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Abstract

We study the problem of detecting and counting simultaneous, overlapping
speakers in a multichannel, distant-microphone scenario. Focusing on a super-
vised learning approach, we treat Voice Activity Detection (VAD), Overlapped
Speech Detection (OSD), joint VAD and OSD (VAD+OSD) and speaker count-
ing in a unified way, as instances of a general Overlapped Speech Detection and
Counting (OSDC) multi-class supervised learning problem. We introduce two
new Temporal Convolutional Network (TCN) and Transformer based architec-
tures for this task, and compare them with previously proposed state-of-the art
methods based on Recurrent Neural Networks (RNN) or hybrid Convolutional-
Recurrent Neural Networks (CRNN). In addition, we propose ways of exploiting
multichannel input by means of early or late fusion of single-channel features
with spatial features extracted from one or more microphone pairs. We con-
duct an extensive experimental evaluation on the AMI and CHiME-6 datasets
and on a purposely made multichannel synthetic dataset. We show that the
Transformer-based architecture performs best among all architectures and that
neural network based spatial localization features outperform signal-based spa-
tial features and significantly improve performance compared to single-channel
features only. Finally, we find that training with a speaker counting objective
improves OSD compared to training with a VAD+OSD objective.
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1. Introduction

1.1. Motivation

In spontaneous human conversations different speakers tend to overlap with
each other and, in meeting scenarios with more than two participants, the
amount of overlapped speech can account for a significant portion of the total5

speech time, usually between 10% and 20% (McCowan et al., 2005; Watanabe
et al., 2020). This phenomenon is one of the main obstacles towards fully reliable
multi-party speech diarization (Ryant et al., 2018; Garćıa-Perera et al., 2020)
and recognition (Watanabe et al., 2017; Vincent et al., 2018; Haeb-Umbach
et al., 2019). In fact, most current techniques for speech recognition and di-10

arization are not designed to deal directly with overlapped speech. As a result,
their performance can degrade significantly in such conditions.

For this reason, Overlapped Speech Detection (OSD) is crucial to prevent
back-end task performance degradation. This can be accomplished by includ-
ing a reliable OSD algorithm together with Voice Activity Detection (VAD) in15

the very front-end part of the pipeline, possibly followed by speech separation
(Garćıa-Perera et al., 2020; Watanabe et al., 2020). Speaker counting (Stöter
et al., 2019) is a closely related task, which can be seen as an extension of
VAD+OSD. Instead of merely identifying when there is speech and overlapped
speech, speaker counting aims to directly estimate the actual number of con-20

current speakers. This additional information further helps back-end tasks such
as speech separation and diarization. The accuracy of OSD, VAD and speaker
counting algorithms is critical, as errors can propagate to the subsequent pro-
cessing blocks, severely impacting, for example, speech recognition performance
when speech segments are missed (Tong et al., 2014).25

1.2. Related works

The research towards reliable OSD spans more than one decade, with the
first systems relying on handcrafted features and classical machine-learning
approaches. Most of these early studies focused on Gaussian Mixture Model
(GMM) or Hidden Markov Model (HMM) based classifiers (Boakye et al., 2011;30

Vipperla et al., 2012; Charlet et al., 2013; Yella and Bourlard, 2014; Lee et al.,
2016) with the exception of Geiger et al. (2013) who showed a Long-Short Term
Memory (LSTM) neural network to outperform a GMM-HMM system. Boakye
et al. (2011), Vipperla et al. (2012), and Yella and Bourlard (2014) reported a
substantial reduction of the Diarization Error Rate (DER) on the AMI meeting35

corpus (Carletta et al., 2005) by removing overlapped speech segments from the
segment clustering phase and performing overlap attribution afterwards.

When multiple microphone channels are available, speaker counting can be
performed by clustering interchannel features (Drude et al., 2014; Pasha et al.,
2017) or explicitly localizing the speakers in space (Brutti et al., 2010; Pavlidi40

et al., 2012), both in the single-array and multiple-array scenarios. Single-
channel speaker counting is more challenging, with early works focusing on
handcrafted features such as the modulation index (Arai, 2003), the mean and
variance of the 7th Mel filter (Ouamour et al., 2008) or the cosine similarity
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between Mel Frequency Cepstrum Coefficient (MFCC) feature vectors along45

with pitch (Xu et al., 2013). More recently, Andrei et al. (2015) estimated
the number of speakers by computing the distance between the mixture and a
reference single-speaker utterance in the magnitude spectral domain.

CountNet (Stöter et al., 2019) marked a significant departure from these pre-
vious works by showing that a neural network can be trained to perform speaker50

counting without relying on handcrafted features, and it can even outperform
humans. Andrei et al. (2019) also showed that a neural network based speaker
counting algorithm can defeat human ability especially when more than three
speakers are active. Kanda et al. (2020) took a different direction: they trained
a neural network to perform joint speaker counting, speech recognition and55

speaker identification in a fully end-to-end fashion. In all these works, synthetic
mixtures are employed for both training and testing and, crucially, the datasets
are designed with balanced proportions of single-speaker speech, two-speaker
overlapped speech, three-speaker overlapped speech, and so on. This does not
match the characteristics of real-world datasets where single-speaker speech is60

more frequent than two-speaker overlapped speech, which is itself much more
frequent than three-speaker overlapped speech.

Regarding OSD, Andrei et al. (2017) and Sajjan et al. (2018) recently showed
that deep neural networks significantly outperform classical machine-learning
approaches for this task too. Notably, Sajjan et al. (2018) evaluated four net-65

work architectures for joint VAD and OSD (VAD+OSD): a feedforward net-
work, a 2-D convolutional network, a recurrent LSTM network and a hybrid
2-D convolutional-LSTM network. They showed that these approaches surpass
a baseline GMM-based method on both synthetic data and AMI distant-speech
data, that the LSTM-based approach performs best, and that it significantly70

improves diarization results. More recently Kunešová et al. (2019) and Bullock
et al. (2020) reported impressive OSD performance in near-field conditions, with
Bullock et al. (2020) reporting up to 20% relative Diarization Error Rate (DER)
reduction on the AMI headset mix. In another vein, Málek and Žďánskỳ (2020)
addressed VAD+OSD by employing simple classifiers on top of pre-trained x-75

vector speaker embeddings (Snyder et al., 2018) and evaluated them on synthetic
data corrupted by noise and artificial reverberation.

1.3. Our contribution

In this article, we unify VAD, OSD, joint VAD+OSD, and speaker counting
as instances of a general Overlapped Speech Detection and Counting (OSDC)80

supervised classification task. We introduce two new TCN (Bai et al., 2018) and
Transformer (Vaswani et al., 2017) based architectures for this task, compare
them with the LSTM-based architecture of Sajjan et al. (2018) and CountNet,
and present an in-depth study of their computational efficiency. In addition,
we explore the use of spatial features to aid VAD+OSD and speaker count-85

ing. As mentioned above, a number of works have shown that spatial features
can be used for counting (Drude et al., 2014; Pasha et al., 2017; Brutti et al.,
2010; Pavlidi et al., 2012) and VAD (Vecchiotti et al., 2019b). However, to our
knowledge, no study has yet been performed where spatial features are used in
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conjunction with deep neural networks to tackle OSD and speaker counting di-90

rectly. We perform an extensive experimental evaluation using a purposely made
multichannel synthetic dataset and two real-world, multi-microphone, distant-
speech datasets: AMI (McCowan et al., 2005) and CHiME-6 (Watanabe et al.,
2020). This article significantly extends and improves upon our preliminary
study (Cornell et al., 2020), which did not include the Transformer-based archi-95

tecture, was restricted to single-channel input and a single type of single-channel
features, did not analyze the results as a function of speaker distance or angle,
and did not report computational efficiency.

In detail, we first evaluate the different architectures on AMI and CHiME-6
for both VAD+OSD and speaker counting, considering single-channel features100

only for the sake of comparison with Sajjan et al. (2018) and Cornell et al.
(2020). We show that the proposed Transformer-based network, despite hav-
ing the lowest computational footprint, achieves the best performance on all
tasks. We then study how its real-world performance can be further improved
by adding spatial features. We examine different such features, including clas-105

sical interchannel features and neural network based localization features. Also
suitable early fusion and late fusion schemes for combining single-channel spec-
tral features and spatial features are compared. The synthetic dataset is used
to further study and validate our findings in a controlled environment where
oracle speaker locations are known. For the sake of reproducibility, the code110

used to perform the experiments and to generate the synthetic dataset is made
publicly available.1

The remainder of this paper is structured as follows. In Section 2, we ex-
plain the multi-class classification framework adopted through this work for
supervised VAD+OSD and speaker counting. Section 3 presents the proposed115

and existing neural architectures and Section 4 introduces the spatial features
we explore for this purpose. Then, in Section 5, we describe the datasets used
for the experiments and, in Section 6, we report and discuss our extensive ex-
perimental evaluation, including the comparison of computational requirements
and the results achieved by single-channel and multichannel systems. Finally,120

in Section 7, we summarize the results obtained, draw conclusions and outline
possible future work directions.

2. Overlapped Speech Detection and Counting Framework

In this work, we treat supervised VAD, OSD, VAD+OSD, and speaker count-
ing in a unified way, as special instances of a general OSDC task. This task can125

be formulated as a multi-class supervised sequence labelling problem, with a dif-
ferent number of classes for VAD, OSD, joint VAD+OSD, and speaker counting.

We consider a parametric model F(X;θ) which takes as input a sequence
of frame-level feature vectors X = {x1,x2, . . . ,xm} and outputs a sequence of
class posterior probabilities. We assume that the model may perform internal130

1github.com/popcornell/OSDC
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subsampling, i.e., one output frame is provided every K input frames. This is
because frame-level estimation is unnecessary for most speech segmentation ap-
plications and, by employing subsampling operations, the computational burden
can be reduced.

In the supervised setting, we are given the ground-truth class label sequence135

y = {y1, y2, . . . , yl} of length l ≤ m, and we wish to estimate the optimal model

parameters θ̂ according to a certain criterion. As in this paper we focus on
neural approaches, the optimal model parameters are estimated on a suitable
training set composed of N pairs of input feature sequences and corresponding
class label sequences T = {(X1,y1), . . . (XN,yN)} by using Stochastic Gradient140

Descent (SGD) to minimize the cross-entropy loss between the estimated frame-
level posterior probabilities and the true class distribution.

In this framework, VAD and OSD can be treated either separately as binary
classification tasks (speech vs. non-speech, overlap vs. non-overlap), or jointly as
a three-class (non-speech, single speaker, overlapped speech) problem. Similarly,145

speaker counting can be formulated as an C-class classification task where C
is equal to the maximum possible number of overlapping speakers plus one.
While this approach is not the only one for supervised speaker counting, it has
been found to be the most effective (Stöter et al., 2019), provided the maximum
possible number of concurrent speakers is known.150

3. Neural Architectures for OSDC

We consider four neural network architectures for tackling the OSDC task.

3.1. Long-Short Term Memory (LSTM)

The first one is the best neural network for joint VAD+OSD among the ones
examined by Sajjan et al. (2018) which, to our knowledge and with the excep-155

tion of our preliminary work (Cornell et al., 2020), achieves the best reported
performance on AMI single-channel distant-speech data.

It consists of an unidirectional LSTM layer with a hidden size of 512 neurons,
followed by 3 dense layers with 1024, 512 and 256 neurons, respectively. A final
256 × N pointwise convolutional layer along with softmax is used to output160

the probability of each frame belonging to one of the N classes (e.g., N = 3 for
VAD+OSD). This network features a total of 2 million parameters and generates
one output vector for every input frame given a context of 11 frames (current
frame plus 5 past and 5 future frames).

As the original architecture lacked any normalization technique, in our ex-165

periments we added batch normalization (Ioffe and Szegedy, 2015) before each
dense layer activation as well as layer normalization (Ba et al., 2016) on the
input features. This, coupled with data-augmentation, allows us to improve
performance over the original network as it will be shown in Section 6.5.
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3.2. Hybrid Convolutional-Recurrent Neural Network170

We also consider the best CountNet architecture among the 5 different net-
works compared by Stöter et al. (2019). This network is a hybrid Convolutional-
Recurrent Neural Network (CRNN) , composed of a 2-D Convolutional Neural
Network (CNN) block followed by an RNN block. The main idea behind this
architecture is that the CNN extracts a local representation of the input features175

while the RNN deals with long-term temporal modelling, thus combining the
advantages of both CNNs and RNNs.

Input features of shape F ×T are fed to the CNN which is composed of two
blocks, each composed of two 2-D convolutional layers with kernel size 3 × 3
followed by ReLU activation and a 3 × 3 max-pooling subsampling operation.180

A total of 4 convolutional layers is thus employed with 64, 32, 128 and again 64
channels, respectively. Dropout (Srivastava et al., 2014) is applied on the output
of the CNN and the representation is fed to an LSTM layer with a hidden size
of 40. As an LSTM operates on 2-D sequences while the output of the CNN
is a 3D tensor with channel, frequency, and time dimensions, a 2-D sequence is185

obtained by stacking the frequency dimension onto the channel dimension.
Stöter et al. (2019) performed an additional max-pooling operation on the

whole time dimension in order to output a single prediction for the entire input
because they aimed to count the maximum number of speakers in the whole
sequence. Here, as explained in Section 2, we are interested in estimating the190

number of speakers in each time frame instead so we omit this final pooling
layer. In this way, the network generates one output vector for every 6 feature
vectors in input. As this architecture also originally lacked any normalization
strategy, we added batch normalization after each convolutional layer and layer
normalization at the input.195

3.3. Temporal Convolutional Network

In addition to the above two state-of-the-art architectures, we propose a TCN
architecture for the OSDC task. This type of architecture has been shown to
achieve state-of-the-art performance in many sequence-related tasks (Bai et al.,
2018) and for source separation (Luo and Mesgarani, 2019).200

TCNs rely on multiple stacked dilated convolutional layers whose dilation
factor increases progressively as depth increases. This makes it possible to
greatly expand the receptive field, such that upper layers can have access to long-
term contextual information without any pooling operation. This in turn allows
TCNs to outperform recurrent models in some tasks (Bai et al., 2018). In fact,205

because they are based only on convolutional operations, TCNs have several
benefits with respect to RNNs. First, being feedforward, they are not affected
by the vanishing gradient problem which plagues RNNs, as skip-connections
and residual connections can be used to backpropagate the gradient unscathed
down to the very first layers. Second, in RNNs the information about the past210

must be contained in the hidden state. This makes it difficult to learn very long-
term dependencies as all relevant information about the past must be squeezed
into this finite-sized representation. On the contrary, TCNs process the whole
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sequence and, because no downsampling is performed, the information at all
steps is preserved in all layers. Finally, as no recurrent operations are employed,215

TCNs are significantly faster than recurrent models in both the training and
inference phases. However, the fact that the representation is not pooled leads
TCNs to have large memory requirements in general, especially if a very wide
receptive field is desired.

The architecture we employ here (Cornell et al., 2020) is depicted in Fig.220

1. It is inspired from MobileNet (Howard et al., 2017) and Conv-TasNet (Luo
and Mesgarani, 2019). Input frame-level feature vectors of size F (e.g., logmel
filterbanks) are fed to a layer normalization (Ba et al., 2016) layer followed
by an F × 64 1D pointwise convolutional layer (denoted as conv 1x1 ) and by
R = 3 blocks of X = 5 residual blocks (res blocks) with 1D dilated convolu-225

tions, where the dilation factor increases in each block as 20, 21, . . . , 2X−1. Each
residual block consists of a 64 × 128 pointwise convolutional layer followed by
batch normalization and activation, a dilated depthwise separable 128×128 con-
volutional layer (d-conv) followed by batch normalization and activation, and
another 128× 64 pointwise convolution which squeezes the representation back230

so that it can be summed with the input. We use PReLU (He et al., 2015) as
the activation function in all residual blocks and a kernel size of 3 in depthwise
dilated convolutions.

Figure 1: Proposed TCN architecture for the OSDC task.

3.4. Transformer

Finally, we propose a Transformer-based architecture for OSDC. Transform-235

ers, which were originally proposed by Vaswani et al. (2017) for natural language
processing applications, are pure attention-based models which have been shown
recently to achieve state-of-the-art performance in many speech processing tasks.
They have several advantages over recurrent models, including faster inference
speed and better modeling of long-term dependencies. Being feedforward mod-240

els, the whole sequence is attended at once, eliminating any recurrence and any
need for an internal hidden state to keep track of past elements. For this reason,
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they exhibit the same advantages as TCNs over RNNs, even if their inherent
functioning is significantly different. Similarly to TCNs and while being much
faster than RNNs, Transformers also have higher memory requirements, due to245

the fact that the attention mechanism grows as O(n2) in memory with n the
length of the input sequence.

Our Transformer-based architecture is depicted in Figure 2 and, as it can be
seen, has some input and output blocks in common with the previously described
TCN network. To counter the quadratical memory growth induced by the at-250

tention mechanism, we adopt a concatenate-subsample (cat-pool) operation over
the input feature vectors. For each frame, we concatenate the feature vectors
from C past frames and C future frames with the current one. Afterwards, we
subsample this representation on the frame axis by a factor of S. In this way,
the information contained in the temporal dimension is effectively transferred to255

the feature dimension with a resampling factor of C/S the original rate. This
concatenated and pooled representation is then fed to a layer normalization
layer followed by a pointwise convolutional layer (conv 1x1 ) which shrinks the
representation to a predefined size H to reduce the memory requirements of
subsequent blocks, allowing us to process longer sequences or, alternatively, to260

reduce the computational footprint of the model as it will be shown in Section
6.4. Sinusoidal positional encoding is added right after this bottleneck convo-
lutional layer and the result is fed to a succession of R Transformer Encoder
blocks, each composed of two residual sub-blocks.

Figure 2: Proposed Transformer architecture for the OSDC task.

The structure of each Transformer Encoder block is identical to the one pro-265

posed by Vaswani et al. (2017) with the exception that, in our architecture, layer
normalization is performed at the beginning of each residual block rather than
in the end. Indeed, Nguyen and Salazar (2019) recently found that this results
in better performance as well as faster convergence. The first residual block
consists of a normalization layer followed by a Multi-Head Attention (MHA)270

layer and dropout. The second one consists of a normalization layer followed
by a position-wise feedforward neural network (FFN) composed of one dense
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layer,2 a ReLU activation followed by dropout, and another dense layer which
projects the hidden representation back. As in the TCN model, a final H ×N
pointwise convolutional layer followed by softmax is used at the output.275

4. Spatial Features and Feature Fusion Schemes for OSDC

Intuitively, spatial features can help VAD, OSD and speaker counting. For
example, OSD and speaker counting can benefit from knowing whether the
sound comes from one or more Directions of Arrival (DoAs). VAD can also
benefit from spatial features to distinguish speech, which is usually directional,280

from noise, which is spatially diffuse.
In fact, as mentioned in Section 1.2, many works have tackled speaker count-

ing by framing it as a localization problem. These works resort to DoA esti-
mation methods based on generalized cross-correlation with phase transform
(GCC-PHAT) (Knapp and Carter, 1976) as in (Brutti et al., 2010; Drude et al.,285

2014), magnitude-squared coherence (MSC) (Pasha et al., 2017) or simple cross-
power spectrum (Pavlidi et al., 2012; Walter et al., 2015). The speaker number is
estimated via a direct approach such as in (Brutti et al., 2010) by counting peaks
in GCC-PHAT based acoustic maps or by clustering methods, where speaker
clusters are identified by iterative grouping of complex-valued time-frequency290

coefficients (Drude et al., 2014), magnitude squared coherence feature vectors
(Pasha et al., 2017), or DoAs estimated over single-source time-frequency zones
(Pavlidi et al., 2012) or individual time-frequency bins (Walter et al., 2015).

Recently, a series of works have proven that neural network based localiza-
tion is more robust than signal-based methods in reverberant and noisy envi-295

ronments. In these works, a neural network is trained to estimate the DoA on
a synthetic dataset for which the true position of the sources is known. Input
features include GCC-PHAT (Xiao et al., 2015), cosine-sine interchannel phase
difference (CSIPD) features (Sivasankaran et al., 2020), the phase spectra of
all channels (phasemap) (Chakrabarty and Habets, 2017), the magnitude and300

phase spectra (Adavanne et al., 2018), or the raw waveform (Vecchiotti et al.,
2019a).

4.1. Signal-based Spatial Features

In this paper, for what concerns signal-based spatial features, we explore the
interchannel phase difference (IPD) and CSIPD, as they have been shown in the305

aforementioned works to work well in reverberant and noisy environments. In
particular, our choice of IPD instead of phasemap is justified by the fact that,
both in AMI and CHiME-6, microphones are close to each other and thus some
microphone pairs can be discarded as they do not add much spatial diversity at
16 kHz. On AMI, we consider only those pairs of microphones with maximal310

distance from each other, i.e., the 4 pairs formed by opposite microphones in

2Note that dense layers are equivalent to conv 1x1.
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each circular array instead of all 28 possible pairs. On CHiME-6, due to the
asymmetrical placement of microphones in Kinect devices, we consider the 3
pairs formed by channels 1 and 4, channels 2 and 4, and channels 3 and 4.
The IPD or CSIPD features of all pairs are then concatenated together over315

the frequency dimension. Thus, in these contexts, using interchannel features
allows us to reduce the feature size with respect to the phasemap and hence
save computational resources with practically no loss in spatial information.

IPD and CSIPD features are tightly related and derive from the phase spec-
trum. Denoting by xi(n, f) and xj(n, f) the STFT of the i-th and j-th micro-
phone signals, where n and f are respectively the frame and frequency index,
the IPD φi,j(n, f) between channel i and j is given by

φi,j(n, f) = 6 xi(n, f)− 6 xj(n, f), (1)

where 6 (.) is the function returning the phase from the input complex value.
The IPD feature vector in time frame n is then defined as

IPD(n) = [φi,j(n, 0), φi,j(n, 1), . . . , φi,j (n, F/2)]
T
, (2)

with F the FFT size. The CSIPD feature vector in time frame n can be ob-
tained directly from the IPD feature vector and is another way of encoding the
information contained in it by using its cosine and sine values:

CSIPD(n) = [cosφi,j(n, 0), sinφi,j(n, 0), . . . , sinφi,j (n, F/2)]
T
. (3)

An important property of CSIPD is that the GCC-PHAT angular spectrum
for a given microphone pair (or the SRP-PHAT spectrum when there are 3 or320

more microphones and all pairs are considered) can be expressed as a linear
transformation of the CSIPD feature vector (Sivasankaran, 2020). When these
features are to be input to a neural network model, there is therefore no benefit
in using the GCC-PHAT or SRP-PHAT angular spectra as inputs instead, since
this linear transformation can be learned by the neural network itself. This was325

confirmed by our experiments, so we do not report results obtained with GCC-
PHAT or SRP-PHAT features in the following.

4.2. Neural Network-based Localization Features

As an alternative, we also consider the strategy of training a neural network
to estimate the DoAs of multiple overlapped speakers on a suitable synthetic330

dataset for which the true DoAs are known. The embeddings extracted by
some intermediate layer of this network can then be used as “higher-level”, pos-
sibly more robust spatial features to be employed in the OSDC system. In this
work, we adopt the multi-speaker localization method of Chakrabarty and Ha-
bets (2017), where the space of DoAs is discretized and the neural network is335

trained to estimate the posterior probability that a speaker is active for each
discrete DoA by minimizing the sum of binary cross-entropies across all dis-
crete DoAs. Binary cross-entropy is used as the cost function since multiple
concurrent speakers with different DoAs can be active at the same time.
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In detail, even for localization, we use the networks outlined in Section 3340

by modifying the output layer which is replaced with mean pooling over the se-
quence dimension and a new linear layer with output size D followed by sigmoid
activation, where D is the number of discrete DoAs considered. The network
representation before the mean pooling operation is then employed as a spatial
feature vector for OSDC systems.345

One advantage of neural network-based features over signal-based features
is that joint fine-tuning of the two networks can be performed, thus optimizing
the localization feature extraction network for OSDC applications. However, it
must be noted that the computational footprint significantly increases by using
neural network based features. Also, the fact that true source DoAs are needed350

for training necessitates the use of a synthetic training dataset, which can be
mismatched with real-world data.

4.3. Fusion schemes

Spatial features are not sufficient for reliable OSDC when used alone. For
example, directional noise sources may sometimes be confused with speech, or355

concurrent speakers can have the same DoA. They must hence be combined
with single-channel spectral features, such as LogMel spectra. We consider two
different fusion schemes for this combination, which we call early and late fusion.

These fusion schemes are illustrated in Figure 3 for the Transformer-based
network. In early fusion, the two features are stacked together in the very first360

layer of the neural network. Layer normalization on spatial features is performed
separately prior to concatenation. In late fusion, after layer normalization, the
spatial features are injected before each Transformer Encoder Block (TE Block),
using Feature-wise Linear Modulation FiLM (Perez et al., 2018). In this way,
each block of the architecture can focus on a different aspect of the input spatial365

features since they are available even in deeper layers. As the spatial and single-
channel features are concatenated together in early fusion, they must have same
temporal length. Thus, for proposed Transformer network we employ the same
cat-pool operation also on spatial features prior to concatenation. The same
argument applies also for late fusion where instead spatial features are used to370

modulate activations at multiple layers.

5. Datasets

We conduct experiments on two real-world multi-microphone datasets: AMI
and CHiME-6. Moreover, we also use a synthetic dataset to further study, in a
controlled situation, the use of spatial features to improve the performance of375

OSDC systems.

5.1. Synthetic Dataset

We simulate multi-speaker mixtures captured by a single microphone array.
Clean speech utterances are taken from Librispeech (Panayotov et al., 2015)
train-clean-100 for training, dev-clean for validation, and test-clean for test.380
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Figure 3: Fusion strategies for single-channel features and spatial features for the proposed
Transformer architecture: a) early fusion, b) late fusion. TE stands for Transformer Encoder.

The Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) is used to split
these original Librispeech utterances in order to obtain shorter “sub-utterances”
for each speaker. This splitting is performed whenever pauses of more than 150
ms are encountered. MFA is also used, in parallel, to obtain ground truth
word-level speaker activity. For each mixture, we sample from 1 to 4 different385

speakers, and, for each speaker one clean speech sub-utterance is sampled. The
starting time of each speaker sub-utterance is sampled independently from an
exponential distribution. In this way, by varying the decay rate parameter,
the amount of overlap between the speakers and the amount of silence can
be controlled. A different acoustic scenario is sampled for each mixture. We390

simulate a rectangular room whose size is varied between 10 and 60 m2. The
position of each speaker is chosen randomly inside the room but with some
constraints. Namely, the speakers cannot be less than 0.5 m from each other and
from the walls. We consider a 4-microphone linear array placed randomly with
respect to the walls, whose height with respect to the floor can vary between395

1.7 and 2 m and whose distance to the closest wall is larger than a minimal
distance which is varied between 10 and 30 cm. We use the gpuRIR (Diaz-
Guerra et al., 2018) toolkit for room simulation with a T60 reverberation time
uniformly sampled between 0.2 and 0.6 s. Anechoic noise from Furnon et al.
(2020) is also employed to make the dataset more realistic. The positions of noise400

sources inside the room are selected with the same criteria as the speakers’ ones.
The whole synthetic dataset consists of a total of 10 k mixtures for training, 2 k
for validation and 2 k for test.

5.2. AMI

The AMI Corpus (McCowan et al., 2005) is over 100 h of meeting recordings.405

Each meeting has been recorded by a variety of devices including cameras,
microphone arrays, and per-speaker headset and lapel microphones and has
from 3 to 5 participants. Ground truth speaker activity was obtained by human
annotators from close-talk speaker-worn microphones while distant speech was
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recorded by two 8-microphone circular arrays, each with a 10 cm diameter: one410

placed at the end and another at the centre of the meeting table used by the
participants.

5.3. CHiME-6

The CHiME-6 corpus comprises dinner party recordings. The recordings are
divided into 20 sessions for a total of more than 60 h of data. In each session, 4415

speakers are recorded in a real home environment consisting of different rooms.
Due to the particular setting, it features conversational speech and low Signal-
to-Noise Ratio (SNR). Recordings from binaural microphones worn by each
speaker are provided along with distant speech captured by 6 array devices with
4 microphones each for a total of 24 microphones. Two different annotations420

are provided for the start and end time of every utterance: looser ones geared
towards Automatic Speech Recognition (ASR) and tighter ones obtained via
forced-alignment. The latter ones are more suitable for evaluating VAD and
diarization systems and we use them in the following.

6. Experimental Results425

In the following, we evaluate the neural architectures in Section 3 and the
spatial features and feature fusion schemes in Section 4 on the datasets de-
scribed in Section 5. Firstly, in Section 6.1, we define and motivate the chosen
performance metric. In Section 6.2, we outline the training and testing proce-
dure adopted in our experiments and, in Section 6.3, we highlight the impact430

of different choices of hyperparameters and single-channel input features for the
Transformer-based architecture. Then, in Section 6.4, we provide an analysis
of the computational footprint of the four considered neural architectures when
applied to single-channel data and, in Section 6.5, we report their OSDC per-
formance on AMI and CHiME-6. Finally, in Section 6.6, we assess the impact435

of spatial features on the best single-channel system: we explore different spa-
tial features, fusion schemes and number of microphone pairs, and evaluate the
results on AMI, CHiME-6 and the proposed synthetic dataset.

6.1. Evaluation Metric

On real-world data, VAD, OSD and speaker counting tasks are affected by440

class imbalance. This imbalance, which arises from intrinsic characteristics of
human conversations, can be more or less severe depending on the context. This
can be seen in Table 1, which reports the class statistics on AMI and CHiME-6
for the counting task.3 Due to its informal, “cocktail-party” scenario, the CHi-
ME-6 dataset exhibits a slightly higher proportion of overlapped speech than445

the AMI dataset, which consists of meetings. Nevertheless, in both datasets,
the proportion of 4-speaker and 3-speaker overlap is very small. The imbalance

3We disregard the 5-speaker overlap class on AMI since it does not occur in practice.
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is less severe for VAD and OSD tasks but, even for these, the choice of the
evaluation metric can be crucial.

Table 1: Frame-level class frequency (%) for the speaker counting task on the AMI and CHi-
ME-6 development and evaluation sets.

Class frequency 0-spk 1-spk 2-spk 3-spk 4-spk

AMI
dev 15.87 67.17 13.95 2.59 0.42
eval 15.12 68.39 12.63 3.1 0.76

CHiME-6
dev 24.07 54.25 17.74 3.49 0.46
eval 33.48 51.52 12.02 2.46 0.51

We argue that metrics such as accuracy and precision-recall, as used respec-450

tively by Sajjan et al. (2018) and by Kunešová et al. (2019) and Bullock et al.
(2020), do not provide a fair evaluation of OSDC algorithms on real-world data
due to this fundamental imbalance. For example, concerning OSD on the AMI
evaluation set, an accuracy of 83.7% can be reached by labeling all the material
as no-overlap. In this scenario, precision and recall are a better choice than ac-455

curacy. However, similarly to accuracy, their value depends on the choice of the
detection threshold which can be application-specific (e.g., a different threshold
for diarization and speech recognition is often desirable). This does not allow
for a fair comparison between different OSDC algorithms.

For these reasons, we propose the use of Average Precision (AP) metric460

which summarizes the precision-recall curve and is widely used, for example,
in object segmentation (Lin et al., 2014), information retrieval (Kishida, 2005)
and other tasks exhibiting strong class imbalance. The AP has the advantage
that it does not depend on a particular threshold, making it both more robust
to imbalanced data and more suitable for comparison purposes.465

In all experiments, AP scores are computed on 10 ms time frames.4 Unless
stated otherwise, in each Table, we highlight in bold font the best result and
the ones which are statistically equivalent to it (if any) with p = 0.001. Because
we found the distribution of the AP metric to be highly nongaussian, we use
the Wilcoxon-Signed Rank non-parametric test (Demšar, 2006).470

6.2. Training and Testing Procedure

In the following experiments, we use the exact same training and testing
procedure as in our preliminary work (Cornell et al., 2020). This allows the
results to be directly comparable. In detail, we train all models using RAdam
(Liu et al., 2020) on 5 s chunks obtained from training signals with 50% overlap.475

The last chunk is discarded if shorter. Hyperparameters such as batch size,
learning rate and dropout rate are tuned for each network, dataset and training
objective (speaker counting or VAD+OSD) on the development set.

4The sequence output by the Transformer model is stretched by a factor of S, in order for
the number of input and output frames to be equal, similarly to the other models.
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In our preliminary work (Cornell et al., 2020), we found that using train-
ing targets obtained via Forced-Alignment (FA) brings considerable improve-480

ment even when manual annotation is used as the ground truth in the testing
phase. We also studied the efficacy of FA as an automatic labeling procedure
for speech segmentation applications using synthetic data and we found that,
when close-talk worn microphones are employed, it can be considered reliable
even in overlapped speech regions and challenging SNR conditions. Thus, we485

employ FA labels to train OSDC models on both AMI and CHiME-6. In detail,
we use the Kaldi (Povey et al., 2011) recipes for AMI and CHiME-6 and get the
segmentation from the tri3 GMM-HMM speech recognition model.

The results on the test set are evaluated using the official annotation, which
is manual in the case of AMI and FA-based in the case of CHiME-6. In fact,490

the FA-based annotation of the CHiME-6 development and evaluation sets was
obtained with similar FA procedure as used here.

Moreover, to further improve performance on real-world data and counter-
act class imbalance, we resort, in our experiments, to the data-augmentation
strategy described by Cornell et al. (2020), where it was shown to bring sig-495

nificant improvements. This data-augmentation procedure, which is itself an
extension of the one proposed by (Bullock et al., 2020), consists of on-the-fly
creation, at training time, of new concurrent speaker examples by overlapping
2, 3, and 4 random single-speaker chunks from the original dataset in order to
re-balance the classes. To further increase the training material, a random gain500

factor sampled from N (µ = −16.7, σ = 4) in dB scale is applied to each chunk
independently. In this way, we augmented the original AMI data by a factor of
70% and CHiME-6 data by 40 %. This augmentation factor is tuned for each
dataset using the development set. In parallel, to improve generalization, we
also use SpecAugment (Park et al., 2019) on both single-channel and spatial505

features separately.

6.3. Choice of Transformer Hyperparameters and Single-Channel Features

In Table 2, we show the hyperparameter space explored for the proposed
Transformer-based architecture. We varied number of future and past frames
(C) and subsampling factor (S) used in cat-pool operation as well as size of hid-510

den representation (H), number of attention heads, size of feed-forward neural
network hidden layer (FFN size) and number of transformer encoder blocks (R).
The hyperparameters were tuned on the development set of AMI, for fair com-
parison with Sajjan et al. (2018) who also optimized his LSTM model on AMI.
The models were trained to perform VAD+OSD according to the framework515

introduced in Section 2. The best combination was selected using two criteria:
overall VAD+OSD performance and inference-time computational footprint, to
give an overview of how much demanding the model is when used in practical
applications. In fact, if the OSDC model has a modest computational bur-
den, using it at the very first stage of a speech processing pipeline has the520

advantage of lowering the computational requirements of the whole pipeline,
as subsequent processing can be applied only when needed. Moreover, models
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with modest computational requirements allow for deployment on mobile and
edge-computing devices.

Table 2: Hyperparameter space explored for the Transformer-based architecture. The best
combination of hyperparameters is highlighted in bold.

Hyperparameter C S H heads FFN size R

Values (7, 5) (10, 5) (256, 384) (4, 8, 16) (1024, 2048) (2, 4, 8)

In Table 3, we show the VAD and OSD performance on the AMI development525

set, as well as the total number of floating point operations (FLOP) and total
memory consumption (Mem) with the best combination of hyperparameters
(Best) and when changing the value of one hyperparameter at a time. FLOP
and Mem are computed for a 3 s test signal with 80 logMel features extracted
with a 25 ms window and 10 ms hop-size. They are estimated using the built-in530

profiler in the Pytorch toolkit and the Performance Application Programming
Interface (Terpstra et al., 2009). Several observations can be made. First,
the choice of hyperparameters does not affect the VAD performance, which is
arguably a simpler task than OSD and is more easily tackled by the network.
Second, doubling the number of Transformer Encoder blocks only marginally535

improves performance at the cost of a significant increase of the computational
footprint. Third, increasing time resolution by halving the sub-sampling rate
also significantly increases the computational requirements without bringing
significant benefits, meaning that a resolution in the order of 100 ms is enough
in the application scenario considered here.540

Table 3: VAD and OSD AP (%) and computational footprint of the Transformer-based ar-
chitecture on the AMI development set for different architecture hyperparameter values.

Model Parameters FLOP [106] Mem [106] AP

VAD OSD

Best 85.6 3.3 98.5 57.4

S = 5 166.8 6.9 98.5 57.5
R = 8 161.0 6.2 98.5 57.8

heads = 8 85.4 3.6 98.5 56.9
FFN size = 2048 153.1 5.1 98.5 57.6

In Table 4, we report the results achieved by the proposed Transformer-based
architecture on the AMI development set for different choices of single-channel
input features. In the past, Sajjan et al. (2018) and Stöter et al. (2019) explored
different single-channel features for the LSTM and CountNet architectures: Saj-
jan et al. (2018) used gammatone filterbanks, logMel and other features such545

as kurtosis and spectral flatness, while Stöter et al. (2019) explored magnitude
STFT spectra, log spectra and 40 Mel-scale filterbanks. In both studies, the
features were extracted with a 25 ms window and 10 ms hop-size. Hereafter,
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we consider magnitude spectra computed over 32 ms and 64 ms windows (512
and 1024 samples respectively), 40 and 80 logMels, 40 and 80 gammatone filter-550

banks, and 20 and 40 MFCCs instead. All these features were computed with a
10 ms hop-size. Regarding MFCCs, we used 20 and 40 Mel bands, respectively.
A window of 25 ms was used for logMels, gammatone and MFCCs. We can
see that OSD and to a lesser extent VAD performance correlate with frequency
resolution. In fact, especially for OSD, the use of compact features such as555

MFCCs, 40 logMel or 40 gammatone filterbanks leads to a loss in performance.
These results partially agree with the findings of Sajjan et al. (2018), who found
64 gammatone filterbanks to be superior to 40 logMel features for OSD.

Table 4: VAD and OSD AP (%) achieved by the Transformer-based architecture on the AMI
development set with different choices of single-channel features.

AP MagSpec LogMel Gammatone MFCC

512 1024 40 80 40 80 20 40

VAD 98.5 98.5 98.4 98.5 98.4 98.5 98.3 98.4
OSD 61.1 61.0 58.2 61.0 58.0 59.8 56.8 58.4

Because no statistical difference was found between 80 gammatones and 80
logMel and higher-resolution features (e.g., 64 ms magnitude spectra) did not560

result in higher performance, we ultimately decided to use 80 logMel features
in the following.

6.4. Computational Footprint Comparison Across Architectures

In Figure 4 we report the total number of floating point operations (FLOP),
the total memory usage and the inference time in clock cycles for the four565

considered network architectures as a function of the input signal duration from
1 s to 100 s. Inference time is computed over batches of 64 examples in order to
get reliable estimates. As we are interested in comparing only the architectures,
we use the same single-channel features for all architectures, namely 80 logMel
features with 25 ms window and 10 ms hop-size.570

As expected, regarding inference speed, the RNN-based architectures (LSTM
and CRNN) are slower than the TCN and the Transformer, which do not employ
recurrence. A similar trend is observable in the FLOP plot, with the difference
that the CRNN has a much higher FLOP count than the other architectures
due to the use of 2-D convolutions, despite the fact that it is slightly faster575

than the LSTM architecture as it employs pooling operations and the CNN
part is parallelizable. The use of 2-D convolutions also increases the CRNN
memory footprint with respect to the other architectures. The small number
of parameters employed in the TCN leads to similar memory footprint as the
LSTM architecture.580

Overall, the proposed Transformer architecture is the most efficient accord-
ing to the three criteria despite having the second largest number of parameters
after the LSTM. Due to the cat-pool operation, the total memory usage is kept
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Figure 4: Inference-time computational footprint for the four considered neural network archi-
tectures as a function of the input signal duration. Top: number of floating point operations
(FLOP). Middle: Total memory usage in GB. Bottom: number of CPU clock cycles. The
numbers in parentheses in the legend indicate the number of model parameters.

contained and grows almost linearly until a duration of 100 s. In practice, due to
the fact that OSDC typically requires a context of a few seconds only, inference585

is never performed directly over such long signals: a sliding window approach
is used and the logits of overlapping blocks are averaged to obtain the final
estimate instead. Popular speech processing toolkits such as Pyannote (Bredin
et al., 2020) use this approach.

An important take from these results is also that the number of parameters,590

which is widely used as a gauge for model computational burden, does not
correlate well with the latter and can be deceptive when comparing very different
architectures.
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6.5. Single-Channel Experimental Results

We now evaluate the performance achieved by the four architectures on the595

AMI and CHiME-6 distant speech datasets. For the sake of comparison with
Sajjan et al. (2018) and Stöter et al. (2019), we use single-channel features only,
namely 80 logMel features with 25 ms window and 10 ms hop-size.

Each architecture is trained and evaluated according to two different tasks:
VAD+OSD and speaker counting. Indeed, we are interested in assessing the600

feasibility of VAD+OSD and speaker counting on real-world data. Speaker
counting, as already said, has the advantage of providing more information to
downstream tasks, but it is plagued by extreme class imbalance. VAD+OSD,
by contrast, does not provide any clue about concurrent speakers, but exhibits
a less extreme class imbalance.605

Concerning AMI, to allow direct comparison with previous works (Sajjan
et al., 2018; Cornell et al., 2020), data from all microphone channels is used
during training while testing is performed on the first microphone of array 1.
Regarding CHiME-6, training is also performed using all microphone channels
from all array devices but, when evaluating, we consider for each array the first610

channel and then average the outputs of single-channel systems across all arrays
because of the multi-room environment of CHiME-6.5

In Table 5, we report the VAD and OSD results obtained when training the
models with a VAD+OSD objective. It can be seen that the AP figures on both
datasets are considerably higher for VAD than for OSD. This is expected since615

OSD is inherently a more challenging task than VAD. As also expected, the
performance is better on AMI than CHiME-6, as CHiME-6 is arguably a much
more challenging dataset, having lower SNR due to the more unconstrained
setting. The proposed Transformer architecture performs on-par or better than
the other architectures, with the TCN architecture closely following. LSTM and620

CRNN perform significantly worse, despite the addition of normalization layers
which were not present in the respective original works of Sajjan et al. (2018)
and Stöter et al. (2019).6

Similarly, Tables 6 and 7 report the speaker counting results achieved on the
evaluation sets of AMI and CHiME-6, respectively, when training the models625

with a counting objective. The fact that the AP for the 0-spk class is remarkably
lower on AMI is a rather unexpected result, as it features a much higher SNR
than CHiME-6 overall. This could be explained by class imbalance since, as
reported in Table 1, the proportion of 0-spk in AMI is significantly lower than
in CHiME-6. The proposed Transformer architecture achieves the best figures630

overall on both datasets. In general, compared to the 0-spk and 1-spk classes,
the AP degrades considerably for the 2-spk class and even more so for the 3-
spk and 4-spk classes. This suggests that the data-augmentation strategy, is

5The single-channel evaluation protocol for CHiME-6 differs from the multichannel protocol
adopted by Cornell et al. (2020), who averaged the outputs of single-channel systems across
all 24 microphones instead.

6These normalization layers do improve performance, as can be seen by comparison with
the results reported in our preliminary work (Cornell et al., 2020) which did not include them.
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Table 5: VAD and OSD AP (%) achieved by the four considered neural network architectures
on the AMI and CHiME-6 evaluation sets using single-channel features and VAD+OSD as a
training objective.

VAD+OSD Model VAD OSD

AMI CHiME-6 AMI CHiME-6

LSTM 95.4 93.4 34.3 28.7
CRNN 96.7 93.8 38.9 33.2
TCN 98.5 94.3 54.2 49.0

Transformer 98.5 94.3 57.8 49.9

only able to partially compensate for the extreme imbalance of 3-spk and 4-spk
classes. Therefore, it can be said that speaker counting is still far from being635

reliable on real-world data.

Table 6: Speaker counting AP (%) achieved by the four considered neural network archi-
tectures on the AMI evaluation set using single-channel features and counting as a training
objective.

Counting Model 0-spk 1-spk 2-spk 3-spk 4-spk

LSTM 47.0 82.4 24.7 6.4 0.02
CRNN 49.8 84.2 34.8 9.2 0.03
TCN 50.7 86.1 40.4 11.3 0.03

Transformer 50.9 87.2 41.8 11.2 0.03

Table 7: Speaker counting AP (%) achieved by the four considered neural network architec-
tures on the CHiME-6 evaluation set using single-channel features and counting as a training
objective.

Counting Model 0-spk 1-spk 2-spk 3-spk 4-spk

LSTM 79.1 69.7 20.5 6.1 0.002
CRNN 86.2 73.8 25.4 8.5 0.003
TCN 88.3 77.3 30.0 12.3 0.003

Transformer 88.2 77.3 30.6 12.5 0.003

Nonetheless, speaker counting systems can be used to perform VAD or OSD
by summing the probabilities of the corresponding output classes (e.g., for OSD,
the probability of the overlap class can be obtained by summing the probabilities
of the 2-spk, 3-spk and 4-spk classes). In Table 8 we compare the performance640

of Transformer models trained to perform either VAD+OSD or counting for the
VAD and OSD tasks. For each dataset, we report the evaluation set performance
and, in parentheses, the development set performance. Regarding VAD, the
choice of the training objective has little impact on performance on all datasets.
Regarding OSD, interestingly, the model trained to perform speaker counting,645
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which is inherently a more difficult task, leads to better OSD performance than
the model trained directly with a VAD+OSD objective on the AMI development
and evaluation sets and on the CHiME-6 evaluation set. This is especially
evident on AMI, where a larger gap between the two models is observed. So,
while speaker counting performs poorly on real-world data, it can be convenient650

to use models trained to perform speaker counting to perform VAD and OSD
instead. This may be explained by the fact that speaker count labels provide
the model with more information during training than mere VAD+OSD labels.

Table 8: VAD and OSD AP (%) achieved by the Transformer-based architecture on the AMI
and CHiME-6 development and evaluation sets when using single-channel features and either
VAD+OSD or counting as a training objective. The values obtained on the development sets
are in parentheses.

Method VAD OSD

AMI CHiME-6 AMI CHiME-6

Transformer-VAD+OSD 98.5 (98.6) 94.3 (93.1) 57.8 (61.0) 49.9 (55.1)
Transformer-Counting 98.5 (98.5) 94.3 (93.2) 59.1 (64.3) 50.8 (55.8)

6.6. Multichannel Experimental Results

In the following, we select the best model found in Section 6.5, namely the655

proposed Transformer model trained with a speaker counting objective, and we
show how its performance can be improved by employing spatial features along
with single-channel features. To do so, we evaluate the IPD, CSIPD and neural
network-based spatial features and the early and late fusion schemes described
in Section 4 using AMI, CHiME-6 and the proposed synthetic dataset.660

In order to allow direct comparison with single-channel results, we adopt the
same training strategy as above. Data augmentation is extended to the multi-
channel scenario by overlapping multichannel audio chunks and being careful,
when mixing, in maintaining the array topology (i.e., the first channel is always
mixed with the first channel). Training is performed by considering each array665

separately and using the same FA-based targets as above. Testing is performed,
on AMI and CHiME-6, by averaging the predictions made independently for
each array across all arrays (i.e., 2 devices for AMI and 6 for CHiME-6).

The IPD and CSIPD features are computed with an STFT window length
of 50 ms and the same 10 ms hop-size as single-channel logMel features. The670

corresponding feature vectors, for each microphone pair, are thus of size 801
and 1602, respectively. Neural network based localization features are extracted
using the same Transformer-based architecture as for OSDC, but withR = 2 and
the modifications outlined in Section 4.2. The network takes CSIPD features
relative to most distant microphone pairs with the same STFT window length675

and hop-size as above, and it outputs D = 181 discrete DoAs. It is trained
on matched synthetic datasets. More specifically, concerning AMI, we use our
synthetic dataset by simulating a circular array instead of the linear one and
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compute CSIPDs over the 4 pairs obtained by taking opposing microphones in
the circular array. Regarding CHiME-6, we perform training on the Kinect-680

WSJ2Mix dataset (Sivasankaran et al., 2021) which involves simulated Kinect
devices and real CHiME-6 noise and we use CSIPD features for the 3 microphone
pairs with largest distance, as explained in Section 4.1. As for experiments on
the synthetic dataset, we used the same dataset to train the OSDC and the
localization networks and, as both datasets feature linear arrays with 4 channels,685

the same 3 channel pairs as those used for CHiME-6. Because Kinect-WSJ2Mix
signals feature at most 2 overlapped speakers, we mixed them together to create
mixtures of up to 4 overlapped speakers to match the maximum possible number
of concurrent speakers in CHiME-6. In addition, to avoid possible domain
mismatch between the simulated training dataset for the localization network690

and the test dataset for the OSDC network, we fine-tune the localization network
with the OSDC model by joint optimization with respect to the speaker counting
task on the OSDC training dataset. This fine-tuning step is critical to achieve
good performance when applying the OSDC network to real-world datasets: for
example, on CHiME-6 without fine-tuning the resulting AP is in the order of695

50% only.
In Tables 9 and 10, we report the performance achieved for the VAD and

OSD tasks, respectively, with different spatial features, fusion schemes, and
numbers of microphone pairs. Microphone pairs are selected as described in
Section 4.1, by considering, as the upper bound (all), only pairs which add sig-700

nificant spatial diversity, i.e., from 1 to 4 pairs formed by opposing microphones
in AMI and from 1 to 3 pairs in CHiME-6 and the synthetic dataset. We also
report the performance of a single-channel ensemble system with no spatial fea-
tures, where ensembling is done by averaging the OSDC network outputs over
all microphones in the array.705

Table 9: VAD AP (%) achieved on the AMI, CHiME-6 and synthetic evaluation sets by
the Transformer-based architecture trained with a speaker counting objective for different
spatial features, fusion schemes, and numbers of microphone pairs (1, 2 or all), as compared
to single-channel features only (None, 1 ch.) or an ensemble of single-channel systems (None,
all ch.).

Dataset Fusion IPD CSIPD Neural None

1 2 all 1 2 all all 1 ch. all ch.

AMI
early 98.6 98.7 98.7 98.6 98.7 98.7 98.7
late 98.6 98.7 98.7 98.6 98.7 98.7 98.7 98.5 98.6

CHiME-6
early 94.7 94.8 94.8 94.7 94.9 95.1 95.4
late 94.8 95.4 95.4 94.9 95.4 95.4 95.5 94.3 94.5

Synth
early 96.3 96.8 97.2 96.1 96.4 96.8 97.5
late 96.5 97.2 97.4 96.3 97.1 97.4 97.5 96.4 96.6

For what concerns VAD performance in Table 9, it can be seen that neural
network-based localization features result in on-par or higher performance than
the other spatial features, and they outperform single-channel systems by a
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significant margin on CHiME-6 and the synthetic dataset. Regarding AMI,
the AP saturates for most models due to the fact that, as noted previously in710

Section 6.5, silence is under-represented in the material. An interesting trend
which appears on CHiME-6 and synthetic data is that the performance of signal-
based spatial features improves when increasing the number of microphone pairs
and by using late fusion. Especially on models with late fusion, using more
microphones considerably boosts the performance for IPD and CSIPD features.715

Instead, a smaller improvement is noticeable when early fusion is employed,
due to the fact that the size of CSIPD and IPD features grows linearly with the
number of pairs but the bottleneck convolutional layer applied in early fusion
maps them to a fixed-size representation (384 neurons, as reported in Table 2).
Thus some information is inevitably lost in early fusion. On top of that, in late720

fusion spatial features are available at multiple stages of the architecture.

Table 10: OSD AP (%) achieved on the AMI, CHiME-6 and synthetic evaluation sets by
the Transformer-based architecture trained with a speaker counting objective for different
spatial features, fusion schemes, and numbers of microphone pairs (1, 2 or all), as compared
to single-channel features only (None, 1 ch.) or an ensemble of single-channel systems (None,
all ch.).

Dataset Fusion IPD CSIPD Neural None

1 2 all 1 2 all all 1 ch. all ch.

AMI
early 58.1 58.6 59.4 57.8 58.4 58.9 59.3
late 58.4 59.5 60.3 58.1 59.6 60.4 59.7 57.8 58.6

CHiME-6
early 51.4 51.5 51.6 51.3 51.4 51.5 51.8
late 51.6 52.4 52.4 51.7 52.3 52.2 51.9 50.8 51.2

Synth
early 81.8 82.3 82.7 81.6 82.0 82.4 83.8
late 82.8 83.4 84.2 82.9 83.6 84.4 84.3 82.4 83.1

Similar trends can be also observed for OSD performance in Table 10 regard-
ing the number of microphone pairs and early fusion versus late fusion. Notably,
neural network-based spatial features are outperformed by signal-based ones on
AMI and CHiME-6 when late-fusion is used but reach on-par or top perfor-725

mance when early fusion is employed instead. This suggests that fine-tuning
the localization network compensates for the synthetic/real domain mismatch
only up to a certain point regarding OSD. It can also be observed that the
performance gain achieved by late fusion with respect to early fusion appears
modest for neural spatial features, while it is substantial for signal-based ones.730

This is explained by the fact that neural network-based features are less affected
by the aforementioned “bottleneck issue” in early fusion, as they have a more
compact size than signal-based ones and, moreover, are jointly fine-tuned with
the OSDC system. Again, models with spatial features are able to outperform
the single-channel systems and ensembles of single-channel systems. This is no-735

table, as the ensemble is performed using all channels in the array and it comes
at the cost of increasing the computational footprint linearly in the number of
channels. By contrast, spatial features allow us to boost performance with a
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smaller increase in computational requirements.
In Tables 11 and 12 we report the counting performance achieved for different740

spatial features on AMI and CHiME-6, respectively, using two microphone pairs
and late fusion. On both datasets, a similar trend can be noticed. On the
one hand, neural network based localization features achieve the best figures
regarding the 0-spk and 1-spk classes which are the most represented ones.
This is in accordance with the VAD results in Table 9 where neural spatial745

features have in general higher scores. On the other hand, CSIPD and IPD
obtain similar or higher AP values for 2 and 3 concurrent speakers. This is
in accordance with the OSD results in Table 10. Nonetheless, while systems
based on spatial features are able to substantially increase the speaker counting
performance over single-channel systems, the observations made in Section 6.5750

are still valid, and reliable speaker counting remains out of reach on real-world
data.

Table 11: Speaker counting AP (%) achieved on the AMI evaluation set by the Transformer-
based architecture trained with a speaker counting objective for different spatial features,
as compared to single-channel features only (None, 1 ch.) or an ensemble of single-channel
systems (None, all ch.).

Spatial Features 0-spk 1-spk 2-spk 3-spk 4-spk

IPD 52.8 88.3 45.0 12.8 0.03
CSIPD 52.9 88.4 45.1 12.7 0.03
Neural 53.1 88.8 44.9 11.8 0.03

None, 1 ch. 50.9 87.2 41.8 11.2 0.03
None, all ch. 51.3 87.9 42.4 11.5 0.03

Table 12: Speaker counting AP (%) achieved on the CHiME-6 evaluation set by the
Transformer-based architecture trained with a speaker counting objective for different spa-
tial features, as compared to single-channel features only (None, 1 ch.) or an ensemble of
single-channel systems (None, all ch.).

Spatial Features 0-spk 1-spk 2-spk 3-spk 4-spk

IPD 89.9 78.8 32.6 12.4 0.003
CSIPD 90.1 78.7 32.5 12.4 0.002
Neural 90.2 79.0 32.2 11.9 0.003

None, 1 ch. 88.2 77.3 30.6 12.5 0.003
None, all ch. 90.1 78.4 31.4 11.9 0.003

Finally in Figure 5 we use the synthetic dataset to further explain the ben-
efit of spatial features. Using mixtures of two speakers, we report the OSD AP
values obtained by the system using single-channel features only versus the ones755

obtained with late fusion and CSIPD features computed using the 3 microphone
pairs with largest distance. The OSD AP performance is plotted against the
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mean distance of the two speakers from the array and the angle between them
as seen from the array. It can be seen that, for the single-channel model, per-
formance degrades to some extent as the speaker distance increases (i.e., colors760

become darker from bottom to top), but it is largely independent of the angle
between the speakers. By contrast, for the model employing spatial features,
performance still degrades as the speaker distance increases but at the same
time it clearly improves as the angle between the speakers increases (i.e., colors
become lighter from left to right). In fact, the AP is significantly boosted for765

angles greater than 30 degrees, indicating that spatial features offer complemen-
tary information which allows the model to more effectively discriminate frames
with overlapped speech.

Figure 5: OSD AP (%) achieved on the synthetic evaluation set by the Transformer-based
architecture trained with a speaker counting objective as a function of the mean distance of
the speakers from the array and the angle between the speakers. Left: single-channel features
only. Right: CSIPD spatial features and late fusion.

7. Conclusions

In this paper we studied the problem of performing VAD+OSD and speaker770

counting on real-world data featuring distant microphone arrays. We focused
on neural network based approaches and compared different architectures for
the two tasks, on AMI, CHiME-6 and a purposedly developed synthetic dataset.
Among the neural networks compared we introduced two novel architectures:
one based on TCNs and another based on the Transformer. In parallel we ex-775

plored the use of spatial features, both signal-based and neural-based, to aid
in the VAD+OSD and speaker counting tasks when multiple microphones are
available. We conducted an extensive experimental evaluation by comparing
the models’ computational footprint and VAD, OSD and counting performance
on single-channel and multichannel distant speech data. On CHiME-6, our pro-780

posed TCN and Transformer-based architectures achieve an absolute improve-
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ment in AP of 15% and 16% over previous techniques, respectively. Overall, we
found the proposed Transformer-based architecture to be the most promising
as it was shown to be able to reach on-par or better results than the other
architectures with a significantly lower computational footprint. In general, in785

comparing VAD+OSD and speaker counting tasks we found that, due to class
imbalance, speaker counting performs poorly on real-world data, but, on the
other hand, it is desirable to use a speaker counting objective to train a system
to perform VAD+OSD as it is shown to improve OSD. Finally, concerning spa-
tial features, we found that significant further improvements can be obtained by790

using a late-fusion strategy and by increasing the number of microphone pairs
considered. Neural-based spatial features show a clear advantage over signal-
based ones for VAD across all datasets, but no spatial feature shows a clear
advantage over another for OSD or counting. Future work includes fusing es-
timates over multiple arrays in a way that favors arrays closer to the speakers795

and exploits the relative positions and orientations of the arrays whenever they
are known, and exploring suitable techniques to counteract the class imbalance
problem.
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