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Abstract 19 

To elucidate the dynamics of a suite of organochlorine contaminants (PCBs, HCB), PAHs and Hg and verify 20 
the potential of these pollutants as reliable fingerprints of sources, an ensemble of marine sediments and 21 
organisms (finfish, shellfish species and Mytilus galloprovincialis) were analysed from the contaminated 22 
Augusta Bay (Southern Italy). The Hg and HCB concentration in the sediments exceeded the EQS of the 23 
Directive 2000/60/EU. Similarly, ∑PCB and selected PAHs were above the threshold limit set by regulation. 24 
The marine organisms showed Hg concentrations above CE 1881/2006. Contaminants in transplanted mussel 25 
evidenced an increased accumulation overtime and different distribution patterns between sampling sites. 26 
Analysis of the homolog composition of PCB congeners revealed comparable patterns between sediments 27 
and marine organisms and offered the opportunity to define a robust fingerprint for tracing contaminants 28 
transfer from the abiotic to the biotic compartments. These results were confirmed by the 29 
Fluoranthene/Pyrene, Hg and HCB distribution modes.  30 

 31 
Keywords: Organochlorines, PAHs, Biota, Sediment, Source fingerprint. 32 
 33 

1. Introduction 34 

Understanding the transfer of contaminants from marine sediments to biota represents a critical 35 

aspect for environmental risk assessment, modelling and specific remediation actions (Gobas and 36 

Arnot, 2010). Distribution patterns of pollutants, isotope measurements, compositional analysis and 37 

investigation of variable proportions of single congeners of specific organic pollutants were shown 38 

as valuable tools for tracing sources of contamination to the trophic chains (e.g., Sahu et al., 2009; 39 

Baskaran, 2011; Rodenburg and Leidos, 2017; Habibullah-Al-Mamun et al., 2019; Bonsignore et 40 

al., 2020). 41 
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Although several actions have been taken to reduce or even eliminate input of contaminants in the 42 

environment (UNEP 2001, 2017, 2019), compounds such as Persistent Organic Pollutants (POPs) 43 

and some trace metals, including Hg, are accumulated in different environmental matrices thus 44 

representing a global environmental threat for marine organisms and human health (García-Flor et 45 

al., 2009; Bellas et al., 2011; Sanchez-Avila et al., 2012; Berrojalbiz et al., 2014; Olenycz et al., 46 

2015; Batang et al., 2016; Jepson et al., 2016; Beiras, 2018). Due to their hydrophobic behaviour in 47 

aquatic ecosystems, most of the pollutants such as e.g. Polychlorinated biphenyls -[PCBs], 48 

Hexachlorobenzene [HCB] and Polycyclic Aromatic Hydrocarbons [PAHs], readily bind to 49 

particles (suspended in seawater and/or into the sediments) and are strongly associated with organic 50 

phase. Once in the sediments they persist for very long time (Minh et al., 2007) with high potential 51 

to be incorporated into the food web via benthic–pelagic coupling (Thomann et al., 1992). As an 52 

example of extremely stable compounds, Hexachlorobenzene (HCB) was produced for industrial 53 

and agricultural applications worldwide (Courtney, 1979; Bailey, 2001; Meijer et al., 2003), and 54 

although its production was stopped before 2000 in most countries, it is still abundant in the 55 

environment due to its long-half life in water and sediments (Barber et al., 2005). PCBs were 56 

produced in the past century, up to the 1970s-1980s, and largely used for different industrial 57 

applications (e.g. as dielectric fluid in electrical transformers and capacitors, active constituent of 58 

pesticides) (ATSDR, 2000; Crinnion, 2011). Among 209 congeners, the Stockholm Convention 59 

reports as mandatory to measure at least six indicator congeners non-dioxin-like (NDL) PCBs 28, 60 

52, 101, 138, 153 and 180 to estimate environmental PCBs contamination (JECFA, 2018), while 61 

ICES (Webster et al., 2013) recommends the measure of 7 PCBs congeners (including also 62 

congener 118) which represent a large percentage of the total congeners measured in environmental 63 

samples and human fluids (EFSA, 2010; IARC, 2016). Likewise, Hg is a trace metal efficiently 64 

transferred and biomagnified along food web reaching high concentrations in the upper trophic 65 

levels and thus representing a risk to human health (e.g., Signa et al., 2017).  66 
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Finally, PAHs represent another group of chemicals of priority concern which include the largest 67 

known class of carcinogens and chemical mutagens (Keith and Telliard, 1979). PAHs tend to 68 

adsorb rapidly on particles (Neff, 1979; Landrum and Robbins, 1990) and since their solubility 69 

decreases with increasing molecular weight, the bioaccumulation of these chemicals from 70 

sediments to marine organisms is generally higher for those with lower molecular weight (Porte and 71 

Albaigés, 1993; Djomo et al., 1996).  72 

Over the last decade, a number of scientific contributions explored the distribution patterns of 73 

classes of contaminants (e.g., PAHs, PCBs, PCDD/Fs, Hg and HCB) to trace transfer dynamic from 74 

the sediments to the biotic compartment, and to characterize sources of variability in contaminant 75 

bioavailability to aquatic biota (e.g. Selck et al., 2012; McLeod et al., 2015).  76 

Fish and other key species have been used as bioindicators to investigate the presence and toxic 77 

effects of chemical pollutants (Ueno et al., 2003). It is well-known that biotransformation pathways 78 

significantly modulate absorption, distribution and excretion of organic xenobiotics in fish while 79 

filter feeders, such as bivalve, tend to accumulate these pollutants in their tissues from both water 80 

column and sediments thus providing additional information on the environmental state of pollution 81 

(Regoli et al., 1998; Wiberg et al., 2002; Olenycz et al., 2015; Farrington et al., 2016; Beyer et al., 82 

2017). 83 

However, PCBs congeners distribution in the biota generally remains similar to the un-weathered 84 

PCBs mixtures in the sediments (mainly when those with higher chlorine content are considered), 85 

thus allowing the identification of these sources with a satisfactory degree of confidence. Some 86 

exercises of PCBs fingerprinting in biota have been performed in the Hanford Site in Washington 87 

State (Rodenburg et al., 2015) and Portland Harbor in Oregon (Rodenburg et al., 2019) offering 88 

robust information on the transfer of contaminants from the abiotic to the biotic compartments.  89 

In this work, we present an unprecedented dataset of Hg, HCB, PCBs and 16 priority PAHs 90 

measured on surface sediments, mussels, and several species of marine organisms from the highly 91 

contaminated marine area of Augusta Bay (southern Italy). Patterns of PCBs congeners, combined 92 
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to spatial distribution of PAHs, HCB and Hg in sediments and biota were elaborated to evaluate the 93 

fingerprint association between sediments (sources) and biota, and their opportunity for high-94 

resolution tracing of priority contaminants sources. 95 

 96 

2. Study area  97 

Augusta Bay is a ∼ 25 km2 area located in the eastern Sicilian coast (Fig. 1) which hosts one of the 98 

most important harbours of the Mediterranean Sea and, since 1950s, one of the largest 99 

petrochemical complexes in Europe, characterized by oil refineries and chlor-alkali plant. 100 

Uncontrolled industrial discharges led to significant contamination of sediments by metals and 101 

organics, mainly Hg, PCBs, PAHs and HCB (ICRAM, 2008; Bellucci et al., 2012; Croudace et al., 102 

2015), and all the area was included in the National Remediation Plan by the Italian Ministry of 103 

Environment. Several investigations have highlighted a strong contamination of the marine 104 

environment with i) abnormal levels of Hg, PCBs and HCB in sediments (ICRAM, 2005, 2008, 105 

Bellucci et al., 2012; Sprovieri et al., 2011; Orecchio and Polizzotto, 2013), ii) active fluxes of Hg 106 

from the sediment to the water column (Salvagio Manta et al., 2016; Denaro et al., 2020) and iii) 107 

Hg evasion processes to the atmosphere (Sprovieri et al., 2011; Bagnato et al., 2013). Serious 108 

impacts on the ecosystem have been documented by ecotoxicological investigations which revealed 109 

genotoxic damages and high Hg contents, exceeding the regulatory limits for food consumption in 110 

the tissues of fish and mussels (Ausili et al., 2008; ENVIRON, 2008; ICRAM, 2008; Tomasello et 111 

al., 2012; Bonsignore et al., 2013; Signa et al., 2017), thus advising for possible human health 112 

implications due to consumption of seafood from this area (Ausili et al., 2008; Bonsignore et al., 113 

2013; Di Bella et al., 2020). 114 

The role of polluted sediments as the main carrier of Hg to the ecosystem and local fish consumers 115 

has been further revealed throught the exploration of Hg isotopes signature in sediments and fish 116 

(Bonsignore et al., 2015).  117 

 118 
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3. Sampling activity 119 

 120 

3.1 Sediments 121 

The sediment sampling, carried out in October 2017 during an oceanographic cruise on board R/V 122 

“Luigi Sanzo”, provided sediment cores from 4 stations (A3, A7, A9, A11) inside the bay, from the 123 

northern to the southern area (Fig. 1), using an oceanic box-corer. Sediment cores were immediately 124 

stored at −20 °C until the analyses. 125 

 126 

3.2 Marine organisms 127 

In November 2013, wild mussels (Mytilus galloprovincialis) with size range 3.6-6 cm, were 128 

manually collected from industrial wharf and rapidly transported to laboratory for the tissue’s 129 

dissection. In the same period, a total of 62 specimens of finfish (Sphyraena sphyraena, Mullus 130 

barbatus, Pagellus spp., Sparus aurata, Serranus cabrilla, Diplodus spp.) were obtained through 131 

local fisherman (Fig. 1).  132 

In September 2017, mussels (Mytilus galloprovincialis) with size range of 4-6 cm were obtained 133 

from a commercial farm. A pool of individuals (about 2 kg) was used as control (M. 134 

galloprovincialis CTRL), while other two pools (about 10 kg) were transplanted in the northern (M. 135 

galloprovincialis N) and the southern (M. galloprovincialis S) areas of Augusta Bay, caged in nylon 136 

net bags, secured to a rope and maintained at approximately 3 m water depth. After a period of 5 137 

weeks, a subgroup of mussels was collected from each site (N1 and S1), and an additional sampling 138 

was performed 7 months later (N2 and S2).  139 

In October 2017, a total of 96 specimens of finfish (Sphyraena sphyraena, Trigla lucerna, Mullus 140 

barbatus, Pagellus spp., Diplodus spp.) and shellfish (Parapaeneus kerathurus and Sepia spp.) 141 

were obtained through local fishermen (Fig. 1).  142 

 143 

4. Analytical methods 144 
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4.1 Samples preparation  145 

In laboratory, the sediment cores were defrosted, extruded and immediately sliced into 1 cm 146 

intervals. The samples were then dried at 35°C and homogenized by an agate mortar. For the goals 147 

of this study only the most superficial levels (between 0-10 cm) were analysed.  148 

The total length (mm) and the weight (g) for each organism were measured and muscles and soft 149 

tissues were dissected by stainless steel scissors. Individuals of each species with comparable size 150 

were pooled, homogenized and stored at -80°C (Table 1). The tissues samples were then freeze-151 

dried and powdered by an agate mortar prior the analyses.  152 

 153 

4.2 Mercury determination in sediments and marine organisms 154 

The concentration of Hg in organisms and sediments was determined by a direct mercury analyzer 155 

(milestone-DMA-80 atomic absorption spectrophotometer), according to analytical procedures 156 

reported in EPA 7473 method (2007). About 0.050 g of dried tissue and ~0.010 g of dry sediment 157 

were loaded in nickel boats and transferred into the DMA-80 system. The Certified Reference 158 

Materials-TORT-2 Lobster hepatopancreas and (PACS-2 Marine sediment, NRC-CNRC) were used 159 

to assess accuracy (estimated % error =3%) and precision (routinely better than 4%; RSD%, n = 3). 160 

About 20% of the total number of samples was duplicated to estimate reproducibility (better than 161 

7%). Acid-cleaned laboratory materials were used in order to minimize contamination risks during 162 

sample preparation and analyses procedures. Analyses were performed at the biogeochemical 163 

laboratory of the Institute of Anthropic impacts and Sustainability in marine environment (IAS-164 

CNR) of Capo Granitola (Trapani, Italy). Results were expressed as on wet weight basis. 165 

Results relative to tissues were converted from dried to wet-weight (μg g-1) applying a conversion 166 

factor previously calculated using the following formula: Cw=Cd x (100-%H2O/100) were Cd and 167 

Cw are the concentration expressed relatively to dry and wet mass respectively. %H2O is the 168 

percentage of humidity (ranging around 80% for almost species) calculated after the freeze-drying 169 

process (Di Bella et al., 2020 and references therein). 170 
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 171 

4.3 PCBs, HCB and PAHs determination in sediments and marine organisms 172 

The sediment and biota samples were freeze dried and homogenized, then an aliquot (about 1 and 2 173 

g of tissues and sediments, respectively) was placed in an ASE 200 steel extraction cell, spiked with 174 

surrogate standards (o2si smart solution ® custom deuterated PAH mix; Wellington Laboratories 175 

Inc PCB mix; CDN Isotope Inc HCB standard solution) for recovery monitoring and extracted by 176 

pressurized fluid extraction using a moderately polar solvent mixture. The resulting extract was 177 

cleaned up according to the matrix (sediment or biota) and the analytes (organochlorines or PAHs) 178 

by a combination of column chromatography on silica (PAH) and florisil (organochlorine) 179 

adsorbents and a shaking of the extract with a NaOH solution (PAH in biota) or with concentrated 180 

sulphuric acid (organochlorine). For the determination of organochlorine compounds in sediment 181 

samples the extract was also shaken with activated copper powder for sulphur removal. The cleaned 182 

up concentrated extract was spiked with injection internal standard and analysed by GC/MS/MS for 183 

organochlorine and GC/MS for PAHs. 184 

PAH contents in sediments were compared to values established by the Italian regulation 185 

(Legislative Decree 172/2015). Benzo(a)pyrene and Fluorantene were monitored in biota, 186 

specifically in molluscs as suggested by Legislative Decree 172/2015. 187 

Reference materials for sediments (SRM 1941b-NIST, organics in marine sediments) and biota 188 

(NIST 2974a, organics in freeze-dried mussel’s tissue - Mytilus edulis) were analysed to estimate 189 

the accuracy (recoveries for each analyte of PAHs, PCBs and HCB ranged between 94% and 190 

107%). The reproducibility, estimated on tripled samples, was better than ± 10% and analytical 191 

precision was routinely better than 4% (RSD%, n = 3). 192 

For the PCB class of contaminants, we referred to the following notation: ∑PCBs (sum of all the 193 

measured congeners), ∑PCBs1 (sum of PCB congeners according to Italian Legislative Decree 194 

172/2015 for marine sediments), ∑NDL-PCBs (PCB 28, 52, 101, 153, 138 and 180) and ∑7PCBs 195 

(∑6PCBs + PCB 118). 196 
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 197 

4.4 Statistical analysis  198 

All the statistical analyses and graphics were performed using the statistical software R 3.6.3 (R 199 

Development Core Team, 2020). Box-whisker plots of measured Hg, HCB and PCBs were used to 200 

provide synthetic and direct comparisons for these parameters among the cores. For statistical 201 

analysis, all values below the limit of detection (LOD) were set-up as ½ LOD. 202 

A hierarchical cluster analysis (HCA) with Euclidean distance and Ward’s grouping method was 203 

applied to the ratio ‘individual PCB congener/PCB’ in order to create homogeneous clusters of 204 

samples (sediments, fishes and mussels) based on similarity of PCBs composition. The elbow 205 

method was used to determine the most statistically reliable and representative number of clusters, 206 

minimising the total intra-cluster variation. 207 

 208 

5. Results and Discussion 209 

 210 

5.1 Contaminants in sediments 211 

5.1.1. Mercury  212 

Mercury concentrations measured in the A3, A7, A9 and A11 cores  ranged from 3.07 to 12.2 g g-1 213 

(Tab. 2; Tab. S1) widely exceeding (generally more than one order of magnitude) the 214 

Environmental Quality Standard (EQS), defined in accordance with Directive 2000/60/EU as 215 

criteria for the achieving of the Good Chemical and Ecological Status of water bodies, and 216 

established by the Italian regulation (Legislative Decree 172/2015; 0.3 mg kg-1). The highest values 217 

(mean1= 11.40.57 g g-1) were found in A9 core collected from the south-western sector of the 218 

bay, in front of the past chlor-alkali plant (Tab. 2; Fig 2a). The lowest concentration (mean1 = 219 

3.640.27 g g-1) was recorded in the A3 core sampled in the northern area (Tab. 2, Fig. 2a). 220 

Finally, A7 and A11 cores, collected from the central and southern part of the bay, showed 221 

comparable levels of Hg (mean1 = 6.710.80 g g-1 and 6.541.28 g g-1, respectively). 222 
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 223 

5.1.2. Organochlorine compounds (HCB and PCBs) and PAHs 224 

The analysis of organochlorine compounds in sediments showed very high concentrations of HCB 225 

in all the analysed cores, ranging from 1.98 to 330 ng g-1 (Tab. 2; Tab. S1). The mean values 226 

registered from each core, again considering only the superficial 10 cm of sediments, were  227 

considerably above the EQS for marine sediments (0.4 ng g-1), with highest values measured in the 228 

A9 core (mean1 = 172 ± 87.6 ng g-1) (Tab. 2; Fig. 2b).  229 

Also ∑PCBs and ∑7PCB registered higher values in A9 core (41.9 ± 5.60 ng g-1; Tab. 2; Tab. S1; 230 

Fig. 2c,d). The ∑PCBs also exceeded EQS value (8 ng g-1) for sediments in all cores (Tab. 2). 231 

The average concentrations of the individual PAHs were, in some cases, above the EQS indicated in 232 

Tab 1/A of the Legislative Decree 172/2015 Specifically, the Anthracene concentrations (range = 233 

23.4-286 ng g-1) were above the EQS (24 ng g-1) in all the analyzed samples; most of the A3 levels 234 

showed concentrations of Benzo-a-Pyrene (mean1= 64.7 ± 20.1 ng g-1; EQS = 30 ng g-1), 235 

Benzo-b-Fluoranthene (mean1= 54.6 ± 20.4 ng g-1; EQS = 40 ng g-1) and Benzo-k-Fluoranthene 236 

(mean1= 33.6 ± 24.3 ng g-1; EQS = 20 ng g-1) above the EQS values; furthermore, Indenopyrene 237 

concentrations higher than EQS (70 ng g-1) were recorded in the upper part (between 0-6 cm) of the 238 

A3 core (Tab. 2; Tab. S2).  239 

 240 

5.2 Contaminants in marine organisms 241 

5.2.1. Mercury  242 

The lowest Hg mean values referred to Sepia spp. collected in 2017 (0.21±0.08 μg g-1) and S. 243 

aurata sampled in 2013 (0.32±0.09 μg g-1). In most cases, such as S. sphyraena, T. lucerna, M. 244 

barbatus, Diplodus spp. and P. kerathurus (sampled in 2017) and S. sphyraena, S. cabrilla and 245 

Diplodus spp. (sampled in 2013), the Hg levels exceed the threshold limits set by EU regulation for 246 

contaminants in seafood (CE 1881/2006) (Tab. 3). Excluding the effect of age and length, the 247 

contents of Hg found in organisms resulted in most cases higher than values previously measured in 248 
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the study area. Specifically, the concentrations measured in Diplodus spp. (1.49±1.77 μg g-1 in 249 

2017) and Pagellus spp. (0.86±0.44 μg g-1 in 2017 and 0.53±0.12 μg g-1 in 2013) were higher than 250 

those reported by Bonsignore et al. (2013), Ausili et al. (2003) and ICRAM (2005, 2008), for the 251 

same species (between 0.56-0.90 μg g-1 and 0.36-0.41 μg g-1, respectively). In red mullet (M. 252 

barbatus), the concentrations relative to 2013 (0.44±0.20 μg g-1) were in the same range of 253 

measurements (0.46-0.82 μg g-1) of the previous investigations (Bonsignore at al., 2013; ICRAM, 254 

2005, 2008) while those relative to 2017 (2.11 and 1.71 μg g-1) resulted significantly higher and in 255 

the same range of those reported by ICRAM in 2003 (1.49-1.92 μg g-1). Finally, the Hg 256 

concentration in T. lucerna (0.66 μg g-1) resulted slightly higher than that reported by ICRAM in 257 

2003 (0.57 μg g-1). 258 

The bioavailability of Hg in the study area has been confirmed by analyses on both native and 259 

caged mussels with concentrations always higher than the EQS (0.02 μg g-1) (Tab.3). Wild 260 

specimens collected in industrial wharf exhibited concentration of approximately about 0.2 µg g-1, 261 

20-fold higher than those measured in control organisms and comparable to those observed by 262 

Ausili et al. (2008) (Tab. 3). Bioaccumulation of Hg demonstrated to be very rapid in caged mussels 263 

showing, after only 5 weeks, comparable values to those of native organisms; after 7 months the 264 

concentrations increased by about 5-fold (Tab. 3). In particular, in the northern area, Hg in mussels 265 

5 weeks after transplant (N1: 0.02±0.002 μg g-1) appeared double than in the control sample (0.01 266 

μg g-1), while after 7 months, the Hg increase was nearly one order of magnitude higher (N2: 267 

0.12±0.01 μg g-1) (Tab. 3). Worthy to note, this value is reasonably in agreement with the results 268 

recently reported for mussels in the Augusta Bay (0.17±0.07 μg g-1; Caricato et al., 2019). In the 269 

southern area, when comparing the concentration in pre-deployed mussels, the levels of Hg were 270 

23 times higher in those collected after 5 weeks (S1: 0.23±0.02 μg g-1) and up to 89 times higher 271 

after 7 months (S2: 0.89 μg g-1). The latter value exceeds the threshold limits set up by EU 272 

regulation for contaminants in seafood (0.5 μg g-1; Reg. CE 1881/2006) and appeared much higher 273 

than those reported for many other Mediterranean sites (range: 0.01-0.20 μg g-1; Amodio-Cocchieri 274 
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et al., 2003; Ipolyi et al., 2004; Licata et al., 2004; Cardellicchio et al., 2010; Kljaković-Gašpić et 275 

al., 2010; Spada et al., 2011, 2012, 2013; Caricato et al., 2019). 276 

 277 

5.2.2. HCB, PCBs and PAHs 278 

Concentrations of HCB, PCBs and PAHs measured in organisms are reported in Table 3. Values of 279 

HCB were <LOD (0.05 ng g-1) in all species of finfish and shellfish sampled in 2017, except for S. 280 

sphyraena (1.40 ng g-1) and M. barbatus (0.24 and 0.65 ng g-1); on the other hand, in 2013 they 281 

ranged between 0.09 0.02 (Pagellus spp.) and 1.360.31 ng g-1 (Mullus spp.). All the 282 

concentrations are below the EQS of 10 ng g-1. 283 

HCB together with PCBs are ubiquitous contaminants in Mediterranean marine coastal areas (Solé 284 

et al., 2000). HCB can be stored in sediments and accumulated in benthic organisms. Being a 285 

lipophilic compound, it has a greater affinity for tissues with high lipid content, thus explaining the 286 

low concentrations measured in almost all the muscle samples of fish analysed in this study. Other 287 

authors have reported data related to HCB in fishes, but a direct comparison appears problematic 288 

due to the high variability of investigated organs/tissues (skin, gills or mussels’ tissues) and the 289 

different used reference system (wet, dry or lipid weight) (Domingo and Bocio, 2007). Nonetheless, 290 

when comparable, our results are within the range of concentration reported from other studies for 291 

the Mediterranean Sea (Rodríguez-Hernández et al., 2016; Junquè et al., 2018).  292 

PCBs were detected in all the analysed species. The mean values of ∑PCBs ranged from 28.7 ng g-1 293 

(Diplodus spp.) to 241.7 ng g-1 (S. sphyraena). The ∑NDL-PCBs showed variable concentrations 294 

among the analysed species, with a mean value above the limit of 75 ng g-1 (European Commission, 295 

2011) measured in S. sphyraena (168 ng g-1) and M. barbatus (88.2 ng g-1) collected in 2017 and 296 

Mullus spp. sampled in 2013 (96.2 ng g-1). All the analysed species sampled in 2013 and 2017, 297 

exceeded ∑7PCBs threshold limit (10 ng g-1) with the lowest and highest value measured in T. 298 

lucerna (19.0 ng g-1) and S. sphyraena (180.9 ng g-1), respectively (Tab. 3); this value represents the 299 
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limit above which effects on marine organisms might be expected according to the Ecotoxicological 300 

Assessment Criteria (EACs) of the OSPAR Convention (Campillo et al., 2017). A direct 301 

comparison of the ∑7PCBs with a previous study (Ferrante et al., 2007) on various edible species 302 

sampled in the Gulf of Naples (Southern Tyrrhenian Sea) showed systematically higher 303 

concentrations in samples from Augusta Bay.  304 

The highly-chlorinated congeners CB153 and CB138 (hexa-chlorinated) and CB180 (epta-305 

chlorinated) exhibited the higher abundance in biota (Tab. 3) and dominated the PCB group in all 306 

the analysed samples, thus mirroring results from other studies (Miao et al., 2000; Solé et al., 2000; 307 

Green and Knutzen, 2003; Castro-Jimenez et al., 2008; Storelli et al., 2009; Scarpato et al., 2010; 308 

Xia et al., 2012; Suarez et al., 2013; Herceg-Romanic et al., 2014; Mohebbi- Nozar et al., 2014; 309 

Kampire et al., 2015; Batang et al., 2016). The major occurrence of these congeners is related to the 310 

high degree of chlorination on the aromatic rings which results in a lower degradation rate by 311 

organisms and a potential bioaccumulation (Jönssonn et al., 2003; Storelli et al., 2009). Specific 312 

differences in PCBs content could reflect the dissimilar behaviour and feeding patterns, trophic 313 

levels, physiological status of organisms or metabolic detoxification capacity (Ashley et al., 2003) 314 

typical of the studied species. In particular, S. sphyraena, which is an active predatory fish, 315 

occupying a high level in the trophic chain (Premolatha and Manojkumar, 1990), showed the 316 

highest concentration of PCBs with respect to other species. Also, the Mullus species exhibited 317 

higher values of ∑PCBs most likely related to their ecological features (bottom-feeder) and 318 

consequently greater probability of exposure to PCBs from sediments.  319 

PAHs were measured only in organisms sampled in 2017, revealing differences among the analysed 320 

species both as total content and individual PAHs (Tab. 3). Finfish and shellfish showed a major 321 

content of low molecular weight (LMW) PAHs, while high molecular weight (HMW) PAHs were 322 

all <LOD (0.8 ng g-1). The ∑PAHs ranged between 9.22 ng g-1 (S. sphyraena) and 22.0 ng g-1 323 

(Sepia spp.). The Benzo-a-pyrene (BaP), used as reference of PAHs presence in seafood (Reg. EC 324 
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1881/2006 as amended), was <LOD in all finfish and shellfish except in mussels. The latter exceed 325 

threshold limit of Benzo-a-pyrene established for molluscs (5 ng g-1; Legislative Decree 172/2015). 326 

The OCs pollutants in transplanted mussels showed higher values than those measured in the 327 

control samples, suggesting significant bioaccumulation (Tab. 3). HCB detected in transplanted 328 

mussel samples revealed differences between the two sites, with always higher HCB values in 329 

samples from the southern sites over both the sampling periods (S1 and S2), with levels up to 7 time 330 

higher (1.91 and 3.15 ng g-1, respectively) than those measured in the northern site (0.44 and 0.41 331 

ng g-1) (Tab. 3). Recorded values, compared to those from other Mediterranean areas (Ferrante et 332 

al., 2007), resulted higher and suggested that mussels from Augusta Bay were exposed to high-333 

levels of this pollutant.  334 

The ∑PCBs in S1 mussels (35.2 ng g-1) was >3 times than values measured in N1 organisms 335 

(∑PCBs= 11.66 ng g-1). A higher content of ∑PCBs, compared to N2 (27.1 ng g-1), was confirmed 336 

in S2 mussels (39.3 ng g-1). Furthermore, ∑7PCBs resulted above the OSPAR limit in all samples 337 

except in N1 mussels. The analysis of PCB congeners showed that the penta (101, 118), hexa (138-338 

153) and epta-chlorinated PCBs (180) were generally more abundant than the less chlorinated forms 339 

(28 and 52) (Tab. 3) reflecting previous data reported by Ferrante et al. (2007), Beiras et al. (2012) 340 

and Campillo et al. (2017).  341 

Also, PAHs concentrations were higher in transplanted mussels (∑PAHs ranged between 34.2 and 342 

76.4 ng g-1) than in the control sample (∑PAHs= 25.0 ng g-1) with B(a)P showed values above the 343 

EQS (5 ng g-1) (Tab. 3). In particular, S1 and S2 organisms exhibited a marked increase of B(a)P 344 

(11.3 and 11.02 ng g-1, respectively) in relation to the initial value of control samples (4.3 ng g-1). 345 

All samples showed values above the limit of 30 ng g-1 for Fluoranthene (Tab. 3). 346 

 347 

Discussion and conclusive remarks 348 

Recent studies revealed a systematic correlation between PCBs in biota and in nearly un-weathered 349 
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PCB mixtures in sediments (Rodenburg et al., 2015,  2019). Several investigations (e.g., Wiegel  350 

and Wu, 2000; Bedard et al., 2005; Zanaroli et al., 2015; Praveckova et al., 2016) evidenced that 351 

dehalogenation processes affect PCBs under strictly anaerobic conditions and low redox potential 352 

and thus changing the congener patterns from highly to low chlorinated congeners.  353 

The PCBs composition in surface sediments appears dominated by the higher chlorinated penta, 354 

hexa and hepta CBs, accounting for >60% of ∑PCBs in all samples (Fig. 3). As previously 355 

mentioned, differences in ∑PCBs content measured in the various species, primarily depend on a 356 

number of different ecological features (Ashley et al., 2003; Arnot and Gobas, 2006; Martinez-Silva 357 

et al., 2018) and might reflect a non-homogeneous proportion of the various congeners. 358 

Nonetheless, the compositional patterns of the PCB congeners in the studied fishes appear 359 

reasonably comparable (Fig. 3), and their distribution mode in finfish and shellfish maintains a 360 

systematic order of concentration: hexa->penta->hepta->tetra->tri-CBs, contributing for 58%, 24%, 361 

21%, 4.5% and 0.3% (Fig. 3). Particularly, the major contribution of penta and hexa-CBs is in 362 

excellent agreement with data reported for biota by other authors (Naso et al., 2005; Ferrante et al., 363 

2007; Howell et al., 2008; Pan et al., 2016; Habibullah-Al-Mamun et al., 2019). The mussels 364 

showed a similar profile although with a minor percentage of epta-CBs accounting for 5.1-8.5% of 365 

∑PCBs (Fig. 3).  366 

The composition pattern of the 7 PCB congeners (28, 52, 101, 118, 138, 153 and 180) in all samples 367 

was explored by cluster analysis (Fig. 4), using the elbow method to identify the optimal number of 368 

groups primarily driving the high variability in the studied data population. Except for Diplodus 369 

spp., all the finfish and shellfish samples appear strictly grouped in the cluster together with 370 

sediment samples from the A9 core, while all the mussel samples and the other sediment samples 371 

(core A3, A7 and A11) grouped in two separate clusters (Fig. 4).  372 

The statistically significant relationship between sediments from the A9 core and finfish and 373 

shellfish suggests a first-order, although robust, insight on the intimate link between the abiotic and 374 
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biotic compartments and reasonably supports in the study area, the use of the PCB congeners as 375 

potential source fingerprint for these contaminants. Indeed, sediments from the A9 core showed 376 

highly comparable percentages of high-chlorinated congeners (CB 153, 138 and 180) whereas 377 

mussels (native and transplanted) and sediments from the A3, A7 and A11 cores evidence different 378 

PCB patterns. Although the period of permanence of the organisms in the area of the A9 core could 379 

not be precisely assessed, our results suggest that this zone would represent a primary 380 

contamination ‘hot spot’ area for Augusta Bay. Differently, the other sediment cores, characterized 381 

by different and relatively lower PCBs concentration, might represent secondary sources of these 382 

contaminants to the biotic compartment.  383 

Analogue pieces of evidence, supporting transfer of contaminants from sediment to biota, again 384 

emerge from the analysis of the distribution patterns of specific PAHs, which in finfish and 385 

shellfish are commonly dominated by LMW hydrocarbons, in particular Fluoranthene and Pyrene. 386 

Indeed, these two molecules have a large range of stability and are good indicators of 387 

thermodynamic vs. kinetic processes (Soclo et al., 2000). The Fluoranthene/Pyrene has been 388 

frequently applied to identify and characterize sources of PAHs in the marine environment (Magi et 389 

al., 2002). On the other side, the distribution pattern of PAHs in mussels has been reported to reflect 390 

accumulation of bioavailable fraction from the water column (Baumard et al., 1998) with 391 

preferential accumulation of LMW PAHs (Varanasi and Gmur, 1981; Broman et al., 1990). The 392 

dotchart in figure 5 evidence a significant correlation between biota and sediments, with 393 

comparable Fluoranthene/Pyrene ratios in finfish, shellfish and A9 sediments. Worthy to note, also 394 

Fluoranthene/Pyrene measured in N2, S1 and S2 mussels which seem to mirror a potential impact 395 

from the A9 sediments. This could primarily suggest an effect of that ‘hot-spot’ area in terms of 396 

resuspension and re-distribution of highly contaminated particles on a relatively wider distance 397 

within the study area (see Denaro et al., 2020 for a complete modelling discussion on the dynamic 398 

within Augusta Bay). Thus, if PCBs seem to offer a primary fingerprint to follow sediment-to-biota 399 
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transfer of contaminants, the combined use of specific PAHs patterns convincingly supports the 400 

hypotheses of dynamic transfer of those organics in the various environmental compartments. 401 

Particularly, a clear ‘hot-spot’ effect of the A9 sediments on the investigated biotic compartment 402 

can be also documented taking into account the Hg and HCB concentration patterns mirroring 403 

coherent higher concentrations in the analysed benthic fish. Conclusively, the ensemble of achieved 404 

results suggests that combined information from a wide spectrum of contaminants providesa 405 

consistent fingerprint to trace their transfer from sediments to biotic compartments and thus 406 

supports specific remediation decisions and sediment mitigation strategies. Despite the statistical 407 

robustness, the obtained results could primarily reflect specific dynamics of local biogeochemistry 408 

and a critical role of local effects on their distribution patterns, mainly at the abiotic and biological 409 

marine interfaces. However, these promising results encourage to the use of PCB congeners and 410 

pattern of pollutants as fingerprint of exposure pathways from marine sediments to biota in other 411 

marine environmental contests. 412 
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Figure Captions 730 
 731 
Figure 1: Map and details of the sampling in Augusta Bay.  732 
 733 
Figure 2: Box plot of the concentrations of Hg (a), HCB (b), ∑PCBs (c) and ∑PCBs NDL (d) in 734 
sediment cores. 735 
 736 
Figure 3: Relative contribution of PCB homologs (% composition) in sediments, seafood and 737 
mussel samples.  738 
 739 
Figure 4: Heatmap generated from hierarchical clustering analysis. The dendrograms of sample 740 
clustering (on the left) and of congener clustering (on the top) were added. The colour bars inside 741 
the graph indicate the different proportion of congeners (X axis) for each sample (Y axis). The rows 742 
were splitted based on number of identified clusters. 743 
 744 
Figure 5: Dotchart of Fluo/Py in sediments and marine organisms 745 
 746 

747 
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Tables 748 
 749 

  

Specie Category Habitat 
Total lenght range 

(med ±st.dv)              
cm 

n. total 
individuals 

n. pool 

20
13

 

Mytilus galloprovincialis Molluscs benthic  3.6-6 (4.60±0.58) 200 20 

Sphyraena sphyraena Fish pelagic 46-44 (45±1.41) 2 2 
Mullus barbatus Fish benthic  17.5-21 (18.7±1.14) 30 6 
Pagellus spp. Fish demersal 15-26 (20±3.25) 15 5 
Sparus aurata Fish demersal 21-24 (21.6±1.21) 9 3 
Serranus cabrilla Fish demersal 20 1 1 
Diplodus spp. Fish demersal 14.1-16.3 (15.1±1.1) 3 2 

20
17

 

Sphyraena sphyraena Fish pelagic 37.4 1 1 
Trigla lucerna Fish benthic  22.3-22.5 2 1 
Mullus barbatus Fish benthic  17.7-20.5 (18.8±1.1) 6 2 
Pagellus spp. Fish demersal 15.3-25.4 (18.9±2.7) 37 8 
Diplodus spp. Fish demersal 13.5-20 (16.8 ±3.2) 4 3 
Penaeus kerathurus Crustacean benthic  4.5-6.5 (5.2±0.3) 39 4 
Sepia spp. Molluscs bento-nectonic 9.9-15.5 (12.5±2.0) 7 6 
Mytilus galloprovincialis N  Molluscs benthic  4.4-5.9 (5.20±1.06) 392 13 
Mytilus galloprovincialis S  Molluscs benthic  5.0-5.4 (5.2±0.3) 284 10 

Table 1. Characteristics, number of specimens and pool of marine organisms caught in the study area. 750 
 751 

CORE Unit 
A3 A7 A9 A 11 

mean ±st.dv mean ±st.dv mean ±st.dv mean ±st.dv 

Hg µg g -1 3.64±0.27  6.71±0.80  11.4 ±0.57  6.54±1.28  
HCB  ng g -1 8.53 ± 2.06  25.3± 8.03  172.6 ± 87.6  22.8 ± 14.45 
PCB 28 ng g -1 10.36 ± 6.66 2.26 ± 0.82 0.40 ± 0.12 9.65 ± 12.6 
PCB 52 ng g -1 0.42 ± 0.53 <LOD 1.35 ± 0.30 0.56 ± 0.94 
PCB 81 ng g -1 <LOD <LOD <LOD <LOD 
PCB 77 ng g -1 <LOD <LOD 0.72±0.13 <LOD 
PCB 101 ng g -1 <LOD <LOD 5.22 ± 1.40 <LOD 
PCB-118 ng g -1 6.90 ± 4.66 0.97 ± 0.77 3.79 ± 0.96 8.74 ± 16.9 
PCB 114 ng g -1 <LOD <LOD <LOD <LOD 
PCB 123 ng g -1 <LOD <LOD 11.2 ± 34.6 <LOD 
PCB 153 ng g -1 10.4 ± 5.77 3.43±1.95 10.4 ± 1.07 16.2 ± 13.3 
PCB 105 ng g -1 1.18 ± 1.88 <LOD 1.26 ± 0.80 1.24 ± 2.84 
PCB 138 ng g -1 7.59 ± 7.11 2.83 ± 2.56 9.72 ± 1.53 17.3 ± 20.0 
PCB 126 ng g -1 <LOD <LOD 1.06 ± 0.24 <LOD 
PCB 128+157 ng g -1 <LOD 0.16±0.20 0.62 ± 0.22 1.10 ± 1.21 
PCB 156 ng g -1 <LOD 0.19 ± 0.29 0.58 ± 0.34 0.80 ± 1.65 
PCB 167 ng g -1 <LOD <LOD 1.04 ± 0.08 0.84 ± 1.75 
PCB 180 ng g -1 0.81 ± 1.17 1.53 ± 1.58 7.89 ±1.45 4.30 ± 3.26 
PCB 169  ng g -1 <LOD <LOD <LOD <LOD 
PCB 170  ng g -1 <LOD 0.34 ± 0.54 3.85 ± 0.36 2.35±2.03 
PCB 189 ng g -1 <LOD <LOD 0.25 ± 0.09 <LOD 
∑ PCBs  ng g -1 38.7 ± 26.2 12.6 ± 6.7 59.5 ± 35.6 38.2 ± 19.9 
∑ PCBs1 ng g -1 29.6 ± 26.6  11.8 ±6.50 41.9 ± 5.60  34.3 ± 16.2 
∑ 7PCB  ng g -1 36.6 ± 24.4 11.2 ± 6.39 38.7 ± 5.20 32.2 ± 13.6 
Phenanthrene ng g -1 37.6 ± 8.52 26.4 ± 6.56 67.8 ± 23.3 27.7 ± 11.1 
Anthracene ng g -1 180 ± 68.9  186.8 ± 29.6   56.3 ± 14.6 91.7 ± 27.6  
Fluoranthene ng g -1 61.8 ± 32.2 35.3 ± 18.1 45.2 ± 24.7 27.5 ± 12.8 
Pyrene ng g -1 33.1 ± 13.7 24.5 ± 8.11 61.2 ± 22.3 25.4 ± 10.2 
Benzo-a-Anthracene ng g -1 34.2 ± 11.1 17.0 ± 6.18 26.4 ± 10.6 13.5 ± 3.94 
Chrysene ng g -1 38.5 ± 10.2 20.6 ± 6.72 48.2 ± 13.1 17.8 ± 4.99 
Benzo-b-Fluoranthene ng g -1 54.6 ± 20.4  32.5 ± 7.45 30.5 ± 8.51 14.4 ± 4.24 
Benzo-k-Fluoranthene ng g -1 33.6 ± 24.3  9.26 ± 2.54 10.3 ± 4.59 7.09 ± 2.03 
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Benzo-a-Pyrene ng g -1 64.6 ± 20.1 29.3 ± 8.53 23.5 ± 6.94 20.5 ± 6.42 
Indeno-123-cd-Pyrene ng g -1 70.1 ± 25.5  19.5 ± 6.19 9.88 ± 5.95 13.1 ± 2.30 
Dibenzo-ah-Anthracene ng g -1 12.9 ± 6.30 1.87 ± 1.36 7.90 ± 4.29 2.91 ± 1.94 
Benzo-ghi-Perylene ng g -1 50.6 ± 21.7 17.6 ± 7.72 11.15 ± 5.30 15.7 ± 4.06 
∑ PAHs ng g -1 671.87 ± 125.97 420 ± 72.73 398 ± 103 277 ± 64.8 
Values exceeding environmental quality standards (Dlgs. 172/2015) are indicated in bold 752 
∑ PCBs1: sum of PCBs congeners indicated by Dlgs.172/2015 753 
∑ 7PCB: sum of CB 28+52+101+118+138+153+180 754 
 755 
Table 2. Hg, HCB, PCBs  and PAHs concentrations (d.w.) in sediment collected in the sampling site. 756 
 757 
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Values exceeding reference limits are expressed in bold; (a) Reg CE 1881/2006 as amended; (b) Dlgs.172/2015; ∑ 7PCB sum of CB 28+52+101+118+138+153+180 (Webster et al., 2013). 
 

Table 3. Concentrations (w.w.) of Hg, HCB, PCBs and PAHs in mare organisms from the Augusta Bay. 
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Figures 
 

 
 
 
Figure 1: Map and details of the sampling in Augusta Bay.  
 
 
 
 
 
 

Core Bottom depth (m) Latitude N Longitude E Core length (cm)

A3 19.8 37°13'3.70" 15°12'27.56" 16

A7 18.6 37°12'17.24" 15°11'40.94" 21

A9 23 37°11'36.18" 15°12'08.98" 18

A11 22.5 37°11'0.37" 15°12'48.69" 11
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Figure 2: Box plot of the concentrations of Hg (a), HCB (b), ∑PCBs (c) and ∑PCBs NDL (d) in 
sediment cores. 
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Figure 3: Relative contribution of PCB homologs (% composition) in sediments, seafood and 
mussel samples.  
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Figure 4: Heatmap generated from hierarchical clustering analysis. The dendrograms of sample 
clustering (on the left) and of congener clustering (on the top) were added. The colour bars inside 
the graph indicate the different proportion of congeners (X axis) for each sample (Y axis). The rows 
were splitted based on number of identified clusters. 
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Figure 5: Dotchart of Fluo/Py in sediments and marine organisms 
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Supplementary materials 
 
Table S1 Hg, HCB and PCBs concentrations (d.w.) in 0-10 cm levels of sediment collected in the sampling site. 

 
  
Table S1 Hg, HCB and PCBs concentrations (d.w.) in 0-10 cm levels of sediment collected in the sampling site. 

Core level Hg HCB 
PCB 
28 

PCB 
52 

PCB 
81 

PCB 
77 

PCB 
101 

PCB
118 

PCB 
114 

PCB 
123 

PCB 
153 

PCB 
105 

PCB 
138 

PCB 126 
PCB 

128+157 
PCB 
156 

PCB 
167 

PCB 
180 

PCB 
169 

PCB 
170 

PCB 
189 

∑ 
PCBs 

∑ 
PCB

s1 

∑ 
7PC

B 

A 
3 

cm 
µg g -

1 
ng g -1 

0-1 3.73 10.6 5.85 0.31 <LOD <LOD <LOD 3.77 <LOD <LOD 6.34 <LOD 4.42 <LOD <LOD <LOD <LOD 1.66 <LOD <LOD <LOD 23.3 22.9 22.4 

1-2 3.07 11.2 4.98 <LOD <LOD <LOD <LOD 3.36 <LOD <LOD 5.91 <LOD <LOD <LOD <LOD <LOD <LOD 1.21 <LOD <LOD <LOD 16.6 16.1 15.7 

2-3 3.73 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

3-4 3.81 6.29 14.7 <LOD <LOD <LOD <LOD 8.23 <LOD <LOD 14.7 <LOD 7.09 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 45.9 45.4 45.0 

4-5 3.71 9.06 4.55 <LOD <LOD <LOD <LOD 2.74 <LOD <LOD 5.90 <LOD 3.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 18.2 17.8 17.3 

5-6 3.96 8.42 16.0 0.41 <LOD <LOD <LOD 12.2 <LOD <LOD 15.41 4.2 14.4 <LOD <LOD <LOD <LOD 3.25 <LOD <LOD <LOD 66.8 62.2 61.8 

6-7 3.56 8.98 4.92 0.78 <LOD <LOD <LOD 3.59 <LOD <LOD 5.37 0.65 3.92 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 20.2 19.2 18.7 

7-8 3.77 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

8-9 3.81 8.72 9.41 <LOD <LOD <LOD <LOD 6.05 <LOD <LOD 9.17 <LOD 4.92 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 30.7 30.2 29.8 

9-10 3.31 4.95 22.4 1.58 <LOD <LOD 0.24 15.3 <LOD <LOD 20.7 4.21 21.96 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 87.7 82.8 82.3 

mean  3.64 8.53 10.36 0.42 <LOD <LOD <LOD 6.90 <LOD <LOD <LOD 1.18 7.59 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 38.7 29.6 36.6 

st.dv 0.27 a 2.06 a 6.66 0.53    4.66   5.77 1.88 7.11     1.17    26.2 
26.6 

a 
24.4 

b 

                          

A 
7 

0-1 6.89 23.0 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1-2 6.98 ND n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

2-3 6.99 16.0 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

3-4 6.93 11.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
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4-5 6.65 32.1 1.62 <LOD <LOD <LOD <LOD 1.02 <LOD <LOD 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 4.67 4.22 3.77 

5-6 6.88 28.8 1.74 <LOD <LOD <LOD <LOD 1.24 <LOD <LOD 4.46 <LOD 5.00 <LOD <LOD 0.78 0.43 2.66 <LOD 1.43 <LOD 18.6 16.4 15.3 

6-7 6.92 32.8 2.01 <LOD <LOD <LOD <LOD 
<LOD 

<LOD <LOD 4.15 <LOD 3.56 <LOD 0.56 
<LOD <LOD 

2.04 <LOD <LOD <LOD 13.4 12.9 12.0 

7-8 5.26 22.1 3.79 <LOD <LOD <LOD <LOD 
<LOD 

<LOD <LOD 2.47 <LOD 0.47 <LOD <LOD 
<LOD <LOD <LOD <LOD <LOD 

<LOD 7.92 7.47 7.02 

8-9 5.47 26.0 1.82 0.21 <LOD <LOD <LOD 1.43 <LOD <LOD 2.32 <LOD 1.52 <LOD <LOD <LOD <LOD 0.44 <LOD 0.29 <LOD 8.93 8.27 7.82 

9-10 8.08 35.8 <LOD <LOD <LOD <LOD <LOD 2.00 <LOD <LOD 6.35 <LOD 6.38 <LOD <LOD <LOD <LOD 3.90 <LOD <LOD <LOD 22.2 21.8 21.3 

mean  6.71  25.3 2.26 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.19 <LOD 1.53 
<LOD <LOD <LOD <LOD 

11.8 11.2 

st.dv 
 

0.80a 8.03 a 0.82     0.77   1.95     0.29  1.58   
  6.50 

a 
6.39 

b 

                          

A 
9 

0-1 10.7 65.9 0.32 1.01 0.09 0.55 3.88 2.81 <LOD 0.15 8.93 0.59 8.96 0.83 0.49 0.56 0.89 6.44 <LOD 3.46 0.26 40.4 35.0 32.4 

1-2 11.6 134 0.38 2.01 
<LOD 

0.89 8.40 5.90 0.03 0.50 12.7 1.45 13.5 0.94 0.96 1.31 0.92 7.54 0.13 4.00 0.32 62.0 54.8 50.5 

2-3 10.7 331 0.55 1.37 
<LOD 

0.78 5.74 2.95 <LOD 110 11.0 1.19 10.3 1.25 0.66 0.76 1.04 7.32 0.17 4.16 0.39 160 42.9 39.2 

3-4 12.2 140 0.29 1.17 
<LOD 

0.52 4.29 3.08 <LOD 0.44 9.63 0.76 9.03 0.93 0.50 0.76 1.09 6.69 0.22 3.44 0.26 43.3 37.2 34.2 

4-5 11.3 328 0.34 1.12 
<LOD 

0.58 4.42 3.33 0.01 0.26 9.96 0.62 9.34 0.84 0.54 0.44 1.10 7.99 
<LOD 

4.24 0.25 45.5 39.1 36.5 

5-6 11.3 142 0.48 1.25 
<LOD 

0.82 4.72 3.65 <LOD 0.15 10.13 0.53 9.22 1.24 0.48 0.73 1.08 11.62 
<LOD 

4.44 0.13 50.9 44.5 41.1 

6-7 12.0 155 0.34 1.25 
<LOD 

0.82 4.21 3.47 0.02 
<LOD 

9.55 1.05 8.11 0.99 0.43 0.48 1.02 7.84 
<LOD 

3.76 0.32 43.9 37.7 34.8 

7-8 11.4 104 0.36 1.27 
<LOD 

0.79 5.23 4.19 <LOD 
<LOD 

10.8 2.97 9.68 1.18 0.44 0.40 1.09 8.42 
<LOD 

3.70 0.12 50.8 42.9 39.9 

8-9 12.1 162 0.31 1.72 
<LOD 

0.61 6.74 4.86 <LOD 
<LOD 

11.0 1.18 10.62 0.83 0.67 0.29 0.99 6.99 
<LOD 

3.90 0.14 51.2 44.8 42.3 

9-10 10.8 164 0.64 1.30 
<LOD 

0.82 4.52 3.70 0.03 
<LOD 

9.96 2.28 8.45 1.55 1.07 0.08 1.14 7.99 
<LOD 

3.40 0.32 47.5 40.2 36.6 

mean 11.4 172.6 0.40 1.35 <LOD 
<LOD 

5.22 3.79 <LOD 11.2 10.4 1.26 9.72 1.06 0.62 0.58 1.04 7.89 <LOD 
<LOD 

0.25 59.5 41.9 38.7 

st.dv 0.57 a 87.6 a 0.12 0.30  0.13 1.40 0.96  34.6 1.07 0.80 1.53 0.24 0.22 0.34 0.08 1.45  0.36 0.09 35.6 
5.60 

a 
5.20 

b 

                          

A 
11 

0-1 6.94 17.4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

1-2 7.18 27.9 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

2-3 7.04 35.5 5.05 
<LOD <LOD <LOD <LOD 

5.08 
<LOD <LOD 

14.3 
<LOD 

19.1 
<LOD 

3.0 4.2 4.4 8.3 <LOD 5.4 
<LOD 

69.5 59.4 52.0 

3-4 7.74 54.1 4.30 
<LOD <LOD <LOD <LOD 

2.09 
<LOD <LOD 

6.44 
<LOD 

2.1 
<LOD <LOD <LOD <LOD 

1.1 
<LOD 

<LOD 
<LOD 

17.1 16.7 16.2 

4-5 6.97 28.2 3.10 
<LOD <LOD <LOD <LOD 

2.01 
<LOD <LOD 

9.07 
<LOD 

4.3 
<LOD 

0.4 0.3 0.4 5.7 
<LOD 

1.2 
<LOD 

27.1 25.2 24.2 

5-6 6.63 16.0 5.18 0.64 
<LOD <LOD <LOD <LOD <LOD <LOD 

12.3 
<LOD 

8.7 
<LOD 

1.0 <LOD <LOD 3.8 
<LOD 

2.3 
<LOD 

34.8 32.1 30.8 
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6-7 6.69 17.4 5.03 <LOD 
<LOD <LOD <LOD <LOD <LOD <LOD 

12.2 
<LOD 

13.4 
<LOD 

<LOD <LOD <LOD 6.9 
<LOD 

4.1 
<LOD 

42.7 38.2 37.8 

7-8 7.45 18.0 35.3 2.42 
<LOD <LOD <LOD 

43.11 
<LOD <LOD 

42.8 7.04 56.1 
<LOD 

2.2 <LOD <LOD <LOD 
<LOD 

1.1 
<LOD 

n.d. n.d. n.d. 

8-9 5.33 11.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

9-10 3.40 1.98 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

mean  6.54 22.8 9.65 0.56 <LOD <LOD <LOD 8.74 <LOD <LOD 16.2 1.24 17.3 <LOD 1.10 0.80 0.84 4.30 <LOD 2.35 <LOD 38.2 34.3 32.2 

st.dv 1.28 a 14.45a 12.6 0.94    16.9   13.3 2.84 20.0  1.21 1.65 1.75 3.26  2.03  19.9 16.2a 
13.6 

b 

 
 
 
 

Table S2: PAHs concentrations (d.w.) in 0-10 cm levels of sediment collected in the sampling site. 

Cor
e 

Lay
er  

PHENANTHR
ENE 

ANTHRAC
ENE 

FLUORANTH
ENE 

PYRE
NE 

BENZO[a] 
ANTHRAC

ENE 

CHRYSE
NE 

BENZO[b] 
FLUORANTH

ENE 

BENZO[K] 
FLUORANTH

ENE 

BENZO[a]PYR
ENE 

INDENO[1
23-

cd]PYREN
E 

DIBENZO[a
h] 

ANTHRAC
ENE 

BENZO[g
hi] 

PERYLE
NE 

∑PAH
s 

A 
3 

cm ng g -1 

0-1 53.5 136 15.9 15.0 20.9 30.9 63.0 91.9 77.1 112.2 29.6 96.6 742 

1-2 28.9 87.0 50.7 37.8 26.7 28.0 52.5 20.9 53.8 76.5 10.3 56.9 530 

2-3 49.9 118 128.9 65.8 61.8 64.1 84.6 37.8 111.4 104.0 13.7 72.4 913 

3-4 33.6 158 49.5 27.6 27.9 32.2 60.0 24.6 55.2 68.1 8.3 37.2 583 

4-5 39.3 230 63.4 29.8 31.5 35.6 48.9 23.3 54.2 74.0 14.6 49.5 694 

5-6 35.4 264 52.3 26.4 32.1 37.1 87.2 24.7 68.9 83.1 14.5 55.5 782 

6-7 32.9 286 44.6 36.0 34.5 40.7 30.0 13.5 37.4 49.6 9.4 21.7 636 

7-8 26.8 111 54.9 24.7 29.9 33.1 55.5 59.3 52.2 44.3 9.6 32.1 533 

8-9 35.6 184 52.7 26.9 35.4 38.5 29.2 16.6 62.6 32.0 8.9 36.1 558 

9-10 40.4 227 105.5 41.2 41.5 44.4 34.9 23.1 73.7 56.8 10.5 48.5 747 

mean  37.6 180 61.8  33.1 34.2 38.5  54.6  33.6  64.6  70.1  12.9  50.6 671.87  

st.dv 8.52 68.9 32.2 13.7 11.1 10.2 20.4 24.3 20.12 25.5 6.30 21.7 125.97 

 

A 
7 

0-1 41.8 186 81.1 34.3 32.7 37.8 49.8 14.8 50.2 34.4 4.77 30.9 599 

1-2 28.7 112 45.1 38.3 18.9 22.5 34.0 10.8 32.2 23.0 3.62 24.4 394 

2-3 28.0 184 37.5 25.8 18.6 23.1 33.0 7.2 29.1 20.4 1.85 25.5 434 

3-4 25.6 184 33.9 22.8 15.3 17.8 33.0 7.7 27.8 19.0 1.62 15.9 404 
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4-5 23.9 201 29.3 21.5 15.8 18.9 35.4 9.0 27.4 21.6 1.41 16.7 422 

5-6 23.0 218 28.4 20.9 13.4 16.5 30.0 9.9 24.8 16.0 1.01 11.2 413 

6-7 28.2 211 32.2 25.7 17.7 19.9 32.8 8.7 29.6 18.1 1.72 20.1 446 

7-8 18.3 177 16.5 13.6 10.5 14.4 23.1 6.6 18.2 13.1 0.00 8.1 319 

8-9 19.2 209 18.7 12.7 11.6 14.7 23.0 6.7 21.9 14.1 1.54 7.2 360 

9-10 27.8 186 30.7 28.8 15.6 20.4 31.4 11.1 31.3 14.7 1.17 16.1 415 

mean   26.4 186.8 35.3 24.5  17.0 20.6 32.5 9.26 29.3 19.5 1.87 17.6 420 

st.dv 6.56 29.6 18.1 8.11 6.18 6.72 7.45 2.54 8.53 6.19 1.36 7.72 72.73 

               

A 
9 

0-1 54.6 70.4 31.6 37.1 18.9 37.7 24.3 9.28 19.1 6.20 6.92 19.8 336 

1-2 46.1 76.2 32.6 40.7 18.8 37.0 25.2 6.61 18.0 6.27 7.53 13.7 329 

2-3 59.3 47.5 37.2 61.1 25.2 58.2 31.3 7.20 24.3 9.05 6.91 10.2 378 

3-4 60.0 65.7 34.2 50.6 20.3 40.1 24.6 7.74 20.0 9.54 6.22 9.12 348 

4-5 68.6 53.0 57.9 71.8 36.7 59.5 36.2 12.00 30.9 16.67 13.37 20.7 477 

5-6 130 23.4 112 118 53.0 78.0 51.9 22.43 39.7 23.91 3.75 9.90 666 

6-7 64.4 61.0 35.0 55.7 23.2 41.2 26.6 9.59 24.6 4.39 2.94 5.93 355 

7-8 62.0 56.3 34.3 60.2 22.6 41.7 27.4 9.59 19.1 7.03 16.34 6.91 364 

8-9 76.0 59.1 41.9 61.4 23.5 46.9 32.2 10.68 21.4 8.89 10.46 6.50 399 

9-10 57.4 50.3 34.9 55.7 21.7 41.6 25.0 7.61 18.1 6.89 4.57 8.64 332 

mean   67.8  56.3  45.2 61.2  26.4  48.2  30.5  10.3  23.5 9.88 7.90 11.15 398  

st.dv 67.8 ± 23.3 14.6 24.7 22.3 10.6 13.1 8.51 4.59 6.94 5.95 4.29 5.30 103 

               

A 
11 

0-1 25.2 78.2 19.6 22.2 12.8 17.1 18.0 6.10 21.7 13.3 3.55 22.2 260 

1-2 28.3 93.7 18.3 24.7 11.6 15.9 14.4 6.56 20.5 14.7 4.20 19.3 272 

2-3 52.6 84.0 41.8 32.9 15.5 20.6 16.9 9.14 25.1 14.7 5.79 17.6 337 

3-4 28.9 65.6 29.4 41.2 15.6 19.5 14.5 7.80 21.8 13.9 3.71 17.7 280 

4-5 32.3 112.9 25.2 21.9 13.7 17.7 11.9 5.27 17.4 14.0 4.89 14.7 292 

5-6 21.2 96.3 27.2 21.3 14.5 18.8 15.0 10.3 22.5 14.2 3.06 16.4 281 

6-7 33.8 85.8 54.8 40.4 20.8 27.5 21.6 9.26 32.2 14.9 0.00 15.1 356 

7-8 27.4 158.1 30.2 25.5 14.7 19.9 15.5 7.10 21.9 13.6 1.89 15.5 351 
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8-9 12.3 61.9 16.4 13.8 9.0 11.7 7.53 5.54 13.5 8.57 0.00 7.71 168 

9-10 15.8 80.2 12.1 10.1 6.34 9.24 8.54 3.82 8.51 9.15 2.01 11.3 177 

mean   27.7  91.7  27.5  25.4  13.5 17.8 14.4 7.09 20.5 13.1 2.91 15.7 277  

st.dv  11.1 27.6 12.8 10.2 3.94 4.99 4.24 2.03 206.42 2.30 1.94 4.06 64.8 
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