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Abstract

In this paper, we present a Social Network Analysis based approach to investigate user behavior

during a cryptocurrency speculative bubble in order to extract knowledge patterns about it. Our

approach is general and can be applied to any past, present and future cryptocurrency speculative

bubble. To verify its potential, we apply it to investigate the Ethereum speculative bubble happened

in the years 2017 and 2018. We also describe several interesting knowledge patterns about the

behavior of specific categories of users that we obtained from this investigation. Furthermore,

we describe how our approach can support the construction of an identikit of the speculators

who maneauvered behind the Ethereum bubble analyzed. Finally, we show that this capability of

supporting the hunting for speculators is intrinsic of our approach and can cover past, present and

future bubbles.

Keywords: Social Network Analysis; Blockchain; Cryptocurrency; Ethereum; Speculative Bub-

ble; Speculator Identikit

1 Introduction

The popularity of blockchains has been growing continuously from the appearance of Bitcoin in 2008

[32], and the interest on cryptocurrencies followed the same growth. In the past years, cryptocurrencies

were the subject of a speculative bubble, similar to the tulipans’ and stock market ones [38]. For

instance, the price of Bitcoin surged almost 2,800% in four years and has fallen by 80% in just few

weeks, between the end of 2017 and the beginning of 2018, leading to a huge gain for a few people

and a big loss for the majority of the investors. These events are interesting to investigate from a data

science perspective, because they allow the extraction of knowledge patterns to prevent other similar

cases. As a matter of fact, several studies investigate the whole speculative cryptocurrency bubble

and its consequences for economy and technology [39, 19]. However, a very limited number of studies

take the intrinsic nature of blockchain as a social network into account. Actually, the relationships

between blockchain users are extremely relevant in the extraction of unknown patterns and in the

disclosure of new viewpoints for analyzing this speculative bubble. For this reason, Social Network
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Analysis notions [17, 24] can provide a big help to study the relationships in the blockchain network.

In this activity, it is reasonable to think of a social network in which each node indicates a user,

represented through her/his blockchain address, whereas each arc denotes a transaction between two

users. Starting from this idea, in this paper we propose a Social Network Analysis based approach

to extract knowledge patterns concerning user behavior during a cryptocurrency speculative bubble.

Our approach is general and can be used to investigate any past, current and future cryptocurrency

bubble. In order to understand its potential, we applied it to the Ethereum bubble happened in the

years 2017 and 2018 and considered the pre-bubble, bubble and post-bubble phases.

In order to reach its goals, our approach focuses on certain categories of users, namely: (1) The

power addresses, i.e., the most active users on the blockchain of interest, who were responsible for

most of the transactions of this network. More specifically, we consider the power addresses for each

of the periods of interest (i.e., the pre-bubble, bubble and post-bubble). (2) The Survivors, i.e., those

users who were power addresses in all the three periods of interest. (3) The Missings, i.e., those users

who were power addresses in the pre-bubble period and stopped being power addresses in the bubble

and post-bubble periods. (4) The Entrants, i.e., those users who were not power addresses in the

pre-bubble period and became power addresses in the bubble and post-bubble periods.

Then, for each user category, our approach employs Social Network Analysis based techniques to

identify the main characteristics that distinguish the corresponding users from the others. In this

task, the concept of ego network [13] plays an important role. Afterwards, our approach checks if and

when there are backbones linking the users of a certain category. The presence of such backbones can

be hypothesized on the basis of the principle of homophily [30], characterizing many social networks.

However, only a set of experimental analyses can show whether this hypothesis is true or not. Also

in this case, ego networks play a key role to support analytical investigations. They are flanked by

k-cores [14], which help in giving a graphical idea of the analytical results. Finally, the last tasks

of our approach aim at predicting, given a certain period (i.e., pre-bubble, bubble), who will be the

main actors in the next ones (i.e., bubble, post-bubble), based on some parameters. The experiments

we performed on Ethereum to test our approach and its potential allowed us to extract knowledge

patterns concerning user behavior during the speculative bubble happened in the years 2017 and 2018.

Finally, we show how our approach can allow the definition of the identikit of cryptocurrency bubble

speculators and, therefore, how it can be applied to hunt past, present and future cryptocurrency

bubble speculators.

The outline of this paper is as follows: In Section 2, we present related literature and highlight

the novelties of our approach with respect to it. In Section 3, we illustrate the proposed approach. In

Section 4, we apply it to investigate the speculative bubble involving Ethereum in the years 2017 and

2018. In Section 5, we show the application of our approach to hunt cryptocurrency bubble speculators.

Finally, in Section 6, we draw our conclusions and highlight some possible future developments of our

research.

2 Related literature

Since the introduction of Bitcoin in 2008 [32], thousands of cryptocurrencies have been created [11],

and the interest about them has increased significantly. At the same time, the scientific literature
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about blockchain and digital currencies has progressively grown [25, 15, 1, 36, 37]. The spread of

this new technology has also created a lively discussion in the economic field on the possibility of

speculations around these assets [5, 2, 7, 4].

Indeed, at the end of 2017, the price of Bitcoin (as well as the ones of the other cryptocurrencies,

like Ethereum or Litecoin) increased by almost 600% (reaching an all-time high value of $19,475.80)

before falling by 80% in few weeks, until January 2018 [39, 27, 3, 16]. This is the biggest bubble in

the cryptocurrencies history so far. Researchers have strived to analyze every detail of this particular

event to understand the corresponding dynamics in order to prevent other speculations in the future.

For instance, in [40], the authors investigate market efficiency and volatility persistence in 12 highly

priced and capitalized cryptocurrencies, based on daily data from August 7th, 2015 to November 28th,

2018. They observe a random walk pattern in returns of most cryptocurrencies, including Bitcoin and

Ethereum, making the price of these assets unpredictable.

In [12], the authors examine the existence and the time intervals of pricing bubbles in Bitcoin and

Ethereum. Specifically, they adopt three measures to best represent the key theoretical components

of cryptocurrency pricing structures, namely: (i) the mining difficulty, which reflects how difficult it is

computing the next block of the blockchain; (ii) the hashrate, which represents the speed at which a

computer is completing an operation in the blockchain code; (iii) the relationship between cryptocur-

rency returns, volatility and liquidity. This study highlights that there are periods characterized by a

clear bubble behavior. The period between 2017 and 2018 could be identified as one of them.

Another interesting research field in digital currencies regards the definition of approaches to pre-

dict speculative bubbles [9, 18, 34]. For instance, in [19], the authors introduce an automatic peak

detection method that classifies price time series into periods of uninterrupted market growth (i.e.,

drawups) and periods of uninterrupted market decrease (i.e., drawdowns). In [31], the authors investi-

gate a new approach to predict speculative bubbles involving four cryptocurrencies (Bitcoin, Litecoin,

Ethereum, and Monero) based on the behavior of new online social media indicators. For this purpose,

they leverage a Hidden Markov Model for detecting epidemic outbreaks in the blockchain setting. In

[8], the authors propose another possible way to detect speculative bubbles in cryptocurrencies through

an approach based on a social microblogging platform for investors and traders. Specifically, they eval-

uate the sentiment of users on StockTwits1 and, then, exploit it as a transition variable in a smooth

transition autoregression.

A further approach to investigate the cryptocurrencies market is based on the analysis of the

corresponding blockchain. It starts from the consideration that a blockchain represents a public

ledger in which all committed transactions are stored in a chain of blocks [42, 41]. This chain can be

represented and analyzed like a graph with nodes and edges [23, 35, 6, 22]. This reasoning leads the

authors of [26] to examine the transaction network of Bitcoin during the first four years of its existence.

The results obtained outline the business distribution by countries and their evolution over time. The

authors also show that there is a gambling network that features many small transactions. In [28], the

authors present a set of analyses on the user graph obtained by performing a heuristic clustering of

the Bitcoin blockchain graph. They figure out a set of interesting properties of the network, including

the “rich get richer” property and the existence of central nodes acting as privileged bridges between

1https://stocktwits.com/
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different parts of the network. Finally, in [35], the authors exploit network analysis techniques to

investigate the trading dynamics of ERC20 Blockchain. They model ERC20 as a social network, which

nodes represent all trading wallets and which edges stand for the buy-sell trades. This social network

is inline with the current network theory expectations and presents strong power law properties.

Our approach is in line with the latest ones mentioned above, because it uses Data Science [21, 29],

and in particular Social Network Analysis [20, 33], to investigate a blockchain. However, it presents

some novelties with respect to them. Indeed, it introduces several categories of users, based on their

behavior in the pre-bubble, bubble and post-bubble periods. Moreover, it leverages ego networks [13]

and k-cores [14] to identify the characteristics of the various categories of users. Although ego networks

and k-cores are classical tools of Social Network Analysis, to the best of our knowledge, they have

never been employed to study the behavior of users during a cryptocurrency bubble. Furthermore, it

detects the existence of backbones linking users of certain categories in the pre-bubble, bubble and

post-bubble periods, which is a knowledge not found in past literature on the cryptocurrency bubbles.

Finally, similarly to other papers mentioned above, it also presents a prediction task. However, it

differs from the previous approaches for the target of the prediction, which, in this case, concerns the

discovery, in a certain period (pre-bubble, bubble), of the most relevant features of the users who will

be the main actors in the next period.

3 Proposed approach

In order to reach its goals, our approach simply needs a set of records, each corresponding to a

transaction carried out in the blockchain of interest. Each record stores only four fields related to

the associated transaction, namely: (i) the blockchain address starting it; (ii) the blockchain address

receiving it; (iii) its timestamp; (iv) the amount of money transferred. These fields are very general

and available for any cryptocurrency blockchain. A pseudocode formalization of our approach is shown

in Algorithms 1 and 2.

Our approach receives the cryptocurrency blockchain B of interest and the time interval I during

which there was a speculative bubble involving B.
It first calls the function Extract_Dataset(), which returns the dataset D of the transactions of

B during I. Next, it activates the function Determine_Intervals() to partition I into three sub-

intervals IPre, IB and IPost, related to the pre-bubble, bubble and post-bubble periods, respectively.

After that, it calls the functions Detect_From_Power_Addresses(), Detect_To_Power_Addresses()

and Detect_Super_Power_Addresses() to determine the power addresses with the largest number of

incoming arcs, outgoing arcs and both. Finally, it activates the functions Detect_Multi_Interval_

From_Power_Addresses() and Detect_Multi_Interval_To_Power_Addresses() to determine the

addresses that continue to be From Power Addresses and To Power Addresses when passing from the

pre-bubble period to the bubble one and from the bubble period to the post-bubble one.

At this point, our algorithm has collected all the data necessary to activate Detect_Survivors(),

Detect_Missings() and Detect_Entrants(), which aim at determining the Survivors SF and ST ,

the Missings MF and MT and the Entrants EF and ET . Next, it activates the function Construct_

Social_Networks(), which returns the social networks NPre, NB and NPost relative to the pre-

bubble, bubble and post-bubble period. After that, it calls the functions Construct_Survivors_
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Algorithm 1 Investigating user behavior during a cryptocurrency speculative bubble (first part)
Input

■ B: the cryptocurrency blockchain of interest

■ I: the time interval to investigate

Output

■ PAF
Pre, PAF

B , PAF
Post, PAT

Pre, PAT
B , PAT

Post: power addresses of the dataset

■ SPAPre, SPAB , SPAPost, PAF
Pre−B , PAF

B−Post, PAT
Pre−B , PAT

B−Post: power addresses of the dataset

■ SF , ST : the Survivors; MF , MT : the Missings; EF , ET : the Entrants

■ EgoKPSet: a set of knowledge patterns derived from the ego network analyses

■ BackboneKPSet: a set of knowledge patterns on the possible presence of backbones

■ BSurvivorsSet: a set of potential Survivors

■ PBSurvivorsSet: a set of potential Survivors

■ PBEntrantsSet: a set of potential Entrants

Require:

■ D: a dataset of transactions;

■ IPre, IB , IPost: time intervals;

■ NPre, NB , NPost: social networks;

■ ENSetS,F
Pre, ENSetS,T

Pre, ENSetM,F
Pre , ENSetM,T

Pre , ENSetE,F
Pre, ENSetE,T

Pre: a set of ego networks;

■ ENSetS,F
B , ENSetS,T

B , ENSetM,F
B , ENSetM,T

B , ENSetE,F
B , ENSetE,T

B : a set of ego networks;

■ ENSetS,F
Post, ENSetS,T

Post, ENSetM,F
Post , ENSetM,T

Post , ENSetE,F
Post, ENSetE,T

Post: a set of ego networks;

■ TF
Pre, T

T
Pre, T

F
B , TT

B , TF
Post, T

T
Post: top power addresses of the dataset;

D = Extract Dataset(B, I)

⟨IPre, IB , IPost⟩ = Determine Intervals(D)

⟨PAF
Pre, PAF

B , PAF
Post⟩ = Detect From Power Addresses(IPre, IB , IPost, D)

⟨PAT
Pre, PAT

B , PAT
Post⟩ = Detect To Power Addresses(IPre, IB , IPost, D)

⟨SPAPre, SPAB , SPAPost⟩ = Detect Super Power Addresses(PAF
Pre, PAF

B , PAF
Post, PAT

Pre, PAT
B , PAT

Post)

⟨SPAF
Pre−B , SPAF

B−Post⟩ = Detect Multi Interval From Power Addresses(PAF
Pre, PAF

B , PAF
Post)

⟨SPAT
Pre−B , SPAT

B−Post⟩ = Detect Multi Interval To Power Addresses(PAT
Pre, PAT

B , PAT
Post)

⟨SF ,ST ⟩ = Detect Survivors(PAF
Pre, PAF

B , PAF
Post, PAT

Pre, PAT
B , PAT

Post)

⟨MF ,MT ⟩ = Detect Missings(PAF
Pre, PAF

B , PAF
Post, PAT

Pre, PAT
B , PAT

Post)

⟨EF , ET ⟩ = Detect Entrants(PAF
Pre, PAF

B , PAF
Post, PAT

Pre, PAT
B , PAT

Post)

⟨NPre,NB ,NPost⟩ = Construct Social Networks(IPre, IB , IPost, D)

⟨ENSetS,F
Pre, ENSetS,T

Pre, ⟩ = Construct Survivors Ego Networks Pre(IPre,NPre,SF ,ST )

⟨ENSetS,F
B , ENSetS,T

B , ⟩ = Construct Survivors Ego Networks Bubble(IB ,NB ,SF ,ST )

⟨ENSetS,F
Post, ENSetS,T

Post, ⟩ = Construct Survivors Ego Networks Post(IPost,NPost,SF ,ST )
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Algorithm 2 Investigating user behavior during a cryptocurrency speculative bubble (second part)

Require:

⟨ENSetM,F
Pre , ENSetM,T

Pre , ⟩ = Construct Missings Ego Networks Pre(IPre,NPre,MF ,MT )

⟨ENSetM,F
B , ENSetM,T

B , ⟩ = Construct Missings Ego Networks Bubble(IB ,NB ,MF ,MT )

⟨ENSetM,F
Post , ENSetM,T

Post , ⟩ = Construct Missings Ego Networks Post(IPost,NPost,MF ,MT )

⟨ENSetE,F
Pre, ENSetE,T

Pre, ⟩ = Construct Entrants Ego Networks Pre(IPre,NPre, EF , ET )

⟨ENSetE,F
B , ENSetE,T

B , ⟩ = Construct Entrants Ego Networks Bubble(IB ,NB , EF , ET )

⟨ENSetE,F
Post, ENSetE,T

Post, ⟩ = Construct Entrants Ego Networks Post(IPost,NPost, EF , ET )

EgoKPSet = Analyze Ego Pre(ENSetS,F
Pre, ENSetS,T

Pre, ENSetM,F
Pre , ENSetM,T

Pre , ENSetE,F
Pre, ENSetE,T

Pre)

EgoKPSet = EgoKPset ∪ Analyze Ego Bubble(ENSetS,F
B , ENSetS,T

B , ENSetM,F
B , ENSetM,T

B , ENSetE,F
B , ENSetE,T

B )

EgoKPSet = EgoKPset ∪ Analyze Ego Post(ENSetS,F
Post, ENSetS,T

Post, ENSetM,F
Post , ENSetM,T

Post , ENSetE,F
Post, ENSetE,T

Post)

BackboneKPSet = Detect Backbones Survivor Pre(ENSetS,F
Pre, ENSetS,T

Pre,S
F ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Missing Pre(ENSetM,F
Pre , ENSetM,T

Pre ,SF ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Entrants Pre(ENSetE,F
Pre, ENSetE,T

Pre,S
F ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Survivor Bubble(ENSetS,F
B , ENSetS,T

B ,SF ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Missing Bubble(ENSetM,F
B , ENSetM,T

B ,SF ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Entrants Bubble(ENSetE,F
B , ENSetE,T

B ,SF ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Survivor Post(ENSetS,F
Post, ENSetS,T

Post,S
F ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Missing Post(ENSetM,F
Post , ENSetM,T

Post ,S
F ,ST ,MF ,MT , EF , ET )

BackboneKPSet = BackboneKPSet ∪ Detect Backbones Entrants Post(ENSetE,F
Post, ENSetE,T

Post,S
F ,ST ,MF ,MT , EF , ET )

⟨TF
Pre, T

T
Pre, T

F
B , TT

B , TF
Post, T

T
Post, ⟩ = Detect Top Power Addresses(IPre, IB , IPost, D)

BSurvivorsSet = Predict Bubble Survivors(TF
Pre, T

T
Pre, T

F
B , TT

B ,SF ,ST ,MF ,MT , EF , ET , IPre, IB , D)

PBSurvivorsSet = Predict Post Survivors(TF
B , TT

B , TF
Post, T

T
Post,S

F ,ST ,MF ,MT , EF , ET , IB , IPost, D)

PBEntrantsSet = Predict Post Entrants(TF
B , TT

B , TF
Post, T

T
Post,S

F ,ST ,MF ,MT , EF , ET , IB , IPost, D)

return all outputs

Ego_Network_Pre(), Construct_Ego_Network_Bubble() and Construct_Survivors_Ego_Network_

Post() to build the ego networks of the Survivors of the social networksNPre,NB andNPost. Similarly,

it proceeds to call the suitable functions for constructing the ego networks of the Missings and the

Entrants for the same social networks mentioned above.

The ego networks thus constructed represent the basis for the next analyses aimed at extracting

a set EgoKPSet of knowledge patterns on the characteristics of the Survivors, the Missings and the

Entrants in the pre-bubble, bubble and post-bubble periods. Our algorithm performs this extraction

by calling the functions Analyze_Ego_Pre(), Analyze_Ego_Bubble() and Analyze_Ego_Post(). The

next analysis performed concerns the possible existence of backbones linking the Survivors, the Miss-

ings or the Entrants in the pre-bubble, bubble and post-bubble periods. To this end, our algorithm

calls some functions having the objective of extracting the set BackboneKPSet of knowledge patterns

concerning the possible existence of backbones among the various kinds of address of interest.

Once the backbone investigation terminates, our algorithm proceeds with the last, predictive,

6



analysis. In fact, it aims at predicting, during a certain period, the nodes that will become protagonists

in the next one. To this end, it calls the functions Predict_Bubble_Survivors(), Predict_Post_

Survivors() and Predict_Post_Entrants(). The first examines nodes during the pre-bubble period

and predicts which of them will form the set BSurvivorsSet of potential Survivors during the bubble

period. The second and the third examine the nodes during the bubble period and predict which of

them will form the set PBSurvivorsSet and PBEntrantsSet of potential Survivors and Entrants

during the post-bubble period.

The algorithm terminates returning all the information extracted through the calls of the functions

mentioned above.

A more abstract and simplified graphical representation of our approach can be found in Figure 1.

Figure 1: A graphical abstract representation of our algorithm

After describing our approach in detail, in the next section, we apply it on data concerning the

speculative bubble that involved Ethereum in the years 2017 and 2018. The ultimate goal of this
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activity is testing our approach and, at the same time, giving an idea of its potential regarding the

extraction of knowledge patterns related to user behavior during the speculative bubble.

4 Application of our approach to the Ethereum speculative bubble

of the years 2017 and 2018

In this section, we illustrate the application of our approach to a real-world case, namely the Ethereum

speculative bubble happened in the years 2017 and 2018. In particular, we show how the various

functions of the algorithm implementing our approach can be triggered on this data and illustrate the

knowledge patterns they return. We start with a description of the dataset we used.

4.1 Dataset extraction

In this subsection, we illustrate the dataset we employed for our analyses. Its extraction corresponds

to what is performed by the function Extract_Dataset() of our algorithm.

The dataset we used for our analysis is based on the Ethereum blockchain. As stated on the

platform official website2 “Ethereum is a technology that lets you send cryptocurrency to anyone for a

small fee. It also powers applications that everyone can use and no one can take down”. Ethereum is

a programmable blockchain and represents the technological framework behind the cryptocurrency

Ether (ETH).

Our dataset was downloaded from Google BigQuery3. It contains all the transactions made on

Ethereum from January 1st, 2017 to December 31st, 2018. After some data cleaning operations, a

row of the dataset, which represents a transaction, contains four columns, namely: (i) from address,

the blockchain address starting the transaction; (ii) to address, the blockchain address receiving the

transaction; (iii) timestamp, the transaction timestamp; (iv) value, the amount of Weis4 transferred

during the transactions.

The dataset is made of 354,107,563 transactions; the total number of user addresses is 43,537,168.

We computed some statistics on it, which are reported in Table 1.

Parameter Value

Number of transactions 354,107,563

Total number of from addresses 38,881,752

Total number of to addresses 42,457,991

Cardinality of the intersection between from addresses and to addresses 37,802,576

Number of null from addresses 2,104,863

Number of null to addresses 0

Table 1: Some preliminary statistics performed on our dataset

2https://ethereum.org/en/what-is-ethereum/
3https://www.kaggle.com/bigquery/ethereum-blockchain
4Wei is the smallest denomination of Ether; it corresponds to 10−18 Ethers.
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4.2 Defining the user categories of interest

In this section, we present some preliminary analyses “depicting” the pre-bubble, bubble and post-

bubble periods, as well as the general behavior of users during the two years covered by our dataset

and, especially, during the three periods of our interest. At the end of these analyses, we will be able

to define the user categories of interest.

A first analysis concerns the distributions of the number of transactions against from addresses

and to addresses. They are reported in Figure 2. This figure shows that the two distributions follow

a power law. We computed some parameters for them; they are reported in Table 2.

Figure 2: Log-log plots of the distributions of transactions against from addresses (at left) and

to addresses (at right)

Parameter from addresses to addresses

Maximum number of transactions 17,509,218 23,404,261

Average number of transactions 5,640.76 5,913.37

α (power law parameter) 1.477 1.565

δ (power law parameter) 0.013 0.074

Table 2: Values of the parameters of transaction distributions against addresses

From the analysis of both Figure 2 and Table 2 we can observe that the two power law distributions

are similar.

The second analysis that we take into consideration concerns the variation of the number of

transactions over time. The purpose of this analysis is the identification of the pre-bubble, bubble

and post-bubble periods. This trend is shown in Figure 3. From the analysis of this figure we can

see that from January 2017 to October 2017 there is a substantially linear growth of the number of

transactions. From November 2017 to March 2018 there is first an impressive increase and then an

impressive decrease of the same variable. Finally, from April 2018 to December 2018 the number of

transactions has an irregular trend, but on average its values are lightly higher than the ones observed

before November 2017. Based on these observations, in the following, we assume as pre-bubble period

the time interval January - October 2017, as bubble period the time interval November 2017 - March
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2018, and as post-bubble period the time interval April - December 2018. This analysis performs

exactly what is expected by the function Determine_Intervals() of our algorithm.

Figure 3: Number of transactions over time

The next analysis focuses on power addresses, i.e., those addresses that have made the most

transactions. The analysis of these addresses is extremely relevant for two reasons. First, since the

distributions of transactions against addresses follow a power law, the analysis of power addresses

covers most of the phenomenon we want to examine. Second, since the number of power addresses is

very small, compared to the total number of addresses, it is possible to make very precise and detailed

analyses on them, which would be impossible to conduct on all addresses or on a very high fraction

of them.

In particular, for each period (pre-bubble, bubble and post-bubble) and for each type of addresses

(from and to), we decided to take the top 1000 addresses as the power ones. This activity corresponds

to what is performed by the functions Detect_From_Power_Addresses() and Detect_To_Power_

Addresses() of our algorithm. For each set thus selected, Table 3 shows: (i) what percentage of the

total number of addresses operating in the reference period the top 1000 addresses correspond to; (ii)

what percentage of the total number of transactions performed in the reference period the transactions

carried out by the top 1000 addresses correspond to. From the analysis of this table, we can deduce

that the previous conjectures on the opportunity to carry out the power address analyses were correct.

A first analysis of power addresses concerned the possible overlap between from addresses and
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Set Percentage of addresses Percentage of transactions

Pre-bubble, top 1000 from addresses 0.01549% 89.81%

Bubble, top 1000 from addresses 0.00599% 78.48%

Post-bubble, top 1000 from addresses 0.00534% 77.87%

Pre-bubble, top 1000 to addresses 0.01325% 86.02%

Bubble, top 1000 to addresses 0.00495% 82.29%

Post-bubble, top 1000 to addresses 0.00548% 86.34%

Table 3: Percentage of the addresses and transactions covered by each set of power addresses

to addresses. For this purpose, for each period, we computed the intersection between the top 1000

from addresses and the top 1000 to addresses. This activity performs exactly what is expected by

the function Detect_Super_Power_Addresses() of our algorithm. The cardinality of this intersection

is equal to 173 (resp., 115, 81) for pre-bubble (resp., bubble, post-bubble) period. This says that only

a small fraction of power addresses is simultaneously present in the top 1000 from addresses and in

the top 1000 to addresses and this fraction significantly decreases in the transition from pre-bubble

to bubble and from bubble to post-bubble periods.

A further analysis on power addresses led us to compute the possible intersections of the top

1000 addresses during the pre-bubble, bubble and post-bubble periods. This activity corresponds to

what is performed by the functions Detect_Multi_Interval_From_Power_Addresses() and Detect_

Multi_Interval_To_Power_Addresses() of our algorithm. The results obtained are reported in

Table 4. Here, TF
Pre (resp., TF

B , TF
Post) is the set of the top 1000 from addresses during the pre-

bubble (resp., bubble, post-bubble) period. Analogously, T T
Pre, T

T
B and T T

Post are the corresponding

sets for to addresses. From the analysis of this table we can see that:

Set Cardinality

|TF
Pre ∩ TF

B | 267

|TF
B ∩ TF

Post| 268

|TF
Pre ∩ TF

Post| 107

|TTPre ∩ TT
B | 288

|TT
B ∩ TT

Post| 309

|TT
Pre ∩ TT

Post| 114

|TF
Pre ∩ TF

B ∩ TF
Post| 102

|TT
Pre ∩ TT

B ∩ TT
Post| 112

Table 4: Cardinalities of the possible intersections of the top 1000 addresses during the pre-bubble,

bubble and post-bubble periods

� The trends of from addresses and to addresses are very similar.

� The bubble has changed the power address scenario considerably. In fact, while the cardinality

of the sets |TF
Pre ∩ TF

B |, |TF
B ∩ TF

Post|, |T TPre ∩ T T
B | and |T T

B ∩ T T
Post| is quite large, the one of

the sets |TF
Pre ∩ TF

Post| and |T T
Pre ∩ T T

Post| is much smaller. This tells us that, during the bubble

period, most of the power addresses present in the pre-bubble period disappeared and new

power addresses appeared; these last continued to exist during the post-bubble period. Finally,

we observe that there are some power addresses, which we call “Survivors”, that are present in

the pre-bubble, bubble and post-bubble periods.
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Based on the intersections introduced in Table 4, we can define three categories of addresses whose

analysis appears extremely interesting for the extraction of knowledge on the bubble of Ethereum

(and, presumably, of other cryptocurrencies). These categories are:

� the Survivors, which are the power addresses present in the pre-bubble, bubble and post-bubble

periods;

� the Missings, which are the power addresses present in the pre-bubble period, but absent in the

bubble and post-bubble ones;

� the Entrants, which are the power addresses absent in the pre-bubble period, but present in the

bubble and post-bubble ones.

This activity performs exactly what is expected by the functions Detect_Survivors(), Detect_

Missings() and Detect_Entrants() of our algorithm.

In the following of this paper, we aim at extracting knowledge patterns about these categories of

addresses (and, ultimately, of users).

The next analysis aims at identifying how many power addresses are present in each category.

We conducted this analysis for from addresses, to addresses and the intersection of these two sets.

The results obtained are shown in Table 5.

Addresses Survivors Entrants Missings

from addresses 102 166 728

to addresses 112 197 710

Intersection of from addresses and to addresses 21 17 114

Table 5: Number of power addresses belonging to the Survivors, Entrants and Missings categories

To fully understand the knowledge that can be extracted from this table, we must recall that:

(i) the maximum number of power addresses for each category is equal to 1000; (ii) the Survivors,

the Entrants and the Missings are obtained carrying out intersection operations. According to this

reasoning, we can observe that the Survivors are very few; this result was expected because this

category of addresses is obtained performing the intersection of three sets. The Entrants are also

few while the Missings are many. This confirms that the bubble completely revolutionized the power

address scenario in Ethereum, making the previous “main actors” (i.e., power addresses) disappear

while introducing new ones.

Observe that, for all categories, the intersections between from addresses and to addresses are

very small. This is totally in line with the result found previously saying that only a few addresses

are from addresses and to addresses simultaneously.

4.3 Detecting the main features of the user categories of interest

Given a period (pre-bubble, bubble and post-bubble) and the set of the corresponding power addresses,

we build a support social network. More specifically, let

NPre = ⟨NSPre, ASPre⟩ NB = ⟨NSB, ASB⟩ NPost = ⟨NSPost, ASPost⟩
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be the social networks associated with the pre-bubble, bubble and post-bubble periods.

NSPre (resp., NSB, NSPost) represents the set of the nodes of NPre (resp., NB, NPost). In this

set, there is a node ni for each power address. A label is associated with ni; it allows us to specify if

the corresponding address belongs to one of the categories of interest (Survivors, Entrants, Missings)

or to none of them. Since there is a biunivocal correspondence between power addresses and nodes,

in the following we will use these two terms interchangeably.

ASPre (resp., ASB, ASPost) denotes the set of the arcs of NPre (resp., NB, NPost). There is an

arc (ni, nj , TSij) ∈ ASPre (resp., ASB, ASPost) if there was at least one transaction from ni to nj .

TSij represents the set of transactions from ni to nj made during the pre-bubble (resp., bubble, post-

bubble) period. It consists of a set of pairs (tijk , τijk), where tijk represents the kth transaction and

τijk indicates the corresponding timestamp. The construction of these social networks corresponds to

what is performed by the function Construct_Social_Networks() of our algorithm.

Having defined the support social networks, we can start our analyses on the address categories

of interest. Below, we use the following notations: (i) SF (resp., ST ), to indicate the Survivors

from addresses (resp., to addresses); (ii) EF (resp., ET ), to denote the Entrants from addresses

(resp., to addresses); (iii) MF (resp., MT ), to represent the Missings from addresses (resp.,

to addresses).

In order to conduct our analyses on the address categories, we have considered the adoption

of ego networks extremely useful. We recall that the ego network of a node ni (called, precisely,

“ego”) consists of ni, the nodes (called “alters”) to which ni is directly connected, the arcs connect-

ing the ego to the alters and the arcs connecting the alters to each other. An ego network provides

a clear indication of the relationships the corresponding ego is involved in, the nodes it interacts

with, and the relationships existing between these last ones. In our analysis, which aims at detect-

ing the features of each address category, ego network can play an important role because, due to

the principle of homophily characterizing social networks [30], the features of a node are strongly

influenced by the nodes belonging to its neighborhood. This activity corresponds exactly to what

is expected by the functions Construct_Survivors_Ego_Network_Pre(), Construct_Survivors_

Ego_Network_Bubble(), Construct_Survivors_Ego_Network_Post(), Construct_Missings_Ego_

Network_Pre(), Construct_Missings_Ego_Network_Bubble(), Construct_Missings_Ego_Network_

Post(), Construct_Entrants_Ego_Network_Pre(), Construct_Entrants_Ego_Network_Bubble(),

and Construct_Entrants_Ego_Network_Post() of our algorithm.

As a first task, we computed the average number of nodes, the average number of arcs and the

average density of the ego networks of the nodes belonging to each address category of interest. First,

we examined the pre-bubble period. The results obtained are reported in the first three rows of Table

6.

From the analysis of these rows we can see that the ego networks of the Survivors nodes have an

average number of nodes and arcs significantly higher than the ego networks of the nodes belonging

to the other two categories. If such a result was expected for the Entrants (because the corresponding

nodes were not power addresses during the pre-bubble period), it is instead surprising for the Missings.

In fact, the latter, like the Survivors, were power addresses during the pre-bubble period. This

allows us to conclude that having a very large ego-network during the pre-bubble period increases the

possibility of remaining power addresses during the bubble and post-bubble periods. As far as density
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Parameter SF ST MF MT EF ET

Average number of nodes 36,177.84 27,335.21 1,710.52 2,864.44 537.69 886.02

Average number of arcs 115,290.27 68,051.82 4,561.86 7,342.89 795.53 1,718.39

Average density 0.1120 0.0639 0.3852 0.2423 0.2125 0.1568

Average number of nodes 82,832.51 59,339.83 366.58 798.29 17,180.69 18,945.69

Average number of arcs 325,179.44 172,713.37 587.84 2563.00 59,733.11 67,956.61

Average density 0.074 0.019 0.401 0.282 0.211 0.031

Average number of nodes 47,237.20 46,661.02 162.10 572.93 19,686.75 22,373.64

Average number of arcs 174,537.78 148,359.25 425.70 1,360.52 93,099.84 70,518.77

Average density 0.1045 0.039 0.411 0.233 0.178 0.0157

Table 6: Average number of nodes, average number of arcs and average density of the ego networks

of the nodes belonging to the address categories of interest

is concerned, there are no particular observations to make taking into account that the low density of

Survivor’s ego networks can be explained simply by the large number of nodes characterizing them.

After this, we examined the bubble period. The results obtained are reported in the next three

rows of Table 6. From the analysis of these rows we can observe that both the Survivors and the

Entrants have much larger ego networks than the Missings. Actually, this result was expected since,

in the bubble period, the nodes belonging to the Survivors and the Entrants are power addresses.

Instead, it is unexpected that the Survivors have much larger ego networks than the Entrants. In fact,

the addresses of both categories are power addresses during the bubble period. However, it seems that

the Survivors tend to include the strongest power addresses. Note also that the one of the Survivors’

ego networks during the bubble period is about twice the size of the Survivors’ ego networks during the

pre-bubble period. Also, the Survivors’ ego networks have by far the largest size during the bubble

period. This allows us to conclude that it is exactly the activity of the Survivors that could have

caused the bubble; this activity has led to the exit of the Missings from the power addresses and to

the arrival of the Entrants among them. However, these last ones enter into the power addresses “on

tiptoe”; in fact, they are not the ones who dictate the line and cause the bubble; this task is carried

out by the Survivors.

Finally, we considered the post-bubble period. The results obtained are reported in the last three

rows of Table 6. The analysis of this table confirms the trends we observed for the bubble period.

This is not surprising because also during the post-bubble period both the Survivors and the Entrants

are power addresses. Note that, during this period, the size of the Survivors’ ego networks is much

smaller than the one of the Survivors’ ego networks during the bubble period, although it is slightly

larger than the size of the Survivors’ ego networks during the pre-bubble period. This trend perfectly

reflects the one of the number of transactions reported in Figure 3. This is a further confirmation that

the trend shown by Ethereum in the years 2017 and 2018, which led to a bubble, was mainly caused by

the Survivors. We note that the size of the Entrants’ ego network during the post-bubble period shows

a slight growth compared to the bubble period. This is an indication that, during the post-bubble

period, the Entrants consolidate their presence among the power addresses, even though they are not

dictating the line yet: this is still a responsibility of the Survivors. All the activities described above

correspond to what is performed by the functions Analyze_Ego_Pre(), Analyze_Ego_Bubble() and

Analyze_Ego_Post() of our algorithm.

The analysis of Table 6, along with the previous reasoning, indicates that having very large ego
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networks seems to be an intrinsic feature of the Survivors, regardless of the pre-bubble, bubble or

post-bubble period.

4.4 Evaluating the existence of backbones linking users of a certain category

The ego networks introduced previously represent a considerable tool to also estimate the possible

existence of backbones linking addresses of the same category. In fact, a way to do this consists in

verifying, given an address category, the fraction of the corresponding ego networks having, among

the alters, at least k addresses belonging to it. Clearly, the higher the value of k and the fraction of

the ego networks satisfying this property, the stronger the hypothesis that a backbone exists among

the addresses of the category into examination.

To better clarify this idea, let us consider Table 7 that refers to the Survivors’ ego networks

during the pre-bubble period. In the left part of this table, we examine the set SF of the Survivors

from addresses. The fifth row of this table tells us that 19.6% of the ego networks of the nodes of

SF contains at least 5 nodes of SF among the alters. This percentage decreases to 0.9% if we consider

the presence of at least 5 nodes of EF and increases to 33.3% if we take into account the presence of

at least 5 nodes of MF .

Ego networks of SF Ego networks of ST

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.755 0.088 0.676 0.580 0.223 0.696

k = 2 0.512 0.058 0.529 0.339 0.071 0.509

k = 3 0.392 0.049 0.402 0.169 0.0 0.348

k = 4 0.294 0.019 0.353 0.098 0.0 0.304

k = 5 0.196 0.009 0.333 0.080 0.0 0.277

k = 6 0.147 0.0 0.284 0.062 0.0 0.268

k = 7 0.118 0.0 0.265 0.053 0.0 0.241

k = 8 0.078 0.0 0.235 0.036 0.0 0.196

k = 9 0.078 0.0 0.216 0.027 0.0 0.196

Table 7: Analysis of the presence of backbones linking the Survivors during the pre-bubble period

Once we have clarified the kind of information we want to look for, let us consider Table 7, which

concerns the Survivors’ ego networks during the pre-bubble period. From the analysis of this table

we can see that many of the ego-networks of SF (resp., ST ) have, among their alters, several nodes

belonging to SF (resp., ST ), along with several nodes belonging to MF (resp., MT ). Instead, the

number of ego networks of SF (resp., ST ) having one or more nodes of EF (resp., ET ) among the alters

is very small. This allows us to assume that there is a backbone linking the nodes of SF (resp., ST ).

The presence of many nodes of MF (resp., MT ) among the alters of the ego networks of SF (resp.,

ST ) is not surprising because, during the pre-bubble period, the nodes of MF (resp., MT ) were power

addresses. Finally, we observe that the presence of Survivors and Missings nodes among the alters of

the ego networks of Survivors nodes is more marked for from addresses than for to addresses, as

we can see comparing the first three and the last three columns of Table 7. This activity corresponds

to what is performed by the function Detect_Backbones_Survivor_Pre() of our algorithm.

Consider, now, Table 8 that refers to the Missings’ ego networks during the pre-bubble period. The

structure and the semantics of this table are analogous to the ones of Table 7. From the analysis of

this table, we can observe that many ego networks of MF (resp., MT ) have one or two nodes of MF

(resp., MT ) or of SF (resp., ST ) among their alters. However, compared to the case of the Survivors,
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reported in Table 7, this phenomenon is much smaller both as fraction of ego-networks and as value

of k. Therefore, we can conclude that there is a backbone also among the nodes of MF (resp., MT ),

although this is less strong than the one observed for the nodes of SF (resp., ST ). The presence of

many nodes of SF (resp., ST ) among the alters of the ego networks of MF (resp., MT ) is justified by

the fact that both these categories of nodes were power addresses during the pre-bubble period. The

difference between from addresses and to addresses in the Missings’ ego networks is much smaller

than the one observed in the Survivors’ ego networks. This task performs exactly what is expected

by the function Detect_Backbones_Missings_Pre() of our algorithm.

Ego networks of MF Ego networks of MT

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.466 0.010 0.497 0.390 0.024 0.406

k = 2 0.277 0.0 0.214 0.162 0.0 0.225

k = 3 0.165 0.0 0.115 0.093 0.0 0.138

k = 4 0.098 0.0 0.070 0.056 0.0 0.089

k = 5 0.059 0.0 0.049 0.039 0.0 0.068

k = 6 0.040 0.0 0.033 0.031 0.0 0.052

k = 7 0.018 0.0 0.029 0.025 0.0 0.037

k = 8 0.004 0.0 0.027 0.021 0.0 0.032

k = 9 0.004 0.0 0.027 0.018 0.0 0.028

Table 8: Analysis of the presence of backbones linking the Missings during the pre-bubble period

Now, we conduct the same analysis for the Entrants’ ego networks. The results obtained are shown

in Table 9. The structure and the semantics of this table are similar to the ones of Tables 7 and 8.

From the analysis of Table 9 we can conclude that there is no backbone linking the Entrants during

the pre-bubble period. This result is justified considering that, during this period, the Entrants

were not power addresses. The presence of some nodes of the Survivors or of the Missings in the

alters of the Entrants is simply due to the fact that the Survivors and the Missings were power

addresses during the pre-bubble period. This activity corresponds to what is performed by the function

Detect_Backbones_Entrants_Pre() of our algorithm.

Ego networks of EF Ego networks of ET

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.326 0.140 0.163 0.194 0.0 0.222

k = 2 0.140 0.0 0.023 0.083 0.0 0.056

k = 3 0.070 0.0 0.0 0.056 0.0 0.056

k = 4 0.0 0.0 0.0 0.056 0.0 0.056

k = 5 0.0 0.0 0.0 0.056 0.0 0.028

k = 6 0.0 0.0 0.0 0.056 0.0 0.028

k = 7 0.0 0.0 0.0 0.056 0.0 0.028

k = 8 0.0 0.0 0.0 0.056 0.0 0.028

k = 9 0.0 0.0 0.0 0.056 0.0 0.028

Table 9: Analysis of the presence of backbones linking the Entrants during the pre-bubble period

To also give a graphical idea of the results on the presence of backbones obtained above, we consider

a social network NF
Pre, obtained from NPre considering only the power from addresses.

In order to extract a subnet of NF
Pre containing nodes strongly connected to each other, we should

consider the cliques of NF
Pre. However, since clique computation is an NP-hard problem, we decided to

adopt a relaxation of the clique concept and focused on k-core. We recall that a k-core of a network N
is a connected maximal induced subnetwork of N in which all nodes have degree at least k. A k-core
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can be used as an indicator of the presence of backbones. In fact, if some nodes, say n1, n2, . . . , nq,

belong to a k-core, then each of them will be connected to at least k of the other ones.

Consider the 5-core of NF
Pre shown in Figure 4. In it, we indicate in yellow the Survivors nodes,

in red the Missings nodes and in blue all the other ones. The 5-core consists of 175 nodes. As we

can see from the figure, there is a strong backbone connecting 32 Survivors nodes and another weaker

backbone connecting 13 Missings nodes. Consider, now, the 7-core of NF
Pre shown in Figure 5. It

contains even more strongly connected nodes than the 5-core. The total number of its nodes is 86.

Again, there is a strong backbone connecting 19 Survivors nodes and a weaker backbone connecting 5

Missings nodes. Both these figures provide a graphical idea of the analytical results found previously.

Figure 4: A 5-core of NF
Pre

The next analysis concerns the Survivors’, the Missings’ and the Entrants’ ego networks during

the bubble period. The results obtained by carrying out the same tasks seen for the pre-bubble

period are reported in Tables 10, 11 and 12. These activities correspond to what is performed by

the functions Detect_Backbones_Survivors_Bubble(), Detect_Backbone_Missings_Bubble() and

Detect_Backbones_Entrants_Bubbles() of our algorithm.

From the analysis of these tables we can detect the following knowledge patterns: (1) There is

a very strong backbone linking the Survivors, as can be seen by examining Table 10. (2) In the

same table, we can observe that there are some Entrants and Missings nodes among the alters of

the Survivors’ ego networks. This can be explained taking into account that the Entrants are power
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Figure 5: A 7-core of NF
Pre

Ego networks of SF Ego networks of ST

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.824 0.451 0.461 0.750 0.688 0.714

k = 2 0.598 0.245 0.333 0.554 0.509 0.491

k = 3 0.431 0.167 0.284 0.312 0.357 0.339

k = 4 0.373 0.127 0.265 0.143 0.223 0.232

k = 5 0.304 0.078 0.225 0.098 0.152 0.161

k = 6 0.265 0.069 0.216 0.071 0.062 0.134

k = 7 0.196 0.029 0.147 0.036 0.054 0.098

k = 8 0.147 0.020 0.137 0.027 0.045 0.089

k = 9 0.108 0.020 0.118 0.027 0.036 0.089

Table 10: Analysis of the presence of backbones linking the Survivors during the bubble period

Ego networks of MF Ego networks of MT

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.338 0.125 0.138 0.283 0.166 0.217

k = 2 0.163 0.054 0.023 0.095 0.034 0.049

k = 3 0.111 0.035 0.006 0.042 0.014 0.026

k = 4 0.065 0.021 0.004 0.026 0.010 0.014

k = 5 0.044 0.015 0.002 0.020 0.008 0.012

k = 6 0.021 0.013 0.0 0.020 0.006 0.010

k = 7 0.019 0.010 0.0 0.016 0.004 0.008

k = 8 0.010 0.004 0.0 0.010 0.004 0.006

k = 9 0.006 0.002 0.0 0.010 0.004 0.006

Table 11: Analysis of the presence of backbones linking the Missings during the bubble period
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Ego networks of EF Ego networks of ET

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.337 0.572 0.217 0.335 0.477 0.335

k = 2 0.175 0.295 0.127 0.152 0.284 0.152

k = 3 0.096 0.169 0.084 0.081 0.142 0.081

k = 4 0.066 0.096 0.054 0.061 0.076 0.051

k = 5 0.048 0.066 0.042 0.061 0.046 0.030

k = 6 0.036 0.030 0.036 0.056 0.030 0.025

k = 7 0.024 0.024 0.036 0.046 0.030 0.020

k = 8 0.024 0.0 0.036 0.041 0.025 0.015

k = 9 0.024 0.0 0.036 0.036 0.025 0.015

Table 12: Analysis of the presence of backbones linking the Entrants during the bubble period

addresses during the bubble period, while the Missings, although not anymore, were power addresses

in the period immediately before. (3) Table 11 shows that there is no longer a backbone linking the

Missings. (4) Table 12 reveals that a backbone linking the Entrants starts to exist, even if it is not

very strong yet.

To also give a graphical idea of these results, we consider the NF
B network. It is defined similarly

to NF
Pre, but taking the bubble period into account. We also consider the corresponding 5-core and

7-core, shown in Figures 6 and 7, respectively. In them, we represent the Survivors nodes in yellow,

the Entrants nodes in green and all the other nodes in blue. The 5-core consists of 149 nodes. Here,

there is a very strong backbone involving 47 Survivors nodes and a weaker one involving 17 Entrants

nodes. The 7-core consists of 67 nodes. Also in this case there is a very strong backbone connecting

30 Survivors nodes and a weaker backbone connecting 13 Entrants nodes.

The last analysis concerns the Survivors’, the Missings’ and the Entrants’ ego networks during

the post-bubble period. The results obtained are reported in Tables 13, 14 and 15. These activities

perform exactly what is expected by the functions Detect_Backbones_Survivors_Post(), Detect_

Backbones_Missings_Post() and Detect_Backbones_Entrants_Post() of our algorithm.

Ego networks of SF Ego networks of ST

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.716 0.490 0.353 0.741 0.768 0.518

k = 2 0.510 0.265 0.206 0.607 0.598 0.330

k = 3 0.363 0.167 0.167 0.384 0.446 0.188

k = 4 0.265 0.147 0.108 0.223 0.366 0.143

k = 5 0.216 0.137 0.088 0.116 0.268 0.089

k = 6 0.186 0.098 0.078 0.080 0.223 0.089

k = 7 0.108 0.069 0.059 0.062 0.134 0.080

k = 8 0.088 0.059 0.049 0.045 0.098 0.062

k = 9 0.059 0.039 0.039 0.045 0.062 0.045

Table 13: Analysis of the presence of backbones linking the Survivors during the post-bubble period

From the analysis of these tables we can deduce the following knowledge patterns: (1) There is

a strong backbone linking the Survivors, as can be seen in Table 13. Comparing Tables 10 and 13

we can see that this backbone, while continuing to remain strong, un dergoes a weakening, compared

to the pre-bubble period. This is physiological because, during the post-bubble period, the number

of transactions made decreased considerably with respect to the ones of the bubble period. (2)

We continue to observe the presence of some Entrants and Missings nodes among the alters of the

Survivors’ ego networks. The reasons for this fact are the same as those seen for the bubble period. (3)

The backbone linking the Missings, which had already started to disappear during the bubble period,
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Figure 6: A 5-core of NF
B

Ego networks of MF Ego networks of MT

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.263 0.193 0.119 0.274 0.167 0.070

k = 2 0.122 0.126 0.015 0.067 0.040 0.027

k = 3 0.056 0.081 0.007 0.032 0.019 0.013

k = 4 0.033 0.059 0.007 0.027 0.011 0.008

k = 5 0.026 0.052 0.004 0.019 0.011 0.008

k = 6 0.015 0.041 0.004 0.016 0.008 0.005

k = 7 0.011 0.033 0.004 0.013 0.005 0.003

k = 8 0.011 0.022 0.0 0.011 0.005 0.0

k = 9 0.007 0.011 0.0 0.008 0.005 0.0

Table 14: Analysis of the presence of backbones linking the Missings during the post-bubble period

Ego networks of EF Ego networks of ET

Nodes of SF Nodes of EF Nodes of MF Nodes of ST Nodes of ET Nodes of MT

k = 1 0.331 0.651 0.211 0.431 0.675 0.376

k = 2 0.187 0.380 0.133 0.223 0.457 0.096

k = 3 0.133 0.193 0.084 0.091 0.310 0.036

k = 4 0.090 0.108 0.048 0.076 0.198 0.020

k = 5 0.054 0.078 0.048 0.071 0.122 0.015

k = 6 0.036 0.066 0.048 0.061 0.086 0.015

k = 7 0.036 0.042 0.048 0.061 0.056 0.015

k = 8 0.030 0.018 0.048 0.056 0.051 0.015

k = 9 0.024 0.018 0.042 0.056 0.046 0.010

Table 15: Analysis of the presence of backbones linking the Entrants during the post-bubble period
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Figure 7: A 7-core of NF
B

has completely dissolved, as evidenced by the further decrease of the values in the fourth and seventh

columns of Table 14, compared to the corresponding ones of Table 11. (4) The backbone linking

the Entrants, which was already visible during the bubble period, is further consolidated during the

post-bubble period, as can be seen by examining Table 15.

Also in this case we can use k-cores to give a graphical idea of the results obtained. For this

purpose, we consider the network N F
Post, obtained similarly to NF

Pre and NF
B . We also consider the

corresponding 5-core and 7-core. Due to space limitations, we do not show them. In any case, we

found that the 5-core consists of 202 nodes. Here, there is a strong backbone linking 42 Survivors and

another one linking 31 Entrants. Note that, compared to the bubble period, the backbone linking the

Entrants has strengthened. A similar reasoning also applies to the 7-core. It consists of 111 nodes.

In it, we can observe a strong backbone linking 24 Survivors and another one linking 16 Entrants.

Also this last backbone appears strengthened compared to the corresponding one relative to the 7-core

during the bubble period, shown in Figure 7. All these graphical results are totally in line with the

analytical ones relative to the post-bubble period presented above.
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4.4.1 Graphical backbone evaluations through k-trusses

Till now, we have said that, in order to verify the possible existence of backbones among the Sur-

vivors, the Missings or the Entrants, the concept of clique could be used. We have also said that

the computation of cliques was a NP-hard problem and, for this reason, we chose to replace cliques

with k-cores. In fact, the k-core concept is a relaxation of the clique one and, unlike cliques, the

computation of k-cores can be done in polynomial time. However, it is worth checking that the results

obtained with k-core are not unduly influenced by the properties of this structure. One way to carry

out this verification is to repeat the experiments performed with k-cores using another data structure

that can be considered a relaxation of the clique concept and can be computed in polynomial time. To

this end, we focused on the concept of k-truss [10]. A k-truss is a non-trivial, one component subgraph

such that each edge is reinforced by at least k − 2 pairs of edges making a triangle with it. Observe

that each clique of order k is contained in a k-truss, whereas a k-truss does not necessarily contain a

clique of order k. Furthermore, each k-truss is a subgraph of a (k-1)-core. All these properties support

the idea that a k-truss is a concept that lies between the clique concept, which is too restrictive, and

the k-core one, which is too lax.

After choosing the k-truss as the structure to use, similarly to what we did for k-cores, we computed

the 5-truss of N F
Pre and we saw that: (i) it consists of 152 nodes; (ii) there is a strong backbone

connecting 27 Survivors; (iii) there is a weaker backbone connecting 7 Missings. Then, we computed

the 7-truss of NF
Pre and we obtained that: (i) it consists of 74 nodes; (ii) there is a strong backbone

connecting 16 Survivors; (iii) there is no significant backbone among the Missings.

Proceeding with our investigation, we computed the 5-truss of NF
B ; analyzing it, we obtained that:

(i) it consists of 134 nodes; (ii) there is a very strong backbone involving 41 Survivors; (iii) there is an

additional backbone involving 15 Entrants. The analysis of the 7-truss of NF
B allows us to say that:

(i) it consists of 61 nodes; (ii) there is a very strong backbone involving 26 Survivors; (iii) there is a

weaker backbone involving 10 Entrants.

Our analysis on k-trusses ends with the computation of the 5-truss and 7-truss of NF
Post. Regarding

the former, we obtained that: (i) it consists of 194 nodes; (ii) there is a strong backbone connecting

36 Survivors; (iii) there is an additional backbone connecting 26 Entrants. Regarding the latter, we

saw that: (i) it consists of 96 nodes; (ii) there is a strong backbone connecting 22 Survivors; (iii)

there is an additional backbone connecting 12 Entrants.

Comparing the results obtained through the k-truss analysis with those regarding the k-core one

shown above, we can observe that they are similar. In fact, the k-truss analysis confirms everything we

found through the k-core one. The only exception regards the fact that the k-core analysis detected

a backbone (albeit a very weak one) between the Missings in the 7-core associated with NF
Pre. Such

a backbone was not detected in the corresponding 7-truss analysis. However, this minimal difference

can be explained considering that: (i) the detected backbone of the 7-core analysis is anyway very

weak; (ii) the concept of k-truss is more “severe” than the one of k-core.

At the end of this analysis, we can conclude that the strong similarity of the results obtained using

k-cores and k-trusses allows us to say that the information found is intrinsic in the data and is not

unduly generated by the properties of k-cores.
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4.5 Predicting the characteristics of the main future actors

All the previous analyses are mainly descriptive and diagnostic. In this section, instead, we want to

go one step further proposing a predictive analysis with the aim of understanding, during a period

(specifically, pre-bubble, bubble), what are the features of the addresses that will probably play a

leading role during the next period (specifically, bubble, post-bubble). The importance of this analysis

(in itself already evident) is reinforced by the results obtained in the previous section, telling us that

these main actors are often connected by backbones. Consequently, identifying (and possibly acting

on) some of them gives the possibility to identify (and act on) most of the others connected through

the backbones.

In Table 16, we show the number of transactions, the number of contacts and the average value

of transactions for the following addresses: (1) TF
Pre: the power from addresses in the pre-bubble

period. (2) SF : the Survivors from addresses. By definition, each element of SF must also be an

element of TF
Pre and an element of TF

B , i.e., the power from addresses in the bubble period. (3) MF :

the Missings from addresses. By definition, each element of MF must also be an element of TF
Pre,

while it cannot belong to TF
B . (4) EF

Pre: the from addresses that appeared in the bubble period but

were already present (albeit not as power addresses) in the pre-bubble period. By definition, each

element of EF
Pre must also be an element of TF

B , while it cannot belong to TF
Pre.

TF
Pre SF MF EF

Pre

Average Number of Transactions 30,346.55 175,729.30 11,064.18 473.83

Average Number of Contacts 4,817.39 27,088.52 1,259.26 242.98

Average Value of Transactions (Eth) 8.65 8.18 7.32 106.53

Table 16: Average number of transactions, average number of contacts and average values of transac-

tions for TF
Pre, SF , MF and EF

Pre

From the analysis of this table we can see that the addresses of SF have a significantly higher

number of transactions and contacts than the corresponding ones not only of MF and EF
Pre but also

of TF
Pre. Instead, the average value of transactions is smaller for SF , MF and TF

Pre than for EF
Pre.

This result is even more evident considering Figure 8 (resp., 9). Here, we show the distribution

of the addresses of SF and MF against the number of transactions (resp., contacts) of TF
Pre. The

abscissae axis is divided into deciles. In the figure, we indicate the decile with the highest values

with D10 and the one with the lowest value with D1. Figure 8 shows that most of the addresses of

SF belong to the highest deciles of TF
Pre. This does not happen for the addresses of MF that show

a rather uniform distribution among the deciles of TF
Pre, except for the lowest decile where they are

almost absent. Figure 9 shows a similar trend except for the lowest decile, which comprises a lot of

addresses for both SF and MF . The activities described above correspond to what is performed by

the function Detect_Top_Power_Addresses() of our algorithm.

Both Table 16 and Figures 8 and 9 give us the same important following indication: “The addresses

that will survive a bubble are to be searched among the ones that, in the pre-bubble period, have carried

out the highest numbers of transactions and have the highest numbers of contacts”. This indication is

very strong for the number of transactions while it is a bit weaker for the number of contacts. In

fact, as for this last parameter, we can see that the lowest decile contains a certain number not only
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Figure 8: Distribution of the addresses of SF (at left) and MF (at right) against the number of

transactions of TF
Pre

Figure 9: Distribution of the addresses of SF (at left) and MF (at right) against the number of

contacts of TF
Pre

of Missings nodes but also of Survivors ones. This indication represents the basis of the function

Predict_Bubble_Survivors() of our algorithm.

Instead, Table 16 does not seem to give any indication on how searching, in the pre-bubble period,

the future Entrants that will be among the main actors in the bubble and post-bubble periods.

All previous analyses performed for from addresses in the pre-bubble period can be repeated for

to addresses in the same period. In Table 17, we report the average number of transactions, the

average number of contacts and the average value of transactions for T T
Pre, ST , MT and ET

Pre (the

latter defined similarly to EF
Pre, but for to addresses instead of from addresses). Furthermore, in

Figure 10, we show the distribution of the addresses of ST and MT against the number of transactions

of T T
Pre. Due to space limitations, we do not report the corresponding distributions against the number
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of contacts of T T
Pre. Both the table and the two distributions confirm, for to addresses, the same

results that we found previously for from addresses.

TT
Pre ST MT ET

Pre

Average Number of Transactions 28,035.76 138,663.66 10,121.69 599.78

Average Number of Contacts 5,329.76 23,007.33 2,165.56 294.28

Average Value of Transactions (Eth) 9.05 6.79 14.17 4.86

Table 17: Average number of transactions, average number of contacts and average value of transac-

tions for T T
Pre, ST , MT and ET

Pre

Figure 10: Distribution of the addresses of ST (at left) and MT (at right) against the number of

transactions of T T
Pre

So far we have examined pre-bubble data to identify some characteristics allowing us to predict

who will be the main actors of the bubble period. Now, we want to do the same activity but examining

bubble data to look for features allowing us to predict who will be the protagonists of the post-bubble

period. In this analysis, we consider the following addresses: (i) TF
B : the top 1000 from addresses in

the bubble period; (ii) SF : the Survivors from addresses; (iii) EF : the Entrants from addresses.

In Table 18, we show the average number of transactions, the average number of contacts and the

average value of transactions for TF
B , SF and EF .

TF
B SF EF

Average Number of Transactions 45,418.29 266,183.77 46,010.31

Average Number of Contacts 10,100.95 55,029.89 12,851.75

Average Value of Transactions (Eth) 2.43 2.49 3.73

Table 18: Average number of transactions, average number of contacts and average value of transac-

tions for TF
B , SF and EF

From the analysis of Table 18 we can see that, once again, it is easy to identify the Survivors of

the post-bubble period. In fact, they generally have a significantly higher number of transactions and

contacts than the other power from addresses. Instead, the Entrants are not easily distinguishable,
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because they have only slightly more transactions and contacts than the other power from addresses.

This represents a confirmation of what we had deduced from the analysis of Tables 10 - 15 and Figures 6

- 7, where we derived that the set of the Entrants is formed during the bubble period but it consolidates

only during the post-bubble period.

This result is confirmed and substantially reinforced by Figure 11. In it, we can see that the

Survivors are in the highest deciles, and this was expected considering the results of Table 18. However,

a similar trend, although less marked, is also found for the Entrants. This represents a further

important result because it allows us to define, at least partially, which nodes will be the Entrants in

the post-bubble period. Similarly to what happened in the pre-bubble period, the distribution against

the number of transactions is better than the one against the number of contacts in discriminating the

Survivors and the Entrants against the other nodes during the post-bubble period. Indeed, in the case

of the number of contacts, there is a certain number of addresses in the lowest decile, which, in fact,

represents an outlier. Analogous conclusions could be drawn considering the distributions against the

number of contacts of TF
B . Due to space constraints, we do not report the corresponding graphs.

Figure 11: Distribution of the addresses of SF (at left) and EF (at right) against the number of

transactions of TF
B

Both Table 18 and Figure 11 give us the same important following indication: “The addresses

that will survive a speculative bubble are to be searched among those that, in the bubble period, have

carried out the highest numbers of transactions and have the highest numbers of contacts. If they also

had this property in the pre-bubble period they belong to the Survivors, otherwise they belong to the

Entrants.”. This indication represents the basis of the functions Predict_Post_Survivors() and

Predict_Post_Entrants() of our algorithm.

All previous analyses performed for from addresses in the bubble period can be repeated for

to addresses in the same period. In Table 19, we report the average number of transactions, the

average number of contacts and the average value of transactions for T T
B , ST and ET . This table

confirms, for to addresses, the same results we found previously for from addresses.
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TT
B ST ET

Average Number of Transactions 49,912.89 219,068.94 58,823.91

Average Number of Contacts 11,963.66 45,949.34 14,134.10

Average Value of Transactions (Eth) 1.90 1.98 1.71

Table 19: Average number of transactions, average number of contacts and average value of transac-

tions for T T
B , ST and ET

4.6 What happened a few years later...

As a last analysis, we investigated how the power addresses of the post-bubble period behaved during

the months following the time interval considered for our dataset, i.e., from January 2019 until today.

For this purpose, we considered three subsets of the power addresses, i.e., the Survivors, the Entrants

and the other nodes (hereafter, the Others), and we examined the date of the last transaction for

them. The distribution of the Survivors (resp., the Entrants, the Others) against this date is shown in

Figure 12 (resp., 13, 14) for from addresses. Analogous distributions could be drawn for to address.

We do not report them due to space constraints. From the analysis of these figures we can observe

that:

� As for from addresses, we can see that most of the Survivors are still active. Many Entrants

are also active but, unlike the Survivors, there is a fraction of them that ceased to operate in the

second half of 2019. The date of the end of activity of the Others is, instead, more uniformly

distributed. This is a further confirmation that the Survivors represent the vast part of the

guiding users in Ethereum.

� As far as to addresses are concerned, we can see that most of the Survivors and the Entrants

are still active. The date of the end of activity of the Others is distributed in a more balanced

way, even if there is a large amount of addresses still active also in this case. Therefore, as for

to addresses, we can deduce that the Survivors include most of the guiding users in Ethereum.

However, differently from what happens for from addresses, they have been flanked as leaders

by the Entrants.

5 Applying our approach to hunt past, present and future specula-

tors

In the Introduction, and, more generally, throughout this paper, we have seen that our approach

aims at investigating user behavior during a cryptocurrency speculative bubble. In this section, we

show how it is possible to know the identikit of speculators of past cryptocurrency bubbles by suitably

integrating the knowledge patterns extracted by means of our approach (Subsection 5.1). Furthermore,

we show how new speculative cryptocurrency bubbles are in the horizon (Subsection 5.2), and how

our approach can be used to identify in advance who is maneuvering behind them to make big profits

at the expense of all the other investors.
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Figure 12: Distribution of the Survivors (from addresses) against the date of the last transaction

Figure 13: Distribution of the Entrants (from addresses) against the date of the last transaction

5.1 Defining the identikit of cryptocurrency bubble speculators

In Section 4, we extracted some knowledge patterns involving various kinds of address present in a

cryptocurrency blockchain by applying our approach to the Ethereum speculative bubble in the years

2017 and 2018. In this section, we want to verify whether the suitable integration and correlation of

these patterns allow us to build an identikit of speculators.

Before proceeding in this task, we want to clarify that, although we will illustrate this demonstra-
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Figure 14: Distribution of the Others (from addresses) against the date of the last transaction

tion on the knowledge patterns extracted from Ethereum, our discussion is general. In fact, it concerns

a potentiality of our approach that is valid for any past, present and future speculative bubble.

We start with the information about the ego networks obtained in Section 4.3. It tells us that: (i)

in the pre-bubble, bubble and post-bubble period, the Survivors have much larger ego networks than

the other nodes; (ii) in the bubble period, the Survivors’ ego networks are much larger than even the

Entrants’ ones; this difference fades in the post-bubble period. Recall that having a large ego network

means having the possibility to influence a large number of nodes.

Now, we consider the information on backbones extracted in Section 4.4. It tells us that: (i) in

the pre-bubble period, there is a strong backbone among the Survivors and a weaker backbone among

the Missings; (ii) in the bubble period, there is a very strong backbone among the Survivors and a

weaker backbone among the Entrants; this last is stronger than the corresponding one of the bubble

period. Recall that the presence of a backbone among a set of nodes is an indicator that they tend to

act in a coordinated way with each other.

We continue our investigation considering the characteristics of the future main actors, as extracted

in Section 4.5. Here, we saw that the addresses that best survive a bubble must be sought among

those that, in the pre-bubble and bubble periods, made the most transactions and had the most

contacts. But, from what we saw in Section 4.3, the addresses with such characteristics are first of all

the Survivors and then the Entrants.

Finally, the analysis of the nodes active in the period corresponding to the Ethereum bubble

of the years 2017-2018 that are still active today, described in Section 4.5, also leads us to the same

results, namely that most of the Survivors and a good portion of the Entrants present in the 2017-2018

Ethereum bubble are still active today.

All these considerations lead us to conclude that, indeed, in the Ethereum speculative bubble of

the years 2017-2018, a group of speculators existed. Regarding the profile of the users belonging to
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this group, we can conclude that most of them can be found among the Survivors and were already

present in the pre-bubble period. They were flanked in the bubble period by a group of speculators that

formed the Entrants. Initially, these were not the leaders of the phenomenon: at first, the leadership

was of the Survivors alone. However, as time passed, the Entrants gradually consolidated and reached

the leadership level that previously characterized only the Survivors.

5.2 Adoption of our approach in the next speculative bubble

The approach proposed in this paper is general and can be applied to any speculative bubble made

on any cryptocurrency in the past, present and future. We believe that the ability to analyze past

speculative bubbles and draw an identikit of the speculators is already a worthy property of our

approach. But that property becomes even more interesting if, in addition to looking at the past, we

look at the present and especially the future.

In fact, the cryptocurrency context is considered a highly speculative environment by many grad-

uates of the Nobel Memorial Prize in Economic Sciences, central bankers and investors. Speculations

on cryptocurrencies have also been observed recently. For example, on March 8th, 2020 the price of

Bitcoin was 8,901 USD. On March 12th, 2020, it was 6,206 USD, with a decrease of about 30%. In

October 2020 this price was already doubled again and was about 13,000 USD. On January 3rd, 2021

the price of Bitcoin was 34,792 USD; the next day it decreased by 17%. On January 8th, 2021 its value

exceeded 40,000 USD and on February 16th, 2021 it exceeded 50,000 USD. In March 2021 its value

was 58,734 USD, while on May 8th, 2021 it reached its highest value in history being 58,958 USD. On

May 22th, 2021 (which corresponds to the time of writing of this section) it had fallen again to 36,312

USD losing 38.41% of its value in 14 days.

Similar trends also characterize other cryptocurrencies. For example, the value of Ether was

about 750 USD in December 2020, about 1,350 USD in January 2021, about 1,800 USD in March

2021 and about 2,700 USD in April 2021. On May 11th, 2021 this value was equal to 4,179.81 USD,

which represents the highest value reached by this cryptocurrency so far. On May 22th, 2021 (which

corresponds to the time of writing of this section) the value of the Ether was 2,300.01 USD with a

collapse of 44.97% in 11 days.

The above examples highlight how prone the cryptocurrency world is to speculation. In addition,

the trends of the last month lead analysts to believe that we are in the midst of a speculative bubble

similar to the one of the years 2017-2018. If this is the case, the approach proposed in this paper would

provide investors with many information about the behaviors of the various players operating in this

market. It could even support analysts in understanding who are the current speculators behind these

bubbles. Therefore, we believe that our approach has not only a value for the past but it provides

useful predictive tools for the present and the future.

6 Conclusion

In this paper, we presented a Social Network Analysis based approach to investigate user behav-

ior during a cryptocurrency speculative bubble in order to extract knowledge patterns about this

phenomenon. The proposed approach is general and can be applied to any past, present and future
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cryptocurrency speculative bubble. To verify its potential, we applied it to the study of the speculative

bubble involving Ethereum in the years 2017 and 2018. In this way, we were able to extract several

knowledge patterns about the behavior of important categories of users in the pre-bubble, bubble and

post-bubble periods. Then, we showed how it is possible to define an identikit of the speculators who

maneauvered behind the bubble by appropriately integrating these knowledge patterns. In the last

part of the paper, we showed how this capability of supporting the hunting for speculators is not

limited to the particular case of the 2017-2018 Ethereum bubble, but it is intrinsic of our approach

and can cover past, present and future speculations involving cryptocurrencies.

The activities described in this paper are not to be considered as a point of arrival. Instead, they

are a starting point for further researches in this field. For example, we might perform further studies

on user behavior, taking into account labels identifying the type of addresses in a blockchain. Based

on these labels, we would like to define a classification approach that first constructs a profile for all

users of each label and, then, employs that profile to classify non-labeled users. In addition, we could

think of upgrading from predictive to prescriptive analysis by defining the characteristics that a new

user must take over time in a blockchain for quickly becoming one of the main actors in it. Last, but

not the least, we could investigate the text data sent along with transactions. Indeed, it would be

possible to analyze the shared contents through Natural Language Processing techniques in order to

detect additional features allowing a more precise definition of the profiles of the main players in the

blockchain.
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