Phytoplankton communities in the northwestern Adriatic Sea: interdecadal variability over a 30-years period (1988-2016) and relationships with meteoclimatic drivers

Cecilia Totti¹, Tiziana Romagnoli¹, Stefano Accoroni¹, Alessandro Coluccelli¹, Marco Pellegrini^{1,2}, Alessandra Campanelli³, Federica Grilli³, Mauro Marini³

¹Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche,

60131 Ancona (Italy)

²LIF srl, Via di Porto 159 – 50018 Scandicci (Firenze), Italy

³National Research Council, CNR-IRBIM, Largo Fiera della Pesca, 2, 60125, Ancona, Italy

Corresponding Author:

Prof. Cecilia Totti

Dipartimento di Scienze della Vita e dell'Ambiente

Università Politecnica delle Marche

via Brecce Bianche, 60131 Ancona (Italy)

c.totti@univpm.it

+ 39 071 2204647

1 Abstract

2	In this study the interannual variability of phytoplankton over a ~30-years period in the coastal site of LTER-
3	Senigallia transect (N Adriatic Sea) was investigated to document patterns potentially related to
4	environmental/climatic drivers. Comparing physical and chemical data of the periods 1988-2002 and 2007-
5	2016 periods, we showed that phytoplankton abundance and biomass and inorganic nutrient
6	concentrations increased in the last decade, indicating that the tendency to oligotrophication due to the
7	drop of the Po River outflow in the years 2002-2007 was reversed in the period 2007-2016. The typical P-
8	limited conditions of the N Adriatic Sea seem to have been attenuated in the study area. P levels were not
9	explained by the P concentrations in the Po River waters, suggesting the possible influence of other local P
10	sources that could be related to the anomalous meteorological events (intense rainfalls) that took place in
11	the 2007-2016 period. In the last decade, the community structure and seasonality of phytoplankton
12	markedly changed, as highlighted by the different indicator species for each season: the blooms of
13	Skeletonema marinoi shifted from winter to spring. A significant decrease of coccolithophores was
14	observed particularly in winter months in the 2007-2016 period: some indicator species among the most
15	relevant in the 1988-2002 period (such as Emiliania huxleyi in winter, and Syracosphaera pulchra in spring)
16	have lost this role in 2007-2016. Dinoflagellate abundances decreased, except in spring when the
17	occasional proliferation of large sized species caused biomass peaks. The phytoplankton annual cycle
18	became irregular with sudden diatom blooms, reflecting the variability of meteorological events in recent
19	years. It is noteworthy that in the last decade, an allochthonous species, i.e. the diatom Pseudo-nitzschia
20	multistriata, became a regular inhabitant of the autumn phytoplankton communities of the NW Adriatic
21	Sea.
22	

23 Keywords: northern Adriatic Sea; LTER-Long-Term Ecosystem Research; nutrients; coccolithophore decline;

- 24 Emiliania huxleyi, winter bloom
- 25

26 1. Introduction

27	The Adriatic Sea is a continental basin of the Mediterranean Sea, located between the Italian peninsula and
28	the Slovenian–Croatian–Montenegrin–Albanian coasts. Its major axis is oriented in the NW–SE direction,
29	showing marked longitudinal and transversal asymmetries in its hydrological and geomorphological
30	features. The northern Adriatic is characterized by shallow waters (mean depth about 35 m), a weak
31	bathymetric gradient along the main axis and a high riverine input, due mainly to the discharge of Italian
32	rivers. Its lower limit (formerly considered the Ancona-Zadar transect) is now regarded as the 100 m
33	isobath, based on a long term hydrological/climatological analysis, which corresponds to the Giulianova-
34	Sibenik transect (Artegiani et al., 1997a).
35	The Po River represents the major buoyancy input, with an annual mean discharge rate of 1500–1700 m ³ /s,
36	accounting for about one third of the total riverine freshwater input into the Adriatic Sea (Campanelli et al.,
37	2011; Marini et al., 2008; Raicich, 1996). The riverine input affects both the circulation regime (Artegiani et
38	al., 1997b) and the trophic status (Degobbis et al., 2000) of the northwestern Adriatic basin, and markedly
39	increases its productivity with respect to the general oligotrophic condition of the Mediterranean Sea
40	(D'Ortenzio and Ribera d'Alcalà, 2009; Fonda Umani, 1996). The western Adriatic coast is characterized by a
41	frontal system separating the coastal low-salinity and nutrient-rich waters from the oligotrophic offshore
42	waters. The position of the frontal zone is highly dynamic and is affected by the circulation and the vertical
43	structure of the water column. Namely, in stratified conditions the plume spread eastward, while in mixing
44	conditions the diluted waters are conveyed southward in the Western Adriatic Current (WAC) along the
45	western coast (Grilli et al., 2005; Jeffiries and Lee, 2007), which flows cyclonically around in the Adriatic
46	basin.
47	The northern Adriatic is probably one of the most studied seas in the world because it is considered one of
48	the most productive basin of the Mediterranean Sea (Fonda Umani, 1996), but especially because it
49	experienced in different periods several striking phenomena more or less directly related to planktonic
50	communities, such as harmful algal blooms, sometimes associated with water discoloration (Artegiani et

51 al., 1985; Boni, 1983; Boni et al., 1983; Cucchiari et al., 2008; Facca et al., 2014; Fonda Umani et al., 2004;

52	Glacobbe et al., 1998; Honsell et al., 1992; Mozetic et al., 2017; Penna et al., 2006), hypoxia of bottom layer
53	(Bernardi Aubry et al., 1999; Degobbis et al., 1979; Djakovac et al., 2015), intense mucilage formation
54	(Flander-Putrle and Malej, 2008; Giani et al., 2005; Turk et al., 2010), jellyfish outbreaks (Piraino et al.,
55	2014) and, more recently, benthic toxic dinoflagellate blooms (Accoroni et al., 2012; Monti et al., 2007;
56	Pfannkuchen et al., 2012).
57	Plankton communities are a key component in the functioning of marine ecosystems and have been
58	included among the indicators for the definition of Good Environmental Status (GES), as required by the
59	European Marine Strategy Framework Directive (MSFD). Due to their rapid turnover and fast responses to
60	environmental changes, plankton is considered a valid proxy suitable to highlight either environmental
61	changes circumscribed in space and/or time or wider climatic variations.
62	The spatial distribution and the seasonal variability of phytoplankton communities in the northwestern
63	Adriatic Sea are mainly driven by the major river discharge (and therefore by the rainfall regime), in
64	combination with the stratification/mixing condition (Revelante and Gilmartin, 1976). A decrease in both
65	biomass and cell size range along a north-south and coastal-offshore gradients is commonly reported for
66	Adriatic plankton communities (Fonda Umani, 1996). On a temporal basis, the phytoplankton annual cycle
67	in the coastal areas of the Adriatic Sea is characterized by an intense winter bloom due to Skeletonema
68	marinoi, a small colonial diatom with a pronounced seasonal behavior that in the northwestern basin
69	causes the most significant biomass increase during the year (Bernardi Aubry et al., 2004; Totti et al., 2005).
70	Diatom blooms also occur in spring and autumn with variable intensity, depending on rainfall regimes. In
71	periods between these diatoms blooms, phytoplankton communities are dominated by heterogeneous
72	communities of small phytoflagellates, while dinoflagellates increase only in spring-summer, with
73	abundance peaks 1-2 orders of magnitude lower than those of diatoms. Coccolithophorids are a minor but
74	persistent component of winter communities (Bernardi Aubry et al., 2004; Totti et al., 2005).
75	Intensive monitoring programs started since the years 70s-80s, as well as regular sampling activities in
76	selected stations over the years, let to reconstruct the variability of planktonic communities on an

77 interannual or even on an interdecadal basis in a number of coastal sites of the northern Adriatic Sea

78	(Bernardi Aubry et al., 2004, 2006, 2012; Cabrini et al., 2012; Degobbis et al., 2000; Fuks et al., 2012;
79	Pugnetti et al., 2004; Regione Emilia Romagna, 1978-2016; Solic et al., 1997). All these studies highlighted
80	that long-term pattern in phytoplankton composition and seasonal trends reflected major environmental
81	changes and/or climatic trends. In this regard, several studies documented a decrease in the phytoplankton
82	biomass that occurred in the northern Adriatic in the years 2000-2009 related to the decrease of Po River
83	outflow causing a strong oligotrophication (Djakovac et al., 2012; Giani et al., 2012; Maric et al., 2012;
84	Mozetič et al., 2010).
85	The Senigallia-Susak (SS) transect is located in the lower part of the northern Adriatic sub-basin, where the
86	Western Adriatic Current (WAC) become sharper (Russo and Artegiani, 1996), clearly separating nutrient
87	rich coastal waters from oligotrophic offshore waters and affecting the horizontal spatial variability of
88	phytoplankton communities. The SS transect represents a LTER (Long-Term Ecosystem Research) site,
89	where physical parameters, nutrient concentration and phytoplankton abundance and biomass along a
90	trophic gradient have been recorded since 1988. In the western coastal section of the transect, the
91	hydrological features and phytoplankton communities are mainly influenced by the inflow of continental
92	waters from the northern Adriatic (Totti and Artegiani, 2001), which are conveyed by the WAC flowing
93	southward along the Italian coast, which reduce salinity and increase nitrate and silicate concentrations and
94	shows high values of phytoplankton abundance and biomass. Offshore (i.e., 10 nM from the Italian coast),
95	the transect is crossed by the NAdDW (Northern Adriatic Deep Water) formed during winter in the
96	northernmost part and flowing southward as bottom current (Artegiani et al., 1999), and presents the
97	oligotrophic characteristics of the Adriatic open waters, with abundance maximum in summer (Totti and
98	Artegiani, 2001).
99	The aims of this study are to analyze the interannual variability of phytoplankton over a \sim 30-years period in
100	the western coastal site of the SS transect, in order to unravel patterns potentially related to
101	environmental/climatic drivers.

- **2.** Materials and Methods

104 2.1. Study area and general datasets

105	The sampling station is located in the southern part of the northern Adriatic basin (SG01, 43° 45.86' N, 13°
106	13.00' E, Fig. 1) at 1.2 nM from the Italian coastline (bottom depth 12 m) and included in the LTER Italian
107	sites.
108	In order to evaluate the variations on decadal scale of the winter bloom and of the mean annual cycles of
109	phytoplankton, two datasets (1988-2002 and 2007-2016) were analyzed and compared. Data from 2002 to
110	2007 (seawater physico-chemical parameters and phytoplankton) were excluded from this study because
111	too incomplete.
112	Seasons were defined on the basis of the classical meteorological subdivision, as follows: winter (January-
113	March), spring (April-June), summer (July-September), autumn (October-December).
114	
115	2.2. Meteorological data
116	Air temperature was measured at the weather station of Torrette (20 km distance from Senigallia) using a
117	platinum resistance temperature detector (PT100), with measurement range from -30 $^\circ$ C to +60 $^\circ$ C with
118	±0.2 °C accuracy. Rainfall regime was measured at the weather station of Senigallia, using a ETG/R102
119	software-corrected tipping-bucket rain gauge, compliant to WMO requirements (rainfall intensity
120	measurement range: 0-300 mm/h; rainfall amount resolution: 0.2 mm; overall accuracy: \pm 3%). Both
121	temperature and rain sensors are part of the equipment of the Marche Region meteorological and
122	hydrological monitoring network. Data are available at http://app.protezionecivile.marche.it/sol.
123	The atmospheric pressure in the coastal Senigallia area was measured using the ECMWF ERA-Interim
124	reanalysis dataset (Dee et al., 2011).
125	Temperature and surface pressure were reported in terms of seasonal anomalies, where the reference
126	mean is the seasonal average over a period of 38 years from 1979 to 2016.
127	Unfortunately, wind data (both intensity and direction) were not available for the entire study period.
128	

129 2.3. Sampling

130	Data were collected from 1988 to 2016 in the framework of several research projects on board of several
131	oceanographic vessels (S. Lo Bianco, Tecnopesca 2, G. Dallaporta, Tethis, Copernaut Franca, Urania,
132	Alliance, Minerva, Bannock, D'Ancona, Actea). Sampling was carried out with approximately a monthly
133	frequency.
134	Conductivity-Temperature-Depth data were collected by CTD instrument: from 1988 to 1991 with a Neil
135	Brown Instrument System (NBIS) (accuracy: Conductivity \pm 0.0006 S/m, Temperature \pm 0.002 °C, Pressure \pm
136	0.05% of full scale range), and after 1992 with a SeaBird Electronic SBE 911plus (accuracy: Conductivity \pm
137	0.0003 S/m, Temperature \pm 0.001 °C, Pressure \pm 0.015% of full scale range). Data were acquired and
138	processed according to UNESCO (1988) standards, obtaining pressure-averaged data (0.5 db interval).
139	Water samples for determination of dissolved inorganic nutrients (nitrite-NO ₂ , nitrate-NO ₃ , ammonia-NH ₄ , -
140	orthophosphate-PO $_4$ and orthosilicate-Si(OH) $_4$ and for phytoplankton analysis were collected at surface,
141	bottom and intermediate depths by Niskin bottles according to the thermohaline structure. Then, samples
142	for nutrient analysis were filtered (GF/F Whatman, 0.7 μm), and stored at –22 °C in polyethylene vials until
143	analysis, whereas water samples for phytoplankton analysis were collected in 250 ml dark glass bottles and
144	preserved by adding 0.8% formaldehyde, prefiltered and neutralized with hexamethylenetetramine
145	(Throndsen, 1978) and stored at 4 °C until analysis. For this study, only the surface layer (i.e., the 0-4 m
146	layer) was considered.
147	
148	2.4. Nutrient analysis
149	Nutrient concentrations were measured using a Perkin Elmer spectrophotometer 550A model in the period
150	1988-1998, an autoanalyzer TRAACS 800 BRAN+LUEBBE in 1999-2002 and then an autoanalyzer QUAATRO
151	Technicon, following Strickland and Parsons (1972). For both autoanalyzer models, accuracy was ± 0.02
152	μ mol l ⁻¹ for ±NO ₂ , ±NO ₃ , ±NH ₄ and Si(OH) ₄ and ±0.03 μ mol l ⁻¹ for PO ₄ . A calibration curve was made with 5
153	levels of Merck® standards and the accuracy was tested using a standard as sample. The precision was
154	tested on 10 replicates of the standard and were: $\pm 0.006 \ \mu$ mol l ⁻¹ (NO ₂), $\pm 0.005 \ \mu$ mol l ⁻¹ (NO ₃), $\pm 0.001 \ \mu$ mol

155	I^{-1} (NH ₄), ±0.001 µmol I^{-1} (PO ₄) and ±0.055 µmol I^{-1} (Si(OH) ₄). Dissolved Inorganic Nitrogen (DIN)
156	concentration is intended as the sum of NO ₂ , NO ₃ and NH ₄ -concentrations.
157	
158	2.5. Phytoplankton analysis
159	Identification and counting was carried out using an inverted microscope (ZEISS Axiovert 135) equipped
160	with phase contrast, following the Utermöhl method (Hasle, 1978). Counting was carried out at 400x
161	magnification along transects or in random visual fields, depending on cell abundance, to count a minimum
162	of 200 cells. Moreover, a half of the Utermöhl chamber was analyzed at 200x magnification for a more
163	precise estimation of less abundant microphytoplanktonic taxa.
164	Phytoplankton taxa were finally grouped into major groups (diatoms, dinoflagellates, coccolithophores,
165	phytoflagellates and others), and abundances were expressed as cells I ⁻¹ . Dinoflagellates were considered
166	as a whole taxonomical group and both autotrophic and heterotrophic species were included in counting.
167	Phytoplankton biomass was estimated through cell biovolume: single cells were measured using a
168	micrometric ocular approximating cell shapes to geometrical figures (Hillebrand et al., 1999). Then, the
169	carbon content for each taxon was derived by the mean biovolume, following (Menden-Deuer and Lessard,
170	2000) and biomass was expressed as μg C $l^{-1}.$
171	
172	
173	2.6. Statistical analysis
174	Differences in seasonal abundance of temperature, salinity nutrients and abundance and biomass of
175	phytoplankton groups between different study periods were assessed through a one-way analysis of variance
176	(ANOVA). When significant differences for the main effect were observed (p < 0.05), a Fisher's pairwise
177	comparison test was also performed. Pearson's correlations were performed on non-transformed
178	environmental data. The statistical analyses were conducted using Statistica 12 (StatSoft Inc., Tulsa, OK, USA)

179 software.

180	To identify characterizing phytoplankton species for each month, the indicator value (indival) was applied,
181	which combines the relative abundance of a species with its relative frequency of occurrence in a given
182	period (Dufrêne and Legendre, 1997). The IndVal analysis was run separately for the 1988-2002 and 2007-
183	2016 periods, to test long-term differences in the structures of phytoplankton communities.
184	
185	3. Results
186	3.1. Meteorological conditions
187	Meteorological parameters are shown in Figg. 2-5 (seasonal trends) and in Figg. S1-S4 (annual trends). On
188	an annual basis, temperature showed a significant increasing trend (Fig. S1). In the 20021988-2016,
189	temperature anomalies were mainly positive in all seasons except than in autumn, and the trend of T
190	anomalies along the entire study period showed significant positive tendencies in spring and summer (Fig.
191	2). The year 2014 was noteworthy due to the unusually warm winter and autumn seasons and the
192	unusually cool summer.
193	The annual trend of sea surface pressure anomaly showed a slight but significant decreasing trend (p <
194	0.05, Fig. S2). On a seasonal basis, the trend of anomalies across the entire study period showed a
195	significantly decreasing trend during winter (Fig. 3): while in the 1988-2002 period mainly positive
196	anomalies were recorded, in the 2007-2016 negative anomalies were more frequent. The widest
197	fluctuations in the winter and autumn seasons.
198	The seasonal trend of 99 th percentile of rainy-days (i.e. days with cumulative precipitation \ge 1 mm) is shown
199	in Fig. 4. Although significant only in winter, a positive trend was observed in all seasons, and even in the
200	mean annual trend (Fig. S3) indicating an increase in the occurrence of heavy rainfall. Regarding the Dry
201	Spell Length that indicates the length (in days) of dry periods, no significant variations were observed for
202	this parameter, both on a seasonal (Fig. 5) and on an annual basis (Fig. S4).
203	

204 3.2. Physical and chemical parameters

205	The water temperature anomaly along the entire study period (Fig. 6A) showed a slight but significant
206	increasing trend (n=180, r= 0.19. p<0.05). The average seasonal values for both periods are reported in
207	Table 1: in 2007-2016, only a slight increase was observed in winter (8.6 \pm 0.4 and 9.4 \pm 0.4 °C for the 1988-
208	2002 and 2007-2016 period respectively), and in summer (24.4 \pm 0.3 and 25.1 \pm 0.3 °C for the 1988-2002
209	and 2007-2016 period respectively), while in autumn values were higher in the 1988-2002 than in 2007-
210	2016 period (15.1 \pm 1.0 and 14.5 \pm 1.0 °C, respectively) (Table 1).
211	Salinity anomaly exhibited a significant decreasing trend throughout the study period (Fig. 6B) (n=181, r= -
212	0.15, p < 0.05). However, comparing the average seasonal values of the two study periods, such decrease
213	was evident in winter (35.0 \pm 0.3 vs 33.6 \pm 0.5, 1988-2002 and 2007-2016 period respectively), spring (34.5
214	\pm 0.5 vs 33.4 \pm 0.7, 1988-2002 and 2007-2016 period respectively) and autumn (33.1 \pm 0.8 vs 32.8 \pm 0.8,
215	1988-2002 and 2007-2016 period respectively) although such differences were not significant (Table 1).
216	Nutrient concentration anomaly showed a significant increasing trend along the study period for both DIN
217	(n=123, r= 0.37, p< 0.001) and PO ₄ (n=125, r=0.38, p< 0.001), (Fig. 6 C and D), while the trend of Si(OH) ₄
218	concentrations showed a slight but significant increase throughout the study period (n=124, r=0.18, p<0.05)
219	(Fig. 6E).
220	The comparison of mean seasonal values between the two periods showed significantly higher values of
221	DIN in the 2007-2016 winter and autumn (both p < 0.001) and spring periods (Table 1). In 2007-2016 a wide
222	variability of phosphate concentrations was observed. Comparing mean values of PO4 concentrations
223	between each season of both periods, a significant increase was recorded in the last decade for spring (p
224	<0.05), summer (p <0.01) and autumn (p <0.01) (Table 1).
225	Comparing orthosilicate seasonal mean values, higher values were observed in the 2007-2016 in all seasons
226	than in the 1988-2002 period, although such difference was not significant (Table 1).

- 227
- 228 3.3. Po River outflow
- 229 The Po river outflow measured at Pontelagoscuro is shown in Fig. 7. In winter, the mean outflow was
- significantly higher in the 2007-2016 period than in the 1988-2002 one (p<0.001).

231	In autumn, the outflow was higher in the 1988-2002 than in the 2007-2016 period (p<0.001). In all years of	
232	the 1988-2002 period, autumn months were characterized by high outflow. On the contrary, the 2007-2016	
233	period was characterized by longer droughts in summer until the end of October, when high autumnal	
234	outflow started abruptly. The lowest discharge of the Po River was recorded in the period 2002-2007.	
235		
236	3.4. Phytoplankton communities	
237	3.4.1. 1988-2002 period	
238	In the 1988-2002 period, the number of identified taxa was 247 (118 diatoms, 83 dinoflagellates, 18	
239	coccolithophores, 4 cryptophytes, 7 prasinophytes, 5 euglenophytes, 7 chrysophytes, 1 raphidophyte, 4	
240	silicoflagellates, 1 cyanophyte). Total phytoplankton abundance ranged between 241,070 and 36,332,400	
241	cells I^{-1} (in September 1997 and January 1998 respectively). Diatoms and phytoflagellates were the main	
242	components of the coastal phytoplankton assemblages, accounting from 10 to 74% (average 44%) and from	
243	32 to 78% (average 51%) of the total abundance, respectively. Dinoflagellates (2 to 6%) and	
244	coccolithophores (0 to 2%) represented minor components.	
245	The mean annual cycle of phytoplankton group abundances in the period 1988-2002 period is shown in Fig.	
246	8A, C, E, G and I, while the mean abundance percent composition of the phytoplankton community is	
247	shown in Fig. 9A. The annual maximum of phytoplankton abundance (on average 11,967,891 \pm 3,857,705	
248	cells I ⁻¹) was observed in early winter (January), because of the typical winter bloom of diatoms accounting	
249	for the 74% of the total abundance. Winter communities were dominated by diatoms (Skeletonema	
250	marinoi) showing their maximum abundance in January. Winters were also characterized also by the annual	
251	maximum of coccolithophores (mainly <i>Emiliania huxleyi</i>). In spring, a lower peak (5,544,446 ± 1,797,029	
252	cells I ⁻¹) was recorded in April, again due to the diatoms (multispecific bloom) that represented the 63% of	
253	the total abundance. In summer, the minimum values of phytoplankton abundances were observed, with	
254	the lowest values in August (2,243,704 \pm 437,683); the phytoplankton assemblages were dominated by	
255	phytoflagellates that accounted up to 78% of the total abundance with 1.748.239 \pm 375.019 cells l^{-1} . In	

256	autumn, an abundance peak was recorded in October (5,015,654 \pm 1,406,303 cells l-1), mainly due to
257	phytoflagellates (60%) followed by diatoms (35%).
258	The community structure in terms of significant taxa as revealed by Ind-Val analysis in 1988-2002 period is
259	shown in Table 2: in winter the highest IndVal values were observed for Skeletonema marinoi (77.50,
260	p<0.001), Pseudo-nitzschia delicatissima complex (29.95, p<0.05) and Emiliania huxleyi (28.10, p<0.01).
261	In spring, the most characterizing taxa were Cyclotella spp. (35.20, p<0.001), und. cryptophytes (33.48,
262	p<0.01), Syracosphaera pulchra (31.72, p<0.05), Nitzschia longissima (21.34, p<0.001) and Dinophysis
263	caudata (11.46, p<0.05).
264	In summer, the highest values were observed in <i>Cerataulina pelagica</i> (35.39, p< 0.01), <i>Proboscia alata</i>
265	(34.01, p<0.05), Guinardia flaccida (31.51, p<0.01) and Prorocentrum compressum (17.54, p<0.01).
266	In autumn the most significant species were Lioloma pacificum (36.70, p<0.001 Asterionellopsis glacialis
267	(21.63, p<0.05), Thalassionema frauenfeldii (14.25, p<0.05) and several Chaetoceros species.
268	The mean annual cycle of phytoplankton biomass is shown in Fig. S5 (A,C,E,G,I), while the percent
269	composition of phytoplankton community in terms of biomass is shown in Fig. S6A. In 1988-2002, biomass
270	trend fitted with that of abundance with peaks in January and February (258.06 \pm 83.51 and 289.90 \pm
271	153.55 μC l $^{-1}$ in respectively). Diatoms accounted for the 92 and 82 % of total biomass in January and
272	February respectively. In June a biomass peak was observed (141.93 \pm 82.57 μC $I^{-1}),$ due to a high
273	contribution of dinoflagellates that were represented by large-sized taxa (47%) and diatoms (45%).
274	
275	3.4.2. 2007-2016 period
276	In the 2007-2016 period, the number of identified taxa was 262 (125 diatoms, 96 dinoflagellates, 19
277	coccolithophores, 1 cryptophyte, 1 prasinophyte, 2 euglenophytes, 9 chrysophytes, 2 raphidophytes, 5
278	silicoflagellates, 3 cyanophytes). Phytoplankton abundance ranged from 448,191 to 66,015,480 cells $ ^{-1}$, in

- 279 July 2008 and March 2010 respectively. Again, diatoms and phytoflagellates were the main component of
- the coastal phytoplankton assemblages, accounting from 10 to 83% (average 54%) and from 16 to 88%

(average 45%) of the total abundance, respectively (Fig. 9B). Dinoflagellates (0 to 4%) and coccolithophores
(0 to 1%) represented minor components.
The mean annual cycle of phytoplankton group abundance in 2007-2016 is shown in Figg. 8B, D, F, H and J,
while the mean percent composition of phytoplankton community in terms of abundance is shown in Fig.
9B. Two peaks were observed: March (15,515,233 ± 8,764,850 cells l ⁻¹) and May (14,913,738 ± 6,452,528
cells I^{-1}), both due to diatom blooms that accounted for the 83 and 71% of the total abundance
respectively. While the March bloom was almost monospecific (Skeletonema marinoi), the May bloom was
due to several diatom taxa. In summer and autumn, no peaks were observed, and the abundance values
never exceeded the 3.5 * 10 ⁶ cells I ⁻¹ . The annual peak of coccolithophores was recorded in late spring.
The community structure in terms of significant species as revealed by Ind-Val analysis in 2007-2016 period
is shown in Table 3. In winter, the highest IndVal values were observed for <i>S. marinoi</i> (92.43, p<0.001),
Thalassiosira spp. (60.74, p<0.001), Dytilum brightwellii (52.10, p<0.001), Thalassiosira rotula (46.43,
p<0.001) and Lauderia annulata (32.49, p<0.01).
In spring, the most significant IndVal values were found for <i>Prorocentrum cordatum</i> (58.39, p<0.001), <i>P</i> .
micans (57.3, p<0.001), Dactyliosolen fragilissimus (56.60, p<0.05), Noctiluca scintillans (51.99, p<0.001),
Euglena sp. (46.53, p<0.01), Nitzschia longissima (43.64, p<0.001), Prorocentrum triestinum (36.70,
p<0.001), Alexandrium spp. (34.88, p<0.01), Protoperidinium steinii (31.10, p<0.01) and Dinophysis sacculus
(25.70, p<0.01).
In summer, the highest Ind-Val were observed for <i>Proboscia alata</i> (87.83, p<0.001), <i>Rhizosolenia</i> spp.
(43.39, p<0.001), Pseudo-nitzschia pseudodelicatissima complex (40.31, p<0.01), Pleurosigma sp. (38.75,
p<0.01), Pseudo-nitzschia galaxiae (34.10, p<0.01), Prorocentrum compressum (33.67, p<0.001),
Rhabdolithes claviger (26.81, p<0.01) and Guinardia flaccida (25.38, p<0.05).
In autumn, the highest indVal were found for Lioloma pacificum (51.84. p<0.001), Cylindrotheca closterium

- 304 (46.87, p<0.01), Asterionellopsis glacialis (42.42, p<0.001), Dictyocha fibula (37.92, p<0.001), Eucampia
- 305 cornuta (36.05, p<0.001), Chaetoceros rostratus (29.94, p<0.001), C. costatus (27.31, p<0.01), C. tortissimus

306	(27.25, p<0.01), C. brevis (26.26, p<0.01), C. lauderi (24.73, p<0.01), Calciosolenia murrayi (27.00, p<0.01)	
307	and Pseudo-nitzschia multistriata (22.05, p<0.01).	
308	The mean annual cycle of phytoplankton biomass is shown in Fig. S5 (B,D,F,H,J), while the percent	
309	composition of phytoplankton community in terms of biomass is shown in Fig. S6B. In 2007-2016, biomass	
310	trend showed peaks in March (600.51 \pm 347.81 μg C $l^{\text{-1}}$) due mainly to diatom contribution (81%), May	
311	(691.99 \pm 227.70 μg C $I^{\text{-1}}$ largely attributed to dinoflagellates (68%), followed by diatoms (28%) and June	
312	(824.95 \pm 418.89 µg C l ⁻¹) due to large-sized dinoflagellates (92%). A weaker peak was observed in October	
313	(174.22 \pm 90.09 μg C $l^{\text{-1}}$) attributed to the diatoms (87%). Biomass trend showed also peaks in March	
314	(600.51 ± 347.81 µg C $ ^{-1}$), May (691.99 ± 227.70 µg C $ ^{-1}$) and June (824.95 ± 418.89 µg C $ ^{-1}$).	
315		
316	3.4.3 Comparison between the 1988-2002 and 2007-2016 periods	
317	Considering the general trend during the whole study period, a significantly decreasing trend of both	
318	dinoflagellates (r=-0.23; n=181; p < 0.01) and coccolithophores (r=-0.15; n= 183; p < 0.05) abundances was	
319	recorded. When comparing the phytoplankton abundances between the two study periods on a seasonal	
320	basis (Table 4), higher values of total phytoplankton and diatom abundance were observed in the second	
321	period for all seasons except than in autumn, although such differences did not result significant.	
322	Dinoflagellates abundances were lower in the 2007-2016 than in the 1988-2002 period in all seasons except	
323	in spring, although these differences were not significant. Coccolithophore abundances were lower in 2007-	
324	2016 than in 1988-2002, although such difference was significant only in winter in terms of abundance (p <	
325	0.05, Table 4), and in autumn in terms of biomass (p < 0.05, Table 5). Phytoflagellate abundances did not	
326	show differences among seasons of the two periods.	
327	Comparing the phytoplankton biomass between the two study periods on a seasonal basis (Table 5), higher	
328	values were observed in all seasons of the 2007-2016 period, whereas difference was significant only for	
329	spring (p < 0.001). Diatom biomass values were higher in all seasons of the 2007-2016, and particularly in	
330	spring, although such differences were not significant. During spring, mean seasonal biomass of	
331	dinoflagellates showed significantly higher values in the 2007-2016 than in 1988-2002 period (p < 0.001),	

332	due the blooms of large sized species. Regarding coccolithophores, any significant difference was	
333	highlighted between the two periods. In the 2007-2016 period, phytoflagellate biomass showed a	
334	significant decrease in winter (p < 0.01) and autumn (p < 0.05), while an increase was observed in spring (p	
335	< 0.05).	
336		
337	4. Discussion	
338	In the last decade, a number of long-term studies on phytoplankton communities in the Adriatic Sea have	
339	been published, highlighting major interdecadal changes occurred in phytoplankton communities related to	
340	climate and meteorological changes (Bernardi Aubry et al., 2012; Cabrini et al., 2012; Maric et al., 2012).	
341	Results of this study showed that in the coastal station of the LTER Senigallia-Susak transect, phytoplankton	
342	abundance and biomass as well as inorganic nutrient concentrations, significantly increased in the period	
343	2007-2016 compared to the period 1988-2002. This increase seems related to the increase of the Po River	
344	flow observed since 2008. Our results seem indicate that the tendency to oligotrophication outlined in	
345	previous studies, mainly driven by the marked drop of Po River outflow occurred in period 2002-2007	
346	(Giani et al., 2012; Mozetič et al., 2010) was reversed.	
347	Unexpectedly, the increase in nutrient phosphorous levels (particularly phosphorus), highlighted in our	
348	study is not explained by the nutrient-PO4 loads measured in the Po River waters (the main nutrient source	
349	in the Adriatic Sea) which are decreasing (Giani et al., 2018). We hypothesized that this P enrichment could	
350	be explained considering the contributions of minor torrential rivers close to the study site (e.g. Cesano and	
351	Misa rivers), coupled with the increase of anomalous and intense meteorological events observed in this	
352	area, that may have affected the pathways and fate of N and P, and their ratio (Viaroli et al., 2018; Zoboli et	
353	al., 2015). Unfortunately, nutrient loads of these regional rivers are not available for the entire study	
354	period, and such hypothesis should be carefully verified. Moreover, also other possible nutrient sources,	
355	i.e. the regenerative processes in the water column (Tedesco et al., 2007) and the resuspension of bottom	

356 sediments (Boldrin et al., 2009) may have played a role.

357 This study highlighted that in the last decade some major changes occurred in the phytoplankton 358 community structure, in the timing of the seasonal cycle, and in the period of bloom peak occurrences. 359 Although the phytoplankton trend in the northern Adriatic Sea is typically characterized by a marked 360 interannual variability (Bernardi Aubry et al., 2012), some events occur with a remarkably regular 361 frequency. The most regular event in the phytoplankton annual cycle of the Adriatic Sea is represented by 362 the diatom winter bloom of Skeletonema marinoi which causes the annual maximum of phytoplankton 363 abundance and biomass every year. While in the period 1988-2002 the S. marinoi maximum peak was 364 recorded in early winter (January), in the last decade this bloom extended its temporal span from January 365 to April-May, with its peak in late winter (March), often overlapping to the multispecific diatom spring bloom. A phytoplankton bloom occurring in the earlier months of the year is a common feature of several 366 367 Mediterranean (Bernardi Aubry et al., 2006; Cabrini et al., 2012; Duarte et al., 1999; Goffart et al., 2002; 368 Morán and Estrada, 2005; Piredda et al., 2017; Totti et al., 2005; Zingone et al., 2010) and extra Mediterranean (Álvarez et al., 2009; Backhaus et al., 2003; Glé et al., 2007) areas. Such bloom has been 369 370 indicated as winter, late winter, winter-spring, late winter-early spring, irrespectively to the actual month of 371 appearance. Differently from what occurs in other areas where the winter blooms are short-lasting 372 (Zingone et al., 2010), at present the winter bloom in the Adriatic Sea lasts 2-3 months and supports the 373 highest biomass values in the year. In the northern Adriatic Sea, this bloom represents the most remarkable 374 event among the phytoplankton annual cycle and it is expected that the high productivity of the northern 375 Adriatic is supported by the regularity of such bloom, as outlined for other Mediterranean areas (Duarte et al., 1999). The most common explanation of the winter bloom, that appears to contradict the classical 376 377 Sverdrup's hypothesis, is a transitory limitation of the depth of mixed layer induced by conditions of sunny 378 weather or by the formation of thin freshwater surface layer (Fischer et al., 2014; Townsend et al., 1994). 379 The relevance of both these effects in the coastal areas of the Adriatic Sea is supposed not to be so strong, 380 considering the shallowness of the water column (12 m) and the homogeneity of the vertical distribution of 381 phytoplankton throughout the year (data not shown). Nevertheless, our results suggest that the timing (in 382 terms of onset and duration) of this bloom would be somehow affected by the conditions of high

383	atmospheric pressure, affecting both the irradiance and the stability of water column. This hypothesis is
384	supported by the observation that the significantly higher atmospheric pressures recorded in winter during
385	the period 1988-2002 compared to the previous one (1977-1987) allowed an earlier onset of the winter
386	bloom that peaked in January (Totti et al., 2002), as already observed in northernmost areas (Regione
387	Emilia Romagna, n.d.). On the contrary, in the 1977-1987, as well as in the 2007-2016, the atmospheric
388	pressure recorded in winter showed mainly negative anomalies which could have delayed the diatom
389	winter bloom peak.
390	The analysis of indicator species revealed that, although in the second period the winter bloom shifted
391	onward, Skeletonema marinoi represented the main indicator species in the winter phytoplankton in both
392	periods. On the other hand, a change in the winter community structure was highlighted: from a P.
393	delicatissima complex- and Emiliania huxleyi- characterized community in the 1988-2002 period to a
394	Thalassiosira spp., Dytilum brightwellii and Lauderia annulata in the 2007-2016 one. Such increase in large
395	diatoms could be explained considering the increase in nutrient availability observed right in this period.
396	The spring bloom (April-May) has a completely different physiognomy, being typically characterized by a
397	diatom multispecific association. Such bloom is typically affected by the rainfall regime and the related river
398	runoff, and showed both an increase and a shift onwards, with the maximum occurring in April in the 1988-
399	2002 period and in May in the 2007-2016, respectively. The spring community of 2007-2016 markedly
400	differed from that of the 1988-2002 for the more relevant contribution of dinoflagellates, in that (i) the
401	presence of Noctiluca scintillans was highly significant (see below), and (ii) Prorocentrum cordatum and P.
402	triestinum regularly occurred.
403	In both periods, phytoplankton showed the minimum annual abundances in summer. However, the
404	composition of the community differed between the two periods: in the 1988-2002 period, when in
405	summer the northern Adriatic regularly experienced the persistent and regular appearance of large mucus
406	aggregates (Giani et al., 2005), phytoplankton communities were typically characterized by mucilage-
407	inhabiting large diatom species (e.g., Cerataulina pelagica, Proboscia alata and Guinardia flaccida) (Totti et

408 al., 2005). In 2007-2016, when the mucilage appearance was only sporadic, the indicator diatom taxa in the

409	summer season were more uiverse. <i>Froboscia diata, Kinzosolenia</i> spp., Fseado-intzschia
410	pseudodelicatissima complex, Pleurosigma sp. and Pseudo-nitzschia galaxiae.
411	In autumn the significantly higher nutrient concentrations observed in the 2007-2016 period did not result
412	in a significant increase in phytoplankton abundances and biomass, but an increase of larger diatoms was
413	observed among the indicator taxa. The variability of phytoplankton blooms in spring and autumn could
414	mainly be related to the intensity of river runoff, in terms of both occurrence and magnitude of peaks. After
415	the input of low salinity- nutrient-rich waters coming from the Po River outflow and carried southward by
416	the WAC, a sudden response of phytoplankton is always observed, with mixed diatom blooms
417	characterized by several species of the genus Chaetoceros. It is noteworthy that in the 2007-2016 period,
418	an alien species, i.e. the diatom Pseudo-nitzschia multistriata (Corriero et al., 2016), became a regular
419	inhabitant of the phytoplankton communities of the NW Adriatic Sea representing a significant indicator
420	species for the autumn season. The placement of <i>P. multistriata</i> inside the native communities has already
421	been reported in other Mediterranean areas (Zenetos et al., 2010).
422	In both study periods, diatoms were the most relevant group in the phytoplankton community, being
423	responsible of the bulk of abundance and biomass values. However, their occurrence become more
424	irregular in the 2007-2016, with unexpected proliferations of heterogeneous groups of species occurring
425	throughout the year. The patterns of variation in atmospheric pressure probably have important effects for
426	the marine climate. Extended periods of high atmospheric pressure are associated with weak horizontal
427	pressure gradients with weak winds and low wave heights (Duarte et al., 1999). The irregularity of intense
428	meteorological events caused the appearance of anomalous blooms and altered the seasonal trends.
429	In both periods, dinoflagellates showed their maximum in spring-summer, as expected in temperate areas
430	(Smayda and Trainer, 2010). However, in the 2007-2016 period a decrease of dinoflagellates in terms of
431	abundances has been observed in this study, in combination with an increase in terms of biomass, because
432	of the occurrence with a regular frequency of Noctiluca scintillans red tides, that particularly affected the
433	biomass values. Considering the phagotrophical behavior of <i>N. scintillans</i> , its blooms could be indirectly

. .

434 associated to the increase of phytoplankton biomass and nutrients observed in the 2007-2016 period, even 435 if in the past such relationship was not proved (Fonda Umani et al., 2004). 436 One of the most surprising result of this study is that coccolithophores showed a significantly decreasing 437 trend in the 2007-2016 period, in terms of abundance and a shift onward of their annual peak which was 438 observed in June, i.e. 2-4 months later than in the 1988-2002 period. Some species that were among the 439 most relevant seasonal indicator species in the 1988-2002 period, such as Emiliania huxleyi in winter, and 440 Syracosphaera pulchra in spring, lose this role in the 2007-2016 period. The maximum values of E. huxleyi in 441 winter were already reported in other Mediterranean (Dimiza et al., 2008) and extra Mediterranean (Chen 442 et al., 2007) areas. On the other hand, in 2007-2016 Rhabdolithes claviger was highly relevant in summer, in agreement with reports for other areas where that species is considered indicator of the oligotrophic 443 conditions typical of subtropical waters (Narciso et al., 2016). The coccolithophore decrease observed in 444 445 the last decade could be tentatively explained considering the highest performance of diatoms in nutrientrich conditions (Litchman et al., 2006; Xiao et al., 2018). In the North Sea, blooms of E. huxleyi typically 446 447 follow those of diatoms in waters that have been recently depleted of inorganic nutrients and are 448 becoming more stable in terms of vertical mixing (Holligan et al., 1993). In winters of the 2007-2016 period, 449 the anomalous rainfall, combined with freshwater input and nutrient enrichment, altered the diatom cycle, 450 and may have affected the coccolithophore proliferation. Neither temperature nor salinity are likely to be 451 significant causal factors, as E. huxleyi is known to be one of the most eurythermal and euryhaline 452 phytoplankton species (Tyrrell and Merico, 2004). Regarding the pH, although an increasing water 453 acidification has been documented in the N Adriatic Sea dense deep waters (Luchetta et al., 2010), such 454 increase is too low and still not significant for lowering the saturation state of carbonates in seawater at levels which could significantly affect the calcification processes, according to the scientific knowledge 455 456 available. Moreover, unfortunately pH measurements were not available for our dataset. Finally, as this 457 study was carried out using traditional microscopy method, it is not possible to exclude that E. huxleyi could have occurred as a non-calcified life stage (Frada et al., 2012), and therefore counted within the 458 459 'undetermined phytoflagellates' group.

461 5. Conclusive remarks

In this study, the main changes occurred in phytoplankton community of the northwestern Adriatic basin were documented. In the year 80s, the annual trend was characterized by frequent eutrophication-related phenomena, such as spring-summer dinoflagellate blooms often causing red or even green tides (Artegiani et al., 1985; Boni, 1983; Honsell et al., 1992), and the *Skeletonema marinoi* winter bloom peaking in March (Totti et al., 2002).

- 467 In the 1988-2002, dinoflagellate red tides almost disappeared in summer, while the northern Adriatic Sea 468 experienced the appearance of large mucilage aggregates, with diatoms often being the main component 469 of summer communities (Del Negro et al., 2005)(Totti et al., 2005) together with some dinoflagellates 470 that were suspected to play a key role in mucilage production (Pistocchi et al., 2005). Both these 471 phenomena have been related to tThe phosphorus depletion that occurred in the years after 1986 (Cozzi 472 and Giani, 2011; Giani et al., 2012) after Italy implemented a new legislation for the control of nutrient 473 loads, .- This P depletion-induced a severe P limitation in the N Adriatic Sea, which has been invoked as one 474 of the main reasons affecting the mucilage aggregate formation, which regularly took place in the period 475 1988-2002, as it enhances both the extracellular release by phytoplankton and the bacterial activity (Giani 476 et al., 2005). In the same period, the diatom winter bloom peaked in January, probably favored by long 477 periods (from 10 to 60 days) of high and steady values of barometric pressure (>1020 mbar) preceding the 478 winter blooms (Totti et al., 2002). 479 The 2002-2007 period was characterized by a marked decrease in the discharge of the Po River (although 480 limited to 5 years only), that determined the decline of phytoplankton biomass which has been already 481 intercepted by a number of interannual analyses (see Mozetič et al., 2010). 482 For the last decade, new tendencies in phytoplankton communities structure and annual trend have been
- 483 highlighted. A significant increase in DIN and PO₄ was observed. The P limiting conditions typical of the
- 484 northern Adriatic Sea (Giani et al., 2012) seem to be attenuated in the study area, and the observed P levels
- 485 were not explained by the P concentrations measured in the Po River waters, suggesting the occurrence of

Codice campo modificato

486	other P sources, possibly related to the intensity of heavy rainfall. Beside a restoration of diatom
487	abundance and biomass values that merely followed the nutrient enrichment, the timing of the seasonal
488	cycle of the main groups changed. The Skeletonema marinoi winter bloom shifted onwards, and other
489	diatom blooms occurred irregularly throughout the year reflecting the irregularity of meteorological events.
490	Dinoflagellate abundances decreased, but the irregular proliferation of large sized species caused biomass
491	peaks. Coccolithophores showed a remarkable decline particularly in winter months. The causes of this
492	decline are not clear and need to be investigated in depth.
493	The main forcing factors that shape the community structure and seasonal trend of phytoplankton in the
494	Senigallia-Susak coastal station crossed by the WAC are both climatic (intensity and trend of rainfall) and
495	related to anthropogenic pressure (nutrient chargeload). However, other important factors unfortunately
496	not available in this study, such wind speed and direction, affecting turbulence and mixing with potential
497	direct effects on nutrients and the phytoplankton dynamics, may play a key role. This study confirms that
498	the analysis of long-time series of plankton represents a powerful tool to estimate the effect of climate in
499	the pelagic ecosystems. These changes should be followed with a great attention considering the effects
500	that they can have on the trophic chain.

502 Acknowledgements

- 503 Authors are indebted with Michele Giani for his helpful suggestions and with Michele Scardi for providing 504 the program calculating the IndVal and its significance. Thanks to Fabio Rindi feor the English style revision. 505 We gratefully acknowledge the crews of all the oceanographic vessels involved in the sampling cruises: S. 506 Lo Bianco, Tecnopesca 2, G. Dallaporta, Tethis, Copernaut Franca, Urania, Alliance, Minerva, Bannock, 507 D'Ancona, Actea. 508 This long-term research was supported by Italian Ministry of Merchant Navy (1988-1990), EU/FP4 Environment Project ELNA (Eutrophic Limits of the Northern Adriatic Sea) (1992-1994), PRISMA (Program of 509 510 Research and Experimentation in the Adriatic Sea) (1994-1998), Program MAT (Processes of formation of
- 511 mucilage aggregates in the Adriatic and Tyrrhenian Seas) (1999-2002), Project SINAPSI Seasonal,

512	Interannual and decAdal variability of the atmosPhere, oceanS and related marIne ecosystems - (1997-
513	2001), Project EU/FP6-SUSTDEV SESAME (Southern European Seas: Assessing and Modelling Ecosystem
514	changes) (2006-2010), program RITMARE (Ricerca ITaliana in MARE) (2012-2016), project BALMAS (Ballast
515	Water Management) (2014-2016).
516	The cruises carried out with the M/N Actea were entirely funded by the Department of Life and
517	Environmental Sciences.
518	We are grateful to LTER-ITALY (Italian Long-Term Ecological Research Network) for their support.
519	We thank the Centro Funzionale of Civil Protection Service of Marche Region for the supplying of
520	meteorological data.
521	Finally, thanks to the two anonymous reviewers who helped to improve this ms.
522	
523	References
524	Accoroni, S., Colombo, F., Pichierri, S., Romagnoli, T., Marini, M., Battocchi, C., Penna, A., Totti, C., 2012.
525	Ecology of Ostreopsis cf . ovata blooms in the northwestern Adriatic Sea. Cryptogam. Algol. 33, 191–
526	198. https://doi.org/10.7872/crya.v33.iss2.2011.191
527	Álvarez, E., Nogueira, E., Acuñ, J.L., Lopez-Álvarez, M., Sostres, J.A., 2009. Short-term dynamics of late-
528	winter phytoplankton blooms in a temperate ecosystem (Central Cantabrian Sea, Southern Bay of
529	Biscay). J. Plankton Res. 31, 601–617. https://doi.org/10.1093/plankt/fbp012
530	Artegiani, A., Azzolini, R., Marzocchi, M., Morbidoni, M., Solazzi, A., Cavolo, F., 1985. Prime osservazioni su
531	un bloom fitoplanctonico lungo la costa marchigiana nell'anno 1984. Nov. Thalass. 7, 137–142.
532	Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., Russo, A., 1997a. The Adriatic Sea general
533	circulation. Part I: air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514.
534	https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2
535	Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., Russo, A., 1997b. The Adriatic Sea general
536	circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532.

https://doi.org/10.1175/1520-0485(1997)027<1515:TASGCP>2.0.CO;2 537

538	Artegiani, A., Pariante, R., Paschini, E., Russo, A., Totti, C., 1999. Seasonal evolution of the physical water	
539	properties observed from the Senigallia transect, in: Hopkins, T.S., Artegiani, A., Cauwet, G., Degobbis,	
540	D., Malej, A. (Eds.), Ecosystems Research Report, No.32. The Adriatic Sea. (EUR 18834). pp. 59–70.	
541	Backhaus, J.O., Hegseth, E.N., Wehde, H., Irigoien, X., Hatten, K., Logemann, K., 2003. Convection and	
542	primary production in winter. Mar. Ecol. Prog. Ser. 251, 1–14. https://doi.org/10.3354/meps251001	
543	Bernardi Aubry, F., Berton, A., Bertaggia, R., Bianchi, F., Socal, G., 1999. Popolamenti fitoplanctonici in	
544	masse d'acqua ipossiche nell'area costiera della regione Veneto. Biol. Mar. Mediterr. 6, 648–651.	
545	Bernardi Aubry, F., Berton, A., Bastianini, M., Socal, G., Acri, F., 2004. Phytoplankton succession in a coastal	
546	area of the NW Adriatic, over a 10-year sampling period (1990–1999). Cont. Shelf Res. 24, 97–115.	
547	https://doi.org/10.1016/j.csr.2003.09.007	
548	Bernardi Aubry, F., Acri, F., Bastianini, M., Bianchi, F., Cassin, D., Pugnetti, A., Socal, G., 2006. Seasonal and	
549	interannual variations of phytoplankton in the Gulf of Venice (Northern Adriatic Sea). Chem. Ecol. 22,	
550	71–91. https://doi.org/10.1080/02757540600687962	
551	Bernardi Aubry, F., Cossarini, G., Acri, F., Bastianini, M., Bianchi, F., Camatti, E., De Lazzari, A., Pugnetti, A.,	
552	Solidoro, C., Socal, G., De Lazzari, A., Pugnetti, A., Solidoro, C., Socal, G., 2012. Plankton communities	
553	in the northern Adriatic Sea : Patterns and changes over the last 30 years. Estuar. Coast. Shelf Sci. 115,	
554	125–137. https://doi.org/10.1016/j.ecss.2012.03.011	
555	Boldrin, A., Carniel, S., Giani, M., Marini, M., Bernardi Aubry, F., Campanelli, A., Grilli, F., Russo, A., 2009.	
556	Effects of bora wind on physical and biogeochemical properties of stratified waters in the northern	
557	Adriatic. J. Geophys. Res. Ocean. 114, 1–19. https://doi.org/10.1029/2008JC004837.	
558	Boni, L., 1983. Red tides of the coast of Emilia Romagna (north-western Adriatic sea) from 1975 to 1982.	
559	Inf. Bot. Ital. 15, 18–24.	
560	Boni, L., Pompei, M., Reti, M., 1983. The occurence of Gonyaulax tamarensis Lebour bloom in the Adriatic	
561	sea along the coast of Emilia-Romagna. G. Bot. Ital. 117, 115–120.	
562	Cabrini, M., Fornasaro, D., Cossarini, G., Lipizer, M., Virgilio, D., 2012. Phytoplankton temporal changes in a	
563	coastal northern Adriatic site during the last 25 years. Estuar. Coast. Shelf Sci. 115, 113–124.	

564 https://doi.org/10.1016/j.ecss.2012.07.007

- Campanelli, A., Grilli, F., Paschini, E., Marini, M., 2011. The influence of an exceptional Po River flood on the 565 566 physical and chemical oceanographic properties of the Adriatic Sea. Dyn. Atmos. Ocean. 52, 284–297. 567 https://doi.org/10.1016/j.dynatmoce.2011.05.004 568 Chen, Y.L., Chen, H.-Y., Chung, C.-W., 2007. Seasonal variability of coccolithophore abundance and 569 assemblage in the northern South China Sea. Deep. Res. Part II Top. Stud. Oceanogr. 54, 1617–1633. 570 https://doi.org/10.1016/j.dsr2.2007.05.005 571 Corriero, G., Pierri, C., Accoroni, S., Alabiso, G., Bavestrello, G., Barbone, E., Bastianini, M., Bazzoni, A.M., 572 Bernardi Aubry, F., Boero, F., Buia, M.C., Cabrini, M., Camatti, E., Cardone, F., Cataletto, B., Cattaneo 573 Vietti, R., Cecere, E., Cibic, T., Colangelo, P., De Olazabal, A., D'onghia, G., Finotto, S., Fiore, N., 574 Fornasaro, D., Fraschetti, S., Gambi, M.C., Giangrande, A., Gravili, C., Guglielmo, R., Longo, C., Lorenti, 575 M., Lugli??, A., Maiorano, P., Mazzocchi, M.G., Mercurio, M., Mastrototaro, F., Mistri, M., Monti, M., Munari, C., Musco, L., Nonnis-Marzano, C., Padedda, B.M., Patti, F.P., Petrocelli, A., Piraino, S., 576 577 Portacci, G., Pugnetti, A., Pulina, S., Romagnoli, T., Rosati, I., Sarno, D., Satta, C.T., Sechi, N., 578 Schiaparelli, S., Scipione, B., Sion, L., Terlizzi, A., Tirelli, V., Totti, C., Tursi, A., Ungaro, N., Zingone, A., 579 Zupo, V., Basset, A., 2016. Ecosystem vulnerability to alien and invasive species: A case study on 580 marine habitats along the Italian coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 392-409. 581 https://doi.org/10.1002/aqc.2550 582 Cozzi, S., Giani, M., 2011. River water and nutrient discharges in the Northern Adriatic Sea: Current 583 importance and long term changes. Cont. Shelf Res. 31, 1881–1893. https://doi.org/10.1016/j.csr.2011.08.010 584 585 Cucchiari, E.M., Guerrini, F., Penna, A., Totti, C., Pistocchi, R., 2008. Effect of salinity, temperature, organic 586 and inorganic nutrients on growth of cultured Fibrocapsa japonica (Raphidophyceae) from the
- 587 northern Adriatic Sea. Harmful Algae 7, 405–414. https://doi.org/10.1016/j.hal.2007.09.002
- 588 D'Ortenzio, F., Ribera d'Alcalà, M., 2009. On the trophic regimes of the Mediterranean Sea: a satellite
- 589 analysis. Biogeosciences 5, 139–148. https://doi.org/10.5194/bgd-5-2959-2008

590	Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A.,
591	Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
592	Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E. V., Isaksen, L.,
593	Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J., Park, B.,
594	Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., Vitart, F., 2011. The ERA-Interim reanalysis:
595	configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597.
596	https://doi.org/10.1002/qj.828
597	Degobbis, D., Precali, R., Ivancic, I., Smodlaka, N., Fuks, D., Kveder, S., 2000. Long-term changes in the
598	northern Adriatic ecosystem related to anthropogenic eutrophication. Int. J. Environ. Pollut. 13, 495-
599	533. https://doi.org/10.1504/IJEP.2000.002332
600	Degobbis, D., Smodlaka, N., Pojed, I., Skrivanic, A., Precali, R., 1979. Increased eutrophication of the
601	northern Adriatic sea. Mar. Pollut. Bull. 10, 298–301. https://doi.org/10.1016/0025-326X(89)90066-0
602	Del Negro, P., Crevatin, E., Larato, C., Ferrari, C., Totti, C., Pompei, M., Giani, M., Berto, D., Fonda Umani, S.,
603	2005. Mucilage microcosms. Sci. Total Environ. 353, 258–69.
604	https://doi.org/10.1016/j.scitotenv.2005.09.018
605	Dimiza, M.D., Triantaphyllou, M. V., Dermitzakis, M.D., 2008. Seasonality and ecology of living
606	coccolithophores in Eastern Mediterranean coastal environments (Andros Island, Middle Aegean Sea).
607	Micropaleontology 54, 159–175.
608	Djakovac, T., Degobbis, D., Supic, N., Precali, R., 2012. Marked reduction of eutrophication pressure in the
609	northeastern Adriatic in the period 2000-2009. Estuar. Coast. Shelf Sci. 115, 25–32.
610	https://doi.org/10.1016/j.ecss.2012.03.029
611	Djakovac, T., Supić, N., Bernardi Aubry, F., Degobbis, D., Giani, M., 2015. Mechanisms of hypoxia frequency
612	changes in the northern Adriatic Sea during the period 1972-2012. J. Mar. Syst. 141, 179–189.
613	https://doi.org/10.1016/j.jmarsys.2014.08.001
614	Duarte, C.M., Agustí, S., Kennedy, H., Vaqué, D., 1999. The Mediterranean climate as a template for
615	Mediterranean marine ecosystems: the example of the northeast Spanish littoral [WWW Document].
	25
	23

616 Prog. Oceanogr.

- 617 Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: The need for a flexible
- 618 asymmetrical approach. Ecol. Monogr. 67, 345–366. https://doi.org/10.2307/2963459
- 619 Facca, C., Bilaničovà, D., Pojana, G., Sfriso, A., Marcomini, A., 2014. Harmful algae records in Venice lagoon
- and in Po River Delta (northern Adriatic Sea, Italy). Sci. World J. 806032.
- 621 https://doi.org/10.1155/2014/806032
- 622 Fischer, A.D., Moberg, E.A., Alexander, H., Brownlee, E.F., Hunter-Cevera, K., Pitz, K.J., Rosengard, S.Z.,
- 623 Sosik, H.M., 2014. Sixty years of Sverdrup. Oceanography 27, 222–235.
- 624 Flander-Putrle, V., Malej, A., 2008. The evolution and phytoplankton composition of mucilaginous
- 625 aggregates in the northern Adriatic Sea. Harmful Algae 7, 752–761.
- 626 https://doi.org/10.1016/j.hal.2008.02.009
- 627 Fonda Umani, S., 1996. Pelagic production and biomass in the Adriatic Sea. Sci. Mar. 60, 65–77.
- 628 Fonda Umani, S., Beran, A., Parlato, S., Virgilio, D., Zollet, T., Olazabal, A.D.E., Lazzarini, B., Cabrini, M., De
- 629 Olazabal, A., Lazzarini, B., Cabrini, M., 2004. Noctiluca scintillans McCartney in the Northern Adriatic
- 630 Sea: Long-term dynamics, relationships with temperature and eutrophication, and role in the food
- 631 web. J. Plankton Res. 26, 545–561. https://doi.org/10.1093/plankt/fbh045
- 632 Frada, M.J., Bidle, K.D., Probert, I., de Vargas, C., 2012. In situ survey of life cycle phases of the
- 633 coccolithophore Emiliania huxleyi (Haptophyta). Environ. Microbiol. 14, 1558–1569.
- 634 https://doi.org/10.1111/j.1462-2920.2012.02745.x
- 635 Fuks, D., Ivan, I., Najdek, M., Lu, D., Njire, J., Godrijan, J., Mari, D., Tina, Š., Paliaga, P., Bla, M., Precali, R.,
- 636 Orli, S., 2012. Changes in the planktonic community structure related to trophic conditions : The case
- 637 study of the northern Adriatic Sea. J. Mar. Syst. 96–97, 95–102.
- 638 https://doi.org/10.1016/j.jmarsys.2012.02.006
- 639 Giacobbe, M.G., Bianchi, F., Maimone, G., Puglisi, A., Socal, G., 1998. Diel observations on populations of
- 640 Dinophysis and Alexandrium spp. (Dinophyceae) from the Adriatic Sea. Acta Bot. Croat. 57, 19–28.
- 641 Giani, M., Rinaldi, A., Degobbis, D., Vollenweider, R., 2005. Mucilages in the Adriatic and Tyrrhenian Seas:

642	An introduction. Sci. Total Environ. 353, 3–9. https://doi.org/10.1016/j.scitotenv.2005.09.007
643	Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., Fonda Umani, S., 2012. Recent changes in the
644	marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13.
645	https://doi.org/10.1016/j.ecss.2012.08.023
646	Giani, M., Cozzi, S., Tartari, G., 2018. Trends of nutrient loads discharged from the Po River into the
647	northern Adriatic, in: 49° Congresso Della Società Italiana Di Biologia Marina. Cesenatico, 4-8 giugno
648	2018.
649	Glé, C., Del Amo, Y., Bec, B., Sautour, B., Froidefond, J.M., Gohin, F., Maurer, D., Plus, M., Laborde, P.,
650	Chardy, P., 2007. Typology of environmental conditions at the onset of winter phytoplankton blooms
651	in a shallow macrotidal coastal ecosystem, Arcachon Bay (France). J. Plankton Res. 29, 999–1014.
652	https://doi.org/10.1093/plankt/fbm074
653	Goffart, A., Hecq, JH., Legendre, L., 2002. Changes in the development of the winter-spring phytoplankton
654	bloom in the Bay of Calvi (NW Mediterranean) over the last two decades : a response to changing
655	climate ? Mar. Ecol. Prog. Ser. 236, 45–60.
655 656	climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern
655 656 657	climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current
655 656 657 658	climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008
655 656 657 658 659	climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual.
655 656 657 658 659 660	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96.
655 656 657 658 659 660 661	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96. Hillebrand, H., Durselen, CD., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for
655 656 657 658 659 660 661 662	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96. Hillebrand, H., Durselen, CD., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic amd benthic microalgae. J. Phycol. 35, 403–424.
655 656 657 658 659 660 661 662 663	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96. Hillebrand, H., Durselen, CD., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic amd benthic microalgae. J. Phycol. 35, 403–424. Holligan, P.M., Groom, S.B., Harbour, D.S., 1993. What controls the distribution of the coccolithophore,
655 656 657 658 659 660 661 662 663 663	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96. Hillebrand, H., Durselen, CD., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic amd benthic microalgae. J. Phycol. 35, 403–424. Holligan, P.M., Groom, S.B., Harbour, D.S., 1993. What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea? Fish. Oceanogr. 2, 175–183.
655 656 657 658 660 661 662 663 664 665	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96. Hillebrand, H., Durselen, CD., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic amd benthic microalgae. J. Phycol. 35, 403–424. Holligan, P.M., Groom, S.B., Harbour, D.S., 1993. What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea? Fish. Oceanogr. 2, 175–183. Honsell, G., Boni, L., Cabrini, M., Pompei, M., 1992. Toxic or potentially toxic dinoflagellates from the
655 656 657 658 669 661 662 663 664 665 666	 climate ? Mar. Ecol. Prog. Ser. 236, 45–60. Grilli, F., Paschini, E., Precali, R., Russo, A., Supić, N., 2005. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999-July 2002. Part I: Geostrophic circulation and current measurement. Sci. Total Environ. 353, 57–67. https://doi.org/10.1016/j.scitotenv.2005.09.008 Hasle, G.R., 1978. The inverted microscope method, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. UNESCO, Paris, pp. 88–96. Hillebrand, H., Durselen, CD., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic amd benthic microalgae. J. Phycol. 35, 403–424. Holligan, P.M., Groom, S.B., Harbour, D.S., 1993. What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea? Fish. Oceanogr. 2, 175–183. Honsell, G., Boni, L., Cabrini, M., Pompei, M., 1992. Toxic or potentially toxic dinoflagellates from the northern Adriatic Sea. Sci. Total Environ. 107–114.

667 Jeffiries, M.A., Lee, C.M., 2007. A climatology of the northern Adriatic Sea's response to bora and river

- 668 forcing. J. Geophys. Res. Ocean. 112, 1–18. https://doi.org/10.1029/2006JC003664
- 669 Litchman, E., Klausmeier, C.A., Miller, J.R., Schofield, O.M., Falkowski, P.G., 2006. Multi-nutrient, multi-
- 670 group model of present and future oceanic phytoplankton communities. Biogeosciences Discuss. 3,
- 671 607–663. https://doi.org/10.5194/bgd-3-607-2006
- 672 Luchetta, A., Cantoni, C., Catalano, G., 2010. New observations of CO₂-induced acidification in the northern
- 673 Adriatic Sea over the last quarter century. Chem. Ecol. 26, 1–17.
- 674 https://doi.org/10.1080/02757541003627688
- Maric, D., Kraus, R., Godrijan, J., Supi, N., Djakovac, T., Precali, R., 2012. Phytoplankton response to climatic
- and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar. Coast.
- 677 Shelf Sci. 115, 98–112. https://doi.org/10.1016/j.ecss.2012.02.003
- 678 Marini, M., Jones, B.H., Campanelli, A., Grilli, F., Lee, C.M., 2008. Seasonal variability and Po River plume
- 679 influence on biochemical properties along western Adriatic coast. J. Geophys. Res. Ocean. 113, 1–18.
- 680 https://doi.org/10.1029/2007JC004370
- 681 Menden-Deuer, S., Lessard, E.J., 2000. Carbon to volume relationships for dinoflagellates, diatoms, and
- 682 other protist plankton. Limnol. Oceanogr. 45, 569–579. https://doi.org/10.4319/lo.2000.45.3.0569
- 683 Monti, M., Minocci, M., Beran, A., Ivesa, L., 2007. First record of Ostreopsis cfr. ovata on macroalgae in the
- 684 Northern Adriatic Sea. Mar. Pollut. Bull. 54, 598–601.
- 685 https://doi.org/10.1016/j.marpolbul.2007.01.013
- 686 Morán, X.A.G., Estrada, M., 2005. Winter pelagic photosynthesis in the NW Mediterranean. Deep Sea Res.
- 687 Part I Oceanogr. Res. Pap. 52, 1806–1822. https://doi.org/10.1016/j.dsr.2005.05.009
- 688 Mozetič, P., Solidoro, C., Cossarini, G., Socal, G., Fonda Umani, S., 2010. Recent trends towards
- 689 oligotrophication of the northern Adriatic: evidence from chlorophyll a time series. Estuaries and
- 690 Coasts 33, 362–375. https://doi.org/10.1007/s12237-009-9191-7
- 691 Mozetič, P., Cangini, M., Francé, J., Bastianini, M., Bernardi Aubry, F., Bužančić, M., Cabrini, M., Cerino, F.,
- 692 Čalić, M., D'Adamo, R., Drakulović, D., Finotto, S., Fornasaro, D., Grilli, F., Kraus, R., Marić
- 693 Pfannkuchen, D., Ninčević Gladan, Ž., Pompei, M., Rotter, A., Servadei, I., Skejić, S., 2017.

694	Phytoplankton diversity in Adriatic ports : Lessons from the port baseline survey for the management
695	of harmful algal species. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2017.12.029
696	Narciso, Á., Gallo, F., Valente, A., Cachão, M., Cros, L., Azevedo, E.B., Barcelos e Ramos, J., 2016. Seasonal
697	and interannual variations in coccolithophore abundance off Terceira Island, Azores (Central North
698	Atlantic). Cont. Shelf Res. 117, 43–56. https://doi.org/10.1016/j.csr.2016.01.019
699	Penna, A., Ingarao, C., Ercolessi, M., Rocchi, M., Penna, N., 2006. Potentially harmful microalgal distribution
700	in an area of the NW Adriatic coastline: Sampling procedure and correlations with environmental
701	factors. Estuar. Coast. Shelf Sci. 70, 307–316. https://doi.org/10.1016/j.ecss.2006.06.023
702	Pfannkuchen, M., Godrijan, J., Marić Pfannkuchen, D., Iveša, L., Kružić, P., Ciminiello, P., Dell'Aversano, C.,
703	Dello Iacovo, E., Fattorusso, E., Forino, M., Tartaglione, L., Godrijan, M., 2012. Toxin-producing
704	Ostreopsis cf. ovata are likely to bloom undetected along coastal areas. Environ. Sci. Technol. 46,
705	5574–5582. https://doi.org/10.1021/es300189h
706	Piraino, S., Aglieri, G., Martell, L., Mazzoldi, C., Melli, V., Milisenda, G., Scorrano, S., Boero, F., 2014. Pelagia
707	benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea. Zootaxa 3794, 155–
708	468. https://doi.org/10.11646/zootaxa.3794.3.7
709	Piredda, R., Tomasino, M.P., D'Erchia, A.M., Manzari, C., Pesole, G., Montresor, M., Kooistra, W.H.C.F.,
710	Sarno, D., Zingone, A., 2017. Diversity and temporal patterns of planktonic protist assemblages at a
711	Mediterranean LTER site. FEMS Microbiol. Ecol. 93, fiw200. https://doi.org/10.1093/femsec/fiw200
712	Pistocchi, R., Cangini, M., Totti, C., Urbani, R., Guerrini, F., Romagnoli, T., Sist, P., Palamidesi, S., Boni, L.,
713	Pompei, M., 2005. Relevance of the dinoflagellate Gonyaulax fragilis in mucilage formations of the
714	Adriatic Sea. Sci. Total Environ. 353, 307–16. https://doi.org/10.1016/j.scitotenv.2005.09.087
715	Pugnetti, A., Acri, F., Alberighi, L., Barletta, D., Bastianini, M., Bernardi Aubry, F., Berton, A., Bianchi, F.,
716	Socal, G., Totti, C., 2004. Phytoplankton photosynthetic activity and growth rates in the NW Adriatic
717	Sea. Chem. Ecol. 20, 399–409. https://doi.org/10.1080/02757540412331294902
718	Raicich, F., 1996. On the fresh water balance of the Adriatic Sea. J. Mar. Syst. 9, 305–319.

719 https://doi.org/10.1016/S0924-7963(96)00042-5

- 720 Regione Emilia Romagna, 1978-2016. Qualità ambientale delle acque marine in Emilia-Romagna. Rapporti
- 721 annuali.
- 722 Revelante, N., Gilmartin, M., 1976. The effects of Po river discharge on phytoplankton dynamics in the
- 723 northern Adriatic Sea. Mar. Biol. 34, 259–271.
- 724 Russo, A., Artegiani, A., 1996. Adriatic Sea hydrography. Sci. Mar. 60, 33–43.
- 725 Smayda, T.J., Trainer, V.L., 2010. Dinoflagellate blooms in upwelling systems: Seeding, variability, and
- 726 contrasts with diatom bloom behaviour. Prog. Oceanogr. 85, 92–107.
- 727 https://doi.org/10.1016/j.pocean.2010.02.006
- 728 Solic, M., Krstulovic, N., Marasovic, I., Baranovic, A., Pucher-Petkovic, T., Vucetic, T., 1997. Analysis of time
- 729 series of planktonic communities in the Adriatic Sea: distinguish between natural and man-induced
- 730 changes. Oceanol. Acta 20, 131–143.
- 731 Tedesco, L., Socal, G., Bianchi, F., Acri, F., Veneri, D., Vichi, M., 2007. NW Adriatic Sea biogeochemical
- variability in the last 20 years (1986-2005). Biogeosciences 4, 673–687.
- 733 Throndsen, J., 1978. Preservation and storage, in: Sournia, A. (Ed.), Phytoplankton Manual. Monographs on
- 734 Oceanographic Methodology. UNESCO, Paris, pp. 69–74.
- 735 Totti, C., Artegiani, A., 2001. Phytoplankton time series in the Northern Adriatic Sea: the Senigallia transect
- 736 (1988-1994). Arch. Oceanogr. Limnol. 22, 107–111.
- 737 Totti, C., Marzocchi, M., Cucchiari, E.M., Romagnoli, T., Barletta, D., Artegiani, A., Solazzi, A., 2002. The
- 738 winter diatom bloom of the northern Adriatic Sea: long-term recurrence (1979-2001) and possible
- 739 relationships with climate, in: 2nd National Conference SINAPSI, Climate Variability and Effects on the
- 740 Mediterranean Marine Ecosystems. Portonovo (Ancona) 13–15 May 2002.
- 741 Totti, C., Cangini, M., Ferrari, C., Kraus, R., Pompei, M., Pugnetti, A., Romagnoli, T., Vanucci, S., Socal, G.,
- 742 2005. Phytoplankton size-distribution and community structure in relation to mucilage occurrence in
- the northern Adriatic Sea. Sci. Total Environ. 353, 204–217.
- 744 https://doi.org/10.1016/j.scitotenv.2005.09.028
- 745 Townsend, D.W., Cammen, L.M., Holligan, P.M., Campbell, D.A., 1994. Causes and consequences of

- 746 variability in the timing of spring phytoplankton blooms. Deep. Res. I 41, 747–765. Turk, V., Hagström, Å., Kovač, N., Faganeli, J., 2010. Composition and function of mucilage macroaggregates 747 748 in the northern Adriatic. Aquat. Microb. Ecol. 61, 279–289. https://doi.org/10.3354/ame01447 749 Tyrrell, T., Merico, A., 2004. Emiliania huxleyi: bloom observation and the conditions that induce them, in: 750 Thierstein, H.T., Young, J.R. (Eds.), Coccolithophores. From Molecular Processes to Global Impact. 751 Springer, pp. 75–97. Viaroli, P., Soana, E., Pecora, S., Laini, A., Naldi, M., Fano, E.A., Nizzoli, D., 2018. Space and time variations of 752 753 watershed N and P budgets and their relationships with reactive N and P loadings in a heavily 754 impacted river basin (Po river, Northern Italy). Sci. Total Environ. 639, 1574–1587. 755 https://doi.org/10.1016/j.scitotenv.2018.05.233 756 Xiao, W., Liu, X., Irwin, A.J., Laws, E.A., Wang, L., Chen, B., Zeng, Y., Huang, B., 2018. Warming and 757 eutrophication combine to restructure diatoms and dinoflagellates. Water Res. 128, 206-216. 758 https://doi.org/10.1016/j.watres.2017.10.051 759 Zenetos, A., Gofas, S., Verlaque, M., Inar, M.E., Garci, J.E., Bianchi, C.N., Morri, C., Azzurro, E., Bilecenoglu, 760 M., Froglia, C., Siokou, I., Violanti, D., Sfriso, A., Giangrande, A., Mastrototaro, F., An, T.K., Ballesteros, 761 E., Zingone, A., Gambi, M.C., Streftaris, N., 2010. Alien species in the Mediterranean Sea by 2010. A 762 contribution to the application of European Union's Marine Strategy Framework Directive (MSFD). 763 Part I. Spatial distribution. Mediterr. Mar. Sci. 12, 381–493. https://doi.org/10.12681/mms.87 764 Zingone, A., Dubroca, L., Iudicone, D., Margiotta, F., Corato, F., Ribera d'Alcalà, M., Saggiomo, V., Sarno, D., 765 2010. Coastal phytoplankton do not rest in winter. Estuaries and Coasts 33, 342-361. 766 https://doi.org/10.1007/s12237-009-9157-9 767 Zoboli, O., Viglione, A., Rechberger, H., Zessner, M., 2015. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube. Sci. Total 768 769 Environ. 518-519, 117-129. https://doi.org/10.1016/j.scitotenv.2015.02.087
 - 770

771	Legends of figures
772	Figure 1
773	The LTER Senigallia transect in the northern Adriatic Sea. The study station is highlighted by the red circle.
774	
775	Figure 2
776	Seasonal anomalies of air temperature [°C] at the meteorological station of Torrette (Ancona) from 1988 to
777	2016. The red segment represents the linear regression, calculated by means of the ordinary least square
778	method. The slope represents the annual rate [°C/year].
779	
780	Figure 3
781	Seasonal anomalies of atmospheric pressure (mbar <u>hPa</u>) from 1988 to 2016 calculated by ECMWF ERA-
1 782	Interim model. The red segment represents the linear regression, calculated by means of the ordinary least
783	square method. The slope represents the annual rate <u>([mbar<u>hPa</u>/year]]</u> .
784	
785	Figure 4
786	Seasonal 99 th percentile of rainy-day precipitation [mm] from 1988 to 2016 at Senigallia meteorological
787	station. The red segment represents the linear regression, calculated by means of the ordinary least square
788	method. The slope represents the annual rate [mm/year].
789	
790	Figure 5
791	Seasonal mean of Dry Spell Length from 1988 to 2016 at Senigallia meteorological station. Vertical bars
792	represent the range between the seasonal minimum and maximum values. The red segment represents the
793	linear regression of maximum values, calculated by means of the ordinary least square method. The slope
794	represents the annual rate [days/year].

796	Figure 6
797	Trends of anomalies of physical and chemical parameters from 1988 to 2016 of (A) surface seawater
798	temperature (°C), (B) salinity, (C)dissolved inorganic nitrogen (DIN) <u>concentration (</u> μ mol I ⁻¹), (D) phosphate
799	<u>concentration</u> , (μ mol l ⁻¹), (E) silicate <u>concentration (μmol l⁻¹).</u>
800	
801	Figure 7
802	Po River discharge [m ³ s ⁻¹] daily (grey line) and annual averages (triangles). The dashed red line represents
803	the average over the whole period, equal to 1502 m ³ s ⁻¹ . Source: Annali Idrologici, Servizio Idro-Meteo-
804	Clima, ARPA Emilia-Romagna, 1979-2016.
805	
806	Figure 8
807	Mean annual cycle of phytoplankton abundance (cells l^{-1}) in 1988-2002 (A,C,E,G,I) and 2007-2016
808	(B,D,F,H,Jb,d,f,h,j) periods: (A,Ba,b) total phytoplankton, (C,De,d) diatoms, (E,Fe,f) dinoflagellates, (G,Hg,h)
809	
	coccolithophores, (اربالي) phytoflagellates. Box plot report the data distribution with the mean (+) median
810	coccolithophores, $(\underline{I},\underline{J},\underline{J},\underline{J})$ phytoflagellates. Box plot report the data distribution with the mean (+) median (\Box)), the interquartile range (black box), the non-outlier range (vertical bars), the outliers (\bigcirc) and the
810 811	coccolithophores, ([]) phytoflagellates. Box plot report the data distribution with the mean (+) median (□)), the interquartile range (black box), the non-outlier range (vertical bars), the outliers (○) and the extremes (*).
810 811 812	coccolithophores, $(\underline{I},\underline{J},\underline{J},\underline{J})$ phytoflagellates. Box plot report the data distribution with the mean (+) median (\Box)), the interquartile range (black box), the non-outlier range (vertical bars), the outliers (\bigcirc) and the extremes ($*$).
810 811 812 813	coccolithophores, ([]) phytoflagellates. Box plot report the data distribution with the mean (+) median (□)), the interquartile range (black box), the non-outlier range (vertical bars), the outliers (○) and the extremes (*).
810 811 812 813 814	<pre>coccolithophores, ([li_j]) phytoflagellates. Box plot report the data distribution with the mean (+) median (□)), the interquartile range (black box), the non-outlier range (vertical bars), the outliers (○) and the extremes (*). Figure 9 Mean percent composition of phytoplankton community in terms of abundance during the study period on</pre>

817	Table 1. Results of ANOVA and Fisher's tests about the physical and chemical parameters (surface seawater
818	temperature (°C), salinity, dissolved inorganic nitrogen (DIN)(μ mol I ⁻¹), phosphate (μ mol I ⁻¹), silicate (μ mol I ⁻
819	1) in 1988-2002 and 2007-2016. Mean values ± standard error (SE). ns, not significant; * p<0.05; ** p<0.01;
820	*** p<0.001.

		1988-2002	2007-2017	р-	Fisher test
Parameter	Season	Avg ± SE	Avg ± SE	level	
Temperature	Winter	8.55 ± 0.43	9.35 ± 0.42	ns	
(°C)	Spring	18.23 ± 0.86	18.32 ± 0.89	ns	
	Summer	24.44 ± 0.28	25.12 ± 0.33	ns	
	Autumn	15.09 ± 0.95	14.52 ± 0.98	ns	
Salinity	Winter	35.0 ± 0.3	33.6 ± 0.5	ns	
	Spring	34.5 ± 0.5	33.4 ± 0.7	ns	
	Summer	35.1 ± 0.4	35.0 ± 0.4	ns	
	Autumn	33.1 ± 0.8	32.8 ± 0.8	ns	
DIN	Winter	9.71 ± 1.19	23.98 ± 5.04	***	88-02 < 07-16
(µmol l ⁻¹)	Spring	6.42 ± 1.89	10.96 ± 2.65	ns	
	Summer	1.60 ± 0.27	1.98 ± 0.54	ns	
	Autumn	10.05 ± 2.24	28.65 ± 5.63	***	88-02 < 07-16
PO 4	Winter	0.11 ± 0.03	0.12 ± 0.03	ns	
(µmol l ⁻¹)	Spring	0.04 ± 0.01	0.20 ± 0.13	*	88-02 < 07-16
	Summer	0.08 ± 0.01	0.26 ± 0.10	**	88-02 < 07-16
	Autumn	0.11 ± 0.03	0.26 ± 0.07	**	88-02 < 07-16
Si(OH) ₄	Winter	3.83 ± 0.90	6.36 ± 1.96	ns	
µmol l ⁻¹)	Spring	2.75 ± 0.54	3.55 ± 1.35	ns	
	Summer	2.28 ± 0.44	3.57 ± 0.98	ns	
	Autumn	6.61 ± 1.40	9.15 ± 2.90	ns	

I

ha formattato: Pedice

Table 2. List of phytoplankton taxa characterized by the highest IndVal for each season in the 1988-2002

826 period. IndVal values indicated in italic are significant at p <0.05, those in bold italic are significant at p

827 <0.01, those in bold italic and underlined are significant at p <0.001.

	INDval	INDval	INDval	INDval
Таха	Winter	Spring	Summer	Autumn
Skeletonema marinoi	<u>77.50</u>	3.40	0.00	0.35
Pseudo-nitzschia delicatissima complex	29.95	13.81	1.81	1.60
Emiliania huxleyi	28.10	13.94	1.95	10.61
Protoperidinium spp.	15.81	6.54	4.14	0.72
Chaetoceros curvisetus	13.73	2.25	0.00	4.09
Und. prasinophytes	13.07	6.79	0.88	13.04
Cyclotella spp.	1.65	<u>35.20</u>	4.34	1.95
Und. cryptophytes	9.61	33.48	10.67	14.84
Syracosphaera pulchra	0.28	31.72	3.15	3.53
Dactyliosolen fragilissimus	1.73	27.82	5.26	11.34
Prorocentrum micans	0.36	25.49	6.39	15.46
Chaetoceros tenuissimus	1.16	22.51	1.53	0.07
Tripos fusus	1.59	22.40	1.04	7.47
Nitzschia longissima	0.26	21.34	0.04	0.74
Cylindrotheca closterium	4.39	19.79	12.32	22.71
Tripos furca	0.01	16.53	6.69	7.64
Pseudokephyrion spp.	0.81	14.96	2.30	0.64
Thalassiosira spp.	10.03	12.46	1.59	5.75
Dinophysis caudata	0.00	11.46	2.38	1.41
Gymnodinium spp.	0.56	10.71	8.06	8.00
Gyrodinium spp.	2.53	10.47	0.01	0.55
Cerataulina pelagica	6.74	14.82	35.39	3.53
Proboscia alata	0.53	3.07	34.01	9.46
Guinardia flaccida	1.46	0.29	31.51	2.66
Pseudo-nitzschia pseudodelicatissima complex	2.53	13.78	20.90	15.61
Hemiaulus hauckii	0.12	0.30	19.95	0.62
Thalassionema nitzschioides	1.36	1.48	19.56	20.71
Anoplosolenia brasiliensis	0.09	6.36	17.70	1.68
Prorocentrum compressum	0.00	1.42	17.54	0.02
Pseudoscourfieldia marina	0.00	12.45	17.36	0.64
Calciosolenia murrayi	0.00	0.00	17.32	2.53
Guinardia striata	0.00	0.00	15.77	4.69
Calycomonas spp.	0.74	5.28	12.07	0.94
Lioloma pacificum	0.01	0.00	2.06	36.70
Chaetoceros spp.	1.37	7.49	1.90	29.36
Asterionellopsis glacialis	8.07	1.16	0.01	21.63
Leptocylindrus danicus	0.16	1.58	12.65	19.76
Chaetoceros affinis	0.00	0.29	0.87	17.33
Chaetoceros socialis	6.26	0.18	0.00	14.73
Thalassionema frauenfeldii	1.10	3.93	0.03	14.25
Pleurosigma spp.	2.00	2.32	12.01	13.26
Und. pennate diatoms	8.34	3.84	7.30	11.84
Chaetoceros lorenzianus	0.06	0.83	10.59	11.45

828

Table 3. List of phytoplankton taxa characterized by the highest IndVal for each season in the 2007-2016

831 period. IndVal values indicated in italic are significant at p <0.05, those in bold italic are significant at p

832 <0.01, those in bold italic and underlined are significant at p <0.001.

	INDval	INDval	INDval	INDval
Таха	Winter	Spring	Summer	Autumn
Skeletonema marinoi	<u>92.43</u>	0.72	0.01	1.03
Thalassiosira spp.	<u>60.74</u>	0.17	0.00	7.04
Ditylum brightwellii	<u>52.10</u>	0.00	0.00	1.44
Thalassiosira rotula	<u>46.43</u>	0.08	0.00	16.55
Lauderia annulata	32.49	0.00	0.00	18.04
Chaetoceros danicus	29.27	0.20	1.83	19.24
Chaetoceros curvisetus	23.34	11.20	9.72	7.78
Dactyliosolen phuketensis	23.00	0.11	0.00	1.20
Prorocentrum cordatum	2.17	<u>58.39</u>	0.60	0.17
Prorocentrum micans	3.37	<u>57.30</u>	3.83	15.63
Dactyliosolen fragilissimus	2.51	56.60	8.46	15.54
Noctiluca scintillans	0.48	51.99	0.00	0.34
I nalassionema nitzschioides	0.97	47.37	26.75	6.21
Euglena spp.	5.05	46.53	2.24	15.48
Chaetoceros spp.	16.31	44.71	6.05	8.00
Nitzschia longissima	1.17	<u>43.64</u>	5.57	0.05
Cyclotella spp.	1.07	36.20	14.42	14.40
Prorocentrum triestinum	0.00	36.70	2.04	0.03
Alexandrium spp.	1.30	34.88	9.16	6.53
Chaeloceros tenassimas	4.38	34.30	1.90	6.59
Pseudo-nitzschid delicatissima complex	2.48	33.22	7.28	5.55
Protoperialmum Cr. stehn	1.35	31.10	2.93	4.17
Dinopriysis sacculas	10.00	25.70	12.97	0.08
Lind prosinenticula	19.95	24.14	1.44	17.56
Maringocohgarg moditorrange	0.00	23.03	13.33	17.50
Brotoporidinium divorgons	0.00	22.03	1.19	2.02
Protopertainiani aivergens Proboscia alata	0.14	19.74	27 92	5.00
Phizosolenia spp	1 12	0.33	12 20	4 31
Reudo-nitzschia nseudodelicatissima complex	1.12	0.31	40.35	12.88
Pleurosiama sp	0.95	1.84	40.31	12.00
Lentocylindrus danicus	8.53	1.04	35.75	24.40
Pseudo-nitzschia galaxiae	0.01	0.36	34.10	16.69
Prorocentrum compressum	0.78	8 19	33.67	1 57
Chaetoceros lorenzianus	2 99	8.80	28.95	14.96
Rhabdolithes claviaer	0.00	0.00	26.81	1.25
Guinardia flaccida	0.94	2 59	25.38	7 91
Bacteriastrum spp	0.00	10.06	21.25	0.72
Anoplosolenia brasiliensis	0.00	13.12	21.22	10.31
Pseliodinium vaubanii	0.00	0.03	19.84	2.46
Calvcomonas sp.	0.00	13.90	18.33	0.80
Chaetoceros affinis	0.25	0.10	18.24	17.66
Guinardia striata	0.04	0.00	17.18	16.23
Asteromphalus sp.	0.68	0.00	16.66	5.30
Ceratium trichoceros	0.00	0.00	16.69	5.05
Lioloma pacificum	0.01	0.00	6.90	51.84
Cylindrotheca closterium	1.13	18.29	6.20	46.87
Asterionellopsis glacialis	0.70	0.03	0.21	42.42
Emiliania huxleyi	0.31	9.69	0.21	39.82
Cerataulina pelagica	1.41	15.90	23.48	38.98
Dictyocha fibula	17.24	0.17	0.00	<u>37.92</u>
Eucampia cornuta	0.13	0.00	0.41	36.05
Chaetoceros rostratus	0.00	0.00	0.19	29.94
Chaetoceros costatus	0.08	0.00	0.00	27.31
Chaetoceros tortissimus	0.00	0.00	0.18	27.25
Calciosolenia murrayi	0.00	0.02	0.26	27.00
Chaetoceros brevis	1.23	0.00	1.39	26.26
Chaetoceros lauderi	0.15	0.00	1.77	24.73

Syracosphaera pulchra	13.39	1.05	17.71	23.91
Pseudo-nitzschia multistriata	0.18	0.00	0.21	22.05
Protoperidinium spp.	0.22	6.57	7.18	19.97
Hemiaulus sinensis	0.79	0.00	0.41	19.76
Chaetoceros diversus	0.00	0.00	9.45	19.33
Tripos fusus	16.04	13.23	2.23	17.81
Distephanopsis staurodon	3.50	0.00	0.00	16.82

Table 4. Results of ANOVA and Fisher's tests about the phytoplankton abundances (total phytoplankton,

diatoms, dinoflagellates, coccolithophores, phytoflagellates) in 1988-2002 and 2007-2016. Mean values

836 (cells I^{-1}) ± standard error (SE). ns, not significant; * p<0.05.

837

		1988-2002	2007-2016	p-level	Fisher test
Parameter	Season	Avg ± SE	Avg ± SE		
Total phyto	Winter	8,621,429 ± 1,760,650	9,287,326 ± 3,367,632	ns	
(cells l⁻¹)	Spring	4,404,514 ± 793,052	8,674,748 ± 2,747,719	ns	
	Summer	2,391,304 ± 253,979	3,186,198 ± 485,135	ns	
	Autumn	4,122,920 ± 575,328	2,557,843 ± 511,565	ns	
Diatoms	Winter	4,918,631 ± 1,408,129	6,821,744 ± 3,307,979	ns	
(cells l⁻¹)	Spring	1,959,299 ± 725,205	4,997,232 ± 2,215,694	ns	
	Summer	544,510 ± 164,527	543,914 ± 161,908	ns	
	Autumn	1,138,577 ± 396,971	731,001 ± 305,514	ns	
Dinoflagellates	Winter	75,367 ± 13,451	39,868 ± 10,153	ns	
(cells l⁻¹)	Spring	164,206 ± 26,521	195,865 ± 57,969	ns	
	Summer	102,044 ± 22,519	76,114 ± 19,164	ns	
	Autumn	127,427 ± 39,372	46,761 ± 8,929	ns	
Coccolithophores	Winter	40,488 ± 10,498	7,731 ± 3,542	*	88-02 > 07-16
(cells l ⁻¹)	Spring	41,460 ± 13,498	37,198 ± 12,917	ns	
	Summer	14,571 ± 3,478	8,401 ± 2,774	ns	
	Autumn	21,988 ± 5,282	19,171 ± 5,206	ns	
Phytoflagellates	Winter	3,578,648 ± 994,727	2,417,982 ± 290,289	ns	
(cells l⁻¹)	Spring	2,048,230 ± 201,226	3,436,440 ± 688,167	ns	
	Summer	1,508,917 ± 178,144	2,557,685 ± 424,376	ns	
	Autumn	2,810,677 ± 426,364	1,760,593 ± 270,294	ns	

838

Table 5. Results of ANOVA and Fisher's tests about the phytoplankton biomass (total phytoplankton,

842 C l⁻¹) ± standard error (SE). ns, not significant; * p<0.05, ** p<0.01, ***p<0.001.

		1988-2002	2007-2016	p-level	Fisher test
Parameter	Season	Avg ± SE	Avg ± SE		
Total phyto	Winter	205.44 ± 59.79	406.56 ± 134.65	ns	
(µgС І⁻¹)	Spring	107.50 ± 38.24	624.28 ± 167.73	***	88-02 < 07-16
	Summer	45.41 ± 9.52	63.51 ± 14.49	ns	
	Autumn	103.40 ± 34.01	119.36 ± 33.88	ns	
Diatoms	Winter	174.95 ± 57.46	292.03 ± 165.64	ns	
(µgC l⁻¹)	Spring	56.84 ± 25.77	102.07 ± 42.97	ns	
	Summer	20.93 ± 5.92	34.17 ± 12.30	ns	
	Autumn	64.92 ± 30.85	79.20 ± 33.80	ns	
Dinoflagellates	Winter	5.33 ± 1.11	102.43 ± 53.36	ns	
(µgC I⁻¹)	Spring	39.03 ± 14.71	500.19 ± 157.70	***	88-02 < 07-16
	Summer	16.01 ± 5.10	17.43 ± 2.85	ns	
	Autumn	16.26 ± 3.77	30.07 ± 6.81	ns	
Coccolithophores	Winter	0.97 ± 0.39	1.52 ± 0.92	ns	
(µgC I⁻¹)	Spring	1.14 ± 0.46	2.07 ± 0.61	ns	
	Summer	0.80 ± 0.21	0.74 ± 0.27	ns	
	Autumn	2.16 ± 1.06	1.54 ± 0.43	ns	
Phytoflagellates	Winter	24.02 ± 6.96	10.58 ± 1.30	**	88-02 > 07-16
(µgС І⁻¹)	Spring	10.15 ± 1.54	19.94 ± 3.97	*	88-02 < 07-16
	Summer	5.98 ± 1.00	11.17 ± 2.57	ns	
	Autumn	17.84 ± 3.52	8.55 ± 1.35	*	88-02 > 07-16