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Identifying diseases from images of plant leaves is one of the most important research
areas in precision agriculture. The aim of this paper is to propose an image detector embed-
ding a resource constrained convolutional neural network (CNN) implemented in a low
cost, low power platform, named OpenMV Cam H7 Plus, to perform a real-time classifica-
tion of plant disease. The CNN network so obtained has been trained on two specific data-
sets for plant diseases detection, the ESCA-dataset and the PlantVillage-augmented dataset,
and implemented in a low-power, low-cost Python programmable machine vision camera
for real-time image acquisition and classification, equipped with a LCD display showing to
the user the classification response in real-time. Experimental results show that this CNN-
based image detector can be effectively implemented on the chosen constrained-resource
system, achieving an accuracy of about 98.10%/95.24% with a very low memory cost (718.
961 KB/735.727 KB) and inference time (122.969 ms/125.630 ms) tested on board for the
ESCA and the PlantVillage-augmented datasets respectively, allowing the design of a por-
table embedded system for plant leaf diseases classification. Source files are available at
https://doi.org/10.17605/OSF.IO/UCM8D.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications table
Hardware name
 OpenMV Cam Plant Diseases Detector
Subject area
 � Environmental, planetary and agricultural sciences

� General
Hardware type
 � Imaging tools

Closest commercial analog
 Wio Lite AI Single Board:https://www.hackster.io/news/seeed-s-new-wiolite-ai-

packs-computer-vision-into-a-feather-sized-board-30a1eb8b08b3; Available at:
https://www.seeedstudio.com/Wio-Lite-AI-Single-Board-p-5120.html
Open source license
 MIT License

Cost of hardware
 $136.47
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 https://doi.org/10.17605/OSF.IO/UCM8D
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1. Hardware in context

Identifying diseases from images of plant leaves is one of the most important research areas in precision agriculture [1].
Several artificial intelligence approaches are currently used for detecting and classifying plant diseases. The most common
approaches are the k-nearest neighbours (kNN), logistic regression, decision tree, support vector machine (SVM) [2].
Recently, deep neural networks (DNNs) and specifically convolutional neural networks (CNNs) have proven to be extremely
effective to solve this task [3]. These approaches are combined with various image pre-processing methods in order to
enhance feature extraction.

In the context of precision agriculture, the availability of a low-cost, low-power, portable, easy-to-use vision system
incorporating deep learning techniques, which could be combined with autonomous agricultural vehicles, plays a great role
since it would offer the agronomist a valuable assistance for the plant disease detection and diagnosis. Such devices could be
drones and other autonomous agricultural vehicles, equipped with an embedded vision system, to be used by growers or
agronomists for real-time monitoring and dynamic disease detection on large-scale open-field cultivations. The realization
of a low-cost, low-power, portable, easy-to-use intelligent vision system leads to several challenges: th ction of computa-
tional complexity and memory occupation so that the DNN can be integrated directly into the vision system, i.e. an embed-
ded device based on a microcontroller with limited computational power and very low energy consumption, together with
the reduction of inference time in order to realize a real-time application, by preserving the performance in terms of
accuracy.

Table 1 reports a summary of the state-of-the-art CNN models for plant diseases identification based on image
classification.

As you can see in Table 1, the state-of-the-art plant diseases models achieve a very high classification accuracy, requiring
a large number of parameters and higher computation cost, which prohibit their usage in embedded devices. In recent years
the models have achieved very high accuracies, exploring different methods: transfer learning applied to existing architec-
tures in literature [4,21,8,23,27], existing DNN models combined with different features extraction methods [11,17], mod-
ified versions of existing networks [31,33,41,36], novel network architectures [25,29,34,38–40]. Such a higher accuracy, in
most cases, has been reached using complexed architectures that require a high number of parameters. In [25], the authors
proposed a simple nine-layer CNN model to identify plant diseases, applying the proposed CNN to the PlantVillage dataset
with data-augmentation techniques to increase the data size. Despite the simplicity of this architecture, the authors reported
better accuracy than that of a traditional machine-learning-based approach. As mentioned above, in order to realized an
embedded system that could be deployed in precision agriculture, the constrains must be the reduction of computational
complexity and the memory occupation, still maintaining a good accuracy. According to our knowledge, few works in liter-
ature proposed a hardware implementation of these plant diseases models [23,34,39,40].

Following the above motivations, the aim of this paper is to propose an image detector for plant leaf diseases classification
based on a lightweight and accurate CNN, that can be implemented on a low cost, low power core, while preserving good
performance in terms of accuracy and inference time. This image detector has been presented in [42] where the severe con-
straints typical of embedded systems were satisfied with a network compression using tensor decomposition techniques. In
this paper instead the final lightweight model was obtained with a filter pruning compression method [43] applied to a sim-
ilar architecture as [42]. The pruning step is followed by a final retraining to recover the loss of accuracy introduced by com-
pression. The CNN has been trained on two datasets specific for plant diseases recognition and implemented in a low-power,
low-cost Python programmable machine vision camera, named OpenMV H7 Plus, for real-time classification. The obtained
results show that the system is able to obtain good performances both in the case of binary and multi-class classification. In
addition, a comparison with a state-of-the-art lightweight CNN for plant disease recognition [25] has been conducted.

The manuscript is organized as follows. Section 2 describes the CNN-based image detector in all its components. Section 3
provides a list and a description of the scripts implemented both to train the CNNs and to embed these networks on the
OpenMV Cam H7 Plus. Section 4 lists the materials needed to reproduce the presented image detector. Detailed software
building and installation instructions are given in Section 5 and Section 6. Section 7 presents the architecture of the proposed
CNN and the experimental carried out to validate the performance of the vision system principally in terms of inference time,
frame per second (FPS) and memory occupancy.
2. Hardware description

An example hardware setup is shown in Fig. 1 and Fig. 2.
Fig. 1a shows the OpenMV Cam connected to a laptop via micro USB cable. The PC is equipped with the OpenMV inte-

grated development environment (IDE) that shows in the serial terminal the classification results of the images acquired
by the camera of the OpenMV Cam H7 Plus. Fig. 1b shows how the OpenMV Cam H7 Plus can be supplied by a power bank,
avoiding to use the PC and obtaining a portable system to classify the leaf image in real-time.

With the setup used in Fig. 1b, Fig. 2 shows an application example of the leaf image detector: Fig. 2a and Fig. 2b show the
different responses of the system when acquires the frame of a healthy leaf or a leaf affected by esca disease. In the first case
no message is expected but in the second case an alert message (’E’) has shown on LCD display to notify the presence of the
plant disease.
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Table 1
Summary of the state-of-the-art CNNs for plant diseases detection.

Author Methods Dataset Classes Accuracy Parameters Implementation on
embedded system

Mohanty et al. [4] AlexNet [5] and GoogleNet [6] PlantVillage [7] 38 99.27%, 99.34% AlexNet: 60 million
GoogleNet: 5 million

–

Ramcharan et al. [8] Inception V3 [9] based on GoogleNet Cassava dataset [10] 6 93% Inception V3: 27 million –
Fuentes et al. [11] Faster R-CNN [12], R-FCN [13], SSD [14] combined

with VGG-16 [15] and ResNet [16]
custom Tomato Diseases and
Pests Dataset 5000 images

9 83% Faster R-CNN with VGG:
2.4 million

–

Pawara et al. [17] AlexNet [5] and GoogleNet [6] AgriPlant Dataset [18] 10 96.37%, 98.33% AlexNet: 60
millionGoogleNet: 5
million

–
LeafSnap Dataset [19] 184 89.51%, 97.66%
Folio Dataset[20] 32 97.67%, 97.63%

Ferentinos et al. [21] AlexNetOWTBn [22] and VGG [15] custom dataset 87848 images 58 99.49%, 99.53% AlexNetOWTBn: 60
million VGG: 138 million

–

Ramacharan el al. [23] MobileNet [24] - SSD [14] Cassava dataset [10] 6 80.6% on images
70.4% on video

MobileNet-SSD: 6 million USamsung Galaxy S5
Android device

Geetharamani et al.
[25]

CNN PlantVillage with data
augmentation [26]

39 96.46% 212,543 –

Chen et al. [27] VGG-19 pre-trained on ImageNet with Inception
module [28]

Maize PlantVillage [7] 4 92% VGG-19: 143 million –

Chen et al. [29] DenseNet [30] Maize PlantVillage [7] 4 98.50% 33.97 million –
Chen et al. [31] MobileNet-V2 [32] PlantVillage [7] 38 99.71% 3.83 million –
Chen et al. [33] DenseNet [30] custom dataset 1000 images 5 97.60% 3.40 million –
Li et al. [34] CNN NBAIR [35] 50 95.4% 0.75 million UFPGA

Li et al. dataset [34] 10 96.2%
Chen et al. [36] MobileNet-V2 [32] and Attention Mechanism along

with a Classification Activation Map [37]
Li et al. dataset [34] 10 99.14% 3.83 million –

Chen et al. [38] Semantic Segmentation and CNN Grape PlantVillage [7] 4 93.75% 44.51 million –
Mishra et al. [39] CNN PlantVillage [7] subset + custom

images
3 88.46% 22.75 million U Intel Movidius NCS

with Raspberry Pi 3
Gajjar et al. [40] SSD [14] combined with CNN PlantVillage [7] subset 20 96.88% 6.07 million U NVIDIA Jetson TX1
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Fig. 1. OpenMV Cam with LCD display (a) used connected to a PC provided with OpenMV IDE that shows on the serial terminal the classification response
applied to different leaves (CNN trained on PlantVillage-augmented dataset), (b) used in stand-alone mode powered by a power bank.

Fig. 2. OpenMV Cam with LCD display that shows the classification response applied to Esca disease (CNN trained on ESCA-dataset). (a) Healthy leaf (no
tag), (b) Leaf affected by Esca disease correctly detected as shown in the LCD display (tag ‘E’).
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The main components of the embedded system are:

1. OpenMV Cam H7 Plus
The OpenMV Cam STM32H7 Plus camera 1 is a low-power Python programmable machine vision camera that supports an
extensive set of image processing functions and neural networks. It is based on the STM32H743II ARM Cortex-M7 MCU run-
ning at 480 MHz featuring 32 MBs off-chip SDRAM, 1 MB SRAM, 32 MB off-chip FLASH and 2 MB on-chip FLASH. The OV5640
image sensor can capture images up to size 2592 � 1944 but most algorithms run between 10–15-25–50 FPS on QVGA (320
� 240) resolutions and below.

2. OpenMV LCD Shield
The LCD shield 2 gives OpenMV Cam the ability to display what it sees on-the-go while not connected to the computer. It
features a 1.8” 128 � 160 16-bpp (RGB565) TFT LCD display with a controllable backlight. The OpenMV Cam’s firmware has
built-in support for controlling the LCD Shield using the lcd API module.

3. PC equipped with OpenMV CAM IDE
OpenMV IDE3 is the an integrated development environment specifically designated for use with OpenMV Cam. It features a
text editor, a debug terminal and a frame buffer viewer with a histogram display. OpenMV IDE simplifies programming the
OpenMV Cam and integrates a serial bootloader to flash the board.

4. Micro SD card
The micro SD card is extremely useful to save the model (specifically tflite int8 format) previously trained on a specific
dataset and the main.py script written for the classification application, delegating the execution of the application to the
Micro Python interpreter embedded in the board.

5. Micro USB cable
The micro USB cable can be used to connect the board to the PC or to a power supply.
1 https://openmv.io/products/openmv-cam-h7-plus
2 https://openmv.io/products/lcd-shield
3 https://openmv.io/pages/download
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6. Power bank
The power bank can be used to powered the board avoiding to connecting it to PC and realizing a portable system.

3. Design files

3.1. Design files summary
5

Design filename
 File type
 Open source
license
Location
of the file
CNN_Esca.ipynb
 Google Colaboratory
Notebook file
MIT License
 OSF Repository
CNN_Esca_pruned.ipynb
 Google Colaboratory
Notebook file
MIT License
 OSF Repository
CNN_PV.ipynb
 Google Colaboratory
Notebook file
MIT License
 OSF Repository
CNN_PV_pruned.ipynb
 Google Colaboratory
Notebook file
MIT License
 OSF Repository
CNN_Esca_model.h5
 model file
 MIT License
 OSF Repository

CNN_Esca_model.tflite
 model file
 MIT License
 OSF Repository

CNN_Esca_pruned_model.h5
 model file
 MIT License
 OSF Repository

CNN_Esca_pruned_model.tflite
 model file
 MIT License
 OSF Repository

CNN_PV_model.h5
 model file
 MIT License
 OSF Repository

CNN_PV_model.tflite
 model file
 MIT License
 OSF Repository

CNN_PV_pruned_model.h5
 model file
 MIT License
 OSF Repository

CNN_PV_pruned_model.tflite
 model file
 MIT License
 OSF Repository

conversion_DatasetEsca_into_bmp_format.ipynb
 Google Colaboratory

Notebook file

MIT License
 OSF Repository
conversion_DatasetPV_into_bmp_format.ipynb
 Google Colaboratory
Notebook file
MIT License
 OSF Repository
augmented_esca_dataset_9transformation_splitted.zip
 data file
 MIT License
 OSF Repository

Dataset_Esca_Test_bmp_128x128.zip
 data file
 MIT License
 OSF Repository

Dataset_PV_Test_bmp_128x128.zip
 data file
 MIT License
 OSF Repository

openmv_demoEsca_SD_testingSet.py
 micropython file
 MIT License
 OSF Repository

openmv_demoEsca_SD_realtime.py
 micropython file
 MIT License
 OSF Repository

openmv_demoEsca_SD_realtime_responseOnLCD.py
 micropython file
 MIT License
 OSF Repository

openmv_demoPV_SD_testingSet.py
 micropython file
 MIT License
 OSF Repository

openmv_demoPV_SD_realtime.py
 micropython file
 MIT License
 OSF Repository

demo_Esca-1.mp4
 media file
 MIT License
 OSF Repository

demo_Esca-2.avi
 media file
 MIT License
 OSF Repository

demo_PV.mp4
 media file
 MIT License
 OSF Repository
Below is a brief description of the file listened above:

� CNN_Esca.ipynb: This file contains the code to train, to validate and to test the initial CNN architecture for the ESCA-
dataset [44]. It generates both the h5 and tflite models and then evaluates the models’ performances, such as accuracy,
memory cost, number of parameters.

� CNN_Esca_pruned.ipynb: This file contains the code to apply the filter pruning compression on the model trained on Esca
dataset and then to perform the retraining. It generates the final model for Esca dataset in h5 and tflite format and then
evaluates its performaces in terms of accurary, memory cost, number of parameters.

� CNN_PV.ipynb: This file contains the code to train, to validate and to test the initial CNN architecture for the PlantVillage-
augmented dataset [7,26], together with a section to split the dataset in three partitions (training, validation, testing set).
It generates both the h5 and tflite models and then evaluates the models performaces, such as accurary, memory cost,
number of parameters.

� CNN_PV_pruned.ipynb: This file contains the code to apply the filter pruning compression on the model trained on
PlantVillage-augmented dataset and then to perform the retraining. It generates the final model for Plant Village dataset
in h5 and tflite format and then evaluates its performaces in terms of accurary, memory cost, number of parameters.
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� CNN_Esca_model.h5: The Keras model file (h5 format) generated by CNN_Esca.ipynb.
� CNN_Esca_model.tflite: The TensorFlow Lite model file (tflite format) generated by CNN_Esca.ipynb.
� CNN_Esca_pruned_model.h5: The Keras model file (h5 format) generated by CNN_Esca_pruned.ipynb.
� CNN_Esca_pruned_model.tflite: The TensorFlow Lite model file (tflite format) generated by CNN_Esca_pruned.ipynb.
� CNN_PV_model.h5: The Keras model file (h5 format) generated by CNN_PV.ipynb.
� CNN_PV_model.tflite: The TensorFlow Lite model file (tflite format) generated by CNN_PV.ipynb.
� CNN_PV_pruned_model.h5: The Keras model file (h5 format) generated by CNN_PV_pruned.ipynb.
� CNN_PV_pruned_model.tflite: The TensorFlow Lite model file (tflite format) generated by CNN_PV_pruned.ipynb.
� conversion_DatasetEsca_into_bmp_format.ipynb: This file converts the images of the Esca dataset from jpg format to bmp
format in order to be used in the OpenMV Cam.

� conversion_DatasetPV_into_bmp_format.ipynb: This file converts the images of the PlantVillage-augmented dataset from
jpg format to bmp format in order to be used in the OpenMV Cam.

� augmented_esca_dataset_9transformation_splitted.zip: In this work we use a version of the ESCA-dataset with applied 9
data augmentations transformations. This dataset can be also generated by the scripts available in the ESCA-dataset
repository, but, for your convenience, we provides the dataset already generated.

� Dataset_Esca_Test_bmp_128x128.zip: The ESCA-dataset converted in bpm format (pixel size 128 � 128).
� Dataset_PV_Test_bmp_128x128.zip: The PlantVillage-augmented dataset converted in bpm format (pixel size 128 �
128).

� openmv_demoEsca_SD_testingSet.py: This file contains the MicroPython code to be used in OpenMV Cam. This file loads
the tflite model file and the bpm version of the testing set of ESCA-dataset, both saved in the OpenMV SD card, and it
performs the classification on the testing set.

� openmv_demoEsca_SD_realtime.py: This file contains the MicroPython code to be used in OpenMV Cam. This file loads
the tflite model file saved in the OpenMV SD card, and it performs a real-time classification of the images captured by the
on board camera.

� openmv_demoEsca_SD_realtime_responseOnLCD.py: This file contains the MicroPython code to be used in OpenMV Cam.
This file loads the tflite model file saved in the OpenMV SD card, and it performs a real-time classification of the images
captured by the on board camera, displaying the results on the LCD display.

� openmv_demoPV_SD_testingSet.py: This file contains the MicroPython code to be used in OpenMV Cam. This file loads
the tflite model file and the bpm version of the testing set of PlantVillage-augmented dataset, both saved in the OpenMV
SD card, and it performs the classification on the testing set.

� openmv_demoPV_SD_realtime.py: This file contains the MicroPython code to be used in OpenMV Cam. This file loads the
tflite model file generated from the training on the PlantVillage-augmented dataset and then saved in the OpenMV SD
card, and it performs a real-time classification of the images captured by the on board camera.

� demo_Esca-1.mp4: This video shows how the board performs when a healthy/unhealthy leaf is captured (ESCA-dataset).
� demo_Esca-2.avi: Same as demo_Esca-1.mp4 but using pre-saved images of leaves displayed on a tablet (ESCA-dataset).
� demo_PV.mp4: This video shows how the board performs when different species of healthy/unhealthy leaves are cap-
tured (PlantVillage-augmented dataset).

4. Bill of materials
Designator
 Component
 Number
 Cost per
unit - USD
6

Total
cost - USD
Source of materials
OpenMV Cam H7 Plus
 OC1
 1
 80.00
 80.00
 https://openmv.io/products/
openmv-cam-h7-plus
OpenMV LCD Shield
 LCD1
 1
 20.00
 20.00
 https://openmv.io/products/
lcd-shield
Micro SD Card
 SD1
 1
 8.69
 8.69
 https://www.amazon.com/
SanDisk-Ultra-UHS-I-
Memory-Adapter/dp/
B00M55C0VU
micro USB cable
 USB1
 1
 7.79
 7.79
 https://www.amazon.com/
AmazonBasics-Male-Micro-
Cable-Black/dp/B07232M876/
power bank
 PW1
 1
 19.99
 19.99
 https://www.amazon.it/
OKZU-10000mAh-
Caricabatterie-Portatile-
Powerbank/dp/B07JNSXRP2

https://openmv.io/products/openmv-cam-h7-plus
https://openmv.io/products/openmv-cam-h7-plus
https://openmv.io/products/lcd-shield
https://openmv.io/products/lcd-shield
https://www.amazon.com/SanDisk-Ultra-UHS-I-Memory-Adapter/dp/B00M55C0VU
https://www.amazon.com/SanDisk-Ultra-UHS-I-Memory-Adapter/dp/B00M55C0VU
https://www.amazon.com/SanDisk-Ultra-UHS-I-Memory-Adapter/dp/B00M55C0VU
https://www.amazon.com/SanDisk-Ultra-UHS-I-Memory-Adapter/dp/B00M55C0VU
https://www.amazon.com/AmazonBasics-Male-Micro-Cable-Black/dp/B07232M876/
https://www.amazon.com/AmazonBasics-Male-Micro-Cable-Black/dp/B07232M876/
https://www.amazon.com/AmazonBasics-Male-Micro-Cable-Black/dp/B07232M876/
https://www.amazon.it/OKZU-10000mAh-Caricabatterie-Portatile-Powerbank/dp/B07JNSXRP2
https://www.amazon.it/OKZU-10000mAh-Caricabatterie-Portatile-Powerbank/dp/B07JNSXRP2
https://www.amazon.it/OKZU-10000mAh-Caricabatterie-Portatile-Powerbank/dp/B07JNSXRP2
https://www.amazon.it/OKZU-10000mAh-Caricabatterie-Portatile-Powerbank/dp/B07JNSXRP2
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5. Build instructions

� Generate networks:

1. Load on your Google Drive the notebook files: CNN_Esca.ipynb, CNN_Esca_pruned.ipynb, CNN_PV.ipynb,

CNN_PV_pruned.ipynb.

2. Load on your Google Drive the augmented_esca_dataset_9transformation_splitted.zip to be used with the CNN_Esca.
ipynb and CNN_Esca_pruned.ipynb files in order to train, prune and then retrain the Esca model.

3. Load on your Google Drive the PlantVillage-augmented Dataset from [26] to be used with CNN_PV.ipynb and
CNN_PV_pruned.ipynb files in order to train, prune and then retrain PlantVillage model.

4. Open the file CNN_Esca.ipynb with Google Colaboratory, choose runtime session from the Menu and execute. Repeat this
step for the same procedure for the file CNN_Esca_pruned.ipynb.

5. The output model files will be saved in the same directory of the notebook file, download them for the next steps.
6. Repeat steps 4 and 5, but using CNN_PV.ipynb and CNN_PV_pruned.ipynb files, to obtain the CNN models for the

PlantVillage-augmented dataset.

� Generate OpenMV Cam application through MicroPython code:
1. Generate MicroPython code:
1.1 Open the OpenMV IDE to test the scripts openmv_demoEsca_SD_testingSet.py, openmv_demoEsca_SD_realtime.py

and openmv_demoPV_SD_testingSet.py, openmv_demoPV_SD_realtime.py in oder to change, if necessary, the path
of ESCA and PlantVillage models respectively and to test the model performance on board.
Using the scripts openmv_demoEsca_SD_testingSet.py and openmv_demoPV_SD_testingSet.py the board makes the
predictions on the test sets Dataset_Esca_Test_bmp_128x128.zip and Dataset _PV_Test_bmp_128x128.zip respec-
tively, both saved on SD together with the corresponding tflite models CNN_Esca_model.tflite and CNN_PV_model.
tflite.
Using the scripts openmv_demoEsca_SD_realtime.py and openmv_demoPV_SD_realtime.py the board makes the pre-
dictions on the images acquired by the camera, dumping also the FPS and the inference time as well as the accuracy for
each image.
Using the script openmv_demoEsca_SD_realtime_responseOnLCD.py a feedback for the detection of an unhealthy leaf
has shown in the LCD display.

2. Setting up OpenMV Cam for MicroPython code:

2.1 Once chosen the more appropriate script for your application, save the selected script on the SD card renaming it as

main.py. This script will be executed when the board starts.

2.2 Power the board with a power bank connected with a micro USB cable in order to have your image detector.

6. Operation instructions

Please refer to Hardware description and Build instructions sections, specifically to step Setting up OpenMV Cam for Micro-
Python code in Build instructions section.
7. Validation and characterization

In order to validate the image detector for real-time plant disease detection previously discussed, two different experi-
ments, i) the experiment on ESCA-dataset [44] and ii) the experiment on the PlantVillage-augmented dataset [7,26], were
conducted. The first aims to validate the image detector performances in a binary classification and the second aims to deter-
mine that, with the same model, the system shows good performances also for the multi-class classification task.

The experiments were conducted using the TensorFlow v.2.5.0 and Keras v.2.5.0 to train the models on Google Colabo-
ratory with the ESCA-dataset and the PlantVillage-augmented datasets partitioned as reported in Table 2 and Table 3 respec-
tively, the STM32Cube.AI extension X-CUBE-AI v.7.1.0 4 to analyse the generated models, and the OpenMV firmware v.4.1.1 on
board.
4 https://www.st.com/en/embedded-software/x-cube-ai.html
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Table 3
Consistency of the PlantVillage-augmented dataset partition considered for training, validation and testing.

Category Training Samples 60% Validation Samples 15% Testing Samples 25% Total samples

Apple_scab 600 150 250 1000
Apple_black_rot 600 150 250 1000
Apple_cedar_apple_rust 600 150 250 1000
Apple_healthy 987 246 412 1645
Background_without_leaves 685 171 287 1143
Blueberry_healthy 901 225 376 1502
Cherry_powdery_mildew 631 157 264 1052
Cherry_healthy 600 150 250 1000
Corn_gray_leaf_spot 600 150 250 1000
Corn_common_rust 715 178 299 1192
Corn_northern_leaf_blight 600 150 250 1000
Corn_healthy 697 174 291 1162
Grape_black_rot 708 177 295 1180
Grape_black_measles 829 207 347 1383
Grape_leaf_blight 645 161 270 1076
Grape_healthy 600 150 250 1000
Orange_haunglongbing 3304 826 1377 5507
Peach_bacterial_spot 1378 344 575 2297
Peach_healthy 600 150 250 1000
Pepper_bacterial_spot 600 150 250 1000
Pepper_healthy 886 221 371 1478
Potato_early_blight 600 150 250 1000
Potato_late_blight 600 150 250 1000
Potato_healthy 600 150 250 1000
Raspberry_healthy 600 150 250 1000
Soybean_healthy 3054 763 1273 5090
Squash_powdery_mildew 1101 275 459 1835
Strawberry_leaf_scorch 665 166 250 1081
Strawberry_healthy 600 150 278 1028
Tomato_bacterial_spot 1276 319 532 2127
Tomato_early_blight 600 150 250 1000
Tomato_late_blight 1145 286 250 1681
Tomato_leaf_mold 600 150 444 1194
Tomato_septoria_leaf_spot 1062 265 420 1747
Tomato_spider_mites_two-spotted_spider_mite 1005 251 352 1608
Tomato_target_spot 842 210 1340 2392
Tomato_yellow_leaf_curl_virus 3214 803 399 4416
Tomato_mosaic_virus 600 150 250 1000
Tomato_healthy 954 238 478 1670

Total 36884 9213 15389 61486

Table 2
Consistency of the Esca dataset partition considered for training, validation and testing.

Category Training Samples 60% Validation Samples 15% Testing Samples 25% Total samples

esca 5328 1332 2220 8880
healthy 5292 1323 2205 8820

Total 10620 2655 4425 17700
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7.1. Datasets

ESCA-dataset: The ESCA-dataset [44] containing 1770 photographs of the leaves of healthy and infected plants was used
for the training, validation and testing of the CNN architecture. The sizes of the acquired images are 1920� 1080 and
1280� 720 pixels with random portrait and landscape orientation. To enhance the size and quality of training dataset a data
augmentation technique has been adopted, by using geometric transformations (horizontal and vertical flip, rotation, width
and height shift), color transformations (brightness, contrast, saturation, hue, gamma), plus other image manipulations like
zoom and blur. The classes and the consistency of the Esca dataset used in this experiment are reported in Table 2.
8
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PlantVillage-augmented dataset: The PlantVillage dataset [7] consists of 54303 healthy and unhealthy leaf images divided
into 38 categories by species and disease. The original dataset is not yet available from the original source 5, therefore it can
be downloaded from several well-known online repository, such as GitHub 6 and Kaggle 7. Moreover, an augmented version of
this dataset can be used directly by the plant_village struct embedded in TensorFlow 8 or can be downloaded from the
source Mendeley Data repository [26]. Particularly, the dataset in [26] has been presented by Geetharamani et al. in [25], where
the authors, starting from the original PlantVillage dataset, realize an augmented version of this dataset applying several data
augmentation techniques in order to improve classification performance and propose a simple nine-layer CNN specifically
designed for this dataset. Authors use six different data augmentation techniques for increasing the data-set size: image flip-
ping, Gamma correction, noise injection, PCA color augmentation, rotation, and scaling. In the final augmented data-set, 39 dif-
ferent classes of plant leaf and background images are available, for a total of 61486 images. In this work, the aforementioned
version of the PlantVillage dataset, which for simplicity will be called PlantVillage-augmented dataset, has been chosen and a
comparison with the simple CNN proposed by Geetharamani et al. has been performed, to validate the proposed approach. The
classes and the consistency of the PlantVillage-augmented dataset used in the experimentation are reported in Table 3.
7.2. CNN architecture

The starting CNN architecture is depicted in Fig. 3 and comprises 5 weight layers in total: it consists of 3 convolutional
layers each followed by a ReLU activation function and a max-pooling operation, and 2 fully-connected layers with a final
softmax classifier. A detailed description of this simple architecture is provided in Table 4. The network was trained for
30 epochs on the previously described ESCA-dataset and PlantVillage-augmented dataset with images of size 128� 128,
by using an Adadelta optimizer with categorical cross entropy, a learning rate of 0.5 and a batch size of 64.

Despite the high number of classes, the simple proposed network can be efficiently applied also to the Plant Village data-
set. Furthermore a pruning compression technique was applied to the proposed CNN in order to implement this network on
the OpenMV Cam H7 constrained-resource system, maintaining a good accuracy.
Fig. 3. Design TensorFlow of CNN architecture.
7.3. CNN pruning

The previously trained network was then compressed with a pruning method in order to reduce computational complex-
ity and to obtain acceptable values for storage cost and inference time on embedded platform.

A filter pruning technique was used with a similar approach as in [43]. For each layer the filters with the lowest total
norms were discarded by consequently pruning the corresponding input channels of the subsequent layer. The finetuning
was simply performed in a single step without freezing any layer.

Details about model compression and finetuning for Esca and Plant Village datasets can be found in Tables 5, 6. The final
pruned network architecture is described in Table 7.
5 https://plantvillage.psu.edu/
6 https://github.com/spMohanty/PlantVillage-Dataset
7 https://www.kaggle.com/emmarex/plantdisease
8 https://www.tensorflow.org/datasets/catalog/plant_village

9

https://plantvillage.psu.edu/
https://github.com/spMohanty/PlantVillage-Dataset
https://www.kaggle.com/emmarex/plantdisease
https://www.tensorflow.org/datasets/catalog/plant_village


Table 6
Details for the finetuning of the pruned models.

Esca dataset Plant Village dataset

pruning method l2 norm l1 norm
optimizer Adadelta Adadelta
learning rate 1.0 1.0
epochs 20 25

Table 5
Compression factors for the pruned models.

Esca dataset Plant Village dataset

conv_1 0.35 0.35
conv_2 0.5 0.5
conv_3 0.5 0.5
dense_1 0.9 0.9

Table 7
Pruned CNN architecture.

Type Filter shape Input size Number of parameters

conv_1 3� 3� 3� 5 128� 128� 3 140
relu_1 – 128� 128� 5 0

maxpool_1 (3� 3) – 128� 128� 5 0
conv_2 3� 3� 5� 16 42� 42� 5 736
relu_2 – 42� 42� 16 0

maxpool_2 (3� 3) – 42� 42� 16 0
conv_3 3� 3� 16� 32 14� 14� 16 4640
relu_3 – 14� 14� 32 0

maxpool_3 (2� 2) – 14� 14� 32 0
flatten – 7� 7� 32 0
dense_1 1568� 460 1� 1568 721740
relu_4 – 1� 460 0

dropout (0.5) – 1� 460 0
dense_2 460� 2=460� 39 � 1� 460 920=17979 �

softmax – 1� 2=1� 39 � 0

* Different number of parameters for the architecture applied to ESCA and PlantVillage-augmented dataset, since the dense layer depends on the number of
classes (2 and 39 classes respectively).

Table 4
CNN architecture in detail.

Type Filter shape Input size Number of parameters

conv_1 3� 3� 3� 16 128� 128� 3 448
relu_1 – 128� 128� 16 0

maxpool_1 (3� 3) – 128� 128� 16 0
conv_2 3� 3� 16� 32 42� 42� 16 4640
relu_2 – 42� 42� 32 0

maxpool_2 (3� 3) - 42� 42� 32 0
conv_3 3� 3� 32� 64 14� 14� 32 18496
relu_3 – 14� 14� 64 0

maxpool_3 (2� 2) – 14� 14� 64 0
flatten – 7� 7� 64 0
dense_1 3136� 512 1� 3136 1606144
relu_4 – 1� 512 0

dropout (0.5) – 1� 512 0
dense_2 512� 2=512� 39 � 1� 512 1026=20007 �

softmax – 1� 2=1� 39 � 0

* Different number of parameters for the architecture applied to ESCA and PlantVillage-augmented dataset, since the dense layer depends on the number of
classes (2 and 39 classes respectively).
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7.4. Results

To show the validity of the described models, firstly the performance achieved on PC has been considered and then the
model has been evaluated on the chosen embedded system, the OpenMV Cam H7 Plus.

Regarding the performance on PC, Table 8 and Table 9 report the results achieved by the initial and the pruned CNN in
terms of storage cost, number of parameters, testing accuracy, inference time, MACC (multiply-accumulate operation), ROM
Bytes and RAM Bytes, on ESCA and PlantVillage-augmented dataset respectively. Moreover, as reported in Table 10 and
Table 11, a detailed analysis of the implemented models has been performed using the STM32Cube.AI extension X-CUBE-
AI v.7.1.0. Specifically, MACC, ROM Bytes and RAM Bytes have been computed using the X-CUBE-AI to analyse the models
using in the terminal the following command:

� $> stm32ai analyze -m $model_name.$ext --allocate-inputs --allocate-outputs -o $destination_dir

where $model_name is the name of the model to analyze, $ext the extension of the file (h5 or tflite) and $destina-
tion_dir is the destination directory chosen to save the log file.

Regarding the performance on board Table 12 and Table 13 report the results achieved for testing accuracy, inference
time and frame per second (FPS), on ESCA and PlantVillage-augmented dataset respectively.

As you can see, the pruned model preserves a high accuracy for both binary and multi-class classification.
Table 8
Model performance on PC — ESCA-dataset.

Model type Input size Memory cost [KB] Test accuracy ½%� Inference time ½ms/img�
CNN h5 128 � 128 19164.75 97.88 53.22

tflite 128 � 128 1602.555 97.90 75.45
Pruned CNN h5 128 � 128 5739.289 97.79 51.95

tflite 128 � 128 718.961 97.69 19.94

Table 9
Model performance on PC — PlantVillage-augmented dataset.

Model type Input size Memory cost ½KB� Test accuracy ½%� Inference time ½ms/img�
CNN h5 128 � 128 19386.688 96.52 52.93

tflite 128 � 128 1621.195 96.50 78.67
Pruned CNN h5 128 � 128 8786.457 95.87 44.44

tflite 128 � 128 735.727 95.72 22.70

Table 10
Details of the model analyzed with X-CUBE-AI — ESCA-dataset.

Model type Parameters number MACC ROM Bytes RAM Bytes

CNN h5 1630754 21081040 6523016 334088
tflite 1630754 20749400 1632632 88515

Pruned CNN h5 728178 5338585 2912712 242000
tflite 728178 5221717 729724 62315

Table 11
Details of the model analyzed with X-CUBE-AI — PlantVillage-augmented dataset.

Model type Parameters number MACC ROM Bytes RAM Bytes

CNN h5 1649735 21100576 6598940 334236
tflite 1649735 20769084 1651724 88552

Pruned CNN h5 745235 5356197 2980940 242148
tflite 745235 5239477 746892 62352

Table 12
Model performance on OpemMV Cam H7 Plus — ESCA-dataset.

Model type Input size Test accuracy ½%� Inference time ½ms/img� FPS

CNN tflite 128 � 128 98.40 276.404 3.61
Pruned CNN 128 � 128 98.10 122.969 8.13
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Table 13
Model performance on OpemMV Cam H7 Plus — PlantVillage-augmented dataset.

Model type Input size Test accuracy ½%� Inference time ½ms/img� FPS

CNN tflite 128 � 128 96:24 283.30 3.52
Pruned CNN 128 � 128 95.24 125:63 7:95
Geetharamani et al. [25] tflite 128 � 128 94.34 270.61 3.69
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Meanwhile a considerable reduction is obtained for storage cost, inference time and FPS for the tflite models imple-
mented on the OpenMV Cam thus obtaining a suitable model for embedded platform applications.

In addition, a comparison with a state-of-the-art lightweight CNN for plant disease recognition by Geetharamani et al.
[25] has been shown in Table 13, showing the better performance achieved by the proposed pruned CNN in terms of accu-
racy and inference time.

A further experimentation has been conducted by testing the models trained on the CNNs trained on ESCA and
PlantVillage-augmented dataset on a different testing set realized following the procedure of Mohanty et al. [4]. In this work,
in order to assess the performance of the model on a ‘‘real world” data set, the authors downloaded images from Bing Image
performing a search with the query ‘‘fcrop and disease nameg leaf leaves”, where fcrop and disease nameg was replaced by
the crop and disease name pairs given for each of the PlantVillage dataset classes. Following this procedure, firstly a research
on Bing Image (on July 4, 2022) has been conducted to download the top 10 images for each class (2 classes for ESCA and 39
for PlantVillage-augmented models) and then a visual verification step has been made to verify that the image was by a rep-
utable source and that it was showing leaves in approximately the same configuration. The final testing set so realized con-
sists of 20 and 390 images to test the Esca leaf disease and the plant leaf diseases through the models trained on ESCA and
PlantVillage-augmented dataset (both pruned and not pruned). Authors show that this test leads to an accuracy drop from
99.34% to about 31.69%, using the best model trained on PlantVillage dataset. This is reasonable since the PlantVillage data-
set contains images collected in a controlled environment unlike the new images that contains different background, such as
fruits and stems. Also in the proposed work, the accuracy drops from 96.24% to 36.41% with the not-pruned CNN and from
95.24% to 30.51% with the pruned CNN, both tested on 39 classes, testing the models on OpenMV H7 Cam board. However,
the achieved accuracy is better than that obtained using the model Geetharamani et al. [25] with this testing set: 27.69%. The
experimental results show that the proposed models trained on ESCA-dataset reaches a lower accuracy drop: from 98.40% to
51.00% with the original CNN and from 98.10% to 50.00% with the pruned CNN, both tested on 2 classes and with the models
embedded on board. In this case the drop is mitigated by the fact that, unlike the PlantVillage-augmented dataset, the ESCA-
dataset contains images that has been directly taken in-place by different cameras with various resolutions, considering
multiple lighting brightness, different sides and backgrounds, i.e. including not only single healthy/infected leaf but also
groups of leaves and other parts of the plant, such as stems. Future works regard the improvement of this aspect in order
to deploy the CNN-based plant leaf diseases detector in real scenarios without loss in accuracy.
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