 kHz sampling frequency and 0.1 s

of time acquisition is reported and, for this case, F1 score reaches 0.98.335

Table 5: Arc fault detection and appliances classification: F1 score (24 classes)

ARC

(12 CLASSES)

NORMAL

(12 CLASSES)

ALL APPLIANCES

ARC vs NORMAL

(24 CLASSES)

0.05 s - 4 kHz 0.92 0.98 0.95

0.08 s - 4 kHz 0.96 0.99 0.97

0.1 s - 4 kHz 0.98 0.99 0.98

The experimental results, summarized in Table 6, shows the F1 score by

grouping the appliances according to the load types as defined in Table 3. The

first column of the Table 6 shows the load type classification during the occur-

rence of an arc fault (i.e., 4 classes), with a F1 score varying from almost 0.94

to 0.99. The second column of the Table 6 shows the load type classification340

without the occurrence of an arc fault (i.e., 4 classes), the F1 score is 0.99 for all

cases. The last column of the Table 6 shows the load type classification with and

without the occurrence of an arc fault (i.e., 8 classes), with a F1 score varying

from 0.96 to 0.99.

The confusion matrix for 4 kHz and 0.1 s of time acquisition of different345

types of load type is provided in Figure 9. The first 4 labels refer to the loads

type with arc faults ordered as listed in Table 3, whereas the labels from 5 to
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Table 6: Arc fault detection and load type classification: F1 score (8 classes)

ARC

(4 CLASSES)

NORMAL

(4 CLASSES)

ALL LOAD TYPES

ARC vs NORMAL

(8 CLASSES)

0.05 s - 2 kHz 0.97 0.99 0.98

0.05 s - 2.5 kHz 0.97 0.99 0.98

0.05 s - 3.125 kHz 0.97 0.99 0.97

0.05 s - 4 kHz 0.94 0.99 0.97

0.05 s - 5 kHz 0.97 0.99 0.97

0.08 s - 2 kHz 0.99 0.99 0.99

0.08 s - 2.5 kHz 0.98 0.99 0.99

0.08 s - 3.125 kHz 0.99 0.99 0.99

0.08 s - 4 kHz 0.98 0.99 0.98

0.08 s - 5 kHz 0.98 0.99 0.96

0.1 s - 2 kHz 0.98 0.99 0.99

0.1 s - 2.5 kHz 0.99 0.99 0.99

0.1 s - 3.125 kHz 0.99 0.99 0.98

0.1 s - 4 kHz 0.99 0.99 0.99

0.1 s - 5 kHz 0.99 0.99 0.97

0.02 s - 25 kHz 0.98 0.99 0.97

AVG±STD 0.98±0.01 0.99±0.001 0.98±0.01

8 refer to the normal load types. Here, it is possible to notice only four missed

detection (type II error) for fault class 2 (Dell Desktop Computer). The errors

are highlighted in red color in the confusion matrix.350

4.2. Comparison with standard RQA

Arc fault detection and appliances classification results are carried out by

using the RQA metrics as predictors in a Discriminant Analysis classifier. The

following results are obtained by a 10-fold cross-validation strategy. In the fol-

lowing results, the RQ parameters m and τ are set by false nearest neighbor355

algorithm and mutual information whereas ε is set as the value that gives the
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best results in terms of classification accuracy. In this work, the characteristics of

the system have been represented by the following statistical parameters: recur-

rence rate, determinism, divergence, Shannon entropy, laminarity, and trapping

time and the features extracted from RQA have been exploited for arc fault360

detection. Others six statistical features are extracted by the raw AC signal,

which are the maximum, the minimum, the mean, the median, the standard

deviation and the kurtosis of the AC signal. The results obtained are shown

in Figure 10, where the results are shown in terms of F1 score for the differ-

ent cases varying the decimation factor and length of time window. Figure 10365

shows the appliances classification during the occurrence of an arc fault (i.e.,

13 classes), the F1 score never reaches 1.00 for each considered time window

duration and decimation factor. The best value 0.86 is obtained in the case of

TW =0.1 s and Fd =5 kHz. RQA based approach achieves the lowest scores

across all evaluation metrics. This is unsurprising as the binary transformation370

of the RQP, consequently, leads to a loss of information that could instead be

exploited for fault detection. In addition, the features used for prediction are

12 with respect to 342 features of the proposed approach since only a limited

number of features for image analysis are proposed in the literature through

recurrence plots [52].375

4.3. Comparison with prior methods and discussion

The results on arc fault detection and load classification have been compared

with different methods from literature and resumed in Table 7. First of all, it is

important to specify that few methods concern both the detection of arc fault

and load classification. In [18] and [22], a frequency analysis is associated to380

a neural network. Furthermore, a genetic algorithm is necessary to optimize

the initial value of the network in [22]. The method is nevertheless tested on

a limited number of appliances type. In [18], the good results of classification

have been obtained with a low number of category and the analysis require

both the current and voltage measurement. The method presented in [16],385

tested on a large variety of different appliances, is based on the current analysis
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measured with HCF sensor at a quite high sampling frequency equals to 1 MHz.

The method presented in this paper give results of detection and classification

comparable to other methods. However, the number of appliances and different

types of load is higher. One other advantage is that the method is not based on390

a neural network which needs an important training process.

Reference Method Category Loads Remarks Accuracy

Ref. [18] Wavelet transform (db3);

Fs=200 kHz;

Category recognition: shoul-

der band phase analysis;

Arcing: time and frequency

indicators + BP neural Net-

work

Resistive Re;

Resistive-

Inductive RI;

RCCF

Resistance,

Fluorescent

lamp, Halo-

gen lamp,

Drill, Air

conditioner,

Computer,

Tungsten

lamp

Current and

voltage analy-

sis;

Intel PC

computer

Detection: 99.2%;

Classification: 100% (7

appliances);

630 sets of data

Ref. [16] HCF sensor;

Fs=1 MHz;

Gray image analysis + con-

volution neural network

7 load classes

(no fault)

associated to

7 classes (arc

fault)

Electric

heater, Vac-

uum cleaner,

Computer,

Dimmer Fluo-

rescent lamp,

Induction

cooker, Drill

Current anal-

ysis;

Implemented:

Zynq-7020

Detection: 99.2%;

Classification: 98.36 %

(7 appliances);

1400 tests;

Training set: 12600;

Time response:11 ms

Ref. [22] Frequency analysis (1st-3rd-

5th harmonics) for category

recognition and time domain

features + fully connected

neural network

Resistive RE;

Capacitive-

inductive CI;

Switching SW

Resistive

load, Induc-

tive load,

Capacitive

load, Switch-

ing load

STM32F407ZG

time response:

3 ms;

Fs=20kHz

Detection accuracy:

99% (4 appliances);

3950 tests

Proposed

approach

Recurrence quantification

and Image analysis (gray

level co-occurrence matrix)

Resistive, Mo-

tor, Switching

Load, Rectfier

load

Drill, Ex-

presso ma-

chine, Halo-

gen Lamp,

Blow heater,

Vacuum

cleaner, Elec-

tric jigsaw,

Food proces-

sor, Kettle,

Printer

Current Anal-

ysis;

Intel PC com-

puter

Detection 99%;

Classification: 98%

(12 appliances);

5200 sets of data

(Arc);

4800 sets of data

(NoArc)

Table 7: Comparison with prior methods

The limitations of the proposed approach are related to the computational

time and the misclassification that is often generated by transients. The algo-

rithm computational time is evaluated as the average of 20 Monte Carlo runs.

The simulations are reported considering the sampling frequency of 5 kHz, 4395

kHz, 3.125 kHz, 2.5 kHz, 2 kHz, and the time window duration of 0.05, 0.08, 0.1
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s. The platform used to compute the training time is a laptop with CPU Intel

7700HQ, 16GB RAM, Matlab 2019a. Figure 11 shows the training time versus

the sampling frequencies and the time windows. The computational time is not

negligible at high sampling frequencies and long time windows. The bottleneck400

of the computational time is related to the calculation of the GLCM matrix

that requires 90% of the computational time shown in the Figure 11. This issue

can be reduced by performing fast computation of GLCM matrix with parallel

computation [53] or by the adoption of deep learning approaches for analyzing

the recurrence images that require longer training computation, but less testing405

time [16]. The misclassification was analyzed in detail highlighting that most of

the errors in the classification are generated by transients as shown in Figure 12.

The figure shows the AC signal and the arc alarm index for desktop computer,

coffee machine, kettle and printer. The AC signals are analyzed considering a

time window of 0.05 s and a sampling frequency of 2 kHz. The red bar means410

that the proposed algorithm has detected arc fault and the green bar means no

arc is detected. False detection samples are generated when the appliance moves

from one steady-state to another for the cases of the coffee machine, printer and

desktop computer. Then a drawback of the algorithm is related to the detec-

tion reliability of arc fault during the transients. This issue could generate false415

positive and false negative samples.

5. Conclusion

In this paper, a new method for series arc faults detection in a domestic AC

network (220V, 50Hz) is presented. The main originality of the proposed method

is the use of recurrence quantification plots and image analysis by using the gray-420

level co-occurrence matrix from which the extracted textural image features

represent a proper set of indicators for suitably detecting arc faults. Thirteen

different domestic appliances are considered in this article. Series electric arcs

are produced on the single-phase AC power line using the carbonized path,

which is a common arc situation. The analysis is performed on current line425
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measured signatures. The experimental results confirm the good performances

of the proposed method. Using samples of 26 types of generalized household load

currents, the proposed approach achieved F1 score of 0.99 for arc fault detection

and F1 score of 0.96 for appliances classification along with arc fault detection.

Using samples of 24 type of generalized household load currents the proposed430

approach achieved F1 score of 0.98 for appliances classification along with arc

fault detection. Moreover, a higher number of load types have been considered

for the experiment to make it more appropriate for practical applications. The

proposed algorithm can not only detect arc fault but also can identify the load

types for which the fault has occurred. The deployment of the algorithm and435

tests on embedded systems are currently the subject of this research.
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(a) Blow heater
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(b) Dell desktop computer
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(c) Titan 710 W drill
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(d) Phillips vacuum cleaner
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(f) Dell desktop computer
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(g) Titan 710 W drill
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Figure 7: Unthresholded RQ plots for a) Blow heater, b) Dell desktop computer, c) Titan

710 W drill, d) Phillips 1250 W Vacuum Cleaner. AC time series for e) Blow heater, f) Dell

desktop computer, g) Titan 710 W drill, h) Phillips 1250 W Vacuum Cleaner
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Figure 8: Appliances classification: confusion matrix for 4 kHz and 0.1 s of time acquisition

Figure 9: Load type classification: confusion matrix for 4 kHz and 0.1 s of time acquisition

Figure 10: Classification results: F1 scores of the approach based on RQA

33



Figure 11: Testing time evaluated at different sampling frequencies and time windows

Figure 12: Arc detection
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