

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Organochlorines and Polycyclic Aromatic Hydrocarbons as fingerprint of exposure pathways from marine sediments to biota

This is the peer reviewd version of the followng article:

Original

Organochlorines and Polycyclic Aromatic Hydrocarbons as fingerprint of exposure pathways from marine sediments to biota / Traina, Anna; Ausili, Antonella; Bonsignore, Maria; Fattorini, Daniele; Gherardi, Serena; Gorbi, Stefania; Quinci, Enza; Romano, Elena; Salvagio Manta, Daniela; Tranchida, Giorgio; Regoli, Francesco; Sprovieri, Mario.. - In: MARINE POLLUTION BULLETIN. - ISSN 0025-326X. - 170:(2021). [10.1016/j.marpolbul.2021.112676]

Availability: This version is available at: 11566/328698 since: 2024-04-11T13:48:40Z

Publisher:

Published DOI:10.1016/j.marpolbul.2021.112676

Terms of use:

published version.

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the

1 Organochlorines and Polycyclic Aromatic Hydrocarbons as fingerprint of 2 exposure pathways from marine sediments to biota

Anna Traina^a, Antonella Ausili^b, Maria Bonsignore^{c*}, Daniele Fattorini^d, Serena Gherardi^e, Stefania Gorbi^d, Enza Quinci^c, Elena Romano^b, Daniela Salvagio Manta^a, Giorgio Tranchida^c, Francesco Regoli^d, Mario Sprovieri^c

- 8 ^a Institute of Anthropic Impacts and Sustainability in marine environment National Research Council of Italy (IAS-CNR),
- 9 Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
- 10 ^b Institute for Environmental Protection and Research (ISPRA), Via V. Brancati 60, 00144 Rome, Italy
- 11 ^c Institute of Anthropic Impacts and Sustainability in marine environment National Research Council of Italy (IAS-CNR), via del
- 12 Mare 3, 91021 Torretta Granitola (Trapani), Italy
- ^d Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago,
 60131 Ancona, Italy
- 15 ^e National Research Council of Italy-Institute of Marine Science (ISMAR-CNR), Calata Porta di Massa, 80133 Naples, Italy
- 16
 17 * Corresponding author: maria.bonsignorei@ias.cnr.it
 18

19 Abstract

3

7

20 To elucidate the dynamics of a suite of organochlorine contaminants (PCBs, HCB), PAHs and Hg and verify 21 the potential of these pollutants as reliable fingerprints of sources, an ensemble of marine sediments and organisms (finfish, shellfish species and Mytilus galloprovincialis) were analysed from the contaminated 22 23 Augusta Bay (Southern Italy). The Hg and HCB concentration in the sediments exceeded the EQS of the 24 Directive 2000/60/EU. Similarly, *PCB* and selected PAHs were above the threshold limit set by regulation. 25 The marine organisms showed Hg concentrations above CE 1881/2006. Contaminants in transplanted mussel 26 evidenced an increased accumulation overtime and different distribution patterns between sampling sites. 27 Analysis of the homolog composition of PCB congeners revealed comparable patterns between sediments 28 and marine organisms and offered the opportunity to define a robust fingerprint for tracing contaminants 29 transfer from the abiotic to the biotic compartments. These results were confirmed by the Fluoranthene/Pyrene, Hg and HCB distribution modes. 30

- 31
- 32 Keywords: Organochlorines, PAHs, Biota, Sediment, Source fingerprint.
- 33
- 34 1. Introduction

35 Understanding the transfer of contaminants from marine sediments to biota represents a critical

36 aspect for environmental risk assessment, modelling and specific remediation actions (Gobas and

- 37 Arnot, 2010). Distribution patterns of pollutants, isotope measurements, compositional analysis and
- 38 investigation of variable proportions of single congeners of specific organic pollutants were shown
- 39 as valuable tools for tracing sources of contamination to the trophic chains (e.g., Sahu et al., 2009;

40 Baskaran, 2011; Rodenburg and Leidos, 2017; Habibullah-Al-Mamun et al., 2019; Bonsignore et

41 al., 2020).

42 Although several actions have been taken to reduce or even eliminate input of contaminants in the 43 environment (UNEP 2001, 2017, 2019), compounds such as Persistent Organic Pollutants (POPs) 44 and some trace metals, including Hg, are accumulated in different environmental matrices thus 45 representing a global environmental threat for marine organisms and human health (García-Flor et al., 2009; Bellas et al., 2011; Sanchez-Avila et al., 2012; Berrojalbiz et al., 2014; Olenycz et al., 46 47 2015; Batang et al., 2016; Jepson et al., 2016; Beiras, 2018). Due to their hydrophobic behaviour in 48 aquatic ecosystems, most of the pollutants such as e.g. Polychlorinated biphenyls -[PCBs], 49 Hexachlorobenzene [HCB] and Polycyclic Aromatic Hydrocarbons [PAHs], readily bind to 50 particles (suspended in seawater and/or into the sediments) and are strongly associated with organic 51 phase. Once in the sediments they persist for very long time (Minh et al., 2007) with high potential to be incorporated into the food web via benthic-pelagic coupling (Thomann et al., 1992). As an 52 53 example of extremely stable compounds, Hexachlorobenzene (HCB) was produced for industrial 54 and agricultural applications worldwide (Courtney, 1979; Bailey, 2001; Meijer et al., 2003), and although its production was stopped before 2000 in most countries, it is still abundant in the 55 56 environment due to its long-half life in water and sediments (Barber et al., 2005). PCBs were 57 produced in the past century, up to the 1970s-1980s, and largely used for different industrial applications (e.g. as dielectric fluid in electrical transformers and capacitors, active constituent of 58 59 pesticides) (ATSDR, 2000; Crinnion, 2011). Among 209 congeners, the Stockholm Convention reports as mandatory to measure at least six indicator congeners non-dioxin-like (NDL) PCBs 28, 60 61 52, 101, 138, 153 and 180 to estimate environmental PCBs contamination (JECFA, 2018), while ICES (Webster et al., 2013) recommends the measure of 7 PCBs congeners (including also 62 63 congener 118) which represent a large percentage of the total congeners measured in environmental samples and human fluids (EFSA, 2010; IARC, 2016). Likewise, Hg is a trace metal efficiently 64 transferred and biomagnified along food web reaching high concentrations in the upper trophic 65 levels and thus representing a risk to human health (e.g., Signa et al., 2017). 66

Finally, PAHs represent another group of chemicals of priority concern which include the largest known class of carcinogens and chemical mutagens (Keith and Telliard, 1979). PAHs tend to adsorb rapidly on particles (Neff, 1979; Landrum and Robbins, 1990) and since their solubility decreases with increasing molecular weight, the bioaccumulation of these chemicals from sediments to marine organisms is generally higher for those with lower molecular weight (Porte and Albaigés, 1993; Djomo et al., 1996).

Over the last decade, a number of scientific contributions explored the distribution patterns of classes of contaminants (e.g., PAHs, PCBs, PCDD/Fs, Hg and HCB) to trace transfer dynamic from the sediments to the biotic compartment, and to characterize sources of variability in contaminant bioavailability to aquatic biota (e.g. Selck et al., 2012; McLeod et al., 2015).

Fish and other key species have been used as bioindicators to investigate the presence and toxic effects of chemical pollutants (Ueno et al., 2003). It is well-known that biotransformation pathways significantly modulate absorption, distribution and excretion of organic xenobiotics in fish while filter feeders, such as bivalve, tend to accumulate these pollutants in their tissues from both water column and sediments thus providing additional information on the environmental state of pollution (Regoli et al., 1998; Wiberg et al., 2002; Olenycz et al., 2015; Farrington et al., 2016; Beyer et al., 2017).

However, PCBs congeners distribution in the biota generally remains similar to the un-weathered PCBs mixtures in the sediments (mainly when those with higher chlorine content are considered), thus allowing the identification of these sources with a satisfactory degree of confidence. Some exercises of PCBs fingerprinting in biota have been performed in the Hanford Site in Washington State (Rodenburg et al., 2015) and Portland Harbor in Oregon (Rodenburg et al., 2019) offering robust information on the transfer of contaminants from the abiotic to the biotic compartments.

In this work, we present an unprecedented dataset of Hg, HCB, PCBs and 16 priority PAHs
measured on surface sediments, mussels, and several species of marine organisms from the highly
contaminated marine area of Augusta Bay (southern Italy). Patterns of PCBs congeners, combined

93 to spatial distribution of PAHs, HCB and Hg in sediments and biota were elaborated to evaluate the 94 fingerprint association between sediments (sources) and biota, and their opportunity for high-95 resolution tracing of priority contaminants sources.

96

97 2. Study area

Augusta Bay is a $\sim 25 \text{ km}^2$ area located in the eastern Sicilian coast (Fig. 1) which hosts one of the 98 99 most important harbours of the Mediterranean Sea and, since 1950s, one of the largest petrochemical complexes in Europe, characterized by oil refineries and chlor-alkali plant. 100 101 Uncontrolled industrial discharges led to significant contamination of sediments by metals and 102 organics, mainly Hg, PCBs, PAHs and HCB (ICRAM, 2008; Bellucci et al., 2012; Croudace et al., 2015), and all the area was included in the National Remediation Plan by the Italian Ministry of 103 Environment. Several investigations have highlighted a strong contamination of the marine 104 environment with i) abnormal levels of Hg, PCBs and HCB in sediments (ICRAM, 2005, 2008, 105 106 Bellucci et al., 2012; Sprovieri et al., 2011; Orecchio and Polizzotto, 2013), ii) active fluxes of Hg from the sediment to the water column (Salvagio Manta et al., 2016; Denaro et al., 2020) and iii) 107 Hg evasion processes to the atmosphere (Sprovieri et al., 2011; Bagnato et al., 2013). Serious 108 109 impacts on the ecosystem have been documented by ecotoxicological investigations which revealed 110 genotoxic damages and high Hg contents, exceeding the regulatory limits for food consumption in the tissues of fish and mussels (Ausili et al., 2008; ENVIRON, 2008; ICRAM, 2008; Tomasello et 111 al., 2012; Bonsignore et al., 2013; Signa et al., 2017), thus advising for possible human health 112 113 implications due to consumption of seafood from this area (Ausili et al., 2008; Bonsignore et al., 114 2013; Di Bella et al., 2020).

The role of polluted sediments as the main carrier of Hg to the ecosystem and local fish consumers
has been further revealed throught the exploration of Hg isotopes signature in sediments and fish
(Bonsignore et al., 2015).

118

4

3. Sampling activity

120

121 *3.1 Sediments*

The sediment sampling, carried out in October 2017 during an oceanographic cruise on board R/V
"*Luigi Sanzo*", provided sediment cores from 4 stations (A3, A7, A9, A11) inside the bay, from the
northern to the southern area (Fig. 1), using an oceanic box-corer. Sediment cores were immediately
stored at -20 °C until the analyses.

126

127 *3.2 Marine organisms*

In November 2013, wild mussels (*Mytilus galloprovincialis*) with size range 3.6-6 cm, were manually collected from industrial wharf and rapidly transported to laboratory for the tissue's dissection. In the same period, a total of 62 specimens of finfish (*Sphyraena sphyraena, Mullus barbatus, Pagellus* spp., *Sparus aurata, Serranus cabrilla, Diplodus* spp.) were obtained through local fisherman (Fig. 1).

In September 2017, mussels (*Mytilus galloprovincialis*) with size range of 4-6 cm were obtained from a commercial farm. A pool of individuals (about 2 kg) was used as control (*M. galloprovincialis CTRL*), while other two pools (about 10 kg) were transplanted in the northern (*M. galloprovincialis N*) and the southern (*M. galloprovincialis S*) areas of Augusta Bay, caged in nylon net bags, secured to a rope and maintained at approximately 3 m water depth. After a period of 5 weeks, a subgroup of mussels was collected from each site (*N1* and *S1*), and an additional sampling was performed 7 months later (*N2* and *S2*).

141 barbatus, Pagellus spp., Diplodus spp.) and shellfish (Parapaeneus kerathurus and Sepia spp.)

In October 2017, a total of 96 specimens of finfish (Sphyraena sphyraena, Trigla lucerna, Mullus

142 were obtained through local fishermen (Fig. 1).

143

140

144 4. Analytical methods

145 *4.1 Samples preparation*

In laboratory, the sediment cores were defrosted, extruded and immediately sliced into 1 cm intervals. The samples were then dried at 35°C and homogenized by an agate mortar. For the goals of this study only the most superficial levels (between 0-10 cm) were analysed.

The total length (mm) and the weight (g) for each organism were measured and muscles and soft tissues were dissected by stainless steel scissors. Individuals of each species with comparable size were pooled, homogenized and stored at -80°C (Table 1). The tissues samples were then freezedried and powdered by an agate mortar prior the analyses.

153

154 *4.2 Mercury determination in sediments and marine organisms*

The concentration of Hg in organisms and sediments was determined by a direct mercury analyzer 155 156 (milestone-DMA-80 atomic absorption spectrophotometer), according to analytical procedures 157 reported in EPA 7473 method (2007). About 0.050 g of dried tissue and ~0.010 g of dry sediment were loaded in nickel boats and transferred into the DMA-80 system. The Certified Reference 158 159 Materials-TORT-2 Lobster hepatopancreas and (PACS-2 Marine sediment, NRC-CNRC) were used 160 to assess accuracy (estimated % error =3%) and precision (routinely better than 4%; RSD%, n = 3). 161 About 20% of the total number of samples was duplicated to estimate reproducibility (better than 162 7%). Acid-cleaned laboratory materials were used in order to minimize contamination risks during sample preparation and analyses procedures. Analyses were performed at the biogeochemical 163 laboratory of the Institute of Anthropic impacts and Sustainability in marine environment (IAS-164 165 CNR) of Capo Granitola (Trapani, Italy). Results were expressed as on wet weight basis.

Results relative to tissues were converted from dried to wet-weight ($\mu g g^{-1}$) applying a conversion factor previously calculated using the following formula: $C_w=C_d \propto (100-\%H_2O/100)$ were C_d and C_w are the concentration expressed relatively to dry and wet mass respectively. %H₂O is the percentage of humidity (ranging around 80% for almost species) calculated after the freeze-drying process (Di Bella et al., 2020 and references therein).

172 *4.3 PCBs, HCB and PAHs determination in sediments and marine organisms*

The sediment and biota samples were freeze dried and homogenized, then an aliquot (about 1 and 2 173 g of tissues and sediments, respectively) was placed in an ASE 200 steel extraction cell, spiked with 174 surrogate standards (o2si smart solution ® custom deuterated PAH mix; Wellington Laboratories 175 176 Inc PCB mix; CDN Isotope Inc HCB standard solution) for recovery monitoring and extracted by 177 pressurized fluid extraction using a moderately polar solvent mixture. The resulting extract was cleaned up according to the matrix (sediment or biota) and the analytes (organochlorines or PAHs) 178 by a combination of column chromatography on silica (PAH) and florisil (organochlorine) 179 180 adsorbents and a shaking of the extract with a NaOH solution (PAH in biota) or with concentrated 181 sulphuric acid (organochlorine). For the determination of organochlorine compounds in sediment 182 samples the extract was also shaken with activated copper powder for sulphur removal. The cleaned 183 up concentrated extract was spiked with injection internal standard and analysed by GC/MS/MS for 184 organochlorine and GC/MS for PAHs.

PAH contents in sediments were compared to values established by the Italian regulation
(Legislative Decree 172/2015). Benzo(a)pyrene and Fluorantene were monitored in biota,
specifically in molluscs as suggested by Legislative Decree 172/2015.

188 Reference materials for sediments (SRM 1941b-NIST, organics in marine sediments) and biota 189 (NIST 2974a, organics in freeze-dried mussel's tissue - *Mytilus edulis*) were analysed to estimate 190 the accuracy (recoveries for each analyte of PAHs, PCBs and HCB ranged between 94% and 191 107%). The reproducibility, estimated on tripled samples, was better than \pm 10% and analytical 192 precision was routinely better than 4% (RSD%, n = 3).

For the PCB class of contaminants, we referred to the following notation: $\sum PCBs$ (sum of all the measured congeners), $\sum PCBs^1$ (sum of PCB congeners according to Italian Legislative Decree 172/2015 for marine sediments), $\sum NDL$ -PCBs (PCB 28, 52, 101, 153, 138 and 180) and $\sum 7PCBs$ ($\sum 6PCBs + PCB$ 118). 197

198 *4.4 Statistical analysis*

All the statistical analyses and graphics were performed using the statistical software R 3.6.3 (R Development Core Team, 2020). Box-whisker plots of measured Hg, HCB and PCBs were used to provide synthetic and direct comparisons for these parameters among the cores. For statistical analysis, all values below the limit of detection (LOD) were set-up as ¹/₂ LOD.

A hierarchical cluster analysis (HCA) with Euclidean distance and Ward's grouping method was
applied to the ratio 'individual PCB congener/ΣPCB' in order to create homogeneous clusters of
samples (sediments, fishes and mussels) based on similarity of PCBs composition. The elbow
method was used to determine the most statistically reliable and representative number of clusters,
minimising the total intra-cluster variation.

208

209 5. Results and Discussion

210

211 <u>5.1 Contaminants in sediments</u>

212 *5.1.1. Mercury*

Mercury concentrations measured in the A3, A7, A9 and A11 cores ranged from 3.07 to 12.2 µg g⁻¹ 213 (Tab. 2; Tab. S1) widely exceeding (generally more than one order of magnitude) the 214 Environmental Quality Standard (EQS), defined in accordance with Directive 2000/60/EU as 215 216 criteria for the achieving of the Good Chemical and Ecological Status of water bodies, and established by the Italian regulation (Legislative Decree 172/2015; 0.3 mg kg⁻¹). The highest values 217 $(\text{mean}\pm 1\sigma = 11.4\pm 0.57 \ \mu\text{g g}^{-1})$ were found in A9 core collected from the south-western sector of the 218 bay, in front of the past chlor-alkali plant (Tab. 2; Fig 2a). The lowest concentration (mean $\pm 1\sigma$ = 219 3.64 ± 0.27 µg g⁻¹) was recorded in the A3 core sampled in the northern area (Tab. 2, Fig. 2a). 220 Finally, A7 and A11 cores, collected from the central and southern part of the bay, showed 221 comparable levels of Hg (mean $\pm 1\sigma = 6.71\pm 0.80 \ \mu g \ g^{-1}$ and $6.54\pm 1.28 \ \mu g \ g^{-1}$, respectively). 222

223

224 5.1.2. Organochlorine compounds (HCB and PCBs) and PAHs

The analysis of organochlorine compounds in sediments showed very high concentrations of HCB in all the analysed cores, ranging from 1.98 to 330 ng g⁻¹ (Tab. 2; Tab. S1). The mean values registered from each core, again considering only the superficial 10 cm of sediments, were considerably above the EQS for marine sediments (0.4 ng g⁻¹), with highest values measured in the A9 core (mean $\pm 1\sigma = 172 \pm 87.6$ ng g⁻¹) (Tab. 2; Fig. 2b).

- Also $\sum PCBs$ and $\sum 7PCB$ registered higher values in A9 core (41.9 ± 5.60 ng g⁻¹; Tab. 2; Tab. S1;
- Fig. 2c,d). The \sum PCBs also exceeded EQS value (8 ng g⁻¹) for sediments in all cores (Tab. 2).

232 The average concentrations of the individual PAHs were, in some cases, above the EQS indicated in Tab 1/A of the Legislative Decree 172/2015 Specifically, the Anthracene concentrations (range = 233 23.4-286 ng g⁻¹) were above the EQS (24 ng g⁻¹) in all the analyzed samples; most of the A3 levels 234 showed concentrations of Benzo-a-Pyrene (mean $\pm 1\sigma = 64.7 \pm 20.1$ ng g⁻¹; EQS = 30 ng g⁻¹), 235 Benzo-b-Fluoranthene (mean $\pm 1\sigma$ = 54.6 \pm 20.4 ng g⁻¹; EQS = 40 ng g⁻¹) and Benzo-k-Fluoranthene 236 $(\text{mean}\pm 1\sigma = 33.6 \pm 24.3 \text{ ng g}^{-1}; \text{EQS} = 20 \text{ ng g}^{-1})$ above the EQS values; furthermore, Indenopyrene 237 concentrations higher than EQS (70 ng g⁻¹) were recorded in the upper part (between 0-6 cm) of the 238 A3 core (Tab. 2; Tab. S2). 239

240

241 <u>5.2 Contaminants in marine organisms</u>

242 *5.2.1. Mercury*

The lowest Hg mean values referred to *Sepia* spp. collected in 2017 ($0.21\pm0.08 \ \mu g \ g^{-1}$) and *S. aurata* sampled in 2013 ($0.32\pm0.09 \ \mu g \ g^{-1}$). In most cases, such as *S. sphyraena*, *T. lucerna*, *M. barbatus*, *Diplodus* spp. and *P. kerathurus* (sampled in 2017) and *S. sphyraena*, *S. cabrilla* and *Diplodus* spp. (sampled in 2013), the Hg levels exceed the threshold limits set by EU regulation for contaminants in seafood (CE 1881/2006) (Tab. 3). Excluding the effect of age and length, the contents of Hg found in organisms resulted in most cases higher than values previously measured in

the study area. Specifically, the concentrations measured in *Diplodus* spp. (1.49 \pm 1.77 µg g⁻¹ in 249 2017) and *Pagellus* spp. (0.86 \pm 0.44 µg g⁻¹ in 2017 and 0.53 \pm 0.12 µg g⁻¹ in 2013) were higher than 250 those reported by Bonsignore et al. (2013), Ausili et al. (2003) and ICRAM (2005, 2008), for the 251 same species (between 0.56-0.90 μ g g⁻¹ and 0.36-0.41 μ g g⁻¹, respectively). In red mullet (M. 252 barbatus), the concentrations relative to 2013 (0.44±0.20 µg g⁻¹) were in the same range of 253 measurements (0.46-0.82 µg g⁻¹) of the previous investigations (Bonsignore at al., 2013; ICRAM, 254 2005, 2008) while those relative to 2017 (2.11 and 1.71 μ g g⁻¹) resulted significantly higher and in 255 the same range of those reported by ICRAM in 2003 (1.49-1.92 µg g⁻¹). Finally, the Hg 256 concentration in T. lucerna (0.66 μ g g⁻¹) resulted slightly higher than that reported by ICRAM in 257 2003 (0.57 µg g⁻¹). 258

The bioavailability of Hg in the study area has been confirmed by analyses on both native and 259 caged mussels with concentrations always higher than the EQS (0.02 μ g g⁻¹) (Tab.3). Wild 260 261 specimens collected in industrial wharf exhibited concentration of approximately about 0.2 µg g⁻¹, ~20-fold higher than those measured in control organisms and comparable to those observed by 262 Ausili et al. (2008) (Tab. 3). Bioaccumulation of Hg demonstrated to be very rapid in caged mussels 263 showing, after only 5 weeks, comparable values to those of native organisms; after 7 months the 264 265 concentrations increased by about 5-fold (Tab. 3). In particular, in the northern area, Hg in mussels 5 weeks after transplant (N1: $0.02\pm0.002 \ \mu g \ g^{-1}$) appeared double than in the control sample (0.01 266 $\mu g g^{-1}$), while after 7 months, the Hg increase was nearly one order of magnitude higher (N2: 267 $0.12\pm0.01 \ \mu g \ g^{-1}$) (Tab. 3). Worthy to note, this value is reasonably in agreement with the results 268 recently reported for mussels in the Augusta Bay (0.17±0.07 µg g⁻¹; Caricato et al., 2019). In the 269 270 southern area, when comparing the concentration in pre-deployed mussels, the levels of Hg were ~23 times higher in those collected after 5 weeks (S1: $0.23\pm0.02 \ \mu g \ g^{-1}$) and up to 89 times higher 271 after 7 months (S2: 0.89 μ g g⁻¹). The latter value exceeds the threshold limits set up by EU 272 regulation for contaminants in seafood (0.5 µg g⁻¹; Reg. CE 1881/2006) and appeared much higher 273 than those reported for many other Mediterranean sites (range: 0.01-0.20 µg g⁻¹; Amodio-Cocchieri 274

et al., 2003; Ipolyi et al., 2004; Licata et al., 2004; Cardellicchio et al., 2010; Kljaković-Gašpić et
al., 2010; Spada et al., 2011, 2012, 2013; Caricato et al., 2019).

277

278 *5.2.2. HCB, PCBs and PAHs*

Concentrations of HCB, PCBs and PAHs measured in organisms are reported in Table 3. Values of HCB were <LOD (0.05 ng g⁻¹) in all species of finfish and shellfish sampled in 2017, except for *S. sphyraena* (1.40 ng g⁻¹) and *M. barbatus* (0.24 and 0.65 ng g⁻¹); on the other hand, in 2013 they ranged between 0.09 ± 0.02 (*Pagellus* spp.) and 1.36 ± 0.31 ng g⁻¹ (*Mullus* spp.). All the concentrations are below the EQS of 10 ng g⁻¹.

284 HCB together with PCBs are ubiquitous contaminants in Mediterranean marine coastal areas (Solé 285 et al., 2000). HCB can be stored in sediments and accumulated in benthic organisms. Being a lipophilic compound, it has a greater affinity for tissues with high lipid content, thus explaining the 286 low concentrations measured in almost all the muscle samples of fish analysed in this study. Other 287 authors have reported data related to HCB in fishes, but a direct comparison appears problematic 288 due to the high variability of investigated organs/tissues (skin, gills or mussels' tissues) and the 289 290 different used reference system (wet, dry or lipid weight) (Domingo and Bocio, 2007). Nonetheless, when comparable, our results are within the range of concentration reported from other studies for 291 the Mediterranean Sea (Rodríguez-Hernández et al., 2016; Junquè et al., 2018). 292

PCBs were detected in all the analysed species. The mean values of $\sum PCBs$ ranged from 28.7 ng g⁻¹ (*Diplodus* spp.) to 241.7 ng g⁻¹ (*S. sphyraena*). The $\sum NDL$ -PCBs showed variable concentrations among the analysed species, with a mean value above the limit of 75 ng g⁻¹ (European Commission, 2011) measured in *S. sphyraena* (168 ng g⁻¹) and *M. barbatus* (88.2 ng g⁻¹) collected in 2017 and *Mullus spp.* sampled in 2013 (96.2 ng g⁻¹). All the analysed species sampled in 2013 and 2017, exceeded $\sum 7PCBs$ threshold limit (10 ng g⁻¹) with the lowest and highest value measured in *T. lucerna* (19.0 ng g⁻¹) and *S. sphyraena* (180.9 ng g⁻¹), respectively (Tab. 3); this value represents the limit above which effects on marine organisms might be expected according to the Ecotoxicological
Assessment Criteria (EACs) of the OSPAR Convention (Campillo et al., 2017). A direct
comparison of the ∑7PCBs with a previous study (Ferrante et al., 2007) on various edible species
sampled in the Gulf of Naples (Southern Tyrrhenian Sea) showed systematically higher
concentrations in samples from Augusta Bay.

305 The highly-chlorinated congeners CB153 and CB138 (hexa-chlorinated) and CB180 (epta-306 chlorinated) exhibited the higher abundance in biota (Tab. 3) and dominated the PCB group in all 307 the analysed samples, thus mirroring results from other studies (Miao et al., 2000; Solé et al., 2000; Green and Knutzen, 2003; Castro-Jimenez et al., 2008; Storelli et al., 2009; Scarpato et al., 2010; 308 309 Xia et al., 2012; Suarez et al., 2013; Herceg-Romanic et al., 2014; Mohebbi- Nozar et al., 2014; Kampire et al., 2015; Batang et al., 2016). The major occurrence of these congeners is related to the 310 311 high degree of chlorination on the aromatic rings which results in a lower degradation rate by 312 organisms and a potential bioaccumulation (Jönssonn et al., 2003; Storelli et al., 2009). Specific differences in PCBs content could reflect the dissimilar behaviour and feeding patterns, trophic 313 314 levels, physiological status of organisms or metabolic detoxification capacity (Ashley et al., 2003) 315 typical of the studied species. In particular, S. sphyraena, which is an active predatory fish, occupying a high level in the trophic chain (Premolatha and Manojkumar, 1990), showed the 316 317 highest concentration of PCBs with respect to other species. Also, the Mullus species exhibited higher values of Σ PCBs most likely related to their ecological features (bottom-feeder) and 318 consequently greater probability of exposure to PCBs from sediments. 319

PAHs were measured only in organisms sampled in 2017, revealing differences among the analysed species both as total content and individual PAHs (Tab. 3). Finfish and shellfish showed a major content of low molecular weight (LMW) PAHs, while high molecular weight (HMW) PAHs were all <LOD (0.8 ng g⁻¹). The Σ PAHs ranged between 9.22 ng g⁻¹ (*S. sphyraena*) and 22.0 ng g⁻¹ (*Sepia* spp.). The Benzo-a-pyrene (BaP), used as reference of PAHs presence in seafood (Reg. EC

1881/2006 as amended), was <LOD in all finfish and shellfish except in mussels. The latter exceed 325 threshold limit of Benzo-a-pyrene established for molluscs (5 ng g^{-1} ; Legislative Decree 172/2015). 326 The OCs pollutants in transplanted mussels showed higher values than those measured in the 327 control samples, suggesting significant bioaccumulation (Tab. 3). HCB detected in transplanted 328 mussel samples revealed differences between the two sites, with always higher HCB values in 329 samples from the southern sites over both the sampling periods (S1 and S2), with levels up to 7 time 330 higher (1.91 and 3.15 ng g⁻¹, respectively) than those measured in the northern site (0.44 and 0.41 331 ng g⁻¹) (Tab. 3). Recorded values, compared to those from other Mediterranean areas (Ferrante et 332 al., 2007), resulted higher and suggested that mussels from Augusta Bay were exposed to high-333

334 levels of this pollutant.

The $\sum PCBs$ in S1 mussels (35.2 ng g⁻¹) was >3 times than values measured in N1 organisms ($\sum PCBs = 11.66$ ng g⁻¹). A higher content of $\sum PCBs$, compared to N2 (27.1 ng g⁻¹), was confirmed in S2 mussels (39.3 ng g⁻¹). Furthermore, $\sum 7PCBs$ resulted above the OSPAR limit in all samples except in N1 mussels. The analysis of PCB congeners showed that the penta (101, 118), hexa (138-153) and epta-chlorinated PCBs (180) were generally more abundant than the less chlorinated forms (28 and 52) (Tab. 3) reflecting previous data reported by Ferrante et al. (2007), Beiras et al. (2012) and Campillo et al. (2017).

Also, PAHs concentrations were higher in transplanted mussels (Σ PAHs ranged between 34.2 and 76.4 ng g⁻¹) than in the control sample (Σ PAHs= 25.0 ng g⁻¹) with B(a)P showed values above the EQS (5 ng g⁻¹) (Tab. 3). In particular, S1 and S2 organisms exhibited a marked increase of B(a)P (11.3 and 11.02 ng g⁻¹, respectively) in relation to the initial value of control samples (4.3 ng g⁻¹). All samples showed values above the limit of 30 ng g⁻¹ for Fluoranthene (Tab. 3).

347

348 Discussion and conclusive remarks

349 Recent studies revealed a systematic correlation between PCBs in biota and in nearly un-weathered

PCB mixtures in sediments (Rodenburg et al., 2015, 2019). Several investigations (e.g., Wiegel and Wu, 2000; Bedard et al., 2005; Zanaroli et al., 2015; Praveckova et al., 2016) evidenced that dehalogenation processes affect PCBs under strictly anaerobic conditions and low redox potential and thus changing the congener patterns from highly to low chlorinated congeners.

The PCBs composition in surface sediments appears dominated by the higher chlorinated penta, 354 355 hexa and hepta CBs, accounting for >60% of Σ PCBs in all samples (Fig. 3). As previously 356 mentioned, differences in Σ PCBs content measured in the various species, primarily depend on a number of different ecological features (Ashley et al., 2003; Arnot and Gobas, 2006; Martinez-Silva 357 et al., 2018) and might reflect a non-homogeneous proportion of the various congeners. 358 359 Nonetheless, the compositional patterns of the PCB congeners in the studied fishes appear reasonably comparable (Fig. 3), and their distribution mode in finfish and shellfish maintains a 360 361 systematic order of concentration: hexa->penta->hepta->tetra->tri-CBs, contributing for 58%, 24%, 362 21%, 4.5% and 0.3% (Fig. 3). Particularly, the major contribution of penta and hexa-CBs is in excellent agreement with data reported for biota by other authors (Naso et al., 2005; Ferrante et al., 363 364 2007; Howell et al., 2008; Pan et al., 2016; Habibullah-Al-Mamun et al., 2019). The mussels showed a similar profile although with a minor percentage of epta-CBs accounting for 5.1-8.5% of 365 366 Σ PCBs (Fig. 3).

The composition pattern of the 7 PCB congeners (28, 52, 101, 118, 138, 153 and 180) in all samples was explored by cluster analysis (Fig. 4), using the elbow method to identify the optimal number of groups primarily driving the high variability in the studied data population. Except for *Diplodus* spp., all the finfish and shellfish samples appear strictly grouped in the cluster together with sediment samples from the A9 core, while all the mussel samples and the other sediment samples (core A3, A7 and A11) grouped in two separate clusters (Fig. 4).

373 The statistically significant relationship between sediments from the A9 core and finfish and374 shellfish suggests a first-order, although robust, insight on the intimate link between the abiotic and

biotic compartments and reasonably supports in the study area, the use of the PCB congeners as 375 376 potential source fingerprint for these contaminants. Indeed, sediments from the A9 core showed highly comparable percentages of high-chlorinated congeners (CB 153, 138 and 180) whereas 377 378 mussels (native and transplanted) and sediments from the A3, A7 and A11 cores evidence different PCB patterns. Although the period of permanence of the organisms in the area of the A9 core could 379 380 not be precisely assessed, our results suggest that this zone would represent a primary 381 contamination 'hot spot' area for Augusta Bay. Differently, the other sediment cores, characterized by different and relatively lower PCBs concentration, might represent secondary sources of these 382 contaminants to the biotic compartment. 383

Analogue pieces of evidence, supporting transfer of contaminants from sediment to biota, again 384 385 emerge from the analysis of the distribution patterns of specific PAHs, which in finfish and 386 shellfish are commonly dominated by LMW hydrocarbons, in particular Fluoranthene and Pyrene. Indeed, these two molecules have a large range of stability and are good indicators of 387 thermodynamic vs. kinetic processes (Soclo et al., 2000). The Fluoranthene/Pyrene has been 388 frequently applied to identify and characterize sources of PAHs in the marine environment (Magi et 389 390 al., 2002). On the other side, the distribution pattern of PAHs in mussels has been reported to reflect 391 accumulation of bioavailable fraction from the water column (Baumard et al., 1998) with preferential accumulation of LMW PAHs (Varanasi and Gmur, 1981; Broman et al., 1990). The 392 dotchart in figure 5 evidence a significant correlation between biota and sediments, with 393 comparable Fluoranthene/Pyrene ratios in finfish, shellfish and A9 sediments. Worthy to note, also 394 395 Fluoranthene/Pyrene measured in N2, S1 and S2 mussels which seem to mirror a potential impact 396 from the A9 sediments. This could primarily suggest an effect of that 'hot-spot' area in terms of resuspension and re-distribution of highly contaminated particles on a relatively wider distance 397 within the study area (see Denaro et al., 2020 for a complete modelling discussion on the dynamic 398 399 within Augusta Bay). Thus, if PCBs seem to offer a primary fingerprint to follow sediment-to-biota

400 transfer of contaminants, the combined use of specific PAHs patterns convincingly supports the 401 hypotheses of dynamic transfer of those organics in the various environmental compartments. Particularly, a clear 'hot-spot' effect of the A9 sediments on the investigated biotic compartment 402 403 can be also documented taking into account the Hg and HCB concentration patterns mirroring coherent higher concentrations in the analysed benthic fish. Conclusively, the ensemble of achieved 404 results suggests that combined information from a wide spectrum of contaminants providesa 405 406 consistent fingerprint to trace their transfer from sediments to biotic compartments and thus supports specific remediation decisions and sediment mitigation strategies. Despite the statistical 407 robustness, the obtained results could primarily reflect specific dynamics of local biogeochemistry 408 409 and a critical role of local effects on their distribution patterns, mainly at the abiotic and biological marine interfaces. However, these promising results encourage to the use of PCB congeners and 410 411 pattern of pollutants as fingerprint of exposure pathways from marine sediments to biota in other 412 marine environmental contests.

413

414 Acknowledgements

This work is part of the CISAS (MIUR-CNR) project, funded by the Italian Ministry of Education, University and Research. The authors wish to thank the colleagues involved the scientific collaboration among the National Research Council of Italy, Carmelo Buscaino and Gaspare Buffa for their support in samples collection during the CNR oceanographic surveys and all the laboratory personnel of IAS-CNR of Capo Granitola.

420

421 References

422 Amodio-Cocchieri, R., Amoroso, S., Arnese, A., Cirillo, T., Montuori, P., Triassi, M., 2003.
423 Pollution by mercury, arsenic, lead, chromium, cadmium, and polycyclic aromatic

- 424 hydrocarbons of fish and mussels from the Gulf of Naples, Italy. Environ. Contam. Tox. 71,425 551-560.
- 426 Arnot, J.A., Gobas, F.A.P.C., 2006. A review of bioconcentration factor (BCF) and
 427 bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms.
 428 Environ. Rev. 14, 257-297.
- Ashley, J. T., Horwitz, R., Steinbacher, J. C., Ruppel, B., 2003. A comparison of congeneric PCB
 patterns in American eels and striped bass from the Hudson and Delaware River Estuaries.
 Mar. Pollut. Bull. 46, 1294-1308.
- ATSDR, Agency for Toxic Substances and Disease Registry, 2000. Toxicological Profile for
 Selected Polychlorinated Biphenyls. U.S. Department of Health and Human Services, Public
 Health Service, Atlanta, GA.
- Ausili, A., Gabellini, M., Cammarata, G., Fattorini, D., Benedetti, M., Pisanelli, B., Gorbi, S.,
 Regoli, F., 2008. Ecotoxicological and human health risk in a petrochemical district of
 southern Italy. Mar. Environ. Res. 66, 215-217.
- Bagnato, E., Sprovieri, M., Barra, M., Bitetto, M., Bonsignore, M., Calabrese, S., Di Stefano, V.,
 Oliveri, E., Parello, F., Mazzola, S., 2013. The sea-air exchange of mercury (Hg) in the
 marine boundary layer of the Augusta basin (southern Italy): Concentrations and evasion
 flux. Chemosphere 93, 2024–2032, https://doi.org/10.1016/j.chemosphere.2013.07.025,
 2013.
- 443 Bailey, R.E., 2001.Global hexachlorobenzene emissions. Chemosphere 43:167–82.
- Barber, J.L., Sweetman, A.J., van Wijk, D., Jones, K.C., 2005. Hexachlorobenzene in the global
 environment: emissions, levels, distribution, trends and processes. Sci. Total. Environ. 349,
 1–44.
- Baskaran, M. (2011). Handbook of Environmental Isotope Geochemistry. ISBN 978-3-642-10636-1
 (Printed in 2 volumes) DOI 10.1007/ 978-3-642-10637-8. Springer Heidelberg Dordrecht
 London New York.
- Batang, Z.B., Alikunhi, N., Gochfeld, M., Burger, J., Al-Jahdali, R., Al-Jahdali, H., Aziz, M.A., Al-Jebreen, D., Al-Suwailem, A., 2016. Congener-specific levels and patterns of polychlorinated biphenyls in edible fish tissue from the Central Red Sea coast of Saudi Arabia. Sci. Total Environ. 572, 915–925.
- Baumard, P., Budzinski, H., Michcon, Q., Garrigues, P., Burgeot, T., and Bellocq, J., 1998. Origin
 and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records.
 Estuarine, Coastal and Shelf Science 47, 77-90.
- Bedard D.L., Pohl E.A., Bailey J.J., Murphy A., 2005. Characterization of the PCB substrate range
 of microbial dechlorination process LP. Environ Sci Technol. 39, 6831–8.
- Bellas, J., Gonz alez-Quijano, A., Vaamonde, A., Fumega, J., Soriano, J.A., Gonza lez, J.J., 2011.
 PCBs in wild mussels (Mytilus galloprovincialis) from the N-NW Spanish coast: current levels and long-term trends during the period 1991-2009. Chemosphere 85 (3), 533e541.
- Bellucci, L.G., Giuliani, S., Romano, S., Albertazzi, S., Mugnai, C., Frignani, M., 2012. An
 integrated approach to the assessment of pollutant delivery chronologies to impacted areas:
 Hg in the Augusta Bay (Italy). Environ. Sci. Technol. 46, 2040-2046.
- Berrojalbiz, N., Castro-Jiménez, J., Mariani, G., Wollgast, J., Hanke, G., & Dachs, J., 2014.
 Atmospheric occurrence, transport and deposition of poly- chlorinated biphenyls and hexachlorobenzene in the Mediterranean and black seas. Atmos. Chem. and Phys. 14, 8947– 8959. https://doi. org/10.5194/acp-14-8947-2014.

- Beyer, J., Green, N., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., Bråte, I.L., Schøyen, M., 2017.
 Blue mussels (*Mytilus edulis* spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar. Environ. Res. 130, 338–365.
- Bonsignore, M., Manta, D. Salvagio, Oliveri, E., Sprovieri, M., Basilone, G., Bonanno, A., Falco,
 F., Traina, A., Mazzola, S., 2013. Mercury in fishes from Augusta Bay (southern Italy): risk
 assessment and health implication. Food Chem. Toxicol. 56, 184-194.
- Bonsignore, M., Salvagio Manta, D., Barsanti, M., Conte, F., Delbono, I., Horvat, M., Quinci, E.
 M., Schirone, A., Shlyapnikov, Y., Sprovieri, M., 2020. Mercury isotope signatures in sediments and marine organisms as tracers of historical industrial pollution. Chemosphere 258,127435.
- Bonsignore, M., Tamburrino, S., Oliveri, E., Marchetti, A., Durante, D., Berni, A., Quinci, E. M.,
 Sprovieri, M., 2015. Tracing mercury pathways in Augusta Bay (southern Italy) by total
 concentration and isotope determination. Environ. Pollut., 205, 178-185.
- Broman, D., Näuf, C., Lundbergh, I., Zebühr, Y., 1990. An in situ study on the distribution,
 biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food
 chain (seston-*Mytilus edulis* L. *Somateria mollissima* L.) from the baltic: An
 ecotoxicological perspective. Environ. Toxicol. and Chem. 9 (4), pp. 429-442.
- 486 Campillo, J.A., Fernández, B., García, V., Benedicto, J., León, V.M., 2017. Levels and temporal
 487 trends of organochlorine contaminants in mussels from Spanish Mediterranean waters.
 488 Chemosphere. 182:584–94. doi.org/10.1016/j.chemosphere.2017.05.025.
- 489 Cardellicchio, N., Annicchiarico, C., Assennato, G., Blonda, M., Di Leo, A. et al., 2010.
 490 Preliminary results of pollut- ants biomonitoring in coastal marine and transitional wa- ters
 491 of Apulia Region (Southern Italy). Fresen. Environ. Bull., 19 (9), 1841-1847.
- Caricato, R., Giordano, M.E., Schettino, T., Maisano, M., Mauceri, A., Giannetto, A., Cappello, T.,
 Parrino, V., Ancora, S., Caliani, I., Bianchi, N., Leonzio, C., Mancini, G., Cappello, S.,
 Fasulo, S., Lionetto, M.G., 2019. Carbonic anhydrase integrated into a multimarker
 approach for the detection of the stress status induced by pollution exposure in *Mytilus galloprovincialis*: a field case study. Sci. Tot. Environ., 690, 140-150.
- 497 Castro-Jiménez, J., Deviller, G., Ghiani, M., Loos, R., Mariani, G., Skejo, H., Umlauf Wollgast,
 498 J.G., Laugier, T., Héas-Moisan, K., Léauté, F., Munschy, C., Tixier, C., Tronczyński, J.,
 499 2008. PCDD/F and PCB multi-media ambient concentrations, congener patterns and
 500 occurrence in a Mediterranean coastal lagoon (Etang de Thau, France). Environ. Pollut. 156,
 501 123–135.
- 502 Courtney, K.D., 1979. Hexachlorobenzene (HCB): A review. Environ. Res., 20 (2), pp. 225-266.
- 503 Crinnion, W.J., 2011. Polychlorinated biphenyls: persistent pollutants with immunological,
 504 neurological and endocrinological consequences. Altern. Med. Rev., 16, 5–13.
- 505 Croudace, I.W., Romano, E., Ausili, A., Bergamin, L., Rothwell, G., 2015. X-ray core scanners as
 506 an environmental forensic tool: a case study of polluted harbor sediment (Augusta Bay,
 507 Sicily). In: Micro-XRF Studies of sediment cores, chapter 15. Ian W. Croudace and R. Guy
 508 Rothwell (Eds.), Springer.
- Denaro, G., Salvagio Manta, D., Borri, A., Bonsignore, M., Valenti, D., Quinci, E., Cucco, A.,
 Spagnolo, B., Sprovieri, M., De Gaetano, A., 2020. HR3DHG version 1: modeling the
 spatiotemporal dynamics of mercury in the Augusta Bay (southern Italy). Geosci. Molel
 Dev. 13, 2073-2093.
- 513 Di Bella, C., Traina, A., Giosuè, C., Carpintieri, D., Lo Dico, G.M., Bellante, A., Del Core, M.,
 514 Falco, F., Gherardi, S., Uccello, M.M., Ferrantelli, V., 2020. Heavy metals and PAHs in

- 515 meat, milk, and seafood from Augusta area (Southern Italy): contamination levels, dietary
 516 intake, and human exposure assessment. Front. Public Health 8:273.
 517 doi.org/10.3389/fpubh.2020.00273.
- 518 Djomo, J. E., Garrigues, P., & Narbonne, J. F.,1996. Uptake and depuration of polycyclic aromatic
 519 hydrocarbons from sediment by the zebrafish (Bracydanio rerio). Environ. Toxicol. Chem.
 520 15, 1177-1181.
- Domingo, J.L., Bocio, A., 2007. Levels of PCDD/PCDFs and PCBs in edible marine species and
 human intake: a literature review. Environ. Int. 33, 397–405.
- EFSA (European Food Safety Authority), 2010. Results of the monitoring of non- dioxin-like PCBs
 in food and feed. EFSA J. 8, 35.
- 525 ENVIRON, 2008. Appendix A Sediment Investigation Activities Performed by ENVIRON
 526 Summer and Fall. Augusta Bay, Sicily, Italy.
- European Commission, 2011. Commission Regulation (EU) No 1259/2011 of 2 December 2011
 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxinlike PCBs and non-dioxin-like PCBs in foodstuffs. In: Official Journal of the European
 Union, L, 320/18-23.
- Farrington, J.W., Tripp, B.W., Tanabe, S., Subramanian, A., Sericano, J.L., Wade, T.L., Knap,
 A.H., Edward, D., 2016. Goldberg's proposal of "the mussel watch": reflections after 40 years Mar. Pollut. Bull. 110 (1), 501-510.
- Ferrante, M.C., Cirillo, T., Naso, B., Clausi, M.T., Lucisano, A., Amodio Cocchieri, R., 2007.
 Polychlorinated biphenyls and organochlorine pesticides in seafood from the Gulf of Naples
 (Italy). J. Food Protect. 70 (3), 706–715.
- García-Flor, N., Dachs, J., Bayona, J.M., Albaige s, J., 2009. Surface waters are a source of
 polychlorinated biphenyls to the coastal atmosphere of the North-Western Mediterranean
 Sea. Chemosphere 75, 1144e1152.
- Gobas, F.A.P.C., Arnot, J.A., 2010. Food web bioaccumulation model for polychlorinated
 biphenyls in san Francisco Bay, California, USA. Environ. Toxicol. Chem. 29, 1385e1395.
- Green, N.W., Knutzen, J., 2003. Organohalogens and metals in marine fish and mussels and some relationships to biological variables at reference localities in Norway. Mar. Pollut. Bull. 46, 362–374.
- Habibullah-Al-Mamun, M., Ahmed, M.K., Islam, M.S., Hossain, A., Tokumura, M., Masunaga, S.,
 2019. Polychlorinated biphenyls (PCBs) in commonly consumed sea- food from the coastal
 area of Bangladesh: occurrence, distribution, and human health implications. Environ. Sci.
 Pollut. Res. 26, 1355–1369.
- Herceg-Romanic, S., Kljakovic-Gaspic, Z., Klincic, D., Ujevic, I., 2014. Distribution of persistent
 organic pollutants (POPs) in cultured mussels from the Croatian coast of the Adriatic Sea.
 Chemosphere 114, 69-75.
- Howell, N.L., Suarez, M.P., Rifai, H.S., Koenig, L., 2008. Concentrations of polychlorinated
 biphenyls (PCBs) in water, sediment, and aquatic biota in the Houston Ship Channel, Texas.
 Chemosphere, 70 593-606.
- IARC, International Agency for Research on Cancer, 2016. IARC Monographs on Polychlorinated
 Biphenyls and Polybrominated Biphenyls. Vol. 107. Lyon (France).
- Ausili, A., Cammarata, G., Gabellini, M., Regoli, F., 2003. Relazione consulenza tecnica-incarico
 del 10-04-03. PPN 8388-01-RG-SR, 75pp.

- ICRAM, 2005. Elaborazione e valutazione dei risultati della caratterizzazione ambientale della
 Rada di Augusta-aree prioritarie ai fini della messa in sicurezza di emergenza # BoI-Pr-SI GP-Rada di Augusta- 01.04. Technical report, 92p.
- ICRAM, 2008. Progetto preliminare di bonifica della Rada di Augusta inclusa nel sito di bonifica di interesse nazionale di Priolo. Fase I e II. Elaborazione definitiva # BoI-Pr-SI-PR-Rada di Augusta-03.22. Technical report, 253 pp.
- Ipolyi, I., Massanisso, P., Sposato, S., Fodor, P., Morabito, R., 2004. Concentration levels of total
 and methylmercury in mussel samples collected along the coasts of Sardinia Island (Italy).
 Anal. Chim. Acta 505 (1), 145-151.
- 568 JECFA, 2018. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives.
- Jepson, P.D., Deaville, R., Barber, J.L., Aguilar, A., Borrell, A., Murphy, S., Barry, J., Brownlow,
 A., Barnett, J., Berrow, S., Cunningham, A.A., Davison, N.J., Ten Doeschate, M., Esteban,
 R., Ferreira, M., Foote, A.D., Genov, T., Gimenez, J., Loveridge, J., Llavona, A., Martin, V.,
 Maxwell, D.L., Papachlimitzou, A., Penrose, R., Perkins, M.W., Smith, B., de Stephanis, R.,
 Tregenza, N., Verborgh, P., Fernandez, A., Law, R.J., 2016. PCB pollution continues to
 impact populations of orcas and other dolphins in European waters. Sci. Rep. 6.
 http://dx.doi.org/10.1038/srep18573.
- Jönsson, A., Gustafsson, Ö., Axelman, J., Sundberg, H., 2003. Global accounting of PCBs in the
 continental shelf sediments. Environ. Sci. Technol. 37, 245-255.
- Junque, E., Gari, M., Llull, R.M., Grimalt, J.O., 2018. Drivers of the accumulation of mercury and
 organochlorine pollutants in Mediterranean lean fish and dietary significance. Sci. Total
 Environ. 634, 170–180.
- Kampire, E., Rubidge, G., Adams, B., 2015. Distribution of polychlorinated biphenyl residues in
 sediments and blue mussels (*Mytilus galloprovincialis*) from Port Elizabeth harbour, South
 Africa. Mar. Pollut. Bull., 91, 173–179.
- Keith, L.H., Telliard, W.A., 1979. Priority pollutants. Aperspective review, Environ.Sci. Technol.
 13, 416–423.
- 586 Kljaković-Gašpić, Z., Herceg-Romanić, S., Kožul, D., Veža, J., 2010. Biomonitoring of organ587 ochlorine compounds and trace metals along the eastern Adriatic coast (Croatia) using
 588 Mytilus galloprovincialis. Mar. Pollut. Bull. 60, 1879–1889.
- Landrum, P.F. and Robbins, J.A., 1990. Bioavailability of sediment-associated contaminants to
 benthic invertebrates. In. R. Baudo, J.P. Giesy, and H. Munteau (eds) Sediments: Chemistry
 and Toxicity of In-Place Pollutants, pp. 237-263. Lewis Publishers, Ann Arbor.
- Licata, P., Trombetta, D., Cristani, M., Naccari, C., Martino, D., Calo', M., Naccari, F., 2004.
 Heavy metals in liver and muscle of Bluefin tuna (Thunnus thunnus) caught in the strait of Messina (Sicily, Italy). Environ. Monit. Assess., 30, 1–10.
- Martinez-Silva, M.A., Audet, C., Winkler, G., et al., 2018. Prey quality impact on the feeding
 behavior and lipid composition of winter flounder (*Pseudopleuronectes americanus*)
 larvae[J]. Aquac. Fish. 3 (4), 145-155.McLeod, A.M., Arnot, J.A., Borga, K., Selck, H.,
 Kashian, D.R., Krause, A., Paterson, G., Haffner, G.D., Drouillard, K.G., 2015. Quantifying
 uncertainty in the trophic magnification factor related to spatial movements of organisms in
 a food web. Integr. Environ. Assess. Manag. 11(2), 306–318.
- Meijer S.N. Meijer, W.A. Ockenden, A. Sweetman, K. Breivik, J.O. Grimalt, K.C., 2003.Jones
 Global distribution and budget of PCBs and HCB in background surface soils: implications
 or sources and environmental processes. Environ. Sci. & Technol. 37, pp. 667-672.Miao,
 X.S., Swenson, C. Woodward, L.A., Li, Q.X., 2000. Distribution of polychlorinated

- biphenyls in marine species from French Frigate Shoals, North Pacific Ocean. Sci Total
 Environ. 257(1), 17–28.
- Minh, N.H., Minh, T.B., Kajiwara, N., Kunisue, T., Iwata, H., Viet, P.H., Tu, N.P.C., Tuyen, B.C.,
 Tanabe, S., 2007. Pollution sources and occurrences of selected persistent organic pollutants
 (POPs) in sediments of the Mekong River delta, South Vietnam. Chemosphere 67 (9), 1794–
 1801.
- Mohebbi-Nozar, S.L., Ismail, W.R., Zakaria, M.P., Mortazavi, M.S., Zahed, M.A., Jahanlu, A.,
 2014. Health risk of PCBs and DDTs in seafood from southern Iran. Hum. Ecol. Risk
 Assess. 20(5), 1164–1176.
- Naso, B., Perrone, D., Ferrante, M.C., Bilancion, M., Lucisano, A., 2005. Persistent organic
 pollutants in edible marine species from the Gulf of Naples, Southern Italy. Sci. Total
 Environ. 343, 83–95.
- Neff, J.M., 1979. Polycyclic aromatic hydrocarbons in the aquatic environment, sources, fates and
 biological effects. Applied Science Publishers Ltd., Essex, England.Olenycz, M.,
 Sokołowski, A., Niewin ska, A., Wołowicz, M., Namie snik, J., Hummel, H., Jansen, J.,
 2015. Comparison of PCBs and PAHs levels in European coastal waters using mussels from
 the *Mytilus edulis* complex as biomonitors. Oceanologia, 57 (2), 196-211.
- Orecchio, S., Polizzotto G., 2013. Fractionation of mercury in sediments during draining of Augusta
 (Italy) coastal area by modified Tessier method. Microchem. J. 110, 452-457.
- Pan, H., Geng, J., Qin, Y., Tou, F., Zhou, J., Liu, M., Yang, Y., 2016. PCBs and OCPs in fish along
 coastal fisheries in China: distribution and health risk assessment. Mar. Pollut. Bull. 111 (1–
 2), 483–487.
- Porte, C., Albaigés, J., 1993. Bioaccumulation patterns of hydrocarbons and polychlorinated
 biphenyls in bivalves, crustaceans, and fishes. Arch. Environ. Contam. Toxicol. 26, 273–
 281.
- Praveckova M., Brennerova M.V., Holliger C., De Alencastro F., Rossi P., 2016. Indirect Evidence
 Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms.
 Front. Microbiol. 7, 933. doi: 10.3389/fmicb.2016.00933
- Premolatha, P., Manojkumar, P.P., 1990. Some biological aspects of two species of barracudas from
 the South West coast of India. Indian J. Fish. 37 (4), 289–295.
- R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Regoli, F., Winston, G.W., Mastrangelo, V., Bompadre, S., 1998. Total oxyradical scavenging
 capacity in mussel Mytilus sp. as a new index of biological resistance to oxidative stress.
 Chemosphere 37, 2773-2783.
- Rodenburg, L. A., and Delistraty, D. A., 2019. Alterations in fingerprints of polychlorinated
 biphenyls in benthic biota at the Portland Harbor Superfund Site (Oregon, USA) suggest
 metabolism. Chemosphere 223, 74-82. doi: 10.1016/j.chemosphere.2019.02.039
- Rodenburg, L.A., Delistraty, D., Meng, Q., 2015. Polychlorinated biphenyl congener patterns in
 fish near the Hanford site (Washington state, USA). Environ. Sci. Technol. 49, 2767-2775.
- Rodenburg, L.A., Leidos, 2017. Green-duwamish River Watershed PCB Congener Study: Phase 2
 Source Evaluation. Seattle, WA.Rodríguez-Hernández, A., Camacho, M., HenríquezHernández, L.A., Boada, L.D., Ruiz-Suárez, N., Valerón, P.F., Almeida, M.G., Zaccaroni,
 A., Zumbado, M., Luzardo, O.P., 2016. Assessment of human health hazards associated
 with the dietary exposure to organic and inorganic contaminants through the consumption of

- fishery products in Spain. Sci. Total Environ. 557-558, 808–818. Sahu, S.K., Ajmal, P.Y.,
 Pandit, G.G., Puranik, V.D., 2009. Vertical distribution of polychlorinated biphenyl
 congeners in sediment core from Thane Creek area of Mumbai, India. J. Hazard. Mater. 164
 (2–3), 1573–1579.
- Salvagio Manta, D., Bonsignore, M., Oliveri, E., Barra, M., Tranchida, G., Giaramita, L., Mazzola,
 S., Srovieri., M., 2016. Fluxes and the mass balance of mercury in Augusta Bay (Sicily,
 southern Italy). Estuar. Coast. Shelf S. 181, 134-143.
- Sanchez-Avila, J., Tauler, R., Lacorte, S., 2012. Organic micropollutants in coastal waters from
 NW Mediterranean Sea: sources distribution and potential risk. Environ. Int. 46, 50-62.
- 659 Scarpato, A., Romanelli, G., Galgani, F., Andral, B., Amici, M., Giordano, P., Caixach, J., Calvo, 660 M., Campillo, J.A., Albadalejo, J.B., Cento, A., Benbrahim, S., Sammari, C., Deudero, S., Boulahdid, M., Giovanardi, F., 2010. Western Mediterranean coastal waters - monitoring 661 PCBs and pesticides accumulation in Mytilus galloprovincialis by active mussel watching: 662 the Mytilos Project. J. Environ. Monit. 12 (4), 924-935.Selck, H., Drouillard, K., Eisenreich, 663 664 K., Koelmans, A.A., Palmqvist, A., Ruus, A., Salvito, D., Schultz, I., Stewart, R., Weisbrod, A. et al., 2012. Explaining differences between bioaccumulation measurements in laboratory 665 and field data through use of a probabilistic modeling approach. Integr. Environ. Assess. 666 Manag. 8 (1), 42–63. 667
- Signa, G., Mazzola, A., Doriana Tramati, C., Vizzini, S., 2017. Diet and habitat use influence Hg 668 and Cd transfer to fish and consequent biomagnification in a highly contaminated area: 669 Augusta Bay (Mediterranean Sea). Environ. Pollut., 230, 394-404.Soclo H.H., Garrigues P., 670 Ewald M., 2000. Origin of polyclic aromatic hydrocarbons (PAHs) in coastal marine 671 672 sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull. 40, 387-396.Solé, M., Porte, C., Barcelo, D., Albaige s, J., 2000. Bivalves residue analysis 673 for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean). Mar. Pollut. 674 Bull. 40 (9), 746-753. 675
- Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S., Di Leo, A., 2011. Mercury and
 methylmercury concentrations in Mediterranean seafood and surface sediments, intake
 evaluation and risk for consumers. Int. J. Hyg. Environ. Health 21, 418-426.
- Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S., Di Leo, A., 2013. Heavy metals
 monitoring in mussels *Mytilus galloprovincialis* from the Apulian coasts (southern Italy).
 Mediterr. Mar. Sci. 14, 99-108.
- Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S., Di Leo A., 2012. Mercury and
 methylmercury concentrations in Mediterranean seafood and surface sediments, intake
 evaluation and risk for consumers. Int. J. Hyg. Environ. Health 215 (3), 418-426.
- Sprovieri M., Oliveri E., Di Leonardo R., Romano E., Ausili A., Gabellini M., Saggiomo V., Barra
 Tranchida M., Bellanca A., Neri R., Budillon F., Mazzola S., 2011. The key role played by
 the Augusta basin (southern Italy) in the mercury contamination of the Mediterranean Sea. J.
 Environ. Monitor. 13, 1753-1760.Storelli, M.M., Losada, S., Marcotrigiano, G.O., Roosens,
 L., Barone, G., Neels, H., Covaci, A., 2009. Polychlorinated biphenyl and organochlorine
 pesticide contamination signatures in deep-sea fish from the Mediterranean Sea. Environ.
 Res. 109 (7), 851–856.
- Suarez, P., Ruiz, Y., Alinso, A., San Juan, F., 2013. Organochlorine compounds in mussels cultured
 in the Ría of Vigo: accumulation and origin. Chemosphere 90, 7-19.Thomann, R.V.,
 Connolly, J.P., Parkerton, T.F., 1992. An equilibrium model of organic chemical

- accumulation in aquatic food webs with sediment interaction. Environ. Toxicol. Chem. 11(5), 615–629.
- Tomasello, B., Copat, C., Pulvirenti, V., Ferrito, V., Ferrante, M., Renis, M., Sciacca, S., Tigano,
 C., 2012. Biogeochimical and bioaccumulation approaches for incestigating marine
 pollution using Mediterranean rainbow wrasse, Coris jiulis (Linneaus 1978). Ecotoxicol.
 Environ. Safe. 86, 168-175.Ueno. D., Takahashi, S., Tanaka, H., Subramanian, A.N.,
 Fillmann, G., Nakata, H., Lam, P.K.S., Zheng, J., Muchtar, M. Prudente, M., Chung, K.H.,
 Tanabe, S., 2003. Global pollution monitoring of PCBs and organochlorine pesticides using
 skipjack tuna as a bioindicator. Arch. Environ. Contam. Toxicol. 45, 378–389.
- UNEP, 2001. Stockholm Convention on Persistent Organic Pollutants (POPs), United Nations
 Environment Programme UNEP/POPs/CONF/4
- UNEP, 2017. Stockholm Convention on Persistent Organic Pollutants (POPs), United Nations
 Environment Programme UNEP/POPS/POPRC.13/7
- UNEP, 2019.. Stockholm Convention on Persistent Organic Pollutions (POPs), United Nation
 Environment Programme (Accessed in 02/15/2020).
- 710 USEPA Method 7473, 2007. Mercury in Solids and Solutions by Thermal Decomposition, 711 Amalgamation, and Atomic Absorption Spectrophotometry, Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.Varanasi, U., Gmur, D. J., 1981. 712 713 Hydrocarbons and metabolites in English sole (Parophrys vetulus) exposed simultaneously to [3H]-benzo[a]pyrene and [14C]naphthalene in oil-contaminated sediment. Aquat. 714 Toxicol. 1, 49-67. Webster, L., Roose, P., Bersuder, P., Vorkamp, K., Kotterman, M., 715 716 Haarich, M., 2013. Deter- mination of Polychlorinated Biphenyls (PCBs) in Sediment and Biota. ICES Techniques in Marine Environmental Sciences No. 53, 18 pp. 717
- Wiberg, P.L., Courtney, K., Harris, C.K., 2002. Desorption of p,p'-DDE from sediment during
 resuspension events on the Palos Verdes Shelf, California: a modeling approach. Cont. Shelf
 Res. 22, 1005–1023.
- Wiegel, J., Wu, Q., 2000. Microbial reductive dehalogenation of polychlorinated biphenyls, FEMS
 Microbiol Ecol. 32, 1–15.
- Xia, C., Lam, J.C., Wu, X., Xie, Z., Lam, P.K., 2012. Polychlorinated biphenyls (PCBs) in marine
 fishes from China: levels, distribution and risk assessment. Chemosphere 89 (8), 944–949.
- Zanaroli, G., Negroni, A., Häggblom, M.M., Fava, F., 2015. Microbial dehalogenation of
 organohalides in marine and estuarine environments. Current Opinion in Biotechnology 33,
 287-295.
- 728
- 729

730 Figure Captions

731

733

- **Figure 1:** Map and details of the sampling in Augusta Bay.
- Figure 2: Box plot of the concentrations of Hg (a), HCB (b), ∑PCBs (c) and ∑PCBs NDL (d) in
 sediment cores.
- Figure 3: Relative contribution of PCB homologs (% composition) in sediments, seafood and mussel samples.
- 739

Figure 4: Heatmap generated from hierarchical clustering analysis. The dendrograms of sample
clustering (on the left) and of congener clustering (on the top) were added. The colour bars inside
the graph indicate the different proportion of congeners (X axis) for each sample (Y axis). The rows
were splitted based on number of identified clusters.

- 744
- 745 Figure 5: Dotchart of Fluo/Py in sediments and marine organisms
- 746
- 747

748	Tables
, .0	Indico

Specie	Category	Habitat	Total lenght range (med ±st.dv) cm	n. total individuals	n. pool
Mytilus galloprovincialis	Molluses	benthic	3.6-6 (4.60±0.58)	200	20
Sphyraena sphyraena	Fish	pelagic	46-44 (45±1.41)	2	2
Mullus barbatus	Fish	benthic	17.5-21 (18.7±1.14)	30	6
Pagellus spp.	Fish	demersal	15-26 (20±3.25)	15	5
Sparus aurata	Fish	demersal	21-24 (21.6±1.21)	9	3
Serranus cabrilla	Fish	demersal	20	1	1
Diplodus spp.	Fish	demersal	14.1-16.3 (15.1±1.1)	3	2
Sphyraena sphyraena	Fish	pelagic	37.4	1	1
Trigla lucerna	Fish	benthic	22.3-22.5	2	1
Mullus barbatus	Fish	benthic	17.7-20.5 (18.8±1.1)	6	2
Pagellus spp.	Fish	demersal	15.3-25.4 (18.9±2.7)	37	8
Diplodus spp.	Fish	demersal	13.5-20 (16.8 ±3.2)	4	3
Penaeus kerathurus	Crustacean	benthic	4.5-6.5 (5.2±0.3)	39	4
Sepia spp.	Molluscs	bento-nectonic	9.9-15.5 (12.5±2.0)	7	6
Mytilus galloprovincialis N	Molluscs	benthic	4.4-5.9 (5.20±1.06)	392	13
Mytilus galloprovincialis S	Molluscs	benthic	5.0-5.4 (5.2±0.3)	284	10
	Specie Mytilus galloprovincialis Sphyraena sphyraena Mullus barbatus Pagellus spp. Sparus aurata Serranus cabrilla Diplodus spp. Sphyraena sphyraena Trigla lucerna Mullus barbatus Pagellus spp. Diplodus spp. Penaeus kerathurus Sepia spp. Mytilus galloprovincialis N Mytilus galloprovincialis N	SpecieCategoryMytilus galloprovincialisMolluscsSphyraena sphyraenaFishMullus barbatusFishPagellus spp.FishSparus aurataFishSerranus cabrillaFishDiplodus spp.FishSphyraena sphyraenaFishTrigla lucernaFishMullus barbatusFishDiplodus spp.FishDiplodus spp.FishPagellus spp.FishPagellus spp.FishDiplodus spp.FishDiplodus spp.FishDiplodus spp.FishDiplodus spp.FishMolluscsMolluscsMytilus galloprovincialis NMolluscsMytilus galloprovincialis NMolluscs	SpecieCategoryHabitatMytilus galloprovincialisMolluscsbenthicSphyraena sphyraenaFishpelagicMullus barbatusFishbenthicPagellus spp.FishdemersalSparus aurataFishdemersalSerranus cabrillaFishdemersalDiplodus spp.FishdemersalSphyraena sphyraenaFishbenthicMullus barbatusFishdemersalDiplodus spp.FishdemersalDiplodus spp.FishbenthicMullus barbatusFishbenthicPagellus spp.FishdemersalDiplodus spp.FishdemersalDiplodus spp.FishbenthicPagellus spp.FishbenthicPagellus spp.FishdemersalDiplodus spp.FishbenthicMullus barbatusCrustaceanbenthicMytilus galloprovincialis NMolluscsbenthicMytilus galloprovincialis SMolluscsbenthic	SpecieCategoryHabitatTotal lenght range (med ±st.dv) cmMytilus galloprovincialisMolluscsbenthic3.6-6 (4.60±0.58)Sphyraena sphyraenaFishpelagic46-44 (45±1.41)Mullus barbatusFishbenthic17.5-21 (18.7±1.14)Pagellus spp.Fishdemersal15-26 (20±3.25)Sparus aurataFishdemersal21-24 (21.6±1.21)Serranus cabrillaFishdemersal20Diplodus spp.Fishdemersal14.1-16.3 (15.1±1.1)Sphyraena sphyraenaFishpelagic37.4Trigla lucernaFishbenthic17.7-20.5 (18.8±1.1)Pagellus spp.Fishdemersal15.3-25.4 (18.9±2.7)Diplodus spp.Fishdemersal13.5-20 (16.8 ±3.2)Penaeus kerathurusCrustaceanbenthic4.5-6.5 (5.2±0.3)Sepia spp.Molluscsbento-nectonic9.9-15.5 (12.5±2.0)Mytilus galloprovincialis NMolluscsbenthic4.4-5.9 (5.20±1.06)Mytilus galloprovincialis NMolluscsbenthic5.0-5.4 (5.2±0.3)	SpecieCategoryHabitatTotal lenght range (med ±st.dv) cmn. total individualsMytilus galloprovincialisMolluscsbenthic3.6-6 (4.60±0.58)200Sphyraena sphyraenaFishpelagic46-44 (45±1.41)2Mullus barbatusFishbenthic17.5-21 (18.7±1.14)30Pagellus spp.Fishdemersal15-26 (20±3.25)15Sparus aurataFishdemersal21-24 (21.6±1.21)9Serranus cabrillaFishdemersal201Diplodus spp.Fishdemersal37.41Sphyraena sphyraenaFishpelagic37.41Trigla lucernaFishbenthic17.7-20.5 (18.8±1.1)6Pagellus spp.Fishdemersal15.3-25.4 (18.9±2.7)37Diplodus spp.Fishdemersal13.5-20 (16.8±3.2)4Penaeus kerathurusCrustaceanbenthic4.5-6.5 (5.2±0.3)39Sepia spp.Molluscsbento-nectonic9.9-15.5 (12.5±2.0)7Mytilus galloprovincialis NMolluscsbenthic4.4-5.9 (5.20±1.06)392Mytilus galloprovincialis SMolluscsbenthic5.0-5.4 (5.2±0.3)284

 Table 1. Characteristics, number of specimens and pool of marine organisms caught in the study area.

CODE	TT •/	A3	A7	A9	A 11
CORE	Unit	mean ±st.dv	mean ±st.dv	mean ±st.dv	mean ±st.dv
Hg	μg g ⁻¹	3.64±0.27	6.71±0.80	11.4 ±0.57	6.54±1.28
НСВ	ng g ⁻¹	8.53 ± 2.06	$25.3{\pm}~8.03$	172.6 ± 87.6	$\textbf{22.8} \pm \textbf{14.45}$
PCB 28	ng g ⁻¹	10.36 ± 6.66	2.26 ± 0.82	0.40 ± 0.12	9.65 ± 12.6
PCB 52	ng g ⁻¹	0.42 ± 0.53	<lod< td=""><td>1.35 ± 0.30</td><td>0.56 ± 0.94</td></lod<>	1.35 ± 0.30	0.56 ± 0.94
PCB 81	ng g ⁻¹	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 77	ng g ⁻¹	<lod< td=""><td><lod< td=""><td>0.72 ± 0.13</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.72 ± 0.13</td><td><lod< td=""></lod<></td></lod<>	0.72 ± 0.13	<lod< td=""></lod<>
PCB 101	ng g ⁻¹	<lod< td=""><td><lod< td=""><td>5.22 ± 1.40</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.22 ± 1.40</td><td><lod< td=""></lod<></td></lod<>	5.22 ± 1.40	<lod< td=""></lod<>
PCB-118	ng g ⁻¹	6.90 ± 4.66	0.97 ± 0.77	3.79 ± 0.96	8.74 ± 16.9
PCB 114	ng g ⁻¹	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 123	ng g ⁻¹	<lod< td=""><td><lod< td=""><td>11.2 ± 34.6</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>11.2 ± 34.6</td><td><lod< td=""></lod<></td></lod<>	11.2 ± 34.6	<lod< td=""></lod<>
PCB 153	ng g ⁻¹	10.4 ± 5.77	3.43±1.95	10.4 ± 1.07	16.2 ± 13.3
PCB 105	ng g ⁻¹	1.18 ± 1.88	<lod< td=""><td>1.26 ± 0.80</td><td>1.24 ± 2.84</td></lod<>	1.26 ± 0.80	1.24 ± 2.84
PCB 138	ng g ⁻¹	7.59 ± 7.11	2.83 ± 2.56	9.72 ± 1.53	17.3 ± 20.0
PCB 126	ng g ⁻¹	<lod< td=""><td><lod< td=""><td>1.06 ± 0.24</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.06 ± 0.24</td><td><lod< td=""></lod<></td></lod<>	1.06 ± 0.24	<lod< td=""></lod<>
PCB 128+157	ng g ⁻¹	<lod< td=""><td>0.16 ± 0.20</td><td>0.62 ± 0.22</td><td>1.10 ± 1.21</td></lod<>	0.16 ± 0.20	0.62 ± 0.22	1.10 ± 1.21
PCB 156	ng g ⁻¹	<lod< td=""><td>0.19 ± 0.29</td><td>0.58 ± 0.34</td><td>0.80 ± 1.65</td></lod<>	0.19 ± 0.29	0.58 ± 0.34	0.80 ± 1.65
PCB 167	ng g ⁻¹	<lod< td=""><td><lod< td=""><td>1.04 ± 0.08</td><td>0.84 ± 1.75</td></lod<></td></lod<>	<lod< td=""><td>1.04 ± 0.08</td><td>0.84 ± 1.75</td></lod<>	1.04 ± 0.08	0.84 ± 1.75
PCB 180	ng g ⁻¹	0.81 ± 1.17	1.53 ± 1.58	7.89 ± 1.45	4.30 ± 3.26
PCB 169	ng g ⁻¹	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 170	ng g ⁻¹	<lod< td=""><td>0.34 ± 0.54</td><td>3.85 ± 0.36</td><td>2.35 ± 2.03</td></lod<>	0.34 ± 0.54	3.85 ± 0.36	2.35 ± 2.03
PCB 189	ng g ⁻¹	<lod< td=""><td><lod< td=""><td>0.25 ± 0.09</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.25 ± 0.09</td><td><lod< td=""></lod<></td></lod<>	0.25 ± 0.09	<lod< td=""></lod<>
$\sum PCBs$	ng g ⁻¹	38.7 ± 26.2	12.6 ± 6.7	59.5 ± 35.6	38.2 ± 19.9
$\sum PCBs^1$	ng g ⁻¹	29.6 ± 26.6	11.8 ± 6.50	41.9 ± 5.60	34.3 ± 16.2
∑ 7PCB	ng g ⁻¹	36.6 ± 24.4	11.2 ± 6.39	38.7 ± 5.20	32.2 ± 13.6
Phenanthrene	ng g ⁻¹	37.6 ± 8.52	26.4 ± 6.56	67.8 ± 23.3	27.7 ± 11.1
Anthracene	ng g ⁻¹	180 ± 68.9	186.8 ± 29.6	56.3 ± 14.6	91.7 ± 27.6
Fluoranthene	ng g ⁻¹	61.8 ± 32.2	35.3 ± 18.1	45.2 ± 24.7	27.5 ± 12.8
Pyrene	ng g ⁻¹	33.1 ± 13.7	24.5 ± 8.11	61.2 ± 22.3	25.4 ± 10.2
Benzo-a-Anthracene	ng g ⁻¹	34.2 ± 11.1	17.0 ± 6.18	26.4 ± 10.6	13.5 ± 3.94
Chrysene	ng g ⁻¹	38.5 ± 10.2	20.6 ± 6.72	48.2 ± 13.1	17.8 ± 4.99
Benzo-b-Fluoranthene	ng g ⁻¹	54.6 ± 20.4	32.5 ± 7.45	30.5 ± 8.51	14.4 ± 4.24
Benzo-k-Fluoranthene	ng g ⁻¹	33.6 ± 24.3	9.26 ± 2.54	10.3 ± 4.59	7.09 ± 2.03

Benzo-a-Pyrene	ng g ⁻¹	64.6 ± 20.1	29.3 ± 8.53	23.5 ± 6.94	20.5 ± 6.42
Indeno-123-cd-Pyrene	ng g ⁻¹	70.1 ± 25.5	19.5 ± 6.19	9.88 ± 5.95	13.1 ± 2.30
Dibenzo-ah-Anthracene	ng g ⁻¹	12.9 ± 6.30	1.87 ± 1.36	7.90 ± 4.29	2.91 ± 1.94
Benzo-ghi-Perylene	ng g ⁻¹	50.6 ± 21.7	17.6 ± 7.72	11.15 ± 5.30	15.7 ± 4.06
∑ PAHs	ng g ⁻¹	671.87 ± 125.97	420 ± 72.73	398 ± 103	277 ± 64.8

Values exceeding environmental quality standards (Dlgs. 172/2015) are indicated in bold \sum PCBs¹: sum of PCBs congeners indicated by Dlgs.172/2015 \sum 7PCB: sum of CB 28+52+101+118+138+153+180

Table 2. Hg, HCB, PCBs and PAHs concentrations (d.w.) in sediment collected in the sampling site.

					Sampling	2013							Samp	ling 2017						
Parameters	Unit	S. sphyraena	M. harbatus	Pagellussnn	Saurata	S. cabrilla	Dinlodus snn.	M.galloprovincialis	S. snhvraena	T. lucerna	M. harbatus	Pagellusson	Dinlodussnn	P. kerathurus	Senia snn		M. ga	llorprovi	ncialis	
		2. <i>op</i> 1. <i>j</i> : actua		- agenasspr		21 0 10 0 10 10 10	2 ipround opp	wild	5. 5p. 1.9. activ			- 1800 - 197	2 .pro uno opp		2 cp tu cpp	CTRL	NI	S1	N2	S2
					med ±st.	dv							me	d ±st.dv						
	μg g -	0.52 ± 0.04^{a}	0.44 ± 0.20	0.53 ± 0.12	0.32 ± 0.09	0.77 ^a	0.503±0.137 ª	0.2 ± 0.04^{a}	0.78 ^a	0.66 ^a	2.11:1.71 ^a	0.86±0.44	1.49±1.77 ^a	0.59±0.02 ª	0.21 ± 0.08	0.01	$0.02 \pm$	$0.23 \pm$	$0.12 \pm$	0.89 ^{a,b}
Hg	1			0.00 - 0.12	0.02 - 0.09							0.00=0.11		0103-0102	0.21 - 0.00		0.002 ^b	0.02	0.01	
HCB	ng g -	n.d	1.36 ± 0.31	0.09 ± 0.02	0.60 ± 0.43	n.d	n.d	0.13 ± 0.00	1.40	<lod< td=""><td>0.24;0.65</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.35</td><td>0.44</td><td>1.91</td><td>0.41</td><td>3.15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.24;0.65	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.35</td><td>0.44</td><td>1.91</td><td>0.41</td><td>3.15</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.35</td><td>0.44</td><td>1.91</td><td>0.41</td><td>3.15</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.35</td><td>0.44</td><td>1.91</td><td>0.41</td><td>3.15</td></lod<></td></lod<>	<lod< td=""><td>0.35</td><td>0.44</td><td>1.91</td><td>0.41</td><td>3.15</td></lod<>	0.35	0.44	1.91	0.41	3.15
PCB 28	ng g '	n.d	0.36 ± 0.06	0.06 ± 0.01	0.16±0.09	n.d	n.d	0.15±0.00	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 52	ng g ''	n.d	6.31 ± 2.27	2.77 ± 0.63	4.16±2.32	n.d	n.d	4.95±1.54	2.03	<lod< td=""><td>1.29;2.42</td><td>0.48 ± 0.50</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.29;2.42	0.48 ± 0.50	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.72	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 81	ng g '	n.d	0.59 ± 0.10	0.18 ± 0.08	0.21±0.11	n.d	n.d	0.26 ± 0.01	<lod< td=""><td><lod< td=""><td>1.69;<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.41 ± 0.34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.69;<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.41 ± 0.34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.69; <lod< td=""><td><lod< td=""><td><lod< td=""><td>0.41 ± 0.34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.41 ± 0.34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.41 ± 0.34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.41 ± 0.34	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 77	ng g ''	n.d	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n.d</td><td>n.d</td><td>0.05±0.01</td><td>2.01</td><td><lod< td=""><td>1.0;1.49</td><td>0.69 ± 0.61</td><td>0.40</td><td>0.64 ± 0.45</td><td>0.65 ± 0.55</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n.d</td><td>n.d</td><td>0.05±0.01</td><td>2.01</td><td><lod< td=""><td>1.0;1.49</td><td>0.69 ± 0.61</td><td>0.40</td><td>0.64 ± 0.45</td><td>0.65 ± 0.55</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.d</td><td>n.d</td><td>0.05±0.01</td><td>2.01</td><td><lod< td=""><td>1.0;1.49</td><td>0.69 ± 0.61</td><td>0.40</td><td>0.64 ± 0.45</td><td>0.65 ± 0.55</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.d	n.d	0.05±0.01	2.01	<lod< td=""><td>1.0;1.49</td><td>0.69 ± 0.61</td><td>0.40</td><td>0.64 ± 0.45</td><td>0.65 ± 0.55</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.0;1.49	0.69 ± 0.61	0.40	0.64 ± 0.45	0.65 ± 0.55	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 101	ng g '	n.d	8.29 ± 4.97	3.89±1.46	4.66±2.39	n.d	n.d	5.82±1.22	12.7	1.17	3.45;5.46	3.17 ± 2.93	0.42	1.54 ± 0.48	0.93 ± 1.05	0.39	1.36	3.91	2.26	2.70
PCB-118	ng g -	n.d	9.91 ± 1.95	3.29 ± 1.30	5.03±2.41	n.d	n.d	2.87±0.44	12.7	<lod< td=""><td>6.72;7.26</td><td>1.96 ± 2.42</td><td>2.37</td><td>1.70 ± 1.79</td><td><lod< td=""><td>0.47</td><td>1.09</td><td>2.84</td><td>3.39</td><td>3.20</td></lod<></td></lod<>	6.72;7.26	1.96 ± 2.42	2.37	1.70 ± 1.79	<lod< td=""><td>0.47</td><td>1.09</td><td>2.84</td><td>3.39</td><td>3.20</td></lod<>	0.47	1.09	2.84	3.39	3.20
PCB 114	ng g -	n.d	0.08 ± 0.06	<lod< td=""><td>0.05±0.03</td><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.56;<lod< td=""><td>2.46 ± 2.86</td><td>2.59</td><td>2.91 ± 1.35</td><td>0.38 ± 0.55</td><td><lod< td=""><td>0.59</td><td>2.50</td><td>2.88</td><td>2.76</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.05±0.03	n.d	n.d	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7.56;<lod< td=""><td>2.46 ± 2.86</td><td>2.59</td><td>2.91 ± 1.35</td><td>0.38 ± 0.55</td><td><lod< td=""><td>0.59</td><td>2.50</td><td>2.88</td><td>2.76</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7.56;<lod< td=""><td>2.46 ± 2.86</td><td>2.59</td><td>2.91 ± 1.35</td><td>0.38 ± 0.55</td><td><lod< td=""><td>0.59</td><td>2.50</td><td>2.88</td><td>2.76</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7.56;<lod< td=""><td>2.46 ± 2.86</td><td>2.59</td><td>2.91 ± 1.35</td><td>0.38 ± 0.55</td><td><lod< td=""><td>0.59</td><td>2.50</td><td>2.88</td><td>2.76</td></lod<></td></lod<></td></lod<>	7.56; <lod< td=""><td>2.46 ± 2.86</td><td>2.59</td><td>2.91 ± 1.35</td><td>0.38 ± 0.55</td><td><lod< td=""><td>0.59</td><td>2.50</td><td>2.88</td><td>2.76</td></lod<></td></lod<>	2.46 ± 2.86	2.59	2.91 ± 1.35	0.38 ± 0.55	<lod< td=""><td>0.59</td><td>2.50</td><td>2.88</td><td>2.76</td></lod<>	0.59	2.50	2.88	2.76
PCB 123	ng g ⁻¹	n.d	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.d	n.d	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 153	ng g -1	n.d	36.68 ± 2.93	13.5 ± 4.40	18.5 ± 8.28	n.d	n.d	10.6±1.37	62.8	7.81	40.30	16.6 ± 12.3	0.74	10.3 ± 0.87	10.58 ± 8.81	0.93	2.58	9.64	8.44	13.66
PCB 105	ng g ⁻¹	n.d	1.78 ± 0.66	0.67±0.28	1.09±0.67	n.d	n.d	0.83±0.01	2.61	<lod< th=""><th>1.01;1.32</th><th>0.52 ± 0.31</th><th>0.66</th><th>0.68 ± 0.38</th><th><lod< th=""><th><lod< th=""><th>0.41</th><th>0.56</th><th>0.66</th><th>0.49</th></lod<></th></lod<></th></lod<>	1.01;1.32	0.52 ± 0.31	0.66	0.68 ± 0.38	<lod< th=""><th><lod< th=""><th>0.41</th><th>0.56</th><th>0.66</th><th>0.49</th></lod<></th></lod<>	<lod< th=""><th>0.41</th><th>0.56</th><th>0.66</th><th>0.49</th></lod<>	0.41	0.56	0.66	0.49
PCB 138	ng g ⁻¹	n.d	27.29 ± 2.51	10.6±3.64	13.9±6.06	n.d	n.d	8.46±0.97	52.4	5.80	35.34;3.19	15.7 ± 9.8	9.22	10.5 ± 0.99	1.81 ± 1.93	0.78	2.87	9.53	5.51	11.26
PCB 126	ng g ⁻¹	n.d	0.36 ± 0.04	0.13±0.07	0.16±0.09	n.d	n.d	0.14 ± 0.01	39.6	6.68	38.84;22.20	8.70 ± 9.35	<lod< th=""><th>5.02 ± 5.87</th><th>4.53 ± 6.83</th><th><lod< th=""><th><lod< th=""><th>0.42</th><th><lod< th=""><th>0.58</th></lod<></th></lod<></th></lod<></th></lod<>	5.02 ± 5.87	4.53 ± 6.83	<lod< th=""><th><lod< th=""><th>0.42</th><th><lod< th=""><th>0.58</th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.42</th><th><lod< th=""><th>0.58</th></lod<></th></lod<>	0.42	<lod< th=""><th>0.58</th></lod<>	0.58
PCB 128+157+167	ng g ⁻¹	n.d	4.32	1.68	2.28	n.d	n.d	1.75	1.70	0.69	2.29	1.79	0.49	0.77	0.77	0.32	0.45	1.35	1.11	0.70
PCB 156	ng g ⁻¹	n.d	1.42 ± 0.14	0.67±0.26	0.73±0.32	n.d	n.d	0.44 ± 0.02	1.64	0.72	4.02;3.01	1.51 ± 1.35	1.00	1.12 ± 0.37	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.35</td><td>0.32</td><td>0.44</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.35</td><td>0.32</td><td>0.44</td></lod<></td></lod<>	<lod< td=""><td>0.35</td><td>0.32</td><td>0.44</td></lod<>	0.35	0.32	0.44
PCB 180	ng g ⁻¹	n.d	17.31 ± 2.69	8.39±1.92	6.84±3.12	n.d	n.d	1.45±0.06	38.1	3.76	25.24;19;49	10.9 ± 7.17	8.24	5.22 ± 0.62	8.42 ± 6.61	<lod< td=""><td>0.63</td><td>1.98</td><td>1.05</td><td>1.63</td></lod<>	0.63	1.98	1.05	1.63
PCB 169	ng g ⁻¹	n.d	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.d</td><td>n.d</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.d	n.d	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB 170	ng g ⁻¹	n.d	6.77 ± 0.52	3.55±0.82	3.31±1.47	n.d	n.d	0.42±0.03	12.44	1.83	0.43;9.32	3.07 ± 2.28	1.46	1.82±1.12	0.44 ± 0.36	<lod< td=""><td>0.16</td><td>0.52</td><td>0.31</td><td>0.73</td></lod<>	0.16	0.52	0.31	0.73
PCB 189	ng g -1	n.d	0.32 ± 0.04	0.14 ± 0.04	0.15±0.08	n.d	n.d	0.07 ± 0.01	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
$\sum PCB_S$	ng g -1	n.d	121.8 ± 1.47	49.5±13.9	1.3±22.2	n.d	n.d	38.4±5.27	241.7	30.1	175.1;113.8	68.5 ± 37.8	28.70	43.6 ± 6.93	30.1 ± 24.0	4.98	11.7	35.2	27.1	39.3
\sum NDL-PCB	ng g -1	n.d	96.2 ± 9.81	39.2±10.6	48.3±16.2	n.d	n.d	31.5±5.0	168.2 ^a	18.9	110.5;66.3 ª	47.0 ± 31.2	18.90	27.9 ± 2.32	22.1 ± 17.5	2.59	7.87	25.94	17.58	29.57
$\sum 7PCB$	ng g -1	n.d	106 ± 11.4	42.5 ± 11.9	53.3±18.5	n.d	n.d	34.4±5.5	180.90	19.0	117.2;73.6	48.9 ± 32.7	21.30	29.7 ± 2.87	22.4 ± 17.7	3.06	8.96	28.8	20.9	32.8
Phenanthrene	ng g -1	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	1.52	3.97	7.50;8.56	2.64 ± 1.07	1.33	3.61 ± 1.54	2.15 ± 1.69	4.60	3.74	2.91	2.77	1.63
Anthracene	ng g ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>6.57</th><th>11.83</th></lod<></th></lod<>	<lod< th=""><th>6.57</th><th>11.83</th></lod<>	6.57	11.83
Fluoranthene	ng g ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th>1.54</th><th>2.85;1.40</th><th>2.53 ± 2.90</th><th>3.16</th><th>0.81 ± 0.48</th><th>4.32 ± 3.26</th><th>3.02</th><th>13.73</th><th>4.07</th><th>7.62</th><th>8.96</th></lod<>	1.54	2.85;1.40	2.53 ± 2.90	3.16	0.81 ± 0.48	4.32 ± 3.26	3.02	13.73	4.07	7.62	8.96
Pyrene	ng g -1	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	3.70	5.34	7.49;5.18	9.03 ± 11.36	12.73	3.60 ± 1.05	11.97 ± 12.30	6.80	7.42	5.85	10.09	26.99
Benzo-a-Anthracene	ng g ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<></th></lod<>	<lod< th=""><th>1.68</th><th>0.65</th><th>3.61</th><th>1.09</th></lod<>	1.68	0.65	3.61	1.09
Chrysene	ng g -1	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<></th></lod<>	<lod< th=""><th>3.08</th><th>1.19</th><th>5.09</th><th>2.74</th></lod<>	3.08	1.19	5.09	2.74
Benzo-b-Fluoranthen	e ngg ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<></th></lod<>	<lod< th=""><th><LOD</th><th>2.11</th><th>1.24</th><th>5.21</th><th>2.93</th></lod<>	<LOD	2.11	1.24	5.21	2.93
Benzo-k-Fluoranthen	e ngg ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.94</th><th>0.69</th></lod<></th></lod<>	<lod< th=""><th>1.94</th><th>0.69</th></lod<>	1.94	0.69
Benzo-a-Pyrene	ng g -1	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<></th></lod<>	<lod< th=""><th>4.31</th><th>8.50 a,b</th><th>11.3 ^{a,b}</th><th>6.57 ^{a,b}</th><th>11.0^{a,b}</th></lod<>	4.31	8.50 a,b	11.3 ^{a,b}	6.57 ^{a,b}	11.0 ^{a,b}
Indeno-123-cd-Pyren	e ngg ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<></th></lod<>	<lod< th=""><th>3.42</th><th>15.72</th><th>5.35</th><th>8.49</th><th>7.16</th></lod<>	3.42	15.72	5.35	8.49	7.16
Dibenzo-ah-Anthrace	neng g ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Benzo-ghi-Perylene	ng g ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.20</th><th>0.97</th></lod<></th></lod<>	<lod< th=""><th>1.20</th><th>0.97</th></lod<>	1.20	0.97
∑ PAHs	ng g ⁻¹	n.d	n.d	n.d	n.d	n.d	n.d	n.d.	9.22	14.4	21.4;18.7	18.0 ± 13.8	21.70	11.6 ± 3.00	22.0 ± 16.9	25.0	57.6	34.2	59.6	76.4

Values exceeding reference limits are expressed in bold; ^(a) Reg CE 1881/2006 as amended; ^(b) Dlgs.172/2015; Σ 7PCB sum of CB 28+52+101+118+138+153+180 (Webster et al., 2013).

Table 3. Concentrations (w.w.) of Hg, HCB, PCBs and PAHs in mare organisms from the Augusta Bay.

Figures

Figure 1: Map and details of the sampling in Augusta Bay.

Figure 2: Box plot of the concentrations of Hg (a), HCB (b), \sum PCBs (c) and \sum PCBs NDL (d) in sediment cores.

Figure 3: Relative contribution of PCB homologs (% composition) in sediments, seafood and mussel samples.

Figure 4: Heatmap generated from hierarchical clustering analysis. The dendrograms of sample clustering (on the left) and of congener clustering (on the top) were added. The colour bars inside the graph indicate the different proportion of congeners (X axis) for each sample (Y axis). The rows were splitted based on number of identified clusters.

Figure 5: Dotchart of Fluo/Py in sediments and marine organisms

Supplementary materials

Table S1 Hg, HCB and PCBs concentrations (d.w.) in 0-10 cm levels of sediment collected in the sampling site.

Core	level	Hg	НСВ	PCB 28	PCB 52	PCB 81	РСВ 77	PCB 101	PCB 118	PCB 114	РСВ 123	PCB 153	PCB 105	PCB 138	PCB 126	PCB 128+157	РСВ 156	РСВ 167	РСВ 180	PCB 169	PCB 170	PCB 189	∑ PCBs	$\sum_{\substack{\mathbf{PCB}\\\mathbf{s}^{1}}}$	Σ 7PC Β
	cm	μg g -			•						1			ng g	-1		1							•	
	0-1	3.73	10.6	5.85	0.31	<lod< th=""><th><lod< th=""><th><lod< th=""><th>3.77</th><th><lod< th=""><th><lod< th=""><th>6.34</th><th><lod< th=""><th>4.42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>3.77</th><th><lod< th=""><th><lod< th=""><th>6.34</th><th><lod< th=""><th>4.42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>3.77</th><th><lod< th=""><th><lod< th=""><th>6.34</th><th><lod< th=""><th>4.42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	3.77	<lod< th=""><th><lod< th=""><th>6.34</th><th><lod< th=""><th>4.42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>6.34</th><th><lod< th=""><th>4.42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	6.34	<lod< th=""><th>4.42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	4.42	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.66</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<></th></lod<>	1.66	<lod< th=""><th><lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<></th></lod<>	<lod< th=""><th>23.3</th><th>22.9</th><th>22.4</th></lod<>	23.3	22.9	22.4
	1-2	3.07	11.2	4.98	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.36</td><td><lod< td=""><td><lod< td=""><td>5.91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.36</td><td><lod< td=""><td><lod< td=""><td>5.91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.36</td><td><lod< td=""><td><lod< td=""><td>5.91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3.36</td><td><lod< td=""><td><lod< td=""><td>5.91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3.36	<lod< td=""><td><lod< td=""><td>5.91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5.91	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.21</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<></td></lod<>	1.21	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<></td></lod<>	<lod< td=""><td>16.6</td><td>16.1</td><td>15.7</td></lod<>	16.6	16.1	15.7
	2-3	3.73	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	3-4	3.81	6.29	14.7	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>8.23</th><th><lod< th=""><th><lod< th=""><th>14.7</th><th><lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>8.23</th><th><lod< th=""><th><lod< th=""><th>14.7</th><th><lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>8.23</th><th><lod< th=""><th><lod< th=""><th>14.7</th><th><lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>8.23</th><th><lod< th=""><th><lod< th=""><th>14.7</th><th><lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	8.23	<lod< th=""><th><lod< th=""><th>14.7</th><th><lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>14.7</th><th><lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	14.7	<lod< th=""><th>7.09</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	7.09	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<></th></lod<>	<lod< th=""><th>45.9</th><th>45.4</th><th>45.0</th></lod<>	45.9	45.4	45.0
A 3	4-5	3.71	9.06	4.55	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.74</th><th><lod< th=""><th><lod< th=""><th>5.90</th><th><lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>2.74</th><th><lod< th=""><th><lod< th=""><th>5.90</th><th><lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>2.74</th><th><lod< th=""><th><lod< th=""><th>5.90</th><th><lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>2.74</th><th><lod< th=""><th><lod< th=""><th>5.90</th><th><lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	2.74	<lod< th=""><th><lod< th=""><th>5.90</th><th><lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>5.90</th><th><lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	5.90	<lod< th=""><th>3.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	3.90	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<></th></lod<>	<lod< th=""><th>18.2</th><th>17.8</th><th>17.3</th></lod<>	18.2	17.8	17.3
	5-6	3.96	8.42	16.0	0.41	<lod< th=""><th><lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th><lod< th=""><th>15.41</th><th>4.2</th><th>14.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th><lod< th=""><th>15.41</th><th>4.2</th><th>14.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>12.2</th><th><lod< th=""><th><lod< th=""><th>15.41</th><th>4.2</th><th>14.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	12.2	<lod< th=""><th><lod< th=""><th>15.41</th><th>4.2</th><th>14.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>15.41</th><th>4.2</th><th>14.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	15.41	4.2	14.4	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>3.25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<></th></lod<>	3.25	<lod< th=""><th><lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<></th></lod<>	<lod< th=""><th>66.8</th><th>62.2</th><th>61.8</th></lod<>	66.8	62.2	61.8
	6-7	3.56	8.98	4.92	0.78	<lod< th=""><th><lod< th=""><th><lod< th=""><th>3.59</th><th><lod< th=""><th><lod< th=""><th>5.37</th><th>0.65</th><th>3.92</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>3.59</th><th><lod< th=""><th><lod< th=""><th>5.37</th><th>0.65</th><th>3.92</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>3.59</th><th><lod< th=""><th><lod< th=""><th>5.37</th><th>0.65</th><th>3.92</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	3.59	<lod< th=""><th><lod< th=""><th>5.37</th><th>0.65</th><th>3.92</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>5.37</th><th>0.65</th><th>3.92</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	5.37	0.65	3.92	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<></th></lod<>	<lod< th=""><th>20.2</th><th>19.2</th><th>18.7</th></lod<>	20.2	19.2	18.7
	7-8	3.77	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	8-9	3.81	8.72	9.41	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.05</td><td><lod< td=""><td><lod< td=""><td>9.17</td><td><lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.05</td><td><lod< td=""><td><lod< td=""><td>9.17</td><td><lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.05</td><td><lod< td=""><td><lod< td=""><td>9.17</td><td><lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6.05</td><td><lod< td=""><td><lod< td=""><td>9.17</td><td><lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6.05	<lod< td=""><td><lod< td=""><td>9.17</td><td><lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9.17</td><td><lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9.17	<lod< td=""><td>4.92</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.92	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<></td></lod<>	<lod< td=""><td>30.7</td><td>30.2</td><td>29.8</td></lod<>	30.7	30.2	29.8
	9-10	3.31	4.95	22.4	1.58	<lod< th=""><th><lod< th=""><th>0.24</th><th>15.3</th><th><lod< th=""><th><lod< th=""><th>20.7</th><th>4.21</th><th>21.96</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.24</th><th>15.3</th><th><lod< th=""><th><lod< th=""><th>20.7</th><th>4.21</th><th>21.96</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	0.24	15.3	<lod< th=""><th><lod< th=""><th>20.7</th><th>4.21</th><th>21.96</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>20.7</th><th>4.21</th><th>21.96</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	20.7	4.21	21.96	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<></th></lod<>	<lod< th=""><th>87.7</th><th>82.8</th><th>82.3</th></lod<>	87.7	82.8	82.3
mea	n	3.64	8.53	10.36	0.42	<lod< th=""><th><lod< th=""><th><lod< th=""><th>6.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.18</th><th>7.59</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>6.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.18</th><th>7.59</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>6.90</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.18</th><th>7.59</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	6.90	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.18</th><th>7.59</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.18</th><th>7.59</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.18</th><th>7.59</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	1.18	7.59	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<></th></lod<>	<lod< th=""><th>38.7</th><th>29.6</th><th>36.6</th></lod<>	38.7	29.6	36.6
st.d	v	0.27 ª	2.06 ª	6.66	0.53				4.66			5.77	1.88	7.11					1.17				26.2	26.6 ª	24.4
																·									
	0-1	6.89	23.0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
А	1-2	6.98	ND	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
7	2-3	6.99	16.0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	3-4	6.93	11.6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Table S1 Hg, HCB and PCBs concentrations (d.w.) in 0-10 cm levels of sediment collected in the sampling site.

	4-5	6.65	32.1	1.62	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.02</td><td><lod< td=""><td><lod< td=""><td>0.83</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.02</td><td><lod< td=""><td><lod< td=""><td>0.83</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.02</td><td><lod< td=""><td><lod< td=""><td>0.83</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.02</td><td><lod< td=""><td><lod< td=""><td>0.83</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.02	<lod< td=""><td><lod< td=""><td>0.83</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.83</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.83	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<></td></lod<>	<lod< td=""><td>4.67</td><td>4.22</td><td>3.77</td></lod<>	4.67	4.22	3.77
	5-6	6.88	28.8	1.74	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.24</td><td><lod< td=""><td><lod< td=""><td>4.46</td><td><lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.24</td><td><lod< td=""><td><lod< td=""><td>4.46</td><td><lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.24</td><td><lod< td=""><td><lod< td=""><td>4.46</td><td><lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.24</td><td><lod< td=""><td><lod< td=""><td>4.46</td><td><lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.24	<lod< td=""><td><lod< td=""><td>4.46</td><td><lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4.46</td><td><lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.46	<lod< td=""><td>5.00</td><td><lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5.00	<lod< td=""><td><lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.78</td><td>0.43</td><td>2.66</td><td><lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<></td></lod<>	0.78	0.43	2.66	<lod< td=""><td>1.43</td><td><lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<></td></lod<>	1.43	<lod< td=""><td>18.6</td><td>16.4</td><td>15.3</td></lod<>	18.6	16.4	15.3
	6-7	6.92	32.8	2.01	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4.15</td><td><lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.15	<lod< td=""><td>3.56</td><td><lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3.56	<lod< td=""><td>0.56</td><td><lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.56	<lod< td=""><td><lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.04</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<></td></lod<>	2.04	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<></td></lod<>	<lod< td=""><td>13.4</td><td>12.9</td><td>12.0</td></lod<>	13.4	12.9	12.0
	7-8	5.26	22.1	3.79	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.47</td><td><lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.47	<lod< td=""><td>0.47</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.47	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<></td></lod<>	<lod< td=""><td>7.92</td><td>7.47</td><td>7.02</td></lod<>	7.92	7.47	7.02
	8-9	5.47	26.0	1.82	0.21	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.43</td><td><lod< td=""><td><lod< td=""><td>2.32</td><td><lod< td=""><td>1.52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.43</td><td><lod< td=""><td><lod< td=""><td>2.32</td><td><lod< td=""><td>1.52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.43</td><td><lod< td=""><td><lod< td=""><td>2.32</td><td><lod< td=""><td>1.52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.43	<lod< td=""><td><lod< td=""><td>2.32</td><td><lod< td=""><td>1.52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.32</td><td><lod< td=""><td>1.52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.32	<lod< td=""><td>1.52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.52	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.44</td><td><lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<></td></lod<>	0.44	<lod< td=""><td>0.29</td><td><lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<></td></lod<>	0.29	<lod< td=""><td>8.93</td><td>8.27</td><td>7.82</td></lod<>	8.93	8.27	7.82
	9-10	8.08	35.8	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.00</td><td><lod< td=""><td><lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.00</td><td><lod< td=""><td><lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.00</td><td><lod< td=""><td><lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.00</td><td><lod< td=""><td><lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.00</td><td><lod< td=""><td><lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.00	<lod< td=""><td><lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6.35</td><td><lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6.35	<lod< td=""><td>6.38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6.38	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3.90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<></td></lod<>	3.90	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<></td></lod<>	<lod< td=""><td>22.2</td><td>21.8</td><td>21.3</td></lod<>	22.2	21.8	21.3
mea	n	6.71	25.3	2.26	<lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.19</td><td><lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.19	<lod< td=""><td>1.53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.53	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11.8</td><td>11.2</td></lod<></td></lod<>	<lod< td=""><td>11.8</td><td>11.2</td></lod<>	11.8	11.2
st.dv	V	0.80ª	8.03 ª	0.82					0.77			1.95					0.29		1.58					6.50 a	6.39 b
	0-1	10.7	65.9	0.32	1.01	0.09	0.55	3.88	2.81	<lod< td=""><td>0.15</td><td>8.93</td><td>0.59</td><td>8.96</td><td>0.83</td><td>0.49</td><td>0.56</td><td>0.89</td><td>6.44</td><td><lod< td=""><td>3.46</td><td>0.26</td><td>40.4</td><td>35.0</td><td>32.4</td></lod<></td></lod<>	0.15	8.93	0.59	8.96	0.83	0.49	0.56	0.89	6.44	<lod< td=""><td>3.46</td><td>0.26</td><td>40.4</td><td>35.0</td><td>32.4</td></lod<>	3.46	0.26	40.4	35.0	32.4
	1-2	11.6	134	0.38	2.01	<lod< td=""><td>0.89</td><td>8.40</td><td>5.90</td><td>0.03</td><td>0.50</td><td>12.7</td><td>1.45</td><td>13.5</td><td>0.94</td><td>0.96</td><td>1.31</td><td>0.92</td><td>7.54</td><td>0.13</td><td>4.00</td><td>0.32</td><td>62.0</td><td>54.8</td><td>50.5</td></lod<>	0.89	8.40	5.90	0.03	0.50	12.7	1.45	13.5	0.94	0.96	1.31	0.92	7.54	0.13	4.00	0.32	62.0	54.8	50.5
	2-3	10.7	331	0.55	1.37	<lod< td=""><td>0.78</td><td>5.74</td><td>2.95</td><td><lod< td=""><td>110</td><td>11.0</td><td>1.19</td><td>10.3</td><td>1.25</td><td>0.66</td><td>0.76</td><td>1.04</td><td>7.32</td><td>0.17</td><td>4.16</td><td>0.39</td><td>160</td><td>42.9</td><td>39.2</td></lod<></td></lod<>	0.78	5.74	2.95	<lod< td=""><td>110</td><td>11.0</td><td>1.19</td><td>10.3</td><td>1.25</td><td>0.66</td><td>0.76</td><td>1.04</td><td>7.32</td><td>0.17</td><td>4.16</td><td>0.39</td><td>160</td><td>42.9</td><td>39.2</td></lod<>	110	11.0	1.19	10.3	1.25	0.66	0.76	1.04	7.32	0.17	4.16	0.39	160	42.9	39.2
	3-4	12.2	140	0.29	1.17	<lod< td=""><td>0.52</td><td>4.29</td><td>3.08</td><td><lod< td=""><td>0.44</td><td>9.63</td><td>0.76</td><td>9.03</td><td>0.93</td><td>0.50</td><td>0.76</td><td>1.09</td><td>6.69</td><td>0.22</td><td>3.44</td><td>0.26</td><td>43.3</td><td>37.2</td><td>34.2</td></lod<></td></lod<>	0.52	4.29	3.08	<lod< td=""><td>0.44</td><td>9.63</td><td>0.76</td><td>9.03</td><td>0.93</td><td>0.50</td><td>0.76</td><td>1.09</td><td>6.69</td><td>0.22</td><td>3.44</td><td>0.26</td><td>43.3</td><td>37.2</td><td>34.2</td></lod<>	0.44	9.63	0.76	9.03	0.93	0.50	0.76	1.09	6.69	0.22	3.44	0.26	43.3	37.2	34.2
A	4-5	11.3	328	0.34	1.12	<lod< td=""><td>0.58</td><td>4.42</td><td>3.33</td><td>0.01</td><td>0.26</td><td>9.96</td><td>0.62</td><td>9.34</td><td>0.84</td><td>0.54</td><td>0.44</td><td>1.10</td><td>7.99</td><td><lod< td=""><td>4.24</td><td>0.25</td><td>45.5</td><td>39.1</td><td>36.5</td></lod<></td></lod<>	0.58	4.42	3.33	0.01	0.26	9.96	0.62	9.34	0.84	0.54	0.44	1.10	7.99	<lod< td=""><td>4.24</td><td>0.25</td><td>45.5</td><td>39.1</td><td>36.5</td></lod<>	4.24	0.25	45.5	39.1	36.5
9	5-6	11.3	142	0.48	1.25	<lod< td=""><td>0.82</td><td>4.72</td><td>3.65</td><td><lod< td=""><td>0.15</td><td>10.13</td><td>0.53</td><td>9.22</td><td>1.24</td><td>0.48</td><td>0.73</td><td>1.08</td><td>11.62</td><td><lod< td=""><td>4.44</td><td>0.13</td><td>50.9</td><td>44.5</td><td>41.1</td></lod<></td></lod<></td></lod<>	0.82	4.72	3.65	<lod< td=""><td>0.15</td><td>10.13</td><td>0.53</td><td>9.22</td><td>1.24</td><td>0.48</td><td>0.73</td><td>1.08</td><td>11.62</td><td><lod< td=""><td>4.44</td><td>0.13</td><td>50.9</td><td>44.5</td><td>41.1</td></lod<></td></lod<>	0.15	10.13	0.53	9.22	1.24	0.48	0.73	1.08	11.62	<lod< td=""><td>4.44</td><td>0.13</td><td>50.9</td><td>44.5</td><td>41.1</td></lod<>	4.44	0.13	50.9	44.5	41.1
	6-7	12.0	155	0.34	1.25	<lod< td=""><td>0.82</td><td>4.21</td><td>3.47</td><td>0.02</td><td><lod< td=""><td>9.55</td><td>1.05</td><td>8.11</td><td>0.99</td><td>0.43</td><td>0.48</td><td>1.02</td><td>7.84</td><td><lod< td=""><td>3.76</td><td>0.32</td><td>43.9</td><td>37.7</td><td>34.8</td></lod<></td></lod<></td></lod<>	0.82	4.21	3.47	0.02	<lod< td=""><td>9.55</td><td>1.05</td><td>8.11</td><td>0.99</td><td>0.43</td><td>0.48</td><td>1.02</td><td>7.84</td><td><lod< td=""><td>3.76</td><td>0.32</td><td>43.9</td><td>37.7</td><td>34.8</td></lod<></td></lod<>	9.55	1.05	8.11	0.99	0.43	0.48	1.02	7.84	<lod< td=""><td>3.76</td><td>0.32</td><td>43.9</td><td>37.7</td><td>34.8</td></lod<>	3.76	0.32	43.9	37.7	34.8
	7-8	11.4	104	0.36	1.27	<lod< td=""><td>0.79</td><td>5.23</td><td>4.19</td><td><lod< td=""><td><lod< td=""><td>10.8</td><td>2.97</td><td>9.68</td><td>1.18</td><td>0.44</td><td>0.40</td><td>1.09</td><td>8.42</td><td><lod< td=""><td>3.70</td><td>0.12</td><td>50.8</td><td>42.9</td><td>39.9</td></lod<></td></lod<></td></lod<></td></lod<>	0.79	5.23	4.19	<lod< td=""><td><lod< td=""><td>10.8</td><td>2.97</td><td>9.68</td><td>1.18</td><td>0.44</td><td>0.40</td><td>1.09</td><td>8.42</td><td><lod< td=""><td>3.70</td><td>0.12</td><td>50.8</td><td>42.9</td><td>39.9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10.8</td><td>2.97</td><td>9.68</td><td>1.18</td><td>0.44</td><td>0.40</td><td>1.09</td><td>8.42</td><td><lod< td=""><td>3.70</td><td>0.12</td><td>50.8</td><td>42.9</td><td>39.9</td></lod<></td></lod<>	10.8	2.97	9.68	1.18	0.44	0.40	1.09	8.42	<lod< td=""><td>3.70</td><td>0.12</td><td>50.8</td><td>42.9</td><td>39.9</td></lod<>	3.70	0.12	50.8	42.9	39.9
	8-9	12.1	162	0.31	1.72	<lod< td=""><td>0.61</td><td>6.74</td><td>4.86</td><td><lod< td=""><td><lod< td=""><td>11.0</td><td>1.18</td><td>10.62</td><td>0.83</td><td>0.67</td><td>0.29</td><td>0.99</td><td>6.99</td><td><lod< td=""><td>3.90</td><td>0.14</td><td>51.2</td><td>44.8</td><td>42.3</td></lod<></td></lod<></td></lod<></td></lod<>	0.61	6.74	4.86	<lod< td=""><td><lod< td=""><td>11.0</td><td>1.18</td><td>10.62</td><td>0.83</td><td>0.67</td><td>0.29</td><td>0.99</td><td>6.99</td><td><lod< td=""><td>3.90</td><td>0.14</td><td>51.2</td><td>44.8</td><td>42.3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11.0</td><td>1.18</td><td>10.62</td><td>0.83</td><td>0.67</td><td>0.29</td><td>0.99</td><td>6.99</td><td><lod< td=""><td>3.90</td><td>0.14</td><td>51.2</td><td>44.8</td><td>42.3</td></lod<></td></lod<>	11.0	1.18	10.62	0.83	0.67	0.29	0.99	6.99	<lod< td=""><td>3.90</td><td>0.14</td><td>51.2</td><td>44.8</td><td>42.3</td></lod<>	3.90	0.14	51.2	44.8	42.3
	9-10	10.8	164	0.64	1.30	<lod< td=""><td>0.82</td><td>4.52</td><td>3.70</td><td>0.03</td><td><lod< td=""><td>9.96</td><td>2.28</td><td>8.45</td><td>1.55</td><td>1.07</td><td>0.08</td><td>1.14</td><td>7.99</td><td><lod< td=""><td>3.40</td><td>0.32</td><td>47.5</td><td>40.2</td><td>36.6</td></lod<></td></lod<></td></lod<>	0.82	4.52	3.70	0.03	<lod< td=""><td>9.96</td><td>2.28</td><td>8.45</td><td>1.55</td><td>1.07</td><td>0.08</td><td>1.14</td><td>7.99</td><td><lod< td=""><td>3.40</td><td>0.32</td><td>47.5</td><td>40.2</td><td>36.6</td></lod<></td></lod<>	9.96	2.28	8.45	1.55	1.07	0.08	1.14	7.99	<lod< td=""><td>3.40</td><td>0.32</td><td>47.5</td><td>40.2</td><td>36.6</td></lod<>	3.40	0.32	47.5	40.2	36.6
mea	n	11.4	172.6	0.40	1.35	<lod< td=""><td><lod< td=""><td>5.22</td><td>3.79</td><td><lod< td=""><td>11.2</td><td>10.4</td><td>1.26</td><td>9.72</td><td>1.06</td><td>0.62</td><td>0.58</td><td>1.04</td><td>7.89</td><td><lod< td=""><td><lod< td=""><td>0.25</td><td>59.5</td><td>41.9</td><td>38.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.22</td><td>3.79</td><td><lod< td=""><td>11.2</td><td>10.4</td><td>1.26</td><td>9.72</td><td>1.06</td><td>0.62</td><td>0.58</td><td>1.04</td><td>7.89</td><td><lod< td=""><td><lod< td=""><td>0.25</td><td>59.5</td><td>41.9</td><td>38.7</td></lod<></td></lod<></td></lod<></td></lod<>	5.22	3.79	<lod< td=""><td>11.2</td><td>10.4</td><td>1.26</td><td>9.72</td><td>1.06</td><td>0.62</td><td>0.58</td><td>1.04</td><td>7.89</td><td><lod< td=""><td><lod< td=""><td>0.25</td><td>59.5</td><td>41.9</td><td>38.7</td></lod<></td></lod<></td></lod<>	11.2	10.4	1.26	9.72	1.06	0.62	0.58	1.04	7.89	<lod< td=""><td><lod< td=""><td>0.25</td><td>59.5</td><td>41.9</td><td>38.7</td></lod<></td></lod<>	<lod< td=""><td>0.25</td><td>59.5</td><td>41.9</td><td>38.7</td></lod<>	0.25	59.5	41.9	38.7
st.dv	V	0.57 ^a	87.6 ª	0.12	0.30		0.13	1.40	0.96		34.6	1.07	0.80	1.53	0.24	0.22	0.34	0.08	1.45		0.36	0.09	35.6	5.60 a	5.20 b
	0-1	6.94	17.4	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	1-2	7.18	27.9	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
A	2-3	7.04	35.5	5.05	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.08</td><td><lod< td=""><td><lod< td=""><td>14.3</td><td><lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5.08</td><td><lod< td=""><td><lod< td=""><td>14.3</td><td><lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5.08</td><td><lod< td=""><td><lod< td=""><td>14.3</td><td><lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.08</td><td><lod< td=""><td><lod< td=""><td>14.3</td><td><lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5.08	<lod< td=""><td><lod< td=""><td>14.3</td><td><lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>14.3</td><td><lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	14.3	<lod< td=""><td>19.1</td><td><lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<></td></lod<>	19.1	<lod< td=""><td>3.0</td><td>4.2</td><td>4.4</td><td>8.3</td><td><lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<></td></lod<>	3.0	4.2	4.4	8.3	<lod< td=""><td>5.4</td><td><lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<></td></lod<>	5.4	<lod< td=""><td>69.5</td><td>59.4</td><td>52.0</td></lod<>	69.5	59.4	52.0
11	3-4	7.74	54.1	4.30	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.09</td><td><lod< td=""><td><lod< td=""><td>6.44</td><td><lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.09</td><td><lod< td=""><td><lod< td=""><td>6.44</td><td><lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.09</td><td><lod< td=""><td><lod< td=""><td>6.44</td><td><lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.09</td><td><lod< td=""><td><lod< td=""><td>6.44</td><td><lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.09	<lod< td=""><td><lod< td=""><td>6.44</td><td><lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6.44</td><td><lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6.44	<lod< td=""><td>2.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<></td></lod<>	1.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<></td></lod<>	<lod< td=""><td>17.1</td><td>16.7</td><td>16.2</td></lod<>	17.1	16.7	16.2
	4-5	6.97	28.2	3.10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.01</td><td><lod< td=""><td><lod< td=""><td>9.07</td><td><lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.01</td><td><lod< td=""><td><lod< td=""><td>9.07</td><td><lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.01</td><td><lod< td=""><td><lod< td=""><td>9.07</td><td><lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.01</td><td><lod< td=""><td><lod< td=""><td>9.07</td><td><lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.01	<lod< td=""><td><lod< td=""><td>9.07</td><td><lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9.07</td><td><lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9.07	<lod< td=""><td>4.3</td><td><lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<></td></lod<>	4.3	<lod< td=""><td>0.4</td><td>0.3</td><td>0.4</td><td>5.7</td><td><lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<></td></lod<>	0.4	0.3	0.4	5.7	<lod< td=""><td>1.2</td><td><lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<></td></lod<>	1.2	<lod< td=""><td>27.1</td><td>25.2</td><td>24.2</td></lod<>	27.1	25.2	24.2
	5-6	6.63	16.0	5.18	0.64	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12.3</td><td><lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12.3</td><td><lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12.3</td><td><lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12.3</td><td><lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12.3</td><td><lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12.3</td><td><lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	12.3	<lod< td=""><td>8.7</td><td><lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.7	<lod< td=""><td>1.0</td><td><lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1.0	<lod< td=""><td><lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3.8</td><td><lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<></td></lod<>	3.8	<lod< td=""><td>2.3</td><td><lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<></td></lod<>	2.3	<lod< td=""><td>34.8</td><td>32.1</td><td>30.8</td></lod<>	34.8	32.1	30.8

	6-7	6.69	17.4	5.03	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>12.2</th><th><lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	12.2	<lod< th=""><th>13.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	13.4	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>6.9</th><th><lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<></th></lod<>	6.9	<lod< th=""><th>4.1</th><th><lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<></th></lod<>	4.1	<lod< th=""><th>42.7</th><th>38.2</th><th>37.8</th></lod<>	42.7	38.2	37.8
	7-8	7.45	18.0	35.3	2.42	<lod< th=""><th><lod< th=""><th><lod< th=""><th>43.11</th><th><lod< th=""><th><lod< th=""><th>42.8</th><th>7.04</th><th>56.1</th><th><lod< th=""><th>2.2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>43.11</th><th><lod< th=""><th><lod< th=""><th>42.8</th><th>7.04</th><th>56.1</th><th><lod< th=""><th>2.2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>43.11</th><th><lod< th=""><th><lod< th=""><th>42.8</th><th>7.04</th><th>56.1</th><th><lod< th=""><th>2.2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	43.11	<lod< th=""><th><lod< th=""><th>42.8</th><th>7.04</th><th>56.1</th><th><lod< th=""><th>2.2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>42.8</th><th>7.04</th><th>56.1</th><th><lod< th=""><th>2.2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	42.8	7.04	56.1	<lod< th=""><th>2.2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	2.2	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.1</th><th><lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<></th></lod<>	1.1	<lod< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></lod<>	n.d.	n.d.	n.d.
	8-9	5.33	11.6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	9-10	3.40	1.98	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
me	an	6.54	22.8	9.65	0.56	<lod< th=""><th><lod< th=""><th><lod< th=""><th>8.74</th><th><lod< th=""><th><lod< th=""><th>16.2</th><th>1.24</th><th>17.3</th><th><lod< th=""><th>1.10</th><th>0.80</th><th>0.84</th><th>4.30</th><th><lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>8.74</th><th><lod< th=""><th><lod< th=""><th>16.2</th><th>1.24</th><th>17.3</th><th><lod< th=""><th>1.10</th><th>0.80</th><th>0.84</th><th>4.30</th><th><lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>8.74</th><th><lod< th=""><th><lod< th=""><th>16.2</th><th>1.24</th><th>17.3</th><th><lod< th=""><th>1.10</th><th>0.80</th><th>0.84</th><th>4.30</th><th><lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	8.74	<lod< th=""><th><lod< th=""><th>16.2</th><th>1.24</th><th>17.3</th><th><lod< th=""><th>1.10</th><th>0.80</th><th>0.84</th><th>4.30</th><th><lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>16.2</th><th>1.24</th><th>17.3</th><th><lod< th=""><th>1.10</th><th>0.80</th><th>0.84</th><th>4.30</th><th><lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<></th></lod<></th></lod<>	16.2	1.24	17.3	<lod< th=""><th>1.10</th><th>0.80</th><th>0.84</th><th>4.30</th><th><lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<></th></lod<>	1.10	0.80	0.84	4.30	<lod< th=""><th>2.35</th><th><lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<></th></lod<>	2.35	<lod< th=""><th>38.2</th><th>34.3</th><th>32.2</th></lod<>	38.2	34.3	32.2
st.o	lv	1.28 ª	14.45ª	12.6	0.94				16.9			13.3	2.84	20.0		1.21	1.65	1.75	3.26		2.03		19.9	16.2ª	13.6 b

Table S2: PAHs concentrations (d.w.) in 0-10 cm levels of sediment collected in the sampling site.

Cor e	Lay er	PHENANTHR ENE	ANTHRAC ENE	FLUORANTH ENE	PYRE NE	BENZO[a] ANTHRAC ENE	CHRYSE NE	BENZO[b] FLUORANTH ENE	BENZO[K] FLUORANTH ENE	BENZO[a]PYR ENE	INDENO[1 23- cd]PYREN E	DIBENZO[a h] ANTHRAC ENE	BENZO[g hi] PERYLE NE	∑PAH s
	ст							ng g -1						
	0-1	53.5	136	15.9	15.0	20.9	30.9	63.0	91.9	77.1	112.2	29.6	96.6	742
	1-2	28.9	87.0	50.7	37.8	26.7	28.0	52.5	20.9	53.8	76.5	10.3	56.9	530
	2-3	49.9	118	128.9	65.8	61.8	64.1	84.6	37.8	111.4	104.0	13.7	72.4	913
	3-4	33.6	158	49.5	27.6	27.9	32.2	60.0	24.6	55.2	68.1	8.3	37.2	583
A 3	4-5	39.3	230	63.4	29.8	31.5	35.6	48.9	23.3	54.2	74.0	14.6	49.5	694
	5-6	35.4	264	52.3	26.4	32.1	37.1	87.2	24.7	68.9	83.1	14.5	55.5	782
	6-7	32.9	286	44.6	36.0	34.5	40.7	30.0	13.5	37.4	49.6	9.4	21.7	636
	7-8	26.8	111	54.9	24.7	29.9	33.1	55.5	59.3	52.2	44.3	9.6	32.1	533
	8-9	35.6	184	52.7	26.9	35.4	38.5	29.2	16.6	62.6	32.0	8.9	36.1	558
	9-10	40.4	227	105.5	41.2	41.5	44.4	34.9	23.1	73.7	56.8	10.5	48.5	747
m	ean	37.6	180	61.8	33.1	34.2	38.5	54.6	33.6	64.6	70.1	12.9	50.6	671.87
S	t.dv	8.52	68.9	32.2	13.7	11.1	10.2	20.4	24.3	20.12	25.5	6.30	21.7	125.97
	0-1	41.8	186	81.1	34.3	32.7	37.8	49.8	14.8	50.2	34.4	4.77	30.9	599
Α	1-2	28.7	112	45.1	38.3	18.9	22.5	34.0	10.8	32.2	23.0	3.62	24.4	394
7	2-3	28.0	184	37.5	25.8	18.6	23.1	33.0	7.2	29.1	20.4	1.85	25.5	434
	3-4	25.6	184	33.9	22.8	15.3	17.8	33.0	7.7	27.8	19.0	1.62	15.9	404

	4-5	23.9	201	29.3	21.5	15.8	18.9	35.4	9.0	27.4	21.6	1.41	16.7	422
	5-6	23.0	218	28.4	20.9	13.4	16.5	30.0	9.9	24.8	16.0	1.01	11.2	413
	6-7	28.2	211	32.2	25.7	17.7	19.9	32.8	8.7	29.6	18.1	1.72	20.1	446
	7-8	18.3	177	16.5	13.6	10.5	14.4	23.1	6.6	18.2	13.1	0.00	8.1	319
	8-9	19.2	209	18.7	12.7	11.6	14.7	23.0	6.7	21.9	14.1	1.54	7.2	360
	9-10	27.8	186	30.7	28.8	15.6	20.4	31.4	11.1	31.3	14.7	1.17	16.1	415
me	an	26.4	186.8	35.3	24.5	17.0	20.6	32.5	9.26	29.3	19.5	1.87	17.6	420
st.	dv	6.56	29.6	18.1	8.11	6.18	6.72	7.45	2.54	8.53	6.19	1.36	7.72	72.73
	0-1	54.6	70.4	31.6	37.1	18.9	37.7	24.3	9.28	19.1	6.20	6.92	19.8	336
	1-2	46.1	76.2	32.6	40.7	18.8	37.0	25.2	6.61	18.0	6.27	7.53	13.7	329
	2-3	59.3	47.5	37.2	61.1	25.2	58.2	31.3	7.20	24.3	9.05	6.91	10.2	378
	3-4	60.0	65.7	34.2	50.6	20.3	40.1	24.6	7.74	20.0	9.54	6.22	9.12	348
A	4-5	68.6	53.0	57.9	71.8	36.7	59.5	36.2	12.00	30.9	16.67	13.37	20.7	477
9	5-6	130	23.4	112	118	53.0	78.0	51.9	22.43	39.7	23.91	3.75	9.90	666
	6-7	64.4	61.0	35.0	55.7	23.2	41.2	26.6	9.59	24.6	4.39	2.94	5.93	355
	7-8	62.0	56.3	34.3	60.2	22.6	41.7	27.4	9.59	19.1	7.03	16.34	6.91	364
	8-9	76.0	59.1	41.9	61.4	23.5	46.9	32.2	10.68	21.4	8.89	10.46	6.50	399
	9-10	57.4	50.3	34.9	55.7	21.7	41.6	25.0	7.61	18.1	6.89	4.57	8.64	332
me	an	67.8	56.3	45.2	61.2	26.4	48.2	30.5	10.3	23.5	9.88	7.90	11.15	398
st.o	dv	67.8 ± 23.3	14.6	24.7	22.3	10.6	13.1	8.51	4.59	6.94	5.95	4.29	5.30	103
			-											
	0-1	25.2	78.2	19.6	22.2	12.8	17.1	18.0	6.10	21.7	13.3	3.55	22.2	260
	1-2	28.3	93.7	18.3	24.7	11.6	15.9	14.4	6.56	20.5	14.7	4.20	19.3	272
	2-3	52.6	84.0	41.8	32.9	15.5	20.6	16.9	9.14	25.1	14.7	5.79	17.6	337
A	3-4	28.9	65.6	29.4	41.2	15.6	19.5	14.5	7.80	21.8	13.9	3.71	17.7	280
11	4-5	32.3	112.9	25.2	21.9	13.7	17.7	11.9	5.27	17.4	14.0	4.89	14.7	292
[5-6	21.2	96.3	27.2	21.3	14.5	18.8	15.0	10.3	22.5	14.2	3.06	16.4	281
[6-7	33.8	85.8	54.8	40.4	20.8	27.5	21.6	9.26	32.2	14.9	0.00	15.1	356
L L	0,													

	8-9	12.3	61.9	16.4	13.8	9.0	11.7	7.53	5.54	13.5	8.57	0.00	7.71	168
	9-10	15.8	80.2	12.1	10.1	6.34	9.24	8.54	3.82	8.51	9.15	2.01	11.3	177
m	ean	27.7	91.7	27.5	25.4	13.5	17.8	14.4	7.09	20.5	13.1	2.91	15.7	277
st	.dv	11.1	27.6	12.8	10.2	3.94	4.99	4.24	2.03	206.42	2.30	1.94	4.06	64.8