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Abstract—Despite the significant advancements in networking
technologies, transmission of data packets in real-time, particu-
larly in speech communications, continues to face challenges due
to the possibility of data loss. This loss not only compromises
sound quality but also diminishes overall intelligibility. In such
cases, Packet Loss Concealment (PLC) techniques could help
by reconstructing the missing content and restoring the audio
quality. This work proposes a novel method, that improves
previous time-frequency generative inpainting approaches. Com-
pared to other state-of-the-art methods, our proposed approach
has the flexibility to restore lost packets either in real-time at
low latency or in offline mode, without the need to retrain
the network. Evaluations conducted against a recent state-of-
the-art method, ranked at the top of the 2022 Microsoft PLC
competition, and against four DNN-based PLC solutions from the
literature, show superior scores in terms of task-specific metrics.
The method has also been tested in more challenging scenarios
than aforementioned ones, with packet loss rates of up to 50%,
showing the ability to help automatic speech recognition (ASR)
systems reduce word error rate (WER) by up to almost 50%
relative improvement. Additionally, a comparative subjective
evaluation has been conducted, confirming the effectiveness of
the proposed method in relation to the state of the art. The code
is made available in the project repository1.

Index Terms—Packet Loss Concealment, audio inpainting, au-
dio restoration, neural networks, generative adversarial networks

I. INTRODUCTION

SPEECH transmission over communication channels, still
poses significant challenges in terms of latency and speech

intelligibility. In contrast to traditional circuit-switched net-
works, digital transmission introduces packet delays, losses,
and jitter, potentially resulting in content loss [1]. To partially
alleviate losses due to jitter, a packet buffer may be employed
at the receiver side but at the cost of additional latency [2].
Achieving an optimal trade-off between latency and packet
losses is a challenge. Packet Loss Concealment (PLC) algo-
rithms can help in case of lost packets (for both real-time and
offline scenarios) and packets with excessive jitter (for real-
time scenarios).

Over the past three decades, various PLC algorithms have
been proposed, ranging from naive methods like “zero fill”
and “frame repeat” to modern speech codecs incorporating
predictive coding methods such as G.722 [3], G.718 [4],
adaptive multi-rate wideband speech codec (AMR-WB) [5],
and Opus [6]. These algorithms reconstruct lost packets based

1https://github.com/aircarlo/cplx_bin2bin

on inter-frame correlations, significantly enhancing speech
quality in Voice over Internet Protocol (VoIP). However, while
introducing very small latency due to their low computational
complexity, these methods struggle with long bursts of lost
packets, becoming ineffective when the gap exceeds a few
tens of milliseconds.

Recent breakthroughs in deep learning have demonstrated
the superior speech modeling capabilities of deep neural net-
works (DNN), leading to their application in PLC algorithms.
Despite that, further enhancements in both reconstruction
efficiency and perceptual speech quality are needed.

A. Related works
Among the first statistical approaches to the PLC problem

is the one presented by Rodbro et al. [7]. They propose to
use a hidden Markov model (HMM) on the pitch, gain, and
spectral envelope of packets, that can then be used to directly
predict future frames to fill in the gaps. Bahat et al. [8] present
a dictionary based scheme where the dictionary atoms are
learned audio blocks. To find the best replacement for the
missing block, they use both a Markov model as well as the
feature space distance between the start of the block and the
last known good part of the audio sequence. The dictionary
is created on the fly from correctly transmitted audio. This
approach offers a straightforward way of utilizing audio data
to interpolate missing samples, albeit at a high computational
cost and with limited adaptability beyond a single speaker.

Kegler et al. [9] and Nair et al. [10] introduce neural network
methodologies adapted from computer vision, treating audio
inpainting as a vision task. They employ a U-Net [11] architec-
ture to train on masked complex short-time Fourier transform
(STFT), including magnitude and phase angle, potentially
with an extra channel denoting masked spectral regions. Their
model is trained to predict the unmasked STFT, leveraging
a perceptual loss based on a Visual Geometry Group (VGG)
network. The latter uses a joint time-frequency strategy that
also encompasses broader speech enhancement tasks.

In [12] Stimberg et al. present an approach based on
conditioning a WaveRNN [13] over recent past context in
the time domain and a convolutional conditioning network
operating in the frequency domain. This network outputs
samples autoregressively, one by one, instead of outputting
full blocks of audio data at a time.

Lin et al. [14] introduce a convolutional-recurrent model
(CRNN) designed for next frame prediction in the time do-
main. This model is trained to minimize mean absolute error,

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2024.3515794

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/aircarlo/cplx_bin2bin


JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, MONTH YEAR 2

with or without employing look-ahead. Alongside conven-
tional metrics, they evaluate also a speech recognizer word
error rate, demonstrating the potential of DNN-based PLC
to improve ASR’s ability to recognize text from speech.
Similarly, Mohamed et al. [15] propose a recurrent neural
network tailored for PLC within a framework for emotion
recognition. Recently, Valin et al. proposed an extension to
the Opus codec’s PLC functionality, called DRED [16], which
leverages deep neural networks to introduce redundancy at
sender side.

B. Generative Adversarial PLC approaches

Generative Adversarial Networks (GAN) [17] have been
shown to be quite effective for audio waveforms generation.
The first attempt to adapt the architecture of GANs to speech
synthesis dates back to WaveGAN [18]. Derived approaches
include cWaveGAN [19], which allows both the generator and
discriminator to incorporate additional conditioning informa-
tion to refine the generation process, Parallel WaveGAN [20]
which integrates multiresolution short-time Fourier transform
(STFT) loss alongside the adversarial loss to enhance perfor-
mance and fidelity, SpecGAN [18], MelGAN [21], VocGAN
[22] and StyleGAN [23].

Shi et al. [24] proposed the first PLC approach that leverages
GANs. They employ a convolutional encoder-decoder network
that operates on time-domain audio blocks. Their findings
indicate comparable quality, as assessed by various objec-
tive metrics such as Perceptual Evaluation of Speech Qual-
ity (PESQ) [25], short-time objective intelligibility (STOI)
[26], and signal-to-noise ratio (SNR), when compared to
a frequency-domain deep neural network. Remarkably, their
approach remains competitive even when the baseline method
benefits from perfect phase information and only necessitates
predicting magnitude. Pascual et al. [27] introduce a GAN-
based approach wherein the generator’s input is the Mel-
spectrogram of the available signal, and the output is the
time-domain samples of the corrupted parts. Their study
demonstrates enhancements in Mel-Cepstral Distortion [28]
and SESQA [29] over several baselines, including real codec
systems. Additionally, Wang et al. [30] propose a GAN-based
system featuring a fully time-domain U-Net style convolu-
tional generator and a discriminator operating in a mixed
time/frequency domain. This setup enables their adversarial
loss to capture both intricate short-term details in the waveform
and long-term relationships in the spectrum.

Finally, some researchers tackle the PLC issue from a multi-
modal standpoint: Zhou et al. [31] and Morrone et al. [32]
introduce methods that incorporate a video feed of the speaker
to aid in the recovery of missing audio segments. The former
employ a convolutional neural network with adversarial loss,
while the latter utilize a recurrent neural network approach.

C. Scope and organization of the work

This article proposes a time-frequency generative frame-
work for PLC, aiming at addressing challenges posed by
joint magnitude-phase recovery. Inspired by our PLC studies
[33], [34] employing image inpainting techniques [35] on

magnitude spectrograms, we have developed complex-bin2bin
(also referred to as cplx-bin2bin), a novel method that works
on complex spectrograms, that overcomes some limitations of
the previous works. Its most relevant novelties, compared with
current PLC approaches, are: (a) the use of complex-valued
bins to avoid phase reconstruction artifacts and reduce com-
putation time, (b) the adoption of a differentiable loss term,
based on a perceptual metric for speech quality evaluation, and
(c) the use of a smart handling of the audio data that allows a
flexible trade-off between reconstruction accuracy and latency
at run time, with just one trained backbone.

The paper is organized as follows: chapter II provides an
overview of Generative Adversarial Networks (GAN), together
with the addition of conditioning signal (cGAN) and least
squares (LSGAN) loss. The inpainting process and the neural
architecture are illustrated in chapter III, while chapter IV
shows the experiments setup, the dataset composition, the loss
criteria and illustrates the baseline comparative approaches.
Chapter V reports and discusses the obtained results and
finally, conclusions and future developments are drawn.

II. LEAST SQUARES CONDITIONAL GAN

Since their introduction in 2014, generative adversarial
networks (GANs) [17] have emerged as a powerful method
in generative modeling using deep learning techniques. GANs
have demonstrated their capacity to create novel, realistic and
high-quality samples that closely approximate the distribution
of training data.

A typical GAN comprises of two networks, namely a
generator (G) and a discriminator (D). The discriminator
functions as a binary classifier, while the generator operates
as a deconvolutional network, converting a random seed (e.g.
Gaussian noise, z ∼ N (0, 1) into a data instance. Both G and
D are trained simultaneously in a min–max competition with
respect to binary cross-entropy loss (eq. 1). The ultimate goal
for the generator is to produce samples that closely resemble
the distribution of “real” data (x), while the discriminator aims
to distinguish between “fake” and “real” samples by penalizing
the generator for generating unrealistic outputs.

min
G

max
D

LGAN (D,G) =Ex [log (D(x))] +

Ez [log (1−D(G(z)))]
(1)

In the original GAN framework, there lacks a mechanism
to drive the specific modes of data generation. This problem
originates from the need to generate a desired output class in
multitarget problems. Additionally, the utilization of the binary
cross-entropy loss function in the original GAN formulation
may accentuate the issue of vanishing gradients, particularly
when updating the generative network with gradients of sam-
ples positioned near the decision boundary [36], [37]. This
scenario can hinder convergence, making the model unstable.
To address these issues and strengthen the controllability
and stability of GAN in generating the missing spectrogram
sections, two enhancements were made.

Typically, image-to-image translation problems are often
formulated as per-pixel regression, hence they treat the output
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on an “unstructured” space in the sense that each output pixel
is considered conditionally independent from all others given
the input image. The use of a conditional GAN (cGAN)
[38] allows us to learn a structured loss whose objective is
to penalise any possible structure that differs between the
output and the target. To achieve this, the generator is fed
with the spectrogram of the segment containing the damaged
portion(s). This has a dual purpose, on the one hand it allows
the generator to identify and time-locate reliable and damaged
regions without the support of an indicator mask, and on the
other hand it provides a sufficiently robust conditioning signal
c to guide the generation process towards the production of
segments which are pertinent to the surrounding context. In
contrast to classical GANs, the authors in [39], verified that the
random noise vector z does not exert considerable influence
when the conditioning information is sufficiently robust, as in
case of inpainting tasks. Consequently, we adopt the same
choice of eliminating z, while keeping as much stochastic
behavior by incorporating dropout layers into the generator.

To address the convergence issue, we used the least squares
loss function instead of the sigmoid cross-entropy loss function
for the discriminator. Least squares GAN (LSGAN) [36] is
more stable during the learning process as it mitigates the
vanishing gradient problem. The objective functions for joint
conditional and least squares GAN (which will be referred as
LSCGAN) can be defined as follows:

min
D

LLSCGAN (D) =
1

2
Ex,c

[
(D (x|c)− 1)

2
]
+

+
1

2
Ez,c

[
(D(G(z)|c))2

] (2)

min
G

LLSCGAN (G) =
1

2
Ez,c

[
(D (G(z)|c)− 1)

2
]

(3)

III. PROPOSED METHOD

We first describe the latency-flexible characteristic of our
proposed method, which allows to repair damaged segments
in any portion of the audio input. To the best of our knowledge,
in all previous works the network input and output size, and
the way it is trained, constrain the operating context window
and the stride step as well as the position of the lost packets
in the window.

Our model performs a training procedure under more gen-
eral conditions, which allows it to be flexible and operate in
different inference conditions such as: (a) the number of lost
packets in a window and their relative position; (b) the window
length, which can be any size between 20 ms and 1024 ms.
The highlighted features allow the proposed algorithm to
work in any setting: from latency-critical to latency-tolerating
application and even to offline ones. Indeed, by providing the
algorithm with short time windows where the lost packet is
the last one, packet reconstruction occurs as soon as a packet
is lost, or can be regularly predicted to anticipate potential
loss. Otherwise the algorithm can work with larger windows
and lost packets in any position within them. In this case,
the added context and the presence of reliable packets at both
sides of lost packets provides useful information to improve

the reconstruction quality. All these features allow to trade
computational latency and reconstruction quality in real time
without the need to change the backbone model at runtime. To
the best of our knowledge, the method has not been previously
proposed and can be applied to other PLC methods too.

The diagram in Fig. 1 illustrates the generic operation
mode of the proposed framework. The algorithm is fed with
an audio segment composed of two components: the buffer
and the current context. The latter holds the incoming audio
packets to be processed, and its length constitues a stride,
which determines the latency of the system. The buffer context
contains past audio packets. These can be either unprocessed
(when correctly received) or inpainted in a previous iteration
of the algorithm (when they were corrupted or missed). The
whole segment size must be 51 frames long, thus the buffer
length is adjusted after the size of the current context has been
decided. For each audio segment, the prediction of all frames
in the current context is done by using information from both
the buffer context and the reliable samples in the current
context itself. Once the DNN produces an inpainted version of
the current context, only the actually reconstructed packets are
employed in the final sequence, according to a binary mask
that labels the state of each packet. To reduce reconstruction
errors caused by waveform transitions at the boundaries of
each reconstructed packet, we cross-fade between frames using
a Hann function.

 

0    1    0             …             1    1    0 
DNN 

… … 

… 

reliable packet 

lost packet 

generated concealed packet 

buffer context current context 

time  

a) 

b) 

c) 

Fig. 1. Overview of the proposed adaptive latency PLC mechanism, operating
on a given audio segment. The current context (a) can be varied between 1
and 51 packets during inference, by modifying the buffer length accordingly.
(b) represents the binary mask denoting lost (1) and reliable (0) packets, based
on which the repaired current context (c) is rearranged.

A. Network architecture

An overview of our complex-bin2bin architecture is pre-
sented in Fig. 2. In this paper we use the TCN-DenseUNet
architecture in the generator. We chose this architecture given
its effective use in various speech processing tasks such as
speaker separation [40] and speech dereverberation [41]. TCN-
DenseUNet, as the name implies, is a UNet [11] with skip-
connections and DenseNet blocks [42] at multiple frequency
scales in the encoder and decoder. A temporal convolutional
network (TCN) [43] at the middle section leverages long-
range information by using dilated convolutions along time.
Exponential linear unit (ELU) activations and instance nor-
malizations (IN) are used after convolution and deconvolution
blocks. The network takes a real-valued tensor as input with
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shape C × F × T = 2 × 257 × 257, where C is the
number of channels, F the number of STFT frequenciy bins
and T the number of STFT frames. The real and imaginary
components of the lossy spectrogram, S are concatenated
along the channel axis and fed to the network, while the output
Ŝ yields the same size as input. This work evolves from our
previous researches on spectrogram inpainting using condi-
tional GANs [33], [34]. Unlike the latter, the use of complex-
valued spectrograms throughout the generation process allows
to convert the repaired spectrogram back in time domain with
a single inverse STFT operation, without the need to resort
to approximate algorithms for phase estimation, which are
known to be the performance bottleneck of methods operat-
ing only on magnitude spectrograms [44]. Additionally, the
proposed complex bin2bin architecture is trained according to
the novel procedure described in Fig. 1, using more advanced
and perceptually-informed losses and different generator and
discriminator models.

The discriminator model is a convolutional neural network
(CNN) adopting a backbone inspired by PatchGAN [39], and
a fully connected readout layer that outputs a scalar value.
Since we use a Least Squares Generative Adversarial Net-
work (LSGAN) criterion, compared to [39] we omit the final
softmax activation function. The initial layer processes real-
valued magnitude spectrograms, and it is fed the input (clean
or generated) and the reference (lossy) spectrograms, concate-
nated along the channel dimension. This layer applies a 2D
convolution with reflective padding, followed by a LeakyReLU
activation to introduce non-linearity. Following, the model
uses a set of three CNNBlock modules, each of which con-
sists of a 2D convolutional layer, batch normalization, and
a LeakyReLU activation. These blocks increase the number
of feature channels, from 64 to 512, while reducing spatial
dimensions via strided convolutions. Batch normalization is
used to stabilize training by normalizing the feature maps at
each layer. All LeakyReLU activations employ a slope of 0.2.
After the final convolutional layer, a max-pooling operation is
applied, and the resulting feature map is flattened before being
passed through the fully connected layer, which produces the
scalar output representing the discriminator’s decision.

B. Loss criteria

As widely experienced in multiple research works on speech
enhancement operating in the time-frequency domain, combin-
ing multiple resolution loss criteria can have beneficial effects
on several aspects, even more so in the case of generative
adversarial networks, where convergence and stability are
critical issues [20].

To facilitate the generation of high-resolution slices of
inpainted spectrograms, we used a multiresolution STFT cri-
terion, which is based on the evaluation of the repaired and
target spectrograms, at three different resolutions in time and
frequency. Figure 3 shows the operative adversarial training
scheme, used in generator and discriminator update.

We defined each individual STFT loss as the weighted sum
of three contributions: the spectral convergence loss (Lsc), the
log-STFT magnitude loss (Lmag) and the phase loss (Lpha):
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Fig. 2. Generator network composed of the U-Net with temporal convolu-
tional (TCN) bottleneck. As input to the generator is the complex-valued lossy
spectrogram Sl, which is processed as a 2-channel feature map, consisting
of the real and imaginary part of Sl. The network outputs the repaired
spectrogram Ŝ having the same size as the input.

LSTFT (G) = λ1 · Lsc

(
S, Ŝ

)
+ λ2 · Lmag

(
S, Ŝ

)
+

+ λ3 · Lpha

(
S, Ŝ

) (4)

where S ∈ C and Ŝ ∈ C denote respectively the STFT of the
clean signal (s) and the repaired spectrogram. The optimal
weights were chosen as λ1 = λ2 = 1 and λ3 = 0.1, during
the hyperparameter tuning process. The individual loss terms
are defined as follows:

Lsc

(
S, Ŝ

)
=

√∑
t,f

(
|St,f | − |Ŝt,f |

)2
√∑

t,f |St,f |2
(5)

Lmag

(
S, Ŝ

)
=

∑
t,f |log|St,f | − log|Ŝt,f ||

T ·N
(6)

Lpha

(
S, Ŝ

)
=

∑
t,f

(
∠St,f − ∠Ŝt,f

)2
T ·N

(7)

where |·| and ∠ represent the STFT magnitude and phase
components respectively, while T and N denote the number
of time bins and frequency bins of a frame.
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As outlined in [45], Lsc highly emphasizes large spectral
components, which helps especially in early phases of training,
while Lmag accurately fits small amplitude variations, which
tends to be more important towards the later phases of training.
Finally Lpha helps in phase estimation, although most of the
insight about the structure of the speech is obtained from the
magnitude [46].

It must be noted that due to the phase wrapping property,
the direct Mean Squared Error (MSE) between the real and
predicted phases formulated in eq. 7, may not accurately reflect
the true prediction errors. An alternative solution, e.g. the
one described in [47], formulates an anti-wrapping function.
However, from our experiments its impact on the overall
loss was negligible, because of the weighting coefficient we
assigned to the phase term (λ3 = 0.1). Therefore in the
remainder of the paper we will use the MSE phase error, for
simplicity and its lower computational complexity.

Computing multiresolution STFTs implies consecutive di-
rect and inverse Fourier transformations; this approach en-
hances STFT consistency, which is beneficial for DNN-based
spectrogram reconstruction, as pointed out in [48].

The multiple resolutions of LSTFT are given by the param-
eters sets reported in table I. All three terms are then averaged
and summed to an additional contribution, LPMSQE [49]. It
is a perceptually-motivated speech quality loss, defined by the
combination of the MSE difference in the log-power spectra
domain, between S and Ŝ, and two terms, D(s) and D(a),
defined respectively as symmetrical (s) and asymmetrical (a)
disturbance:

MSE =
1

F

∑
f

1

σ2

(
log

|St,f |2

|Ŝt,f |2

)2

(8)

LPMSQE =
1

T

∑
t

(
MSE + α ·D(s) + β ·D(a)

)
(9)

In the equations above, T is the number of frames in the train-
ing batch, F is the number of frequency bins, while α and β
are weighting factors. The symmetrical and asymmetrical dis-
turbances are computed within the loudness spectrum domain,
to closely align with human auditory perception. Power spectra
are first transformed into the Bark frequency scale through
Q bands. Subsequently, Zwicker’s law is applied to convert
each Bark spectrum band into the sone loudness scale. Bands
with loudness values below an absolute hearing threshold are
set to zero, as these frequencies are inaudible to humans. The
transformations are carried out on both the target and enhanced
power spectra, S and Ŝ, resulting in corresponding target
and enhanced loudness spectra, L = [l0, ..., lQ]

⊤ and L̂ =
[l̂0, ..., l̂Q]

⊤. The symmetrical disturbance term D(s) is first
calculated, as proposed in PESQ, as the absolute difference
between the loudness spectra. The asymmetrical disturbance
term D(a) is then derived by multiplying this difference with
a vector of asymmetry ratios. Although these transformations
involve non-differentiable operations at specific points, sub-
gradients are used to enable backpropagation.

TABLE I
PARAMETERS USED TO COMPUTE MULTI-RESOLUTION LOSSES. THE

WINDOW SIZES AND HOP LENGTHS IN MS ARE DERIVED FROM [20] BY
FITTING THE ACTUAL SAMPLING RATE.

Loss # FFT size Window size Hop length

LSTFT,1 1024 400 (25 ms) 80 (5 ms)
LSTFT,2 2048 800 (50 ms) 160 (10 ms)
LSTFT,3 512 160 (10 ms) 32 (2 ms)

IV. EXPERIMENTAL SETUP

A. Dataset and training details

The evaluation of the proposed method was carried out us-
ing two different criteria for simulating lost packets, according
to the most common scenarios used by works dealing with the
PLC problem.

First, a series of experiments were conducted using a syn-
thetic dataset, generated from clean speech recordings taken
from the VCTK corpus [50]. To simulate the occurrence of lost
packets, fragments of 20 ms duration were filled with zeros,
each selected randomly, regardless of the state of the preceding
packets. As experienced in our previous work, the most effec-
tive strategy for training is to use over-corrupted recordings,
i.e. with a higher loss rate than that used in the test phase.
In addition, to ensure a stable and fast convergence of the
generative network, each training sequences were corrupted
with varying amount of losses, ranging from 10 % to 60 %.

The second operational scenario was to consider corrupted
speech recordings with loss traces observed in actual VoIP
calls. For this purpose, the dataset provided for the Microsoft
PLC challenge 2022 [51] was used, (hereinafter referred to
as MS-PLC) which consists of clean audio clips taken from
radio podcasts, and separate lost packet descriptor files, that
can be coupled with clean registrations to form a potentially
large dataset for our purpose. The traces of lost packets
from real video calls have a slightly higher variability than
those obtained by randomly simulating losses. The statistical
distribution of gap width for both data sets is shown in figure
4. The use of this dataset allows us to compare the proposed
method with the top ranked systems of the Microsoft PLC
challenge 2022 [51]. The datasets were divided into three
partitions: train, validation, and test, ensuring that the test
set is the same across all comparison methods to guarantee
comparable results. Specifically, the VCTK dataset consists
of approximately 44 hours of clean speech from 109 native
english speakers, with 2 of them (one male and one female) set
aside for testing, amounting to a total of 0.81 hours. The MS-
PLC dataset contains about 67 hours of recordings, with the
test partition representing approximately 4.5%. The operating
frequency of the system was set to 16 kHz and the audio
files were resampled to this value from their native frequency.
Spectrograms were calculated with a window size of 512
samples and a hop size of 64. Additionally, we applied a set of
data augmentation techniques, directly on the raw waveforms,
with the aim to improve model performance and generalization
abilities.
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Fig. 3. Illustration of the adversarial training strategy, assisted by the losses: LLSCGAN (G) of eq. 2, LLSCGAN (D) of eq. 3, the multi-resolution STFT
loss of eq. 4 and the perceptual loss LPMSQE of eq. 9.

Augmentations include:

• Gaussian noise injection,
• Time stretch, with a rate in [0.8, 1.25],
• Pitch shift, within −4 and +4 semitones.

Training is conducted with Adam optimizer, a batch size of
16 and a learning rate of 5 · 10−3, progressively decreased to
1 · 10−3, with a cosine profile. The latter value was used for
both the generator and the discriminator. As an early stopping
criterion, we tracked the progress of one of the evaluation
metrics, PLCMOS [52]. This choice led to the end of training
around epoch 130, as there were no further improvements
beyond.
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Fig. 4. Heatmap showing the distribution of gap widths characterising the
datasets. The first six rows refer to the manually injected gaps, at different
rates, MS-PLC refers to thet traces in Microsoft PLC challenge dataset, while
variable indicates the distribution obtained with varying rates in [10%, 60%].
The dashed line separates test configurations (above) from train one (bottom).

B. Evaluation metrics

We assessed the performance of the proposed model in
terms of several criteria, some of which were also used by
the models taken as comparisons. In both sets of experiments,
with the synthetic dataset (VCTK) and the real-traces dataset
(MS-PLC), we calculated the values of PESQ [25], STOI [26],
DNSMOS [53], PLCMOS [52] and Word Error Rate.

Perceptual Evaluation of Speech Quality measure (PESQ)
[25] emerged as a valid objective metric on a competition
to develop metrics for speech enhancement tasks. The PESQ
algorithm operates by simulating human perception of speech
quality and assigning scores ranging from -0.5 to 4.5.

Short-Time Objective Intelligibility (STOI) [26] operates on
short-time segments of speech signals, typically utilizing a
time-frequency representation such as the Short-Time Fourier
Transform (STFT). It calculates a correlation-based measure,
expressed as a percentage value, between the processed speech
and the reference speech in each time-frequency bin, aiming to
capture the perceptual intelligibility of the processed speech.

The latter metrics require an aligned reference, which limits
their use to scenarios where such a reference is available.
Particularly in scenarios involving PLC with a jitter buffer
and timescale modification, the reference signal is typically
unaligned, potentially leading to additional errors.

Non-intrusive deep neural network (DNN)-based metrics
were also effectively utilized in addressing the PLC prob-
lem. One of the most prevalent metrics is the Deep Noise
Suppression Mean Opinion Score (DNSMOS) [53]. Despite
being originally trained for different tasks, many researchers
consider it sufficiently aligned with reconstruction quality,
especially in scenarios with missing segments. DNSMOS was
initially conceived as a non-intrusive metric to predict scores
from the ITU-T Rec. P.808 subjective evaluation, which aims
to capture the overall quality of an audio clip, and was later
upgraded to the P.835 standard. This standard delineates three
distinct scores: speech quality (SIG), background noise quality
(BAK), and overall audio quality (OVRL). Authors stated that
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the DNSMOS metric exhibits a high correlation with human
ratings, showing a Pearson’s Correlation Coefficient (PCC) of
0.94 for SIG and 0.98 for BAK and OVRL.

PLCMOS [52] is a newly implemented DNN-based metric
formulated by Microsoft researchers as part of an effort to ad-
vance research on PLC. The scoring system employs a neural
network trained to predict the ratings that human evaluators
would assign to an audio file. Unlike the previously described
DNSMOS, the PLCMOS model is trained using audio de-
graded by lossy transmissions, incorporating real packet loss
traces observed in VoIP calls, and subsequently restored using
various PLC algorithms. As a fully non-intrusive method,
PLCMOS does not necessitate a reference signal. It has gained
significant popularity as a means of comparing different PLC
algorithms in recent times.

Word Error Rate (WER) is the primary accuracy metric used
to evaluate Automatic Speech Recognition (ASR) systems,
so it plays an important role in judging the correct gap
reconstruction. Obviously, the impact of small and sparse
gaps is significantly smaller than bursts of close gaps can
have, so we expect different and non-comparable WER values
between the two datasets considered. To calculate WER, we
use the pre-trained ASR Whisper [54] model. Specifically, the
medium.en model was chosen since it is adequately accurate
and lightweight at the same time, to allow reasonably fast
evaluations.

C. Comparative methods

The baseline systems used for evaluation of VCTK data
include two strictly causal solutions, DNN and CRN, two
methods designed for offline use, SEGAN and Wave-U-Net,
and TFGAN-PLC. This latter allows two latency options,
20 ms and 160 ms, but still requires two separate models for
each latency condition.

DNN [55] is a deep approach to predicting lost speech
frames by resorting to the FFT features of previous correctly
received frames. Specifically, two DNNs with three hidden
layers and 2048 neurons each are employed to separately
predict the magnitude and phase of the candidate frame.
CRN [14] is a convolutional encoder-decoder architecture
with LSTMs which has achieved excellent results in speech

enhancement with magnitude-only mapping. The SEGAN-
based speech enhancement approach [24] works end-to-end
with the raw audio signals and reconstructs the lost frames
directly in the time domain. Unlike the original SEGAN
paper, a reduced configuration is used for the PLC task,
with less output channels and shorter time frames. Wave-
U-Net [56] is an application of the 1D convolutional U-
Net architecture, originally designed to perform end-to-end
speech enhancement, for the PLC task. TFGAN-PLC [30] is
an end-to-end PLC approach adopting a time-frequency hybrid
generative adversarial network with the integration of time-
domain and frequency-domain discriminators.

Finally, the bin2bin [33] system from our previous study
was included in the comparison. It operates at a fixed stride
value of 1024 ms, performing the reconstruction of the magni-
tude spectrogram, while approximating the signal phase with
the Griffin-Lim [57] algorithm, in post-processing.

Additionally, real-world traces from MS-PLC dataset were
tested with LPCNet [58], an autoregressive neural vocoder
that improves on WaveRNN [13] using linear prediction. It
allows causal operation, reconstructing 20 ms lost packets as
they occur, or by looking at 5 ms lookahead, which will be
considered having 25 ms stride. A variant of LPCNet, named
LPCNet-dc is also tested, in which the authors state a special
handling for DC offsets.

V. RESULTS AND DISCUSSION

Comparative results are provided in the following for all
the aforementioned methods, according to PESQ, STOI, DNS-
MOS and PLCMOS scores. Table II reports PESQ scores at
different loss rates for the reference clean speech, the lossy
speech (with zero-fill where packets are lost) and the neural
network approaches that accept a stride of 20 ms or 160 ms.
In addition we provide results for the bin2bin and the cplx-
bin2bin networks, with a 1024 ms (being the only ones that can
accept such a long stride) to show the benefit of the latter in
operating the joint magnitute and phase reconstruction. As can
be seen, the proposed method outperforms all the comparative
methods in terms of PESQ. With very high loss rates (40%
and 50%) there is no data for the comparative methods, but we
tested our method showing that an improvement in terms of
PESQ can be still achieved with respect to the zero-fill lossy
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Fig. 5. Magnitude spectrograms (in dB) of an example reconstruction. Left: target signal. Center: lossy signal with red markers indicating gap displacements.
Right: restored signal by using the complex-bin2bin network.
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speech. Please note that according to PESQ, the clean audio
gets a slightly higher result (4.64) than the ideal score (4.5),
due to implementation details [59].

Evaluations are also conducted on the same data using the
STOI index, as shown in table III. In this case, the TFGAN-
PLC scores better with low loss rates (5 % with stride 160 ms,
and 5-10 % with stride 20 ms), but the proposed method scores
better with higher loss rates, making it more suitable to
heavy loss scenarios. In addition to PESQ and STOI we also
evaluated the PLCMOS and DNSMOS scores for the proposed
method, which are shown in table VII and V. In all cases, the
proposed algorithm is able to increase both metrics, over the
lossy speech. Specifically, the PLCMOS score is increased
from a minimum of 39 % (loss rate 50 %, stride 20 ms) to a
maximum of 86 % (loss rate 20 %, stride 1024 ms).

For the sake of completeness, we also conducted tests
with the cplx-bin2bin network with varying length of the
stride, to assess the PESQ, STOI, PLCMOS and DNSMOS
performance. These are shown in figure 7. All scores follow a
similar pattern, i.e. that with longer strides the concealment
performance increases. Specifically, the performance rises
quickly in terms of PESQ and PLCMOS when the stride
increases from 20 ms to values between 300-400 ms. Then a
plateau is reached, meaning that the added context between
400 and 1000 ms is of little help to increase the reconstruction
quality. It is interesting to note that with high loss rates,
an increase in the stride can highly improve the STOI, the
PLCMOS and the DNSMOS.

Another method to evaluate the proposed method and its
ability to restore the original speech signal is to assess the
WER on the reconstructed signal. Table VIII shows that
with a stride of 20 ms the network can only slightly increase
the performance2. However, with a larger stride the network
benefits from the added context and is capable of reducing the
WER up to a half, with loss rates as high as 50%.

TABLE II
PESQ SCORES FOR COMPLEX-BIN2BIN AND THE COMPARATIVE DNN

SOLUTIONS, EVALUATED AT DIFFERENT LOSS RATES AND STRIDE.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %

Clean - 4.64 4.64 4.64 4.64 4.64 4.64
Lossy (zero-fill) - 2.61 1.84 1.33 1.18 1.10 1.03

DNN 20 2.73 1.89 1.54 1.39 - -
CRNN 20 2.79 1.93 1.66 1.48 - -
TFGAN-PLC 20 2.94 2.16 1.87 1.63 - -
cplx-bin2bin 20 3.30 2.64 1.99 1.75 1.51 1.47

SEGAN 160 2.76 1.95 1.63 1.49 - -
Wave UNet 160 2.87 2.11 1.76 1.54 - -
TFGAN-PLC 160 3.24 2.59 2.14 1.86 - -
cplx-bin2bin 160 3.73 3.23 2.65 2.26 1.94 1.68

bin2bin 1024 3.06 2.97 2.29 2.10 1.82 1.59
cplx-bin2bin 1024 3.76 3.41 2.89 2.49 2.15 1.87

2With loss rates 5-10 % the WER of the reconstructed signal is slightly
higher than the one computed on the lossy speech, which may imply that the
pre-trained ASR Whisper model used in this work is somewhat already robust
to drops of small audio segments.

TABLE III
STOI SCORES FOR COMPLEX-BIN2BIN AND THE COMPARATIVE DNN

SOLUTIONS, EVALUATED AT DIFFERENT LOSS RATES AND STRIDE.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %

Clean - 100 100 100 100 100 100
Lossy - 95.45 91.20 83.94 75.75 68.87 63.99

DNN 20 95.73 92.57 85.36 78.84 - -
CRNN 20 96.25 92.77 86.11 79.24 - -
TFGAN-PLC 20 97.69 94.68 88.93 83.72 - -
cplx-bin2bin 20 97.15 94.63 89.72 84.59 79.92 75.39

SEGAN 160 96.82 94.20 87.03 81.37 - -
Wave UNet 160 97.15 94.23 87.68 82.17 - -
TFGAN-PLC 160 98.45 95.82 90.11 86.39 - -
cplx-bin2bin 160 97.74 96.00 93.05 89.99 86.30 81.71

bin2bin 1024 95.85 93.38 90.60 87.98 83.99 80.03
cplx-bin2bin 1024 97.81 96.78 94.45 91.65 88.41 84.25

When comparing bin2bin and cplx-bin2bin architectures,
the former had worse results across all considered objective
metrics, with a significant drop in DNSMOS values, and
a less pronounced decline in PESQ, STOI, PLCMOS, and
WER. This became clearer after conducting the subjective
evaluation test. The sequences reconstructed with bin2bin
maintained a good level of intelligibility, even at high loss
rates (hence the high WER values), however, the lack of
a cross-fade mechanism in reassembling the packet stream,
and the imprecise effect of the phase approximation, resulted
in noticeable distortion, which was responsible for the low
DNSMOS (which evaluates noise suppression) and the low
subjective MOS rates.

To visually assess the qualitative results of the proposed
model, we report on Figure 5 (center) the spectrogram of
a 1024 ms long segment (equivalent to nearly 50 packets)
corrupted by losses of varying width. The example is taken
from a real validation sample. The regions affected by losses
are not sharply demarcated because the STFT operation in-
troduces an inherent cross-fade that smooth the transition in
time. On figure 5 (left) is the spectrogram of the same clean
segment, while the image on the right shows the output of
the reconstruction network. Although this visual evaluation
does not allow for quantifying the presence of other types
of distortions potentially introduced by the network, it can be
observed that the differences between the reconstructed and
clean spectrogram are imperceptible, and the typical formant
frequencies of the speech signal are reconstructed seamlessly.

A. Subjective evaluation test

Since objective metrics may not accurately reflect the per-
ceived quality of the concealed losses, we conducted a subjec-
tive listening experiment. The test was conducted according to
the MUSHRA [60] (MUltiple Stimuli with Hidden Reference
and Anchor) standard, using the webMUSHRA [61] frame-
work. Participants were asked to rate the perceptual quality of
each audio sample on a scale from 0 (bad) to 100 (excellent).
The test conditions included a low quality anchor (a version of
the reference with zero-filled gaps), six reconstructed versions
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of the anchor (using SEGAN, CRNN, WaveUNet, TFGAN-
PLC, bin2bin and the proposed cplx-bin2bin), and an hidden
reference (the original gap-free signal). Listeners were able, if
needed, to manually replay and loop playback to focus on the
gap locations for detailed evaluation. The audio items varied
in packet loss rate, from 5% to 30%, and were randomly
drawn from the VCTK test-set. The test consisted of 11
sessions, each containing the eight audio items to be rated.
The first two sessions presented the same audio sample and
were used to evaluate the reliability of each listener: we wanted
to assess their ability to assign equal ratings when presented
with the same stimulus. Therefore, we applied a screening
criterion to the test results (in accordance with the ITU-R
BS.1534 recommendation [60]), which involved excluding the
two evaluators who exhibited the highest variability during
such preliminary sessions. A total of 20 volunteers, all of
whom reported no hearing impairment, participated in the
study. The average age of the listeners was 31.5 years old. We
normalized the scores for each user and session, effectively
mitigating variability caused by differing loss rates as well as
user judgment biases. The scores were then linearly scaled
to span a range from 0 (minimum) to 100 (maximum). A
subset of the samples used in the test are available on the
accompanying webpage3. The results of the listening test are
presented in Figure 6 and Table IV. As can be seen, cplx-
bin2bin achieves the best score among the inpainting methods,
and its median value is on par with the reference gap-free
audio, showing a significant improvements from TFGAN-
PLC, which is the second in the ranking. While the original
bin2bin method scored quite well with respect to the objective
metrics, it does not perform well in the listening test because
of phase reconstruction artifacts introduced by the Griffin-Lim
procedure. This issue negatively affects audio quality as it
introduces a “buzzy noise” experienced by evaluators.

This finding prompts the need for more subjective tests
when audio inpainting algorithms are proposed, or the need
for a new objective metrics that account for perceptual factors.
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Fig. 6. Boxplot diagram representing the results of the subjective listening
experiment for evaluated PLC methods.

3https://aircarlo.github.io/cplx_bin2bin/

TABLE IV
STATISTICS FROM THE SUBJECTIVE LISTENING EXPERIMENT, FOR

EVALUATED PLC METHODS.

stride subjective score
Model (ms) mean std. dev.

Clean (reference) - 97.87 7.49
Lossy (zero-fill) - 34.37 27.48

CRNN 20 60.71 30.13
SEGAN 160 38.19 22.71
Wave UNet 160 66.38 24.84
TFGAN-PLC 160 77.48 22.81
cplx-bin2bin 160 90.49 13.51
bin2bin 1024 38.04 20.18

VI. CONCLUSIONS

In this work, we proposed a novel approach for Audio PLC
that provides flexible handling of latency and is comparable
or superior to other state of the art DNN solutions. Its flexi-
bility lies in the ability of recovering spectrograms with lost
segments in arbitrary positions, therefore, it can be employed
to repair the latest audio packet, as well as any other in the
input temporal context. Other PLC architectures can adopt this
approach, making it valuable for future research works. Our
PLC architecture is based on a generative bin2bin network that
handles complex spectrograms, thus restoring the phase and
magnitude information jointly. The system also employs an
audio quality metric, PESQ, implemented as a differentiable
DSP algorithm, in order to use it as a loss function during the
training.

Experiments were conducted on different datasets. On voice
recordings with randomly inserted gaps, at rates ranging from
5 % to 50 %, the proposed model outperformed five recent
alternative approaches, based on neural networks, with im-
provements up to 22.2 % (20 ms latency) and 23.8 % (160 ms
latency) for PESQ, and improvements of 1.04 % (20 ms la-
tency) and 4.17 % (160 ms latency) for STOI. Furthermore,
experiments conducted on corrupted signals with lost packet
distributions taken from real-world communications networks,
the complex-bin2bin model showed improvements of 14.08 %
(PESQ), 1.17 % (STOI), 26.2 % (PLCMOS), 0.64 % (DNS-
MOS ovrl), 0.29 % (DNSMOS sig), 0.26 % (DNSMOS bak),
succeeding in lowering the word error rate perceived by an
automatic recognition system by 1.27 percentage points. To
complete the evaluation, we conducted a subjective listening
test that provided a ranking of the algorithms and clearly
highlights the superior quality of our proposed cplx-bin2bin
over all others.

Despite the positive results obtained by our novel PLC
approach with respect to the state of art, we believe that there is
still room for improvements. First, ongoing developments are
aimed to incorporate an additional ASR-based loss criterion
in order to enhance the overall performance, especially at low
latency conditions. Moreover, future investigations will focus
on alternative techniques, such as diffusion models [62] or
attention-guided generative models [63], which have already
shown remarkable properties in various application domains.
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TABLE V
DNSMOS SCORES FOR COMPLEX-BIN2BIN EVALUATED AT DIFFERENT LOSS RATES AND STRIDE.

Loss rate
stride 5 % 10 % 20 % 30 % 40 % 50 %

Model (ms) ovrl sig bak ovrl sig bak ovrl sig bak ovrl sig bak ovrl sig bak ovrl sig bak

Clean 3.18 3.46 3.99 3.18 3.46 3.99 3.18 3.46 3.99 3.18 3.46 3.99 3.18 3.46 3.99 3.18 3.46 3.99
Lossy 3.12 3.40 3.97 3.00 3.28 3.92 2.64 2.91 3.75 2.19 2.43 3.55 1.79 1.98 3.34 1.51 1.64 3.20

cplx-bin2bin 20 3.14 3.45 4.00 3.06 3.38 3.96 2.90 3.23 3.89 2.71 3.05 3.81 2.49 2.83 3.69 2.24 2.58 3.56
cplx-bin2bin 160 3.17 3.47 4.01 3.12 3.43 3.99 3.04 3.35 3.96 2.95 3.27 3.93 2.86 3.19 3.90 2.76 3.08 3.86
cplx-bin2bin 1024 3.12 3.43 3.99 3.10 3.41 3.99 3.05 3.36 3.98 3.00 3.31 3.97 2.93 3.25 3.95 2.86 3.83 3.93
bin2bin 1024 3.09 3.37 3.89 2.99 3.31 3.90 2.60 2.99 3.69 2.21 2.63 3.55 1.99 2.25 3.44 1.65 1.97 3.41

TABLE VI
OVERALL METRICS FOR TESTING CPLX-BIN2BIN AND LPCNET ON MS-PLC REAL TRACES DATASET.

stride PESQ STOI PLCMOS DNSMOS DNSMOS DNSMOS WERms (ovrl) (sig) (bak)

Clean (reference) 4.56 100.00 4.33 3.24 3.58 3.94 9.85 %
Lossy (zero-fill) 2.19 83.91 2.68 2.56 2.77 3.56 20.07 %

LPCNet causal 20 2.70 90.82 3.58 3.11 3.47 3.85 16.93 %
LPCNet-dc causal 20 2.71 90.95 3.54 3.13 3.47 3.91 17.39 %
LPCNet noncausal 25 2.76 91.36 3.62 3.10 3.45 3.87 17.23 %
LPCNet-dc noncausal 25 2.77 91.49 3.59 3.13 3.47 3.91 17.02 %
cplx-bin2bin 20 3.16 92.56 3.95 3.15 3.48 3.92 15.66 %

TABLE VII
PLCMOS SCORES FOR COMPLEX-BIN2BIN EVALUATED AT DIFFERENT

LOSS RATES AND STRIDE.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %

Clean - 4.274 4.274 4.274 4.274 4.274 4.274
Lossy - 4.025 3.586 2.721 2.179 1.822 1.547

cplx-bin2bin 20 4.179 3.982 3.567 3.163 2.853 2.613
cplx-bin2bin 160 4.229 4.131 3.939 3.728 3.477 3.168
cplx-bin2bin 1024 4.222 4.174 4.064 3.927 3.742 3.518
bin2bin 1024 4.169 4.001 3.408 3.102 2.799 2.559

TABLE VIII
WORD ERROR RATES OBTAINED ON THE SYNTHETIC DATASET, WITH

DIFFERENT LOSS RATES.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %

Clean 1.76 1.76 1.76 1.76 1.76 1.76
Lossy 1.95 2.19 2.94 3.86 6.44 12.98

cplx-bin2bin 20 2.10 2.27 2.82 3.74 5.51 12.01
cplx-bin2bin 160 1.95 2.04 2.53 3.02 3.89 6.84
cplx-bin2bin 1024 1.89 1.99 2.28 3.0 3.46 6.30
bin2bin 1024 1.99 1.94 2.30 2.98 3.77 6.91
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