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Microcirculatory dysfunction plays a key role in the pathogenesis of tissue dysoxia 
and organ failure in sepsis. Sublingual videomicroscopy techniques enable the 
real-time non-invasive assessment of microvascular blood flow. Alterations 
in sublingual microvascular perfusion were detected during sepsis and are 
associated with poor outcome. More importantly, sublingual videomicroscopy 
allowed to explore the effects of commonly applied resuscitative treatments in 
septic shock, such as fluids, vasopressors and inotropes, and showed that the 
optimization of macro-hemodynamic parameters may not be accompanied by an 
improvement in microvascular perfusion. This loss of “hemodynamic coherence,” 
i.e., the concordance between the response of the macrocirculation and the 
microcirculation, advocates for the integration of microvascular monitoring in 
the management of septic patients. Nonetheless, important barriers remain for 
a widespread use of sublingual videomicroscopy in the clinical practice. In this 
review, we discuss the actual limitations of this technique and future developments 
that may allow an easier and faster evaluation of the microcirculation at the 
bedside, and propose a role for sublingual microvascular monitoring in guiding 
and titrating resuscitative therapies in sepsis.
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1. Introduction

Microcirculatory dysfunction plays a key role in the pathogenesis of tissue dysoxia and 
organ failure in sepsis (1). The ultimate goal of resuscitation in septic shock must be  the 
optimization of microvascular blood flow. Systemic hemodynamic parameters, such as cardiac 
output (CO) and arterial pressure (AP), mixed venous O2 saturation (SvO2) or lactate, are 
usually applied as surrogates of tissue perfusion. Nonetheless, shock is often characterized by 
a loss of “hemodynamic coherence,” i.e., the concordance between the responses of the 
macrocirculation and the microcirculation (2): a therapeutic approach that purely targets 
macro-hemodynamics may thus pose the patients at risk for over- or under-resuscitation. 
Although a microcirculation-guided approach to the resuscitation of septic patients is desirable 
(3), important barriers remain for the application of microvascular monitoring alongside the 
standard hemodynamic parameters.
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In this review, we  describe the potential role of sublingual 
videomicroscopy for monitoring the microcirculation and guiding 
therapy during sepsis, and focus on the obstacles to its widespread use 
in the daily clinical practice.

2. Microcirculatory dysfunction during 
sepsis

Microvascular perfusion is regulated by a complex interplay of 
neuroendocrine, paracrine and mechanosensory pathways that 
adapt the local O2 supply to metabolic needs. These mechanisms 
are compromised during sepsis, as the inflammatory cascade and 
oxidative stress lead to endothelial dysfunction (4). The nitric 
oxide (NO) pathway is severely disturbed with heterogeneous over-
expression of the inducible NO synthase and pathological shunting 
of blood flow in the microcirculation (1). Capillary hemorheology 
is altered due to a loss of red blood cell (RBC) deformability and 
tendency to aggregation (4). The endothelial glycocalyx is 
disrupted, causing capillary leakage, tissue oedema, coagulation 
abnormalities and enhanced leukocyte-endothelium interaction 
(5). Heterogeneity in capillary blood flow distribution hampers 
tissue O2 extraction, since shunted hypoxic areas occur next to 
normally or hyper-perfused areas despite preserved total blood 
flow (6).

The evaluation of the microcirculation has long been limited to 
the pre-clinical setting (7–9) due to the lack of technologies applicable 
at the bedside. In 1999, orthogonal polarization spectral (OPS) 
imaging was introduced and incorporated in a handheld 
videomicroscope, allowing a non-invasive in vivo observation of 
flowing RBCs in microvascular beds covered by thin epithelial layers, 
such as mucosal surfaces (10). De Backer et al. were the first to use 
OPS in patients with severe sepsis or septic shock and describe a 
reduction in sublingual microvascular density and the presence of 
vessels with intermittent or stopped flow (11). Most importantly, these 
alterations were more severe in non-survivors (11). In the following 
20 years, a second generation device, termed sidestream dark field 
(SDF) (12), and recently a third generation videomicroscope called 
incident dark field (IDF) (13) were introduced and enabled to obtain 
images of progressively higher quality, sharper resolution and 
improved magnification.

Multiple studies used sublingual videomicroscopy to explore 
sepsis-induced microvascular abnormalities and their relationship 
with outcome (14–17). Sakr et  al. (15) demonstrated that 
microcirculatory alterations improved rapidly in septic shock 
survivors, whereas no improvement was observed in patients dying 
with multiple organ failure, regardless of whether shock had resolved. 
De Backer et al. (17) found no correlation between the percentage of 
perfused vessels in the microcirculation and systemic hemodynamic 
parameters, and microcirculatory alterations were the strongest 
independent predictors of outcome. Sublingual videomicroscopy also 
enables to estimate the status of the endothelial glycocalyx by 
measuring the Perfused Boundary Region (PBR), i.e., the dimension 
of the permeable part of the glycocalyx allowing the penetration of 
RBCs (18). The sublingual PBR tended to be higher in septic patients 
as compared to healthy volunteers or non-septic critically ill patients 
(18), and a higher PBR was associated with worse outcome (19). The 
PBR was correlated with the number of rolling leukocytes in the 

microcirculation, supporting the role of glycocalyx shedding in 
enhancing leukocyte-endothelium interactions (18). A higher number 
of adhered leukocytes was found in the sublingual microcirculation 
of sepsis non-survivors (20).

3. How to resuscitate the 
microcirculation in sepsis?

Resuscitation strategies generally aim to normalize global 
hemodynamic parameters, with the expectation that this will result in 
a parallel improvement of tissue perfusion and oxygenation in vital 
organs. However, this may not happen in cases of sepsis/septic shock 
in which the “hemodynamic coherence” is lost.

The amount of fluids administered was not correlated with 
changes in microvascular vessel density during septic shock, whereas 
the relationship between capillary recruitment and fluid dose was 
preserved in cardiac surgery patients (21). Fluid administration was 
able to improve microvascular perfusion within the first 24 h of sepsis 
but not in a later phase, and the effect was independent of global 
hemodynamic changes (22). In preload-responsive septic patients, 
non-linear relationships were found between changes in CO and 
changes in microvascular perfusion in response to a passive leg 
raising or a volume expansion, suggesting that different mechanisms 
are implicated in the macro- and micro-vascular responses (23). In a 
general ICU population, a fluid challenge improved microcirculatory 
perfusion only in patients with abnormal microvascular blood flow 
at baseline, while no effect was observed in those with no significant 
alterations (24). Again, the microvascular response was independent 
of changes in stroke volume (24).

Similarly, the microvascular response to vasoactive agents is not 
straightforward (25). In general, those patients with more severe 
microvascular alterations are the ones who show a greater 
improvement in microcirculatory perfusion after the administration 
of vasoactive medications such as norepinephrine (26) or dobutamine 
(27), while the mere optimization of macro-hemodynamic 
parameters (e.g., mean arterial pressure [MAP] or CO) is not 
sufficient to guarantee a better microvascular blood flow (28). In 
hypertensive patients, titrating norepinephrine dose to increase MAP 
from 65 mmHg to usual levels resulted in improved microvascular 
density and flow (29). In septic shock, the calcium-sensitizer 
levosimendan improved microvascular perfusion better than 5 mcg/
kg*min dobutamine, despite similar macro-hemodynamic 
effects (30).

As regards blood transfusions, again microvascular perfusion 
seemed to improve only when significant alterations were present at 
baseline (31, 32). The type of transfused blood is also important. The 
transfusion of leukodepleted RBCs might have a favorable effect on 
microcirculatory flow in sepsis (32). Conversely, the transfusion of old 
blood (with prolonged storage) may induce an increase in plasma free 
Hb, which acts as vasoconstrictor (33).

4. Barriers to the implementation of 
microvascular monitoring in sepsis

Significant barriers remain for the integration of sublingual 
microvascular monitoring in the management of septic patients:
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- Difficulties in image acquisition and analysis;
-  Concerns regarding the reliability of the sublingual mucosa as a 

window to the microcirculation of vital organs;
-  Lack of well-defined targets among microvascular variables;
-  Lack of specific therapies for “micro-hemodynamic” 

resuscitation.

4.1. Issues related to image acquisition and 
analysis

Low-quality videos may produce spurious microcirculatory data: 
inadequate focus/contrast or pressure artifacts prevent the 
visualization of some blood vessels, introducing a substantial bias in 
microvascular assessment. In a large database of videos recorded from 
critically ill patients, more than 50% were of unacceptable quality (34). 
Low-quality videos yielded worse microvascular parameters, (falsely) 
indicating lower vessel densities and worse perfusion quality (34). 
Ensuring artifact-free videos is a prerequisite for a reliable 
microcirculatory evaluation (35). Image quality should 
be  systematically checked (36) and low-quality videos excluded. 
Technological developments of videomicroscope devices, such as the 
introduction of the lightweight easy-to-handle Cytocam (13), have 
increased their ease of use. A 415 nm blue light probe was recently 
tested instead of the commonly used 520 nm green light probe and 
was able to obtain clearer microcirculatory images, providing higher 
image quality and higher vessel densities (37).

The time-consuming offline analysis is another criticism. 
Numerous attempts have been made to obtain a faster point-of-care 
microcirculatory assessment. Tanaka et al. showed good agreement 
between a real-time qualitative bedside evaluation of the 
microcirculation made by nurses and the conventional offline analysis 
(38). Similarly, a rapid subjective categorization of microcirculation as 
“good,” “bad,” “very bad” may be sensitive and specific enough to 
identify the presence of microvascular abnormalities (39). Watchorn 
et al. applied the Point-of-care Microcirculation tool (POEM) score, a 
five-point score based on visual assessment of overall microcirculatory 
flow, showing good reproducibility (40).

Newly developed automated software systems were recently 
introduced, allowing an instantaneous quantitative bedside 
microcirculatory assessment, although their accuracy did not always 
prove optimal (41–44). In 2019, Hilty et al. (45) validated a novel 
algorithm in the MicroTools software package for the automated 
analysis of videomicroscopy image sequences, enabling for the first 
time an objective measurement of the absolute RBC velocities and 
capillary density. By using this algorithm, they were able to identify 
alterations associated with diseases and mechanisms of resuscitation 
in a wide range of perioperative and critically ill patient populations, 
laying the ground for the point-of-care application of microcirculation 
monitoring in the clinical setting (46).

4.2. Is the sublingual region a reliable 
window to the microcirculation of inner 
organs?

The sublingual mucosa is an ideal site for hand-held 
videomicroscopy for its easy accessibility and rich vascularization. 

Moreover, the tongue shares the same embryologic origin as the 
intestine: this is an interesting aspect, given the crucial role of the gut 
in the pathogenesis of multiple organ failure (47). However, studies 
exploring other microvascular beds showed possible discrepancies in 
some conditions. In patients with abdominal sepsis and a newly 
constructed intestinal stoma, no correlation was found between the 
sublingual and intestinal microcirculation at day 1; at day 3, the 
concordance between the two compartments was restored, probably 
due however to a normalization of perfusion in both regions (48). In 
a model of hyperdynamic septic shock due to cholangitis without 
changes in intra-abdominal pressure, microcirculatory alterations 
were similar in the sublingual and intestinal sites (49). In a 
hypodynamic sepsis model, the correlation between the sublingual 
and other microvascular beds was time-dependent, disappearing 5 h 
after the induction of sepsis (50). Of note however, the sublingual 
microcirculation showed the most pronounced alterations, suggesting 
that monitoring this area could enable to identify or rule out even 
subtler abnormalities in other capillary beds (50). In post-operative 
patients with abdominal sepsis, the sublingual and intestinal mucosal 
microcirculation were dissociated both at baseline and after a fluid 
challenge (51). Moreover, non-survivors showed more severe 
alterations in the intestinal villi microcirculation but not 
sublingually (51).

From these data, we  can draw the following conclusions. The 
presence of an altered sublingual microcirculation is always an 
indicator of a possible impairment in microvascular perfusion of inner 
organs, and is associated with worse outcome. Conversely, the absence 
of sublingual microcirculatory alterations does not rule out 
abnormalities in other compartments; similarly, we could observe a 
“normalization” in the sublingual blood flow in response to therapy 
while perfusion remains suboptimal in other sites. The discrepancy 
may be more pronounced in some patient categories (e.g., patients 
with abdominal sepsis). These points do not question the potential 
utility of the sublingual microcirculation as a surrogate for 
microvascular perfusion of inner organs, keeping in mind that each 
microvascular bed has its own anatomical and physiological 
peculiarities and may be affected differently by the septic process. As 
a matter of fact, other hemodynamic parameters such as MAP or CO 
are not themselves absolute indicators of perfusion pressure or blood 
flow in specific organs, although commonly used as targets for therapy.

4.3. Lack of well-defined microcirculatory 
targets

Data on the clinical relevance of microvascular alterations have 
been predominantly expressed so far in terms of percentage of 
perfused vessels (PPV) and microvascular flow index (MFI), two 
parameters that describe “convection” (35) and are easier to interpret 
and compare between patients. While an MFI <2.6 generally indicates 
clinically relevant blood flow alterations (35), absolute quantitative 
cut-offs for vessel density parameters (describing “diffusion”) are more 
difficult to define.

While “normal values” for the sublingual microcirculation have 
been described in healthy volunteers (52, 53), pre-existing 
comorbidities may influence the microcirculation in septic patients: 
chronic arterial hypertension (54) and diabetes (55) were both 
associated with lower vessel density. On the other hand, a higher 

https://doi.org/10.3389/fmed.2023.1212321
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Damiani et al. 10.3389/fmed.2023.1212321

Frontiers in Medicine 04 frontiersin.org

FIGURE 1

Integration of sublingual microcirculatory monitoring with a complete hemodynamic and physiological patient evaluation, including signs of tissue 
hypoperfusion (i.e., increased capillary refilling time, increased central-to-toe temperature difference, mottling skin) and the standard hemodynamic 
monitoring. CO, cardiac output, SV, stroke volume, GEDV, global end-diastolic volume, EVLW, extra-vascular lung water, CVP, central venous pressure, 
PAOP, pulmonary arterial occlusion pressure, ABG, arterial blood gasses, ABP, arterial blood pressure, PPV, pulse pressure variation, HR, heart rate.

microcirculatory density does not always mean “healthier.” Sublingual 
vessel densities appeared higher than normal in patients with SARS-
CoV-2 pneumonia (56, 57), because of hypoxia-induced capillary 
recruitment. Conversely, arterial hyperoxia can induce vasoconstriction 
(58, 59). These potentially confounding factors should be taken into 
account in the interpretation of microvascular density.

4.4. Lack of specific therapies for 
“micro-hemodynamic” resuscitation

Multiple efforts have been made to identify therapies specifically 
directed to the optimization of microvascular blood flow. In order to 
provide a comprehensive summary of the existing evidences, 
we  performed a systematic review of studies evaluating possible 
microcirculatory-targeted therapies for sepsis. Studies were identified 
by searching Medline (PubMed) from its inception (main search was 
conducted on May 20th, 2023). The keywords “microcirculation,” 
“microvascular,” “sepsis,” “septic*,” “vasodilat*,” “nitric oxide,” 
“coagulation,” “clotting,” “microthrombosis,” “activated protein C,” 
“antithrombin,” “thrombomodulin,” “anticoagulant,” “anti-oxidant,” 
“vitamin C,” “blood purification,” “extracorporeal cytokine removal,” 
“hemoadsorption,” “immunomodulation” were typed in various 
combinations using Boolean operators. Both preclinical and clinical 
investigations were considered. After exclusion of non-pertinent 
articles, a total of 97 studies was identified focusing on the 
microvascular effects of different vasodilators, vasoconstrictors, 
antithrombotic/anti-platelet agents, anti-oxidants, blood purification 
or other type of treatments (including immunomodulant therapies). 

The main characteristics and findings of the studies are reported in 
the Supplementary Material. The vast majority were preclinical 
investigations (N = 79, 81%). Clinical studies were either 
uncontrolled/non-randomized trials (N = 10) (60–69) or randomized 
controlled trials on relatively small patient populations (N = 8) (70–
77). Numerous attempts have been made to manipulate the NO 
pathway. However, while the use of NO synthase inhibitors was even 
deleterious in some animal models (Supplementary Material), clinical 
studies using inhaled NO or NO donors showed no benefit on the 
microcirculation (70, 72, 73). A large-scale multicentre RCT is 
currently ongoing on the vasodilator prostacyclin-analog ilomedin 
(78). Multiple studies targeted the interaction between endothelial 
dysfunction and coagulopathy. Activated protein C was associated 
with an improvement in microvascular perfusion both in animal 
models and in the clinical setting (63–68). Nonetheless, it was 
withdrawn from the market for safety reasons. Microvascular 
improvements were seen with antithrombin or thrombomodulin in 
animal models (Supplementary Material), although clinical data are 
lacking. Extracorporeal cytokine removal (61), antioxidants (e.g., 
vitamin-C (62)) or immunomodulant therapies (IgM-enriched 
immunoglobulins (77)) could play a role in resuscitating and/or 
protecting the microcirculation during septic shock, however further 
studies are needed to confirm their benefits.

5. Discussion

Sublingual videomicroscopy is a promising technique for 
evaluating the microcirculation, i.e., the real interface between blood 
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and cells. For any treatment to be effective in optimizing tissue O2 
availability, it is necessary that microvascular perfusion improves 
together with macro-hemodynamics. We reviewed the limitations of 
sublingual microvascular monitoring and the obstacles to its 
application in the clinical practice, including the lack of specific 

therapies. Importantly, high-quality clinical trials proving the efficacy 
of microcirculatory-targeted resuscitation strategies in sepsis 
are lacking.

Building a feasible and universally effective “microcirculation-
centered” treatment algorithm for septic patients is difficult, given the 

FIGURE 2

Proposed algorithm for the hemodynamic optimization of the septic patient, in which sublingual microvascular monitoring accompanies the standard 
hemodynamic monitoring and helps in guiding therapy and titrating fluid, vasopressor and inotrope dose. In presence of signs of tissue hypoperfusion, 
we should first ask if there is a condition of hypovolemia. Both macro- and micro-hemodynamic fluid responsiveness should be tested: if there is no 
sign of macro-hemodynamic fluid responsiveness, then fluids are not indicated. If there are signs of fluid responsiveness, a fluid bolus is indicated and 
both the macro-hemodynamic and the microcirculatory response should be assessed. Fluid infusion should be continued until there is an 
improvement in both macro-hemodynamics and the microcirculation (fluid titration). If macro-hemodynamics improves but the microcirculation does 
not (i.e., loss of hemodynamic coherence), this may be an indication to stop fluid infusion. Secondly, we should ask if there is significant vasodilation 
and the need for vasopressors. If MAP is too low and the microcirculation is altered, add a vasopressor. The vasopressor dose could be titrated until 
there is an improvement in microvascular perfusion following an increase in MAP (considering the patient’s baseline AP as a target). If a vasopressor-
induced increase in MAP is not followed by an improved microvascular perfusion, this may be an indication to stop increasing the vasopressor dose. 
Thirdly, we should ask if there is cardiac dysfunction. If cardiac contractility is reduced, consider adding an inotrope. The inotrope dose could 
be titrated until there is an improvement in microvascular perfusion following an increase in the cardiac output. If the increase in cardiac output is not 
associated with an improvement in microvascular perfusion, this may be an indication to stop increasing the inotrope dose. If after optimizing volume 
status, vascular tone and cardiac contractility the microcirculation is still significantly altered, consider a possible derangement in the endothelial 
glycocalyx. The possible role of adjunctive therapies and other microcirculatory-targeted therapies should be evaluated in future studies. CRF capillary 
refilling time, MACRO macro-hemodynamic parameters, MICRO microcirculation, MAP mean arterial pressure, ECHO echocardiography, Hb 
hemoglobin, RBCs red blood cells, EVLW extravascular lung water, PAOP pulmonary arterial occlusion pressure, CVP central venous pressure, ↑ 
improvement, ↓ worsening, = stable.
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high heterogeneity of sepsis as regards either the patients’ 
characteristics (e.g., underlying comorbidities), type of infection (e.g., 
abdominal versus pulmonary), severity of systemic inflammation and 
circulatory alterations varying over time in response to therapies. In 
such a complex scenario, the microcirculation could represent a tool 
for the personalization of therapy. Information coming from 
sublingual microcirculatory assessment should be  part of a 
comprehensive hemodynamic and physiological monitoring and 
should be interpreted in the light of other markers of tissue perfusion 
(Figure 1).

In Figure 2, we propose a hemodynamic optimization algorithm 
for septic patients, in which microcirculatory monitoring plays a 
central role together with global hemodynamic parameters. This 
algorithm is based on three fundamental concepts.

First, we  cannot rely purely on macro-hemodynamic targets 
when trying to restore tissue O2 delivery in sepsis, since the 
hemodynamic coherence may be lost. The classical treatments used 
for the hemodynamic optimization may fail to improve microvascular 
perfusion and even be  deleterious. For example, fluid infusion 
induces hemodilution and decreases blood viscosity, potentially 
impairing shear stress-mediated regulation of vascular tone (2). High 
amounts of fluids in septic shock may cause iatrogenic endothelial 
injury and glycocalyx degradation (79). Previous studies showed that 
volume expansion, vasopressors, inotropes and even blood 
transfusions were able to recruit the microcirculation only if 
significant alterations were present at baseline, irrespective of the 
macro-hemodynamic response (24, 26, 27, 31, 32). Therefore, the 
evaluation of microvascular blood flow should accompany the 
standard hemodynamic monitoring.

Second, macro- and micro-circulatory responsiveness to 
treatments should be assessed simultaneously, in order to verify that 
any improvement in cardiac output or vascular tone results in 
increased capillary blood flow. Microvascular monitoring may help 
in guiding fluid, vasopressor and inotrope titration, in order to 
implement a patient-tailored therapy and avoid any over- or 
undertreatment. To this aim, it is imperative that technological 
developments of sublingual videomicroscopy allow an easier and fast 
assessment of microvascular parameters at the bedside, besides 
minimizing the possible biases due to poor image quality.

Third, we should consider the possible role of adjunctive therapies 
(e.g., extracorporeal blood purification) in optimizing microvascular 
hemorheology (62, 78) and potentially protecting the endothelium 
from iatrogenic injuries (79).

Bruno et  al. very recently evaluated the impact of integrating 
microvascular monitoring in the therapeutic plan of patients with 
shock (80). The knowledge of the status of the microcirculation 
influenced the decision-making process for fluids and vasopressors in 
a significant number of cases, but had no impact on 30-day mortality 

(80). Several limitations must be  acknowledged: the inclusion of 
patients with different types of shock (with potentially different 
microvascular abnormalities), mismatch between the announced and 
performed treatment changes after microcirculatory evaluation in a 
substantial number of cases, limitation of life-sustaining therapy in 
almost half of the patients on day 2, re-assessment of the 
microcirculation only at 24 h, almost 30% of videos were of 
unacceptable quality (80). Nonetheless, this was the first large 
randomized controlled trial on a microcirculation-driven treatment 
algorithm in patients with shock.

Future studies should be focused on septic shock, exploring the 
impact of integrating microvascular monitoring in the decision-
making process and the efficacy of microcirculation-guided treatment 
algorithms. Further efforts are needed to find specific therapies for 
resuscitating the septic microcirculation. In the meantime however, 
the microcirculation should become part of our clinical reasoning.
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