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Abstract: Extracellular vesicles (EVs) are small lipid particles secreted by almost all human cells
into the extracellular space. They perform the essential function of cell-to-cell communication, and
their role in promoting breast cancer progression has been well demonstrated. It is known that
EVs released by triple-negative and highly aggressive MDA-MB-231 breast cancer cells treated with
paclitaxel, a microtubule-targeting agent (MTA), promoted chemoresistance in EV-recipient cells.
Here, we studied the RNA content of EVs produced by the same MDA-MB-231 breast cancer cells
treated with another MTA, eribulin mesylate. In particular, we analyzed the expression of different
RNA species, including mRNAs, lncRNAs, miRNAs, snoRNAs, piRNAs and tRNA fragments
by RNA-seq. Then, we performed differential expression analysis, weighted gene co-expression
network analysis (WGCNA), functional enrichment analysis, and miRNA-target identification. Our
findings demonstrate the possible involvement of EVs from eribulin-treated cells in the spread of
chemoresistance, prompting the design of strategies that selectively target tumor EVs.

Keywords: extracellular vesicles (EVs); microtubule-targeting agents (MTAs); eribulin; RNA-seq; miRNAs

1. Introduction

Breast cancer is the most frequent malignancy in women. Epidemiological data show
that in 2020, there were 2.3 million women diagnosed with breast cancer and 685 thousand
deaths globally [1]. Breast cancer seems to develop starting from certain pre-existing
lesions such as atypical ductal hyperplasia (ADH), atypical lobular hyperplasia (ALH),
lobular carcinoma in situ (LCIS), ductal carcinoma in situ (DCIS), and flat epithelial atypia
(FEA) [2]. Unfortunately, it is impossible to predict which lesion is most likely to progress
into invasive carcinoma. Indeed, cancer progression depends on the heterogeneous genetic
mutations that occurred in the cells [3,4] and the interactions, not yet well characterized,
between tumor epithelial cells and cells comprising the microenvironment (myoepithelial
and endothelial cells, fibroblasts, myofibroblasts, leukocytes, and other cell types) [5].
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized
by the absence of the expression of receptors for estrogen (ER), progesterone (PR), and
of human epidermal growth factor receptor-2 (HER2) [6]. Once diagnosed, treatment of
TNBC relies on chemotherapy, in particular, on the anthracycline and taxane drugs [7],
also in combination with other single agents such as gemcitabine [8] or capecitabine after
surgery [9]. Generally, the median overall survival (OS) in patients with early stages of
TNBC treated with chemotherapy is 13–18 months [10]. Research is focused on developing
new drugs which can improve the clinical outcomes of TNBC-positive patients.

Eribulin mesylate (E7389; Halaven) is a non-taxane microtubule dynamics inhibitor re-
sponsible for the arrest of the cell cycle in the G2-M phase; therefore, the metaphase/anaphase
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checkpoint is not passed, and the cell undergoes apoptosis [11,12]. In particular, eribulin in-
hibits microtubule polymerization by binding β-tubulin at the exposed (plus) ends of growing
microtubules, leading to the blockage of mitotic spindle formation [13]. Moreover, eribulin
has nonmitotic effects in the form of the reversal of the epithelial-to-mesenchymal (EMT)
transition [14] and suppression of cancer cell migration, invasion and metastasis [15–17].
An effect exists in the form of vascular remodeling, which is an increased tumor perfusion
that eliminates hypoxia-driven growth aggressiveness and increases exposure of subsequent
treatments [16]. In addition, eribulin induces the caspase-independent apoptosis pathway by
triggering Bcl-2 phosphorylation [18]. The antiproliferative effect of eribulin is enhanced by
stathmin, a phosphoprotein that modulates microtubule dynamics [19]; therefore, the stathmin
could be dosed to predict its efficacy. Eribulin is extremely effective in TNBC patients [20],
where it is used after treatment or in combination with anthracycline and taxane [21,22] or,
more recently, with gemcitabine [23]. Of note, it was shown that there is a minimal risk of
drug–drug interactions in the clinical setting [24]. Further details about its mechanisms of
action and results of clinical trials have been reviewed elsewhere [25,26].

Extracellular vesicles (EVs) are small lipid particles secreted from almost all human
cell types, both healthy and malignant, that deliver their cargo (i.e., DNA, proteins, various
types of RNAs) to recipient cells [27,28]. In this way, EVs act as mediators of the cell-
to-cell communication and cancer progression. Experimental studies in breast cancer
demonstrated the role of EVs in promoting cell growth and survival [29], metastasis [30],
epithelial to mesenchymal transition [31], angiogenesis [32], immunosuppression [33],
and chemoresistance [34,35]. These effects are mainly due to the delivery of miRNA to
the recipient cell [34]. Interestingly, the EV cargo varies with cell conditions, therefore
also following the drug treatment. In fact, Pederson et al. demonstrated that eribulin
modifies the cargo of EVs isolated from eribulin-treated breast cancer cells. In particular,
in EVs of HCC1937 TNBC cells, eribulin significantly decreased integrin-linked kinase
(ILK) level [36], a driver of EMT in recipient mammary epithelial cells [37]. Moreover, since
the secretion of EVs is based on microtubule-dependent trafficking, microtubule-targeting
agents (MTAs) used in the treatment of breast cancer could affect EVs formation, cargo and
release. In fact, in MDA-MB-231 and HCC1937 triple-negative breast cancer (TNBC) cells
treated with eribulin for 2–4 h, while the number of vesicles released remained constant,
those exposing CD63 decreased [36]. CD63 tetraspanin is a characteristic EV-associated
protein and related to endosomal sorting and EV cargo loading.

It is known that the released EVs from MDA-MB-231 breast cancer cells treated
with paclitaxel, another MTA, promote the chemoresistance associated with a specific
EV cargo, which can influence other cells and can potentially serve as a marker of MTA
resistance [38]. Accordingly, it is important to understand if a treatment could contribute to
the propagation of biologically meaningful messages (e.g., drug resistance) to neighboring
and distal cells. Here, we assessed the RNA content of EVs released by highly aggressive,
invasive and poorly differentiated triple-negative, MDA-MB-231 breast cancer cells treated
with eribulin in comparison with the content of EVs from untreated cells. Our results
highlight the potential contribution of EVs of eribulin-treated cells in eribulin resistance,
epithelial-to-mesenchymal transition, adhesion, extracellular matrix (ECM) remodeling,
lipid metabolism, and chromosomal instability.

2. Materials and Methods
2.1. Cell Cultures

The MDA-MB-231 human breast cancer cell line was obtained from ATCC (Manassas,
VA, USA), and it was grown in L-15 (Leibovitz) (ThermoFisher, Milan, Italy) medium
supplemented with 1% penicillin/streptomycin, 2 mM glutamine and 10% heat-inactivated
fetal bovine serum. L-15 medium is used to grow cell lines in the absence of CO2-enriched
atmosphere. Cell culture media were changed every two days. MDA-MB-231 cells were
treated with eribulin at 1.6, 2.5 and 5 nM, and cell viability was monitored using MTT assay.
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2.2. Extracellular Vesicle Isolation

EV isolation was carried out in accordance with our previous studies [39,40]. The
day before the collection of EVs, we replaced the medium with fresh medium containing
vesicle-depleted FBS, produced by ultracentrifugation overnight at 100,000× g at 4 ◦C, and
the resulting supernatant was filtered through 0.4 µm membranes before being used for
the preparation of EVs. Cell-conditioned medium was collected and purified by two serial
centrifugations for 15 min at 1000× g and 15 min at 2000× g to remove debris and apoptotic
bodies. Then, to remove large EVs, the supernatant was centrifuged at 12,000× g for 30 min
and 15,000× g for 30 min. To isolate small EVs, the collected supernatant was subjected to
ultracentrifugation at 100,000× g for 2 h. The crude small EV pellet was resuspended in a
large volume of PBS and further ultracentrifuged at 100,000× g for 1 h to wash the sample.
During the whole protocol, temperatures was maintained at 4 ◦C.

2.3. Nanoparticle Tracking Assay (NTA)

NTA measurements were performed, in accordance with our previous studies [40],
with a NanoSight LM10 (NanoSight, Amesbury, UK), and three videos of either 30 s or
60 s were recorded of each sample. All measurements were performed at room temper-
ature, never above 25 ◦C. The NTA 3.1 software (Nanosight, Amesbury, UK) was used
for capturing and analyzing the data, which are presented as the mean ± SD of the three
video recordings. Samples containing high particle numbers were diluted before analysis,
and the relative concentration was then calculated according to the dilution factor. Beads
with 100 nm and 400 nm diameters (Malvern Instruments Ltd., Malvern, UK) were used
as control.

2.4. Western Blotting Analysis

For SDS-PAGE, samples containing 10 µg of protein were mixed with Laemmli sample
buffer (1:1 ratio) and loaded onto 12% SDS-PAGE gels. Subsequently, proteins were blotted
to a Polyvinylidene difluoride (PVDF) membrane (ThermoFisher, Milan, Italy). Primary
antibodies used were CD63 (cat. 10628D, ThermoFisher), CD9 (cat. #13174, CellSignalling,
Danvers, MA, USA) and calnexin (cat. C4731, Merk/Sigma, Milan, Italy). Primary an-
tibodies were incubated overnight at 4 ◦C, followed by washing and the application of
secondary HRP-conjugated antibody (ThermoFisher, Milan, Italy). Immune complexes
were visualized using the Clarity and/or Clarity Max (Bio-Rad, Milan, Italy).

2.5. RNA Sequencing and Data Analysis

Total RNAs were isolated from small EVs of untreated and eribulin-treated cells using
Total RNA Purification Kit (Cat. 17200, Norgen, Thorold, ON, Canada) following the
manufacturer’s instructions. RNA integrity was assessed using an RNA Nano 6000 Assay
Kit with the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). The
cDNA library for mRNAs and lncRNAs was developed using the SMARTer Stranded
V3 (Takara Bio, Kusatsu, Japan) with ribodepletion; then, the sequencing of this library
was performed using Next Generation Sequencing (NGS) Illumina NovaSeq platform
to generate 150 bp paired-end reads. The small RNA transcriptome was evaluated by
preparing the library (QIAseq miRNA kit, Qiagen, Milan, Italy) and by sequencing with
the same platform obtaining 150 bp paired-end reads.

We have not performed the validation of the expression of a sample of genes as it is
emerging that the RNA sequence results are very reliable or consistent with those obtained
with the RT-qPCR technique [41].

The Unique Molecular Indices (UMIs), embedded in the reads by the kits for prepara-
tion of libraries for a more accurate transcript quantification, were detected and removed
together with the adapters using the UMI-tools v1.0.0 software [42]. Then, after qual-
ity controls by FastQC tool version 0.12.0 (Babraham Bioinformatics, Cambridge, UK)
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 10 July 2023),
reads were mapped to the human genome (GRCh38 assembly) using the alignment tool

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Hisat2 v2.2 [43] with default parameters. Then, UMI-tools software was adopted also for
read deduplication, which occurs during PCR amplification, based on the mapping coordi-
nates. HTSeq v1.99.2 [44], basing on the Gencode v38 annotation GTF file (based on the
GRCh38 human assembly) for the coordinates of protein coding genes, lncRNAs and snoR-
NAs, was used to count the deduplicated reads mapped to each gene. Additional GTF files
containing the genomic coordinates of miRNAs, piRNAs and tRNA-derived ncRNAs have
been retrieved from miRBase v22.1 [45], piRBase [46] and tRFexplorer [47], respectively.

By using the DEBrowser tool [48], removal of low-count (<10) genes and the Trimmed
Mean of the M-values (TMM) normalization were performed in order to carry out the
subsequent Principal Component Analysis (PCA) and Hierarchical Clustering analysis.
Differential expression analysis was carried out using DESeq2 tool [49], adopting the
following thresholds: |Log2(FC)| ≥ 1 and BH-adjusted p-value ≤ 0.05. The lists of
differentially expressed genes (up- and down-regulated) were submitted to Enrichr tool [50]
to highlight enriched KEGG pathways, MSigDB Hallmarks, Panther, HumanCyc, Reactome,
Elsevier Pathway Collection, WikiPathway, BioPlanet, and GeneOntology terms. Only
significant results (adjusted p-values < 0.05, Fisher’s exact test) are reported and discussed
in this study. The software used for data processing has consulted multiple pathway
libraries; therefore, there is no single and univocal result in the tables.

2.6. Analysis of Co-Expressed Gene Modules by WGCNA

Firstly, we removed very low-expressed genes (we retained genes with read count
> 10, in more than 75% of the samples) in order to limit noise, which would affect the
following analyses. The selected genes (n = 12,209) have been submitted to weighted gene
co-expression network analysis (WGCNA, by using the R package WGCNA v1.72 [51]
following the standard WGCNA procedures [52], in order to identify the modules most
related to the eribulin treatment. By the “pickSoftThreshold” function, the soft threshold β

was selected when the R2 of the Scale Free Topology Model was >0.8. Indeed, accordingly to
WGCNA authors [52], when this R2 is >0.8 for low powers (<30), it means that the topology
of the network is scale-free and there are no batch-effects in the data. The identification
of modules was carried out by the creation of an adjacency matrix transformed into a
topological overlap matrix (TOM), which was subsequently submitted to hierarchical
clustering performed by the function cutreeHybrid from the R package dynamicTreeCut
v1.63 (parameters: minimum module size = 30 genes; similar modules merged when
cuttree height < 0.25). In each module, WGCNA identifies the Module Eigengene (ME,
summarizing the whole module gene expression) and calculates the Module Membership
(MM) of each gene, which is obtained by correlation analysis between the expression level
of this gene and the ME. Genes with the highest MM scores are considered hub genes of
the module [53]. Module-to-trait relationships were identified using Pearson’s correlation
analysis, which evaluates the correlations between MEs and a trait, which in this study is
the treatment status (eribulin or control) and gives back a Gene Significance (GS) score for
each gene. For each module significantly associated with the eribulin treatment, the top
10 genes with best GS scores are reported.

2.7. Analysis of miRNA Target Genes

Instead of predicting the targets of our DE miRNAs (|log2FC| > 1.5), which would
have led to a high number of false-positive predictions, we wanted to consider only
experimentally validated target genes. The most up-to-date database containing these
experimental interactions is mirTarbase (v9, 2022, [54]). In particular, we considered only
miRNA-target interactions validated by well-established techniques, such as gene reporter
assay, Western blot, and RT-qPCR, since they are the most reliable methods to demonstrate
direct interaction between an miRNA and its target, while methods like microarray or
high-throughput sequencing provide indirect relationships [54]. Even the mirTarbase tool
refers to the former techniques as ‘strong evidence’ methods. Among validated targets, we
searched for genes involved in chromosomal instability (gene list available at [55]), multi-
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drug resistance (ABC pumps: ABCB1, ABCC1, ABCC2, ABCG2), and immune checkpoints
(gene list available at [56]).

2.8. Association of piRNAs, snoRNAs and tRNA Fragments with Breast Cancer

We investigated possible roles of piRNAs, snoRNAs and tRNA fragments in breast
cancer by using disease-association prediction tools. Regarding piRNAs, we used iPiDi-
PUL, a recently developed tool to predict piRNA–disease associations via positive unlabeled
learning [57], and we filtered the results with a confidence score >0.8. For snoRNAs,
we used the RNADisease v4.0 tool, which assigns a confidence score to ncRNA-disease
association by integrating the experimental and prediction evidence [58] and filtered results
associated with breast cancer with a confidence score >0.6. Regarding tRNA fragments, we
used tRFExplorer [47], a database containing tRNA fragment expression data from TCGA.

2.9. RNA Isolation and Quantification

For miRNA analyses, total RNA was extracted from control and 1.6 nM Eribulin-
treated MDA cells by using the miRNeasy Cells Advanced Kit (Qiagen, Milan, Italy) and
reverse transcribed with the miRCURY LNA Universal RT microRNA PCR kit (Qiagen,
Milan, Italy). The optional UniSP6 RNA spike-in oligonucleotide was added to each
reaction and used for normalization. Quantitative RT-PCRs were performed with the
miRCURY LNA SYBR® Green PCR Kit and miRCURY LNA miRNA PCR Assays (Qiagen,
Milan, Italy) specific for the miRNAs analyzed. The qRT-PCR conditions were the following:
initial incubation step at 95 ◦C for 10 min followed by 50 cycles consisting of two steps at
95 ◦C for 10 s and 60 ◦C for 60 s. Cq were determined using the Cy0 method, performed
according to the ∆Cq method [59].

3. Results
3.1. EV Isolation and Characterization

MDA-MB-231 cells were treated with increasing concentration of eribulin 1.6 nM,
2.5 nM and 5 nM for 72 h; subsequently, cell viability and morphology were monitored in
order to determine the optimal eribulin concentration to administer in an attempt to achieve
the stronger effect on morphology without significant cell death. Following eribulin treat-
ment, MDA-MB-231 cells progressively became more and more round in shape as shown
by light microscopy analysis (Figure 1A). This adaptation was concentration-dependent
and suggests a deep rearrangement of cellular cytoskeleton. Trypan blue assays revealed
that cell viability significantly decreased after 3 days of eribulin treatment at 2.5 and 5 nM
(Figure 1B). Moreover, MTT assay revealed that 2.5 and 5 nM eribulin treatments induced a
reduction in cell viability (Figure 1C). Figure 1D shows that the viability slightly decreased
with increasing eribulin concentrations used; however, statistical significance was reached
only in the presence of 5 nM eribulin (ANOVA test, post-hoc Dunnet’s test, * p < 0.05). The
day before EV collection, cells were washed and switched to a fresh medium containing
vesicle-depleted FBS and eribulin. After another 24 h incubation, conditioned medium
was collected to isolate secreted EVs by using a standard serial-ultracentrifugation proto-
col. The nanoparticle tracking assay (NTA) of purified EVs showed that vesicles have a
hydrodynamic compatible with that of small EVs (30–200 nm); moreover, the NTA clearly
showed that EV size distribution was quite similar in all the tested conditions (Figure 1E).
In particular, the mean and mode of the particle’s hydrodynamic diameter are summarized
in Figure 1F. This graph shows a slight but not significant decrease in the mode of the
diameter of 5 nM eribulin-treated EVs. The quantification of released EVs showed that
5 nM eribulin induced a strong release of particles (Figure 1G), which could be at least in
part the result of passive leakage from the plasma membrane of damaged cells. Finally,
Western blot analysis of the isolated EVs showed the absence of contamination by cellular
components and the successful removal of cellular debris. Indeed, calnexin, a well-known
endoplasmic reticulum marker, was only found in the cell body (CB) lane. In contrast, EV
samples were negative for calnexin, but positive for EV markers CD63 and CD9, demon-
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strating no carryover of cellular organelles into the EV pellet (Figure 1H). Based on these
data, the eribulin concentration used to treat MDA-MB-231 in the following RNA charac-
terization experiments was 1.6 nM eribulin for 72 h. The chosen concentration is effective,
according to European Medicines Agency (EMA) [60], and similar experimental conditions
(MDA-MB-231 exposed to 72 h with 1.5 nM eribulin) have been adopted elsewhere [61].
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Figure 1. Characterization of EVs released in presence of increasing concentrations of eribulin. Cells
treated with eribulin were analyzed by light microscopy. Scale bar = 100 µm (A). The number of
viable cells was evaluated with trypan blue (B) and MTT (C) assays, and viability data reported as
percentage (D). EVs released following 1.6 nM and 5 nM eribulin treatment for 72 h were analyzed
using nanoparticle tracking assay, distribution plots of the calculated hydrodynamic diameter (E),
summarized in the relative mean/mode graph (F), and vesicle quantifications (G) were reported.
Western blot analysis against the well-established EV markers CD63 and CD9, and against calnexin, a
well-established endoplasmic reticulum marker, was reported for cell bodies (CB), control (EVs) and
1.6 nM eribulin treated (Er EVs) EVs (H). * p < 0.05.
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3.2. RNA Sequencing and Data Analysis

To understand the cargo changes of EVs released from triple-negative breast cancer
cell line MDA-MB-231 following eribulin treatment, we performed RNA sequence analysis
of EV content from three non- and three eribulin-treated biological replicates. The quantity
and quality of RNA from EVs are shown in Table S1 and Figure S1. In all samples, as
expected for RNA isolated from EVs, small RNA peaks (25–200 nt) were present, and
the level of 28S and 18S rRNA (>1000 nt) is very low. Two libraries have been produced
for RNA sequence analysis, i.e., for long RNAs (mRNAs, lncRNAs) and for small RNAs
(miRNAs, piRNAs, snoRNAs, tRNA-derived ncRNAs). After quality control, preprocessing
of RNA sequence data has been performed by the removal of low-expressed genes and by
expression normalization (Supplementary Figure S2, Supplementary Tables S2 and S3). As
expected, cluster analysis and PCA showed a clear separation between untreated (samples
C1, C2, C3) and eribulin-treated samples (i.e., E1, E2, E3) regarding both the analyses for
long RNAs (Figure 2A,B) and for small RNAs (Figure 2C,D). This demonstrates that the
replicates of the treated samples are transcriptionally similar to each other and distinct
from the control group. However, it can be noted that, strangely, the C1 sample is quite
different from C2 and C3, but it is still included in the group of controls.
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Regarding mRNAs and lncRNAs, differential expression analysis identified a total
of 2802 differentially expressed genes (DEGs) (|Log2(FC)| ≥ 1; adjusted p-values < 0.05),
including 2066 up-regulated and 736 down-regulated genes (Figure 3A, Table 1, Supplemen-
tary Table S4). Regarding the small RNA sequence analysis, 180 differentially expressed
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small RNAs were identified, including 80 upregulated and 100 downregulated transcripts
(Figure 3B, Table 2, Supplementary Table S5). Interestingly, the majority of up-regulated
small RNAs consists of small nucleolar RNAs (snoRNAs), while almost all down-regulated
small RNAs are miRNAs or piRNAs. 72% of DE mRNAs are up-regulated, instead 93% of
DE lncRNAs are up-regulated.
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Table 1. The top 20 (best fold change) upregulated and downregulated mRNAs, lncRNAs are reported.

Gene Name Category log2 (Fold-Change) p Adjusted

AQP4-AS1 lncRNA 7.59 2.71 × 10−8

AC002463.3 lncRNA 7.39 1.02 × 10−7

GABRG3 protein_coding 7.36 1.31 × 10−7

CASS4 protein_coding 7.18 4.00 × 10−7

NEFM protein_coding 6.94 2.53 × 10−7

MLIP protein_coding 6.87 4.40 × 10−7

CALN1 protein_coding 6.61 5.66 × 10−8

FER1L5 protein_coding 6.59 4.47 × 10−8

OTOG protein_coding 6.55 7.29 × 10−8

CELF2-AS2 lncRNA 6.45 1.49 × 10−7

ATP10B protein_coding 6.39 1.63 × 10−9

RP11-799O21.2 lncRNA 6.37 2.70 × 10−7

FAM83F protein_coding 6.36 2.54 × 10−7

TDRD12 protein_coding 6.36 2.82 × 10−7

RP4-715N11.2 lncRNA 6.35 3.15 × 10−7

POU2F3 protein_coding 6.35 3.02 × 10−7

GRM8 protein_coding 6.34 3.00 × 10−9

NID2 protein_coding 6.33 3.84 × 10−7

LINC02822 lncRNA 6.33 4.40 × 10−7
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Table 1. Cont.

Gene Name Category log2 (Fold-Change) p Adjusted

MMP16 protein_coding 6.32 3.76 × 10−7

H3C10 protein_coding −3.22 5.04 × 10−21

ANP32B protein_coding −3.22 5.72 × 10−117

TP53INP2 protein_coding −3.24 1.82 × 10−39

IGIP protein_coding −3.30 5.91 × 10−9

BCL2L2 protein_coding −3.33 1.19 × 10−33

NUDT16 protein_coding −3.43 1.84 × 10−55

SH3PXD2A protein_coding −3.43 2.76 × 10−96

CRTAP protein_coding −3.44 9.71 × 10−143

H4C11 protein_coding −3.49 2.83 × 10−5

PGPEP1 protein_coding −3.54 7.71 × 10−73

ZSWIM9 protein_coding −3.63 5.21 × 10−47

C22orf46 transcribed unitary
pseudogene −3.65 3.46 × 10−167

CTD-3099C6.13 unknown −3.72 8.58 × 10−120

FBXW4 protein_coding −3.74 2.42 × 10−50

RAB13 protein_coding −3.89 2.47 × 10−96

RASSF3 protein_coding −3.97 9.52 × 10−168

KIF1C protein_coding −4.05 0.00 × 10−0

TRAK2 protein_coding −4.17 5.02 × 10−249

NET1 protein_coding −4.43 0.00 × 10

RP11-603J24.7 processed_pseudogene −4.46 3.44 × 10−95

Table 2. The top 20 (best fold change) upregulated and downregulated miRNAs, piRNAs, tRNA-
derived-ncRNAs, snoRNAs are reported.

Gene Name Category log2 (FoldChange) p Adjusted

SNORD98 snoRNA 4.03 1.95 × 10−3

SNORA47 snoRNA 3.55 2.34 × 10−11

SNORD71 snoRNA 3.25 2.83 × 10−8

SNORD12C snoRNA 3.13 3.25 × 10−3

SNORD28 snoRNA 3.07 2.34 × 10−11

piR-hsa-23566 piRNA 3.01 1.54 × 10−5

SNORD37 snoRNA 2.87 4.50 × 10−4

SNORD90 snoRNA 2.72 4.61 × 10−3

SNORD18B snoRNA 2.71 6.04 × 10−3

SNORD127 snoRNA 2.67 1.26 × 10−2

SNORA62 snoRNA 2.55 2.61 × 10−10

SNORD19B snoRNA 2.48 2.94 × 10−2

SNORD83A snoRNA 2.35 3.60 × 10−8

piR-hsa-1834 piRNA 2.34 1.15 × 10−2
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Table 2. Cont.

Gene Name Category log2 (FoldChange) p Adjusted

SNORD46 snoRNA 2.33 1.39 × 10−4

piR-hsa-26039 piRNA 2.32 1.01 × 10−5

SNORD34 snoRNA 2.27 3.36 × 10−2

SNORD78 snoRNA 2.20 1.64 × 10−7

SNORD123 snoRNA 2.18 1.40 × 10−4

SNORD49A snoRNA 2.15 1.54 × 10−5

piR-hsa-27513 piRNA −4.53 7.26 × 10−4

tRFdb-3004a-617 tRNA-derived ncRNA −4.73 4.84 × 10−5

hsa-miR-155-5p miRNA −4.82 7.75 × 10−6

ts-112 tRNA-derived ncRNA −4.83 1.59 × 10−5

piR-hsa-7116 piRNA −4.91 7.12 × 10−6

piR-hsa-28382 piRNA −5.09 1.18 × 10−4

piR-hsa-17793 piRNA −5.32 8.62 × 10−4

piR-hsa-2467 piRNA −5.49 3.59 × 10−5

piR-hsa-28205 piRNA −5.76 1.09 × 10−4

5P_tRNA-His-GTG-1-8 tRNA-derived ncRNA −6.28 4.44 × 10−5

piR-hsa-28478 piRNA −6.29 5.08 × 10−4

piR-hsa−5939 piRNA −6.56 3.80 × 10−7

piR-hsa-25046 piRNA −6.67 7.45 × 10−8

ts-44 tRNA-derived ncRNA −7.33 1.02 × 10−5

piR-hsa-12789 piRNA −7.42 1.48 × 10−4

hsa-miR-6087 miRNA −7.99 2.68 × 10−5

hsa-miR-1306-5p miRNA −8.19 5.79 × 10−16

hsa-miR-196b-5p miRNA −8.45 2.07 × 10−5

piR-hsa-9105 piRNA −9.15 1.64 × 10−7

piR-hsa-12275 piRNA −10.76 2.15 × 10−7

3.3. Functional Enrichment Analysis

All DE mRNAs in EVs were processed to identify the enriched pathways to which they be-
long to infer the effects they produce in the cells that receive these EVs (Supplementary Table S6).
In interpreting these data, it must be taken into account that, probably, the main target of these
EVs is constituted by the adjacent tumor cells, whereas other EVs will reach different tissues.
According to long RNA sequencing, among the enhanced pathways consisting of up-regulated
genes, we find those related to the axon guidance and axonogenesis, ECM remodeling, cell
adhesion, Epithelial to Mesenchymal Transition (EMT), lipid metabolism, and ABC-type xenobi-
otic transporters.

By performing enrichment analysis of genes found to be down-regulated in EVs, we
can highlight the pathways that are no longer enhanced following eribulin treatment. In
other words, in the recipient cells, these pathways were enhanced by the EVs released from
the untreated cells, but, following treatment, the EVs no longer enhance these pathways.
Among the no longer enhanced pathways, we have found protein synthesis, RNA transcrip-
tion, RNA maturation, and energy production (glycolysis and mitochondrial respiration).
Full results are reported in Supplementary Table S7.
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3.4. Identification of Key Genes Associated with the Eribulin Treatment by WGCNA

We performed the weighted gene co-expression network analysis on our gene ex-
pression data, obtained by RNA sequencing from EVs released from MDA-MB-231 cells
after eribulin treatment. WGCNA identifies similar expression profiles (co-expression) of
genes among samples, and it groups highly co-expressed genes into network modules.
Moreover, the most central and connected genes, called “hub” genes, well represent the
functions of the entire module, and they may be involved in pathological processes or
have important clinical implications as potential diagnostic and prognostic biomarkers or
therapeutic targets [62]. We previously adopted WGCNA to study mRNA, miRNA and
lncRNA expression in pancreatic cancer [63–65]. In this study, WGCNA has been applied
in order to identify modules and their key genes associated with the eribulin treatment
in breast cancer cells. Firstly, we constructed a gene co-expression network and verified
whether it had a scale-free topology, as is required for WGCNA. The scale-free topology
is the structure of all biological networks, and it consists in some nodes (i.e., hub genes)
that are more connected than others (i.e., peripheral genes). Our network had the scale-
free topology since the R2 scale-free topology fit index reached values above 0.8 at the
power = 28 (Figure 4a). Since we obtained this low power, it implied that there were no
batch effects in our data. Then, we performed hierarchical clustering and identified 19 gene
co-expression modules consisting of a different number of genes and named with different
colors according to WGCNA package functions (Figure 4b, Supplementary Table S8). Next,
we set out to evaluate the correlations between the characteristics of the modules and the
treatment conditions (eribulin or controls). Only two modules (turquoise and blue) were
statistically significantly (p < 0.05) associated with the treatment (Figure 4c). In particular,
the turquoise module was associated with the eribulin treatment (cor = 0.99; p = 0.00086),
while the blue module was associated with the controls (cor = 1; p = 0.00021).

Cells 2024, 13, x FOR PEER REVIEW 12 of 24 
 

 

3.4. Identification of Key Genes Associated with the Eribulin Treatment by WGCNA 
We performed the weighted gene co-expression network analysis on our gene ex-

pression data, obtained by RNA sequencing from EVs released from MDA-MB-231 cells 
after eribulin treatment. WGCNA identifies similar expression profiles (co-expression) of 
genes among samples, and it groups highly co-expressed genes into network modules. 
Moreover, the most central and connected genes, called “hub” genes, well represent the 
functions of the entire module, and they may be involved in pathological processes or 
have important clinical implications as potential diagnostic and prognostic biomarkers or 
therapeutic targets [62]. We previously adopted WGCNA to study mRNA, miRNA and 
lncRNA expression in pancreatic cancer [63–65]. In this study, WGCNA has been applied 
in order to identify modules and their key genes associated with the eribulin treatment in 
breast cancer cells. Firstly, we constructed a gene co-expression network and verified 
whether it had a scale-free topology, as is required for WGCNA. The scale-free topology 
is the structure of all biological networks, and it consists in some nodes (i.e., hub genes) 
that are more connected than others (i.e., peripheral genes). Our network had the scale-
free topology since the R2 scale-free topology fit index reached values above 0.8 at the 
power = 28 (Figure 4a). Since we obtained this low power, it implied that there were no 
batch effects in our data. Then, we performed hierarchical clustering and identified 19 
gene co-expression modules consisting of a different number of genes and named with 
different colors according to WGCNA package functions (Figure 4b, Supplementary Table 
S8). Next, we set out to evaluate the correlations between the characteristics of the mod-
ules and the treatment conditions (eribulin or controls). Only two modules (turquoise and 
blue) were statistically significantly (p < 0.05) associated with the treatment (Figure 4c). In 
particular, the turquoise module was associated with the eribulin treatment (cor = 0.99; p 
= 0.00086), while the blue module was associated with the controls (cor = 1; p = 0.00021). 

 
Figure 4. Results of weighted gene co-expression network analysis (WGCNA). (a) Identification of 
the optimal soft-threshold power by calculation of scale-free topology fit index and mean connec-
tivity. In the left panel, R2 values of the Scale Free Topology Model Fit and the corresponding soft 
threshold powers are shown. The optimum power is 28 since it is the minimum value above the 
threshold set at 0.8 (dashed blue line). In the right panel, the mean connectivity as a function of the 
soft-threshold power is shown. These graphs confirm that the network we have constructed has a 

Figure 4. Results of weighted gene co-expression network analysis (WGCNA). (a) Identification of
the optimal soft-threshold power by calculation of scale-free topology fit index and mean connectivity.
In the left panel, R2 values of the Scale Free Topology Model Fit and the corresponding soft threshold
powers are shown. The optimum power is 28 since it is the minimum value above the threshold set
at 0.8 (dashed blue line). In the right panel, the mean connectivity as a function of the soft-threshold
power is shown. These graphs confirm that the network we have constructed has a scale-free topology.
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(b) Clustering dendrograms and modules identified by WGCNA: each color represents a different
module. (c) Module-to-trait analysis between the gene modules and eribulin treatment (ERIB) or
controls (CTRL). For each module, the Person’s correlation coefficients and their p-values, within
parenthesis, are provided. Only the statistically significant modules (i.e., turquoise and blue) were
further investigated. Curiously, these two modules are also those with the largest number of genes.
This was not expected since significance and coefficients do not depend on the module size.

Among these two modules, the top 10 genes with the GS (Gene Significance, i.e.,
the correlation with the treatment status) scores are reported in Table 3. The functional
enrichment analysis of these genes highlighted that the turquoise module (associated
with the eribulin treatment) contains genes mainly involved in “Actin Filament-Based
Transport”, “Extracellular Matrix Organization”, and “Crosslinking of Collagen Fibrils”.
In these pathways, enhanced following eribulin treatment, the involved genes are PXDN,
MYO1G and CAPN11, DSE. In the blue module (associated with the untreated cancer cells),
the enriched pathways were “Cilium Disassembly”, “Microtubule”, “Tubulin Binding”,
“Myosin Binding”, and “Lamellipodium Assembly”, where the genes KIF1C, MAP4, ACTG1,
ABLIM3, TRIOBP are involved. WGCNA results indicated that eribulin induced a strong
alteration in the EV content, mainly affecting genes encoding proteins involved in the
organization of the cytoskeleton and extracellular matrix. In particular, pathways associated
with the cytoskeleton were typical of EVs from untreated cancer cells, whereas pathways
associated with the extracellular matrix were typical of EVs from eribulin-treated cells.

Table 3. The top 10 hub genes with the best Gene Significance score in the turquoise and blue
modules. The turquoise module is associated with the eribulin treatment, whereas the blue module
with controls.

Gene
Symbol Gene Name Module GS Score Functions *

PXDN Peroxidasin turquoise 0.9949

Peroxidase secreted into the extracellular matrix,
contributes to the collagen IV network-dependent
fibronectin/FN and laminin assembly, which is

required for full extracellular matrix
(ECM)-mediated signaling.

PVT1 Pvt1 oncogene turquoise 0.9946
LncRNA oncogene, also in breast cancer. It also

promotes extracellular matrix degradation
(PMID: 35399100)

WDR27 WD repeat domain 27 turquoise 0.9944 Scaffolding for proteins

SLC22A5 Solute carrier family
22 member 5 turquoise 0.9944

Carnitine and polyspecific organic cation
transporter, critical for elimination of many

endogenous cations, toxins and drugs, including
etoposide, oxaliplatin, imatinib, vincristine,

vinblastine, paclitaxel, sunitinib, vinorelbine,
cisplatin, oxaliplatin (PMID: 31861504)

MYO1G Myosin IG turquoise 0.9943 Unconventional myosin required during
immune response

LDLRAD4
Low density lipoprotein
receptor class A domain

containing 4
turquoise 0.9941

Involved in negative regulation of cell migration;
negative regulation of epithelial to mesenchymal
transition. Functions as a negative regulator of

TGF-beta signaling and thereby probably plays a
role in cell proliferation, differentiation,
apoptosis, motility, extracellular matrix
production and immunosuppression.

CAPN11 Calpain 11 turquoise 0.9941
Calcium-dependent cysteine proteases of

substrates involved in cytoskeletal remodeling
and signal transduction
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Table 3. Cont.

Gene
Symbol Gene Name Module GS Score Functions *

PHIP Pleckstrin homology
domain interacting protein turquoise 0.9933 Regulates glucose transporter translocation

KTN1-AS1 KTN1 antisense RNA 1 turquoise 0.9929 LncRNA

DSE Dermatan
sulfate epimerase turquoise 0.9929 Biosynthesis of the dermatan sulfate, a

component of extracellular matrix (ECM)

TRIOBP TRIO and F-actin
binding protein blue 0.9999 Associates with and stabilizes F-actin structures

KIF1C Kinesin family member 1C blue 0.9999
Microtubule-dependent molecular motor that
transport organelles and move chromosomes

during cell division

NET1 Neuroepithelial cell
transforming 1 blue 0.9999 Guanine nucleotide exchange factor (GEF)

MAP4 Microtubule associated
protein 4 blue 0.9999 Microtubule-associated protein, promotes

microtubule assembly

CDA Cytidine deaminase blue 0.9999 Enzyme involved in pyrimidine salvaging

ABLIM3 Actin binding LIM protein
family member 3 blue 0.9998 Interacts with actin filaments and is a component

of adherens junctions

CARD19 Caspase recruitment
domain family member 19 blue 0.9998 Mitochondrial protein

ACTG1 Actin gamma 1 blue 0.9998 Actin gamma

TCEAL3 Transcription elongation
factor A like 3 blue 0.9998 Transcription elongation factor

TOMM20
Translocase of outer

mitochondrial
membrane 20

blue 0.9998 Mitochondrial import receptor

* Functions: as reported in NCBI Gene and Uniprot, if not specified.

3.5. Experimentally Assessed Target Genes of miRNAs in EV

We aimed to identify genes involved in chromosomal instability (CIN), immune
checkpoint, and drug resistance that are targeted by miRNAs contained in EVs released
from MDA-MB-231 under normal conditions (here called down-regulated miRNAs) and
after eribulin treatment (up-regulated). The results of the analysis performed with the
mirTarbase tool (which contains only experimentally validated miRNA-mRNA interactions)
show some genes involved in CIN, immune checkpoint, and drug resistance (Table 4).

3.6. Comparison of MicroRNA Expression in EVs and Cells

We verified if eribulin influenced the cellular expression of microRNAs or their sorting
into EVs. Therefore, we determined the intracellular levels of the most differentially
expressed EV microRNAs. The three most overexpressed microRNAs in the EVs after
treatment were let-7a-5p, miR-17-3p, and let-7f-5p with fold changes of about 1.9, 1.8 and
1.6, respectively, and fold changes of about 2.9, 1.8 and 4.2, respectively, in cells. Among
the most down-regulated microRNAs (miR-214-3p, miR-155-5p, miR-196-5p), only miR-
214-3p had a sufficient expression level to be detected. Notably, its expression level was
decreased by about 4-fold in both cells and EVs (Figure 5). Thus, although not linearly for
all microRNAs tested, changes in the expression levels of EV microRNAs mirror those of
parent cells.
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Table 4. Validated targets of up- and down-regulated miRNAs in EVs isolated following eribulin treatment.

Up-Regulated miRNAs in EVs
after Eribulin-Treatment Validated Targets Role *

hsa-let-7a-5p AURKA CIN

hsa-miR-29a-3p KLF4 CIN

hsa-miR-29a-3p MDM2 CIN

Down-Regulated miRNAs in
EVs after Eribulin-Treatment Validated Targets Role

hsa-miR-125a-5p TP53 CIN

hsa-miR-144-3p FBXW7 CIN

hsa-miR-155-5p APC CIN

hsa-miR-214-3p CTNNB1 CIN

hsa-miR-214-3p ABCB1 (MDR1, P-glycoprotein) MDR

hsa-miR-214-3p CD274 (PD-L1) IMMUNE

hsa-miR-328-3p ABCG2 (BCRP) MDR

hsa-miR-381-3p ID1 CIN

hsa-miR-451a ABCB1 (MDR1, P-glycoprotein) MDR
* CIN: chromosomal instability; MDR: multidrug resistance; IMMUNE: immune checkpoint.
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Figure 5. Quantitative RT-PCRs performed with the miRCURY LNA SYBR® Green PCR Kit and
miRCURY LNA miRNA PCR Assays (Qiagen) to assess the intracellular expression levels of let-7a-5p,
miR-17-3p, let-7f-5p and miR-214-3p. The evaluations were performed in quadruplicate on control and
eribulin-treated cells. * p < 0.05; ** p < 0.01.
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3.7. Association of Other Small RNAs with Breast Cancer

Finally, we searched for possible associations between breast cancer and piRNAs, snoR-
NAs and tRNA fragments, by using some prediction tools. iPiDi-PUL tool highlighted that
4/9 (44%) upregulated piRNAs and only 2/40 (5%) downregulated piRNAs are predicted
to be associated with breast cancer (Supplementary Table S9). Since piRNAs associated
with breast cancer were both up- and downregulated by the eribulin treatment, we cannot
draw definitive conclusions. By using the RNADisease tool, we found one upregulated
snoRNA (U44/RNU44/SNORD44) and one downregulated snoRNA (U8/SNORD118) in
eribulin-treated EVs. Notably, in the literature, it was found that SNORD44 is downreg-
ulated in breast cancer and associated with a poor prognosis, whereas SNORD118 was
upregulated in breast cancer and its depletion inhibited tumorigenicity of breast cancer
cells in vivo and in vitro [66]. Since eribulin induced upregulation of SNORD44 and down-
regulation of SNORD118, eribulin could exert its anti-tumor roles also by affecting the
expression of these snoRNAs. According to tRFExplorer database, the tRNA fragments
tRFdb-5026a, tRFdb-5020a, tRFdb-3004a and ts-112 are more expressed in breast cancer than
normal tissues. They are more expressed also in specific subtypes, such as LumA, LumB,
Her2 and triple-negative (Supplementary Table S10). Our data show that eribulin treatment
decreased the expression levels of tRFdb-3004a and ts-112, suggesting a positive role of
eribulin, but it would not affect the levels of tRFdb-5026a and tRFdb-5020a.

4. Discussion

For the first time, RNA sequencing on long and small RNAs in EVs released from
eribulin treated MDA-MB-231 triple-negative breast cancer cells have been carried out
to obtain an overview of the communication through EVs between eribulin-treated and
untreated cells. Among up-regulated genes, we identified many pathways that could
be enhanced in the EV-recipient cells, including axon guidance and axonogenesis, ECM
remodeling, adhesion, EMT, lipid metabolism, and ABC-pumps.

Regarding the axon guidance and axonogenesis-enriched pathways, which serve to
attract or repel growing axons and migrating neurons in the developing nervous system,
the presence of peripheral nerves in the microenvironment of epithelial carcinomas is
associated with more aggressive disease [67] and higher is the grade of breast cancer and
more numerous and thicker are the nerve fibers [68]. Since highly aggressive human
TNBC tumors are enriched for genes associated with neurogenesis [69], if our observed
enrichment of these pathways was induced in microenvironment cells, it could enhance
the nerves and therefore cancer migration and metastasis. Moreover, the enhancement
of these pathways could also occur in cancer cells, inducing migration and invasion [70].
However, among the genes enriched in the axon guidance pathway, some also have a tumor
suppressor role [71], so we are not able to deduce the overall role of these enriched genes.

We also identified the ECM remodeling, a process useful to cancer to create a matrix
that supports tumor growth and constitutes a physical barrier to evade immune surveillance
by T-cells. Moreover, proteolytic ECM degradation generates bioactive compounds that
promote tumor proliferation, migration, invasion and angiogenesis [72,73]. ECM proteins
can also establish a physical and biochemical niche for cancer stem cells (CSCs) [74].
Consistently, our WGCNA results indicated that pathways associated with the extracellular
matrix were typical of EVs from eribulin-treated cells.

Another pathway is related to cell adhesion, the increase of which restrict cell growth
mainly through contact inhibition and limit tumor cell migration [75]. However, malignant
cells can also utilize these pathways to promote tumor growth; in fact, the expression of
various integrins promotes tumor cell proliferation, survival and metastases [76,77].

We identified up-regulated genes belonging to the Epithelial to Mesenchymal Tran-
sition (EMT) process, but since some of them promote epithelial and other mesenchymal
status, we are not able to deduce whether, overall, they push towards one or another cell
type. However, it was shown that eribulin can revert EMT [17], likely by inhibiting TGF-β-
mediated Snail expression by impairing the microtubule-dependent nuclear localization of
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Smad2/3. Moreover, microtubule depolymerization mediated by eribulin induces c-Jun,
which consequently increases Slug/SNAI2 expression in cells with low Smad4 [78].

Another pathway is regarding lipid metabolism involved in cancer metabolic re-
programming to provide the additional requirements of energy and metabolites for cell
proliferation and dissemination [79] and chemoresistance [80]. Therefore, lipid metabolic
reprogramming is considered as a hallmark of cancer [81]. While most somatic cells obtain
their lipids either from dietary sources or from lipids synthesized by the liver, various can-
cers reactivate de novo lipogenesis, making themselves more independent from externally
provided lipids [82]. In breast cancer, de novo lipogenesis is enabled in the luminal sub-
type, whereas the use of exogenous fatty acids is typical in the basal-like receptor-negative
subtypes [82].

Some up-regulated genes are ABC-type xenobiotic transporters that help cancer to
achieve chemoresistance. These resistance mechanisms concern the multidrug resistance
(MDR) system and are induced by various drugs, including eribulin [83]. Here, we assessed
that ABCB1 (P-glycoprotein) expression is strongly increased (log2FC = +5.301, about
40 times more) and it is known to be responsible for the eribulin resistance of many breast
cancer cell lines, including the MDA-MB-231 used in this study [84–86]. In particular,
eribulin induced an acquired resistance in breast cancer cells by inducing an overexpression
of ABCB1 and ABCC11 genes [86]. Similarly, paclitaxel and docetaxel are also responsible
for an increased expression of ABCC2 and ABCB1 genes in breast cancer [87,88]. In addition,
docetaxel induced higher levels of ABCG2 protein (also known as breast cancer resistance
protein, BCRP) in EVs released from docetaxel-resistant MCF-7 cells [35]. Although in our
EVs from eribulin-treated cancer cells, ABCC11 mRNA was not up-regulated, we found
that both ABCC2 (log2FC = +4.570, about 23 times more) and ABCG2 (log2FC = +2.366,
about 5 times more) were up-regulated. However, it is not yet known whether eribulin is
among their substrates.

Moreover, the WGCNA analysis highlighted the transporter SLC22A5 (OCTN2) as key
genes in the turquoise module associated with the eribulin treatment. Notably, SLC22A5 is
involved in the transport of many drugs, including the microtubule targeting agent (MTA)
vincristine, vinblastine, vinorelbine, and paclitaxel [89]. Eribulin is also an MTA, but it is
not yet known whether it can be transported by SLC22A5.

In addition to the well-known resistance mechanisms due to the expression of the
multidrug resistance (MDR) system genes, further mechanisms of resistance to MTAs were
identified. One is the activation of the PI3K/AKT survival pathway due to mutational
activation of PIK3CA or inactivation of PTEN [90], so PI3K inhibition enhances the anti-
tumor effect of eribulin in triple-negative breast cancer [91]. Subsequently, it was confirmed
that mutations in PIK3CA, PIK3R1 or AKT1 activate PI3K pathway and confer resistance to
eribulin [92]. Here, EVs from eribulin-breast cancer cells contained higher levels of PIK3R5
(log2FC = +3.877), PIK3C2B (log2FC = +1.664) and PIK3R1 (log2FC = +1.500) mRNAs
than controls. Similarly, it is possible that these mRNAs transferred to the recipient cells
induce chemoresistance.

In addition, c-Fos is upregulated following to eribulin treatment in the triple-negative
breast cancer cell lines MDA-MB-231 and HCC70 and this was related to low eribulin
sensitivity [93]. Here, both FOS (log2FC = +1.571) and the other Fos family member FOSB
(log2FC = +1.770) are upregulated in EVs from eribulin-treated cells. This supports the
possibility that eribulin induced stress could spread a chemoresistance message.

The genes in which RNA was found to have a down-regulation in EVs of treated cells
show the pathways that were supported in recipient cells by the EVs of the untreated cells
and are no longer supported by the EVs of the treated cells. These pathways involved
the cell cycle (protein synthesis, RNA transcription, ATP synthesis), and therefore, if the
recipient cells are tumor cells, its slowing down could be interpreted as a positive effect
due to decreased proliferation. On the other hand, this could be a defense mechanism that
would make cancer cells less prone to be affected by the MTA- and DNA-targeting drugs.
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We also performed RNA sequencing on small RNAs in EVs released from eribulin-
treated MDA-MB-231 triple-negative breast cancer cells. Our results showed that the
expression levels of some small RNA transcripts are associated with both anti-tumor and
pro-tumor effects.

Among sequenced small RNAs, there are the PIWI-interacting RNAs (piRNAs), a
novel class of small non-coding RNAs (26–31nt) that form the piRNA silencing complex
involved in transposon silencing, genome rearrangement, epigenetic regulation, and protein
regulation. The functions of piRNAs in normal or pathological states are still largely
unknown. Recently, it was demonstrated that piRNAs’ abnormal expression is associated
with the progression of several cancer types, including breast cancer. There was also
observed a role in the maintenance of cancer stemness and chemoresistance. Therefore,
they could serve as novel biomarkers and therapeutic targets for tumor diagnostics and
treatment [94–96]. Our analysis identified forty-nine differentially expressed piRNAs, nine
of which are up-regulated and forty of which are down-regulated. An analysis of these
piRNAs in the literature and in specific databases returned only piR-hsa-7193, which we
found strongly down-regulated (log2(FC)= −4.4), and it is known to be highly up-regulated
in breast cancer patients [97]. Since this piRNA is typical of cancer, its expression lowering
could be a positive effect of eribulin.

The novel class of small RNAs named tRNA-derived fragments consists of tRNA
precursors or fragments of mature tRNAs. These RNAs have recently drawn great attention
due to the identification of further biological roles in tumorigenesis and cancer progression
apoptosis and metastasis, including in breast cancer [98]. They play many regulatory
roles, including gene silencing, RNA stability, and translation [98]. Recently, a role in drug
resistance has also been proposed [99,100]. Among tRNA-derived fragments identified
in our EVs, ts-112 is already known to have oncogenic potential in breast cancer. Indeed,
its inhibition in MCF10CA1a aggressive breast cancer cells reduced cell proliferation,
whereas its over-expression in normal breast MCF10A cells increased proliferation [101].
Interestingly, in EVs released after eribulin treatment, ts-112 is strongly down-regulated
(log2(FC) = −4.8) so, similarly to piR-hsa-7193, this oncogenic tRNA-derived fragment is no
longer transferred by EVs to the recipient cells, resulting in a positive effect of eribulin.

The small nucleolar RNAs (snoRNAs) are involved in the post-transcriptional mod-
ifications of other RNAs, and recent studies have suggested the snoRNAs as diagnostic
or prognostic biomarkers. Krishnan et al., by sequencing small RNAs of normal and
cancerous breast tissues, identified some snoRNAs associated with a patient’s overall sur-
vival [102]. Among them, they identified SNORD46 as down-regulated in tumor tissues.
On the contrary, in EVs from eribulin-treated cells, we found that SNORD46 is up-regulated
(log2(FC) = 2.3), suggesting an anticancer effect of eribulin.

Among over-expressed miRNAs in EVs derived from cells treated with eribulin, let-7a-
5p is associated with bortezomib sensitivity according to a study performed in 34 different
breast cancer cell lines (MD-MBA-231 included) [103]. Another overexpressed miRNA is
miR-30c, which sensitizes MDA-MB-231 to paclitaxel and doxorubicin [104].

Among down-expressed miRNAs in EVs derived from cells treated with eribulin,
miR-671-5p is known to inhibit epithelial-to-mesenchymal transition, induce S-phase arrest,
and sensitize breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin [105]. Low
expression of miR-148a-3p in TNBC is associated with the development of metastases [106].
Interestingly, EVs from MDA-MB-231 cells showed higher levels of miR-155 than EVs from
non-metastatic breast cancer cells (MCF7) and non-tumor cells (MCF10A) [107]. Down-
regulation of miR-155-5p decreases the effectiveness of Olaparib [108] and enhances the anti-
tumor effect of cetuximab in MDA-MB-231 cells [109]. MiR-125b-5p seems to have opposite
effects; in fact, it confers resistance to paclitaxel-treated MDA-MB-231 cells [110], while it
can also confer sensitivity to paclitaxel-resistant cells [111]. Low miR-214 expression confers
chemoresistance to tamoxifen and fulvestrant in metastatic MCF7 cells [112]. Finally, EV-
contained miR-122-5p is transferred from breast cancer cells to non-tumor cells to suppress
glucose uptake by silencing pyruvate kinase; this increases the nutrient availability for
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cancer cells, and metastasis is facilitated [113]. The diversity of effects of all these molecules
does not allow us to draw a conclusion regarding the final effect of these EVs.

We identified the experimentally assessed target genes of miRNAs in EVs and eval-
uated their effects. Some microRNAs are already known to target important checkpoint
proteins involved in the onset of CIN [114]. Chromosomal instability (CIN) is an increased
frequency of changes in chromosome structure. It is considered a hallmark of cancer as it
plays a role in tumorigenesis, cancer progression, and chemoresistance [55].

Among the genes we found silenced by upregulated miRNAs, AURKA, KLF4, and
MDM2 are known to regulate CIN. The overexpression of Aurora A kinase (AURKA) and
the proto-oncogene MDM2 induces CIN by centrosome amplification, cytokinesis failure
and dysregulation of cell-cycle proteins. Instead, the knockout of KLF4 (Kruppel-like
factor 4) induces centrosome amplification and breakages [55]. Overall, the identified
up-regulated miRNAs seem to counteract chromosomal instability.

Some down-regulated miRNAs (present in EVs before eribulin treatment) are already
known to silence APC, CTNNB1, FBXW7, ID1, TP53. Thus, these genes that were silenced
under normal conditions are no longer silenced after eribulin treatment. In particular,
depletion or mutation of APC, β-catenin (CTNNB1), hCdc4 (FBXW7) and TP53 are known
to induce CIN by dysregulation of cell-cycle proteins, merotely and checkpoint defects.
However, ID1 overexpression can induce cytokinesis failure [54]. Overall, the identified
down-regulated miRNAs no longer seem to induce chromosomal instability in the EV-
recipient cells. Interestingly, it should be noted that both p53 and its specific inhibitor
Mdm2 are targets of the EV-contained miRNAs: the up-regulated miR-29a-3p silences
Mdm2 and the down-regulated miR-125a-5p no longer silences p53 after eribulin treatment.
This suggests an increase in p53 amount and therefore tumor suppressive effects.

Furthermore, three miRNAs (miR-451a, mir-214-3p, miR-328-3p) known to silence the
multi-drug resistance proteins ABCB1 (MDR1, P-glycoprotein) and ABCG2 (BCRP, breast
cancer resistance protein) were down-regulated in eribulin-treated EVs; mir-214-3p is also
known to silence the immune checkpoint PD-L1. Since, following eribulin treatment, these
miRNAs are no longer transferred to other cells via EVs, higher levels of MDR proteins
and PD-L1 could be induced in tumor recipient cells, which could become more resistant
to drugs and immune system.

Our comparison of the expression of some vesicular versus cellular microRNAs sug-
gested that eribulin treatment does not affect sorting in vesicles, but the cellular content.
If this were also true for all EV microRNAs, it would mean that the sampling of EVs
from body fluids is representative of the content of tumor cells, confirming the validity of
liquid biopsies.

5. Conclusions

Our results showed that EVs of eribulin-treated cancer cells contain mRNAs that could
contribute to EMT, adhesion, ECM remodeling, and lipid metabolism. In addition, on the
one hand, eribulin could exert a positive role by decreasing chromosomal instability, and
on the other hand, it seems to also have a negative role because it could increase eribulin
resistance and immune escape. However, we must also point out that according to some
evidence, the microRNAs transferred by EVs could be in insufficient quantity to modify
the functioning of the recipient cells [115]; moreover, other molecules carried by exosomes,
as proteins and lipids, could also be responsible for an effect.

Moreover, we must be aware of the weaknesses of currently available methods, which
do not allow us to reach high resolutions. In fact, the RNA sequencing shows only the
average of many different messages carried by each single EV released by the cancer cells.
Instead, each EV could carry a specific message and bring it to a specific target cell. A better
decryption of the message carried by the EVs will be possible with the improvement of
techniques; in particular, we refer to single-cell sequencing applied to exosomes [116].
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