

Review

Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users

Gianfranco Romanazzi 1,*, Yann Orçonneau ², Marwa Moumni ¹, Yann Davillerd ² and Patrice André Marchand ²

- ¹ Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; m.moumni@staff.univpm.it
- ² Institut Technique de l'Agriculture et de l'Alimentation Biologiques (ITAB),149 rue de Bercy, 75012 Paris France; y.orco17@gmail.com (Y.O.); yann.davillerd@itab.asso.fr (Y.D.); patrice.marchand@itab.asso.fr (P.A.M.)
- Correspondence: g.romanazzi@univpm.it; Tel.: +39-071-220-4336

Abstract: Synthetic pesticides are widely used to protect crops from pathogens and pests, especially for fruits and vegetables, and this may lead to the presence of residues on fresh produce. Improving the sustainability of agriculture and, at the same time, reducing the adverse effects of synthetic pesticides on human health requires effective alternatives that improve the productivity while maintaining the food quality and safety. Moreover, retailers increasingly request fresh produce with the amounts of pesticides largely below the official maximum residue levels. Basic substances are relatively novel compounds that can be used in plant protection without neurotoxic or immune-toxic effects and are still poorly known by phytosanitary consultants (plant doctors), researchers, growers, consumers, and decision makers. The focus of this review is to provide updated information about 24 basic substances currently approved in the EU and to summarize in a single document their properties and instructions for users. Most of these substances have a fungicidal activity (calcium hydroxide, chitosan, chitosan hydrochloride, Equisetum arvense L., hydrogen peroxide, lecithins, cow milk, mustard seed powder, Salix spp., sunflower oil, sodium chloride, sodium hydrogen carbonate, Urtica spp., vinegar, and whey). Considering the increasing requests from consumers of fruits and vegetables for high quality with no or a reduced amount of pesticide residues, basic substances can complement and, at times, replace the application of synthetic pesticides with benefits for users and for consumers. Large-scale trials are important to design the best dosage and strategies for the application of basic substances against pathogens and pests in different growing environments and contexts.

Keywords: European Union; fungicide residues; plant protection; regulation EU 1107/2009

1. Introduction

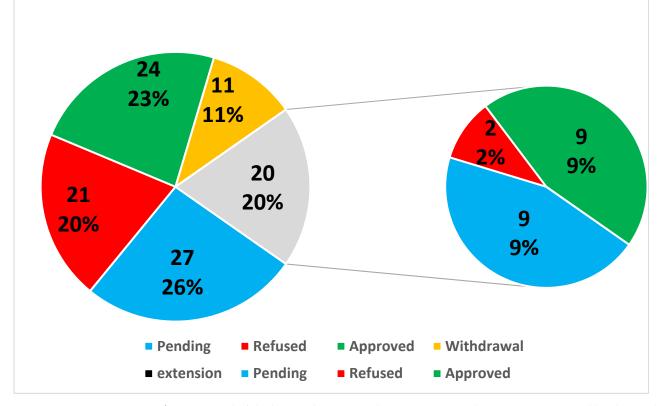
The world population continues to grow and will reach 9.7 billion by 2050 [1]. For this, increasing food production is the primary objective of all countries. According to the latest estimates of the Food and Agriculture Organization of the United Nations [2], up to 40% of food crops worldwide are lost every year due to pests and plant diseases. Crop losses caused by plant disease alone cost the global economy \$220 billion annually [3]. Crop protection is essential to reduce yield losses, improve food quality, and increase grower profitability. The application of plant protection products (PPPs) is the main way to protect crops against pathogens, pests, and weeds [4]. However, human, animal, and environmental risks associated with the use of chemical PPPs are a growing concern. All these concerns have encouraged the onset of research to develop alternative approaches to control plant diseases [5]. Reducing the use of pesticides being a major challenge in

Citation: Romanazzi, G.; Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users. *Molecules* **2022**, *27*, 3484. https://doi.org/10.3390/ molecules27113484

Academic Editor: James Barker

Received: 15 April 2022 Accepted: 24 May 2022 Published: 28 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). developed countries, European Union Member States are required to implement National Action Plans that set quantitative objectives, timetables, and indicators related to reducing the impact of pesticide use (Directive 2009/128/CE) [6,7]. The use of basic substances is approved in the European Union under Article 23 of EC Regulation No 1107/2009 and which are listed in Part C of the Annex of the Regulation (EC) No 540/2011 [8]. In the EU, Integrated Pest Management (IPM) has been mandatory since January 2014, and among the rules of the IPM is the reduction of the application of synthetic pesticides whenever possible [9]. For sustainable and qualitative food production, respectful of the need to produce in sufficient quantities, biocontrol has grown tremendously through the last few years [10]. The PPP EU Regulation (EC) 1107/2009 was established to ensure a level of protection of humans, animals, and the environment and, at the same time, to unify for the entire EU the rules on the placing on the market of plant protection products [11,12]. Basic substances are sources of interest for research as alternative to synthetic pesticides, since they are used in human medicine or as a food ingredient, so they have no residue concerns and then no maximum residue limit (MRL) and, usually, no preharvest interval [13,14]. The lack of MRL contributes to a better prevention of contamination in plant protection, a better control of the residues and a reduction of analytical problems, of decommissioning, and of market withdrawal [14]. Another benefit of basic substances, and perhaps the most important, is their very low ecologic impact. Basic substances are products that are used as 'foodstuffs', as defined in Article 2 of Regulation (EC) 178/2002 [15] cosmetic, and does not have an inherent capacity to cause endocrine-disrupting, neurotoxic or immunotoxic effects, but they are also plant protection means and not placed on the market as a plant protection product. Article 28 of Regulation (EC) No. 1107/2009 set the absence of marketing authorizations and usages allowance for basic substances. Regulation (EC) No. 1107/2009 introduced the new category of 'basic substances', which are defined by recital 18 as 'certain substances which are not predominantly used as plant protection products may be of value for plant protection, but the economic interest of applying for approval may be limited. Therefore, specific provisions should ensure that such substances, as far as their risks are acceptable, may also be approved for plant protection use'. The properties of basic substances are described in Article 23 of the EU Regulation (EC) No 1107/2009 [11]. In 2021, the Euphresco project 'BasicS' contributed to demonstrate the effectiveness toward pests and pathogens of basic substances, with potential benefits for the farmers, the consumer, and the environment [16,17]. The basic substances have a positive impact on crop health when applied preventively. Certain basic substances, such as chitosan, stimulate the defense system of crops against several classes of pathogens, including fungi, viruses, bacteria, and phytoplasma [18]. According to the EU pesticides database, 24 basic substances were approved for use, 7 were withdrawn, 18 applications were not approved and 8 are still pending [19,20]. This review includes currently approved basic substances that have a protective potential and are a valuable addition to the range of measures and protection methods intended for use. Detailed information about basic substances and updates on new available compounds can be found at the page https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances (accessed on 23 May 2022). The standard-folder for approval of a basic substance, called 'Basic Substance Application Template (BSAT)', is based on the structure of the European Union evaluation report of an active substance that can be used for plant protection purposes. BSAT refers to all areas of risk assessment in the regulation of phytopharmaceutical product uses and shall be considered as a structured model to build a file collating all available information and enabling to demonstrate that the evaluated substance meets the eligibility criteria of a basic substance (SANCO 10,363 rev.10, 2021). Therefore, nowadays, a full deposit under International Uniform ChemicaL Information Database (IUCLID) software is mandatory since March 2021. Basic substances are submitted individually (Annex I inclusion dossier) at the first stage; then, later, an automatic inclusion was adopted for food/foodstuff basic substance from plant or animal origin [21,22]. Recently, an automatic consideration procedure (without any Annex I inclusion dossier) by Expert Group for Technical advice on Organic Production (EGTOP)/Directorate-General for the Agriculture and Rural Development (DGAgri) of positive ongoing basic substance approval (from Directorate-General Health and Food Safety—DGSanté to DGAgri) to generate an automatic EGTOP/DGAgri outcome for inclusion (or not). This provision bypasses the traditional route of substances in organic production in plant protection through dossiers submitted to Member States, but so far, no basic substance has been rejected by the Regulatory Committee of Organic Production (RCOP), and with the current procedure, are no longer studied than substances of mineral origin (or non-foods).

This review aimed to highlight the properties of approved basic substances, summarize, and provide this information for phytosanitary consultants, scientists, growers, stakeholders, companies, and consumers.

2. Results

Out of the 86 basic substance application submitted to the European Commission until now, less than one-third have been approved (24) (Tables 1 and 2), 19 have been refused, 6 have been withdrawn during their assessment (Table 3), 8 are currently being processed by the EC (Table 4 and Figure 1), and 2 already successfully submitted via IU-CLID software (Ginger extract and *Capsicum frutescens*).

Figure 1. Total of the basic substance applications (BSA) and extensions presented by the results (%).

Currently, 24 basic substances are approved, of which 21 are also approved in organic production; for example, talc was validated in 2021 following EGTOP PPP VII and is being currently voted on at RCOP [23] and clayed charcoal was submitted. Recently, voted chitosan does not seem to be acceptable directly in organic production as the basic substance from its microorganism's origin, although in the context of food quality. Basic substances are approved by EU Regulations, so the application month, where reported in Table 1, is related to the Northern Hemisphere.

	t	ation	Pro-			Applicatio	n			Application	n Rates		Notes
Basic Substance	Approval Regulation and Applicant	Crops and/or Situation	Function in Plant Pro- tection	Pests or Group of Pests Target	Method	Growth Stage & Season	No. Min/Max	IBA ^{1 1} (Days)	Min-Max	Water L/ha Min-Max	Total Rate	* IHd	
Equisetum arvense L.	Reg. (EU) No 462/ 2014 ITAB	Fruit trees Apple fruit (Malus pu- mila, Malus domestica) Peach-tree (Prunus per- sica)	Fungicide	Foliar fungi like scab disease (Venturia inaequalis), Powdery mil- dews (Podosphaera leucotricha) Peach leaf curl (Taphrina defor- mans) Downy mildew	Foliar application spray- ing	From green leaf tip (BBCH 53) to flowers fad- ing (BBCH 67) Spring From 1st	26	7	200 g/hL	500-1000	1000-2000 g/ha 200-600	Na ¹	Plant homogenate extracted with hot water and filtered to be used 24 h after preparation
		(Vitis vinifera) Cucumber		(Plasmopara viti- cola), Powdery mil- dew (Erysiphe ne- cator) Powdery mil- dow (Pode	Root feeding ap-	shoots (BBCH 10) to cluster tight- ening (BBCH 57) Spring to summer From (9th	2	3-4		300	g/ha 600 g/ha	15	-
		(Cucumis sa- tivus) roots		dew (<i>Podo-sphaera fusca</i>) Root fungi like common root rot, seed- ling blight (<i>Pythium</i> spp.)	plication and fo- liar application spraying	leaf unfolded on main stem—BBCH 19) to 9 or more pri- mary side shoots visible (BBCH 49)							

Table 1. Application of the basic substances approved.

Tomato copersicun culentum)	1 es- (Alternaria	Foliar application spraying	First inflo- rescence visi- ble (BBCH 51) to BBCH 59 summer		14					
Strawbern (Fragaria Ananassa) Raspberr (Rubus ida	y Gray mold × (Botrytis cinerea), y Powdery		Growth restart till end of fructification. Early spring till end of summer Stage BBCH 1 to BBCH 89	4–8	5–14	225 g/hL	300	675 g/ha	Na	
Potato (Solanum tuberosum	Late blight (Phytophthora		Stage BBCH 1 until BBCH 9							
Ornamen trees use of which <i>Prunus</i> sp Roses <i>Rosa</i> spp.	tal Ornamental fungal diseases,	Included in mulch	Not relevant	1	Na	Na	Na	9000 g/ha	_	Dry plant aerial parts usage never applied on whole hectare

			oidium and mildew								
Reg. (EU) 2021/1446 - ChiPro -	Fruits berries and small fruit	Elicitor, having a fungicide and bacteri- cide effect via the stim-	Plant elicitor, plant resistance against patho- genic fungi and bacteria	Low–Medium volume spraying	From 1 leaf development (main shoot) to 7 develop- ment of fruit	4-8	14	50–200 g/hL	200–400	100–800 g/ha	0
	Vegetables Cereals	ulation of natural de- fence mech- anisms						50–100 g/hL	-	100–400 g/ha	_
	Spices Crops for animal feed Cereals			Low volume	Before sow-	1	Na		Na	Na	_
	Seed treatment			spraying	ing	1	ina		INd	ina	
	Potatoes Seed treatment			Low volume spraying/dipping	-				Na	Na	_
	Sugar beet Seed treatment							50–200 g/hL	Na	Na	_
	Ornamental bulbous plants			Bulb treatment – Dipping/drench- ing	Germination (BBCH 00– 01)			50–100 g/hL		100–800 g/ha	_
				Low–Medium volume spraying	Leaf develop- ment- senescence (BBCH 10- 92)	1–8	5–7	50–200 g/hL	200–400		
				Low–Medium volume spraying	Leaf develop- ment -senes-						

						(BBCH 10– 92)							
Sucrose	Reg. (EU) No 916/2014 ITAB IRBI	Apple trees/ orchards (Malus pu- mila, Malus domestica)	Elicitor, having an insecticidal and fungi- cidal effect via the	Fruits borer like Codling moth (<i>Cydia pomo-</i> <i>nella</i>) ³	Foliar application spraying early in the morning before 9 AM	From spring BBCH stage 6 to summer BBCH stage 89	7–10	15	10 g/hL	600–1000	60–100 g/ha	Na	Cold water solution prepared just before application
		Sweet Maize (Sweet corn) (Zea mays L. convar. sac- charata Koern)	stimulation of natural defence mecha- nisms	Corn borer (Ostrinia nubilalis Hbn.) ³	(Solar time)	From the BBCH stage 12 to 89	3-4			200	20 g/ha	-	
		Maize (corn grain) (<i>Zea mays</i> subsp. <i>mays</i> (L.)) and corn seed		Corn borer (Ostrinia nubilalis Hbn.) ³		From the BBCH stage 12 to 51	3-4						
		Grapevine (Vitis vinifera)		Vine leafhop- per (Scaphoideus titanus) ³		From the BBCH stage 17 to 57	3	7		150	15 g/ha	_	
		Grapevine (Vitis vinifera)	-	Downy mildew (Plasmopara viti- cola) ³		From 1st shoots to cluster tight- ening spring (BBCH 10– 57)	up to 2			100-200	10–20 g/ha	_	
Calcium hydroxide	Reg. (EU) 2015/762 IFOAM	Pome fruit	Fungicide	Neonectria galligena	Sprinkler applica- tion	Leaf drops end of Octo- ber till end of December	2–7	5–14	104–208 L/ha ⁴ 1460 L/ha ⁵	5000– 10.000 L/ha	25–50 kg/ha 350 kg/ha³	Na	
Calciur	H OAM	Pome fruit and stone fruit		<i>Neonectria</i> galligena and other diseases	Spray ap-plication	-			With prod- ucts at 24% 63–104 L/ha ⁴ 728 L/ha ⁵ with	500–1000 L/ha	15–25 kg/ha⁴ 175 kg/ha⁵	-	

									products at 33.12% 45– 76 L/ha ⁴ 532 L/h ⁵			
				Brush application directly on prun- ing wounds and old cancers on stems ⁶	Winter March	to	1–2	21	With products ucts at 24% 450 L/ha³ 900 L/ha³ 900 L/ha³ 900 at 33.12% 450 L/ha³ 900 450 L/ha³ 900 L/ha³	water ⁶	149.04 kg ⁴ 299.08 kg ⁵	
Reg. (EU) No 540/2011 Reg. (EU) 2015/1108 Reg. (EU) 2019/149 ITAB	Wheat seeds (<i>Triticum vul-gare</i>), common wheat (<i>Triticum aes-tivum</i>), durum wheat (<i>Triticum du- rum</i>), spelt (<i>Triticum spelta</i>) Barley seeds (<i>Hordeum vul-</i>	Fungicide, bactericide and herbi- cide	Common bunt (Tilletia caries, Tilletia foetida) Barley leaf stripe	Seed treatment just before seeding	Autumn		1	Na	25–50 ⁷ per 100 kg of seed		24–100 7.8	Na

Market vege-	Alternaria spp.		Autumn to		Seeds are		Seeds are	
tables			spring		tem-porary		temporary	
Gardening					soaked in		soaked in	
like carrot					the dilution		the prepara-	
(Daucus					then re-		tion	
carota),					moved		then	
tomato					morea		removed	
(Solanum							Telillo Y eu	
lycopersicum),								
bell pepper								
(Capsicum								
spp.)								
Market	Clavibacter	_		1		Na		
vegetables	michiganensis,			1		ina		
gardening	Clavibacter							
like tomato	michiganensis							
(Solanum	subsp.							
(sounum Lycopersicum)	michiganensis,							
Lycopersicum)	Pseudomonas							
/ h = 11 == ==== ==								
bell pepper	syringae							
(Capsicum	pv. tomato, Xanthomonas							
spp.),								
cabbage	<i>campestris</i> pv.							
(Brassica	vesicatoria,							
oleracea)	Botrytis aclada							
White and	Bacteria:	Tools application	Na	1 per day 1	400 g/hL	Na	Na	Waiting period 30
red chestnut	Pseudomonas	before sawing or		to each				seconds after wash
(Aesculus L.),	syringae pv.	cutting ⁹		time before				ing
Sycamore spp.	aesculi			use				
(option), Acer								
spp.								
Hawthorns	Fire blight	_	Na		Na	Na	Na	
(Rosaceae):	(Erwinia		1.14		1 144	1 14	1 144	
Crataegus	amylovora)							
spp., Ame-	unigi0001u)							
lanchir,								
Aronia,								
Aroniu, Chaenomeles,								
Cotoneaster,								
Cotoneaster, Cydonia,								
 Cyuoniu,								

tin till Pri car Py Sou								
Ma ma inc Ac ast Eu Foi Ma Ph Poj Pri rus Ro Sy	any orna- ental plants cluding er, Cotone- er, onymus, rsythia, agnolia, iladelphus, pulus, unus, Py-	Bacterial blight /canker (Pseudo- monas syringae pv. syringae)	Na		Na	Na	Na	
Pla tan sp. sp. L., Soj	nne sp., Pla- nus, Prunus ., Chestnut ., Aesculus phora spp., nden sp.,	Rot fungi, especially phellins: <i>Phellinus,</i> Tinder pol- ypore and ruffled (<i>Fomes</i> fomentarius)	Na		Na	Na	Na	
		Vascular fungi: <i>Ophiostoma</i> spp.	Na	Na	Na	Na	Na	
Ma	er sp.	Wilt disease	Na	Na	Na	Na	Na	

		Ailanthe sp., Ailanthus altissima		Verticillium spp.	Na	Na	Na	Na	Na	Na	Na		
		Maple sp., Acer sp.; Sycamore, Acer spp.; Chestnut sp., Aesculus L.; Beech sp., Fagus spp.		Sooty-Bark disease (Cryptostroma corticale)	Na	Na	Na	Na	Na	Na	Na	_	
	ITAB/ITEIP- MAI	Medicinal aromatic and perfume crops		Weeds	Spray ¹⁰	Pre crop emergence	1	Na	10 kg/hL	100 L vin- egar (no dilution)	10 kg/ha	>12 0	Phytotoxic to plant, may kill the young plants ¹¹
	Charbonneaux- Brabant	paths, bor- ders, sidewalks and terraces		Weeds	Direct spray (spot application)	Vegetation Period of the weeds	1–2	7–21	6 kg/hL	100 L (di- luted vinegar)	6–12 kg/ha	Na	Temp > 20 °C phyto- toxic to plant, may kill the young plants
outra spp. cortex	Reg. (EU) 2015/1107 ITAB	Fruit trees, Peach tree (Prunus per- sica)	Fungicide	Foliar fungi like Taphrina defor- mans	Foliar application spraying	From 1st shoots (BBCH 10) to cluster tightening (BBCH 57) spring	2-6	7	222.2 g/hL	500–1000 L/ha	1111.1– 2222.2 g/ha	Na	Plant homogenate extracted with hot water (infusion), fil- tered and diluted by 3, to be used up to a maximum of 24 h af- ter preparation. The
		Apple fruit (Malus pu- mila, Malus domestica)		Foliar fungi like scab disease (Venturia inaequalis), powdery mil- dew (Podosphaera leucotricha)		From green leaf tip (BBCH 53) to flowers fading (BBCH 67) spring							product cannot be applied in case of hot temperature. It is used in case of rainy period

		Grapevine (Vitis vinifera)		Downy mildew (Plasmopara viti- cola), Powdery mil- dew (Erysiphe ne- cator)		From 1st shoots (BBCH 10) to cluster tightening (BBCH 57) spring to summer				100–300	222.2–666.6 g/ha	
Lecithins	Reg. (EU) No 540/2011 Reg. (EU) 2015/1116 ITAB DAE	Fruit trees Apple fruit (Malus pu- mila) Peach tree (Prunus per- sica)	Fungicide	Powdery mil- dew (Podosphaera leucotricha) Peach leaf curl (Taphrina defor- mans)	Spray application	BBCH 03 to BBCH 79	3–12	5	75 g/hL	500–1000	375–750 g/ha	5
		Gooseberry Ribes uva- crispa		Powdery mil- dew (Microsphaera grossulariae)		BBCH 10 to BBCH 85	2–4		200 g/hL		1000– 2000 g/ha	_
		Market vege- tables gardening like cucumber (<i>Cucumis sa-</i> <i>tivus</i>)		Powdery mil- dew (Podosphaera fusca)		BBCH 10 to BBCH 89	2-6		150 g/hL	1000– 1500	1500– 2250 g/ha	-
		Lettuce (Lactuca sa- tiva)		Erysiphe cichoracearum			2	7				
		Mash (Valerianella locusta)		Erysiphe polyphaga			1	Na				
		Tomato (Lycopersicum esculentum)		Tomato late blight (Phytophthora infestans)			2 to 6	7	_			
		Endive (Cichorium endivia L.)		Alternaria cicho- rii								
		Ornamentals,	-	Powdery mil- dew	-		3–12	5	75 g/hL	100-300	75–225 g/ha	_

		especially roses		and other fun- gal diseases									
		Grapevine (Vitis vinifera)	-	Downy mildew (Plasmopara viti- cola), Powdery mil- dew (Erysiphe ne-		BBCH 11 to BBCH 85						30	-
		Strawberry (Fragaria × Ananassa) Raspberry (Rubus idaeus)	-	cator) Powdery mil- dew and other fun- gal diseases, i.e., Podosphaera aphanis, Red core (Phy- tophthora fragariae)		Growth re- start till end of fructi- fication Early spring till end of Summer Stage BBCH 10 to BBCH 89 (2nd crop, other straw- berries have reached them specific color)			200 g/hL	300–500	600–1000 g/ha	Na	_
		Potato (Sola- num tu- berosum)		Late blight (Phytophthora infestans)		Stage BBCH 10 until BBCH 90	3–12			100–400	200–800 g/ha		
		Carrot (Daucus carota subsp. sativus)		Powdery mil- dew (Leveillula tau- rica)		BBCH 19 to BBCH 90	4	14		1000	2000 g/ha	_	
Fructose	Reg. (EU) 2015/1392 ITAB IRBI	Apple fruit (Malus pu- mila, Malus domestica)	Elicitor, having an insecticidal and fungi- cidal effect	Fruits borer like Codling Moth (<i>Cydia</i> <i>pomonella</i>) ¹³	Foliar application spraying early in the morning be- fore 9 AM (solar time)	From spring BBCH stage 6 to summer BBCH stage 65	5–7	21	10 g/hL	600–1000	60–100 g/ha	Na	Cold water solution prepared just before application
		Maize (Corn grain) (Zea mays subsp.	via the stimulation of natural	Symphylans (Scutigerella immaculata) ¹³	Treatment in seedling line	-	1	Na		40	40 g/ha	_	

		mays L.) Sweet Maize (Sweet corn) (Zea mays L. convar. saccharata Koern)	defence mecha- nisms		before 9 AM (solar time)							
		Zea mays subsp. mays L.	-		Foliar application Spraying early in the morn- ing before 9 AM (solar time)	1 application at 2–3 leaves (BBCH 12– 13) + 1 application at 4 leaves (BBCH 14)	2	1–2	_	82	8.2 g/ha	
		Grapevine (Vitis vinifera)	_	Vine leafhop- per (Scaphoideus titanus) ⁴	Foliar application spraying early in the morning be- fore 9 AM (solar	From the BBCH stage 17 to 57	3	3	_	150	15 g/ha	
		Grapevine (Vitis vinifera)		Downy mildew (Plasmopara viti- cola) ⁴	time)	From 1st shoots to cluster tight- ening Spring (BBCH 10– 57)	up to 12	>12		100–200	10–20 g/ha	
Sodium hydrogen carbonate	Reg. 2015/2069(EU)Reg. 2015/2069(EU)DanishEnvi- ronmentalProtection AgencyAgency	Vegetables Soft fruit Ornamentals	Fungicide and herbi- cide	Mildews (<i>Sphaerotheca</i> spp., <i>Oidium</i> spp.)	Broad cast using field spray or green- house spray	BBCH 12 to 89	1-8	10	333–1000 g/hL	300-600	2000–5000 1 g/ha or 0.33–1.0% Max 1% Dose ad- justed depending on water vol- ume	Different crops hav different sensitivity Check concentra tions for phytotoxic ef fects before widely used
		Grapevine (Vitis vinifera)	_	Powdery mil- dew (Erysiphe ne- cator)	Broadcast using air blast or- chard sprayer	BBCH 12 to 89			420–2000 g/hL	200–600	2500–5000 g/ha or 0.42–2.0%	Volumes and dose will vary according to crop canopy size. Conc. highe
		Apple	_	Apple scab (Venturia inaequalis)	Broadcast using air blast	BBCH 10 to 85	1–8		500–1000 g/hL	500-1000	2500–5000 g/ha or 0.5–1.0%	than 1–2% can be phytotoxic

		Fruit of different types (oranges, cherries, apples, papaya)		Storage diseases like Blue mold (<i>Penicillium</i> <i>italicum</i>) Green mold (<i>Penicillium</i> <i>digitatum</i>)	orchard sprayer Dipping or surface treatment	Harvested fruit	1–2		1000–4000 g in 100 L wa- ter		1–4%	_	Dose rates between 1–4% has been tested
		Potted plants		Liverwort/ Bryophyte (thallose, <i>Lunularia</i> <i>cruciata</i>) Green thallus of liverwort plus, fruiting bodies	Direct application of powder	Post emergence late summer or winter	1	Na	Na	Na	122 kg/ha	Na	The product is used for post emergence application. Phytotoxicity of this use was not tested, check on small num- ber of plants before it is widely used
Whey	Reg. (EU) 2016/560	Cucumber (Cucumis sativus), zucchini squash (Cucurbita pepo)	Fungicide and viru- cide	Podosphaera fusca, Podosphaera xanthii, Golovinomyces cichoracearum, Erysiphe orontii, Sphaerotheca fuliginea, Leveillula cucurbitacearum	Foliar spray ¹²	From three weeks after sowing (9th leaf unfolded on main stem) to 9 or more primary side shoots visible (BBCH 19– 49) ¹⁴	3–5	7	0.6 L– 3 L (0.036 –0.24 kg/hL)	1000–1500	6–30 L (0.36– 2.4 kg/ha)	Na	Whey should be used rapidly after collec- tion, not stored in metal vessel
		Grapevine (Vitis vinifera)	-	Powdery mil- dew (Erysiphe ne- cator)		From 1st shoots to cluster tightening Spring ¹⁵	-	7–10	6 L–30 L (0.36–2.4 kg/hL)	100–30,0 15	6–30 L (0.36– 2.4 kg/ha)	-	

Glove fingertip and mechani cutting t All crops	nical ; tools	Viruses (Mechanically transferable) e.g., Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV),	Dipping	On tools and glove fingertips	Before/af- ter every plant contact ¹⁶	Na	Na	Na	Na		Dipping for 5 s for gloves and 5 min for mechanical cutting tools. For reasons of efficacy use whey
		Pepper mild mottle vi- rus (PMMV), Cucumber green mottle mosaic virus (CGMMV), Tomato brown rugose fruit virus (ToBRFV)									protein powder with at least 80% protein content. Replace the whey solution regularly (e.g., after each crop row) to prevent cross contamination of the plant
cluding cherry	tree	Mediterranean fruit fly (<i>Ceratitis capi- tata</i>), Cherry fly (<i>Rhagoletis</i> <i>cerasi</i>) Olive fly (<i>Bactrocera oleae</i>)	Placed in physical traps	Na	Mass trap- ping: 1 trap per tree up to 100 traps/ha	42-56 17	max 4 kg/hL	Mass trapping: max 100	Mass trap- ping: max 4 kg/ha	Na	
	(Prunu Olive (Olea paea)	(Olea euro-	(Prunus spp.) tata), Cherry fly (Rhagoletis cerasi) cerasi) Olive trees (Olea euro- paea) euro-	(Prunus spp.) tata), Cherry fly (Rhagoletis cerasi) cerasi) Olive trees Olive fly (Olea euro- (Bactrocera oleae) paea)	(Prunus spp.) tata), Cherry fly (Rhagoletis (Rhagoletis cerasi) Olive trees (Olea euro- (Bactrocera oleae) paea)	(Prunus spp.) tata), to 100 Cherry fly traps/ha (Rhagoletis cerasi) Olive trees (Olive fly Olive fly (Olea euro- paea)	(Prunus spp.) tata), to 100 Cherry fly traps/ha (Rhagoletis cerasi) Olive trees Olive fly (Olea euro- (Bactrocera oleae) paea)	(Prunus spp.) tata), to 100 Cherry fly traps/ha (Rhagoletis cerasi) Olive trees (Olea euro- (Bactrocera oleae) paea)	(Prunus spp.) tata), to 100 Cherry fly traps/ha (Rhagoletis cerasi) Olive trees Olive fly (Olea euro- (Bactrocera oleae) paea)	(Prunus spp.) tata), to 100 Cherry fly traps/ha (Rhagoletis cerasi) Olive trees Olive trees Olive fly (Olea euro- (Bactrocera oleae) paea)	(Prunus spp.) tata), to 100 Cherry fly traps/ha (Rhagoletis cerasi) Olive trees Olive fly (Olea euro- (Bactrocera oleae) paea)

		Other crops where <i>C. capi-</i> <i>tata</i> cause dam- age		fruit fly (Ceratitis tata)	capi-									
Sunflower oil	Reg. (EU) 2016/1978 ITAB		ungicide	Tomato p dery mildev (Pseudoidium olycopersici)	w n ne-	Foliar application spraying	BBCH 32–37 then BBCH 61–71	2 to 4	8	0.092 kg/hL (0.1 L) -0.46 kg/hL (0.5 L)	500 to 1000	0.46 kg/hL (0.5 L)– 4.6 kg/hL (5 L)	2	Precautions must be taken to avoid over- watering and spill- ing of the disper- sion. Treatment should be avoided during flowering time
Urtica spp.	Reg. (EU) 2017/419 ITAB	Apple tree fu	nsecticide, ungicide, caricide	<i>glandis),</i> Black cherr	yzus n 7 d phid us phid ju-	Foliar spraying or Shoot spraying Directly on aphids	Spring sum- mer until BBCH 87 (fruit ripe for picking)	1–5	7–15	1500 g/hL (dry matter) ¹⁸	300–900 L/ha	4500–13,500 g/ha ¹⁷	7	Preventive treat- ment is inefficient 24h of maceration at 20 °C is enough
		Bean, for ex- ample French bean (<i>Phaseolus</i> vulgaris)		Black b aphid (<i>Aphis fabae</i>)	bean)		Spring Summer until BBCH 89 (fully ripe)				300–500 L/ha ¹⁸	4500–7500 g/ha ¹⁸	-	

(5	otato Solanum tu- erosum)	Peach-potato aphid (<i>Myzus persicae</i>)	Na	Spring Summer until BBCH 49 (end of tuber formation)	Na	Na	Na		4500–10,000 g/ha ¹⁷	Na	
V L (<i>I</i> <i>se</i> C (<i>I</i>	eaf Vegetables: Lettuce Lactuca ativa), Cabbage Brassica Iaeracea)	Aphids, for ex- ample: cabbage aphid (<i>Brevicoryne</i> <i>brassicae</i>), <i>Nazo-</i> <i>noviaribis nigri</i>)	Foliar spraying or shoot spraying directly on aphids	Spring Summer until BBCH 19 (9 or more true leaves unfolded)	1–5	7–15	1500 g/hL (dry matter) 18	-	4500– 7500 g/ha ¹⁸	7	Preventive treat- ment is inefficient 24 h of maceration at 20 °C is enough
E (5	Ider tree Sambucus acemosa)	Elder aphid (<i>Aphis sambuci</i>)	1	Spring Summer	-			400-800	6000– 12,000 g/ha 18		
	lose Rosa sp.)	Rose aphid (Macrosyphum rosae)						300–600	4500–9000 g/ha ¹⁸		
S	piraea sp.	Aphis spi- raephaga									
(C B ol ra B pr ra ra	rassicaceae cabbage— irassica leracea, apeseed— rassica na- us, adish—	Fleabeetle (Phyllotreta nemorum) Diamondback	Foliar spraying	Spring Summer Until BBCH 19 (9 or more true leaves unfolded Spring	1–6	-		300-500	4500–10,000 g/ha ¹⁸		
	Caphanus sa- ivus)	moth (Plutella xylostella)		Summer until BBCH 49 (Typical leaf mass reached)							

(Ma tica) Peer	tree us com-	Codling moth (Cydia pomo- nella)		2 treatments in April, 1 treatment in May	3	15		300–900	4500–13,500 g/ha ¹⁸		
amp Frer	nch bean Iseolus	Two-spotted spider mite (Tetranychus ur- ticae)		Spring Summer Until BBCH 89 (fully ripe)	1–6 (com- monly 3)	7–21	_	300 -500	4500–7500 g/ha ¹⁸	7	24 h of maceration at 20 °C is enough
	pevine is vinifera)	Two-spotted spider mite (<i>Tetranychus ur- ticae</i>), red spi- der mite (<i>Tetranychus te-</i> <i>larius</i>)		Spring Summer Until BBCH 89 stage	1–6 (three before flowering, three after flowering)			300–600	4500–9000 g/ha ¹⁸		
(Mu fami <i>Bras</i> <i>Sina</i> radi	sica sp., pis sp., sh— hanus sa-	Alternaria sp.	Foliar spraying	Spring Summer until BBCH49 (typical leaf mass reached)	1–6	7–15	1500 g/hL (Based on dry matter) ¹⁸	300–500	4500–7500 g/ha ¹⁸	7	
Cuc ceae (Cuc	urbita- e cumber— umis sa-	Powdery mildew (Erysiphe polygoni), Alternaria alternata f. sp. cucurbitae		Until BBCH 89 (typical fully ripe colour)							

Fruit trees (Apple trees— <i>Malus domes-</i> <i>tica,</i> Plum trees— <i>Prunus do-</i> <i>mestica,</i> Peach trees—	Leaf spot (<i>Al-</i> Folia ternaria alter- and nata), Frui brown rot, blos- spra som blight (<i>Mo-</i> nilinia laxa), Bo- trytis cinerea, back bread mold (<i>Rhizopus</i>		Spring Summer Until BBCH 87 (fruit ripe for picking)				300–900	4500–13,500 g/ha ¹⁸		
Prunus per- sica, Sweet cherry tree – Prunus avium) Grapevine (Vitis vinifera)	stolonifer) Downy mildew Folia (Plasmopara viti- spra cola)	ar aying	Spring Summer Until BBCH 89 stage			1500 g/hL (Dry mat- ter) ¹⁹	300–600	4500– 9000 g/ha ¹⁸	_	
Potato (Sola- num tu- berosum)	Late blight (Phytophthora infestans)		Spring Summer Until BBCH 49 (End of tuber for- mation)				300–500	4500–7500 g/ha ¹⁸	_	
Cucumber roots (<i>Cucumis</i> sativus)	Powdery mil- dew (<i>Podosphaera</i> <i>fusca</i>), Root fungi like common root rot, seedling blight (<i>Pythium</i> spp.)	Included in mulch	Not relevant	1	Na	Na	Na	15 kg/ha 18	Na	Dry plant aeri parts
Tomato (Lycopersicum esculentum)	Early blight (Alternaria solani), Septoria blight									

				(Septoria lycops-									
				ersici)									
			_										
		Ornamental		Ornamental									
		trees use		cryptogramic									
		of which		diseases									
		Prunus spp.		Rose black spot									
		Roses		(Marsonia spp.),									
		(Rosa spp.)		Rose rust									
				(Phragmidium									
				mucronatum),									
				leaf curl dis-									
				eases, monilio-									
				ses,									
				Oidium and									
				mildew									
	Reg. (EU)	Grapevine	Protectant		Soil burying	Na	1/3 years	1095	Na	Na	500	Na	
Clayed charcoal	2017/428	(Vitis vinifera)	Trotectuirt	measles)	concurying		1,0 years	1070		1.44	000		
arc	2017/120	(vino enigera)		caused by a									
[ch	Ets Christian			complex of									
yed	Callegari			fungi that in-									
Jay	Callegall			cludes									
0													
				several species of									
				01 Phaeoacremo-									
				nium									
				primarily by									
				Phaeoacremo-									
				nium minimum									
				(Pm)									
				(currently									
				known as P. ul-									
				<i>timum</i>), and by									
				Phaeomoniella									
				chlamydospora									
				(Pch)									

Hydrogen peroxide	Reg. (E 2017/409 ITAB	1 ((((Vegetables— Solanaceae like tomato (Lycopersicon esculentum), bell pepper (Capsicum spp.)	Fungicide, bactericide	Soil bacteria (Ralstonia solanacerum), Botrytis cinerea	Apply before cut- ting	Na	To be ap- plied be- fore every use of the tool	Na	Na	Na	Na	Na	Waiting period 30 s after washing
		1 1 1 1 1 1 2 2	Lettuce (Lac- tuca sativa) Horticulture flowers like common zinnia (Zinnia		Bacterial leaf spot pathogen (Xanthomonas campestris pv. vitians) Fungi, especially pathogenic Alternaria zinnia, Alternaria	Seed treatment be- fore sowing ¹⁹	Na	1						Seeds are immersed in the prepared so- lution for 5 to 15 min (seed treatment)
Sodium chloride	Reg. (El 2017/1529 Reg. (El 2021/556	U) (elegans) Grapevine (Vitis vinifera)	Fungicide, insecticide, herbicide	alternata, Fusarium spp. Fungal diseases Powdery mildews (Erysiphe necator)	Foliar application spraying	shoots (BBCH 10) to cluster tightening	t 1–2	Na	600– 2000 g/hL	200	1200–4000	30	In case of 2 applica- tions: one at 20 g/L + one at only 10 g/L. Maximum total rate of salt shall not ex-
So	ITAB AHDB						(BBCH 57) Spring to summer							ceed 6 kg/ha per year. Careful application should be controlled in terms of spray and target should be only the foliage. Low volumes are recommended in or- der to avoid spill. It is recommended not to spray every

										year, only in emer- gency cases. Maximum total rate of sodium chloride shall not exceed 6 kg/ha per year
Mushrooms like Agaricus bisporus	Fungal diseases like cobweb disease (<i>Cladobotryum</i> strains—i.e., <i>Mycophilum</i>), dry bubble disease (<i>Lecanicillium</i> <i>fungicola</i>), wet bubble disease (<i>Mycogone</i> <i>perniciosa</i>)	Hand trowel cup scoop	On finding the pathogen. No earlier than 16 days into grow cycle	1	Na	0.03 g/kg	-Dry	80–100 g/ha	Na	Salt is used as a spot treatment to cover incidents of disease. On a well-managed farm, disease will be spotted early with specialist teams identifying and spot treating. This avoids harvesters acci- dently spreading disease thorough contami- nation of personal protective equipment (PPE) and transfer to other areas. This in turn will keep on site disease levels low and avoid the use of large vol- umes of salt.
Grapevine (Vitis vinifera)	European grapevine moth (<i>Lobesia</i> <i>botrana</i>)	Foliar application spraying	1st late April to May (BBCH 55– 57) 2nd July (BBCH 75– 77) 3rd September (BBCH 83– 91)	1–3	Depen- ding on egg stage	600 g/ha	200	1200–3600 g/ha	30	Careful application should be controlled in terms of spray and target should be only the foliage. Low volumes are recommended to avoid spill. It is rec- ommended not to spray every

year, only in emergency cases

		Salt swamps and salt marshes		Baccharis halimfolia	Spot application on drilled tree stump or on soil in direct vicinity of tree stump	November –February	1	Na	Na	Na	10–100 g per tree stump ²⁰	Na	Treatment is allowed only in salt marshes and salt swamps zones as defined by national or local authorities. Treatment should be performed out- side the rainy period
Beer	Reg. (EU) 2017/2090 ITAB	All edible and nonedi- ble crops	Mollusci- cide	Pest slugs and snails	Specific traps for slugs	At the begin- ning of infes- tation	1–5	Na	Not appli- cable (be- cause ready to use liq- uid)	Na	Na	Na	
Mustard seed powder	Reg. (EU) 2017/2066 ITAB	Wheat seeds (Triti- cum vulgare, Triticum aes- tivum), Durum wheat (Triti- cum durum), Spelt (Triti- cum spelta)	Fungicide for seed treatment	Fungi like Common Bunt (Tilletia caries, Tilletia foetida)	Seed application before sowing	Summer to Autumn	1	Na	Na	Na	1.5 kg/100 kg seeds	Na	Mix 1.5 kg of mus- tard seeds powder with 4.5 L water. Treat 100 kg seeds with the slurry cre- ated

Talc E553B	Reg.(EU)2018/691COMPOEx-pertFranceSAS		Insectifuge, fungifuge	Physical bar- rier, Insectifuge: Insects and mites like Cacopsylla pyri, Cacopsylla fulguralis, Drosophila suzukii, Panonychus ulmi, Bactrocera oleae	Foliar application spraying	From BBCH 41	2–5	21–28	1st applica- tion: 2.13 to 3.54 kg/hL succeeding applica- tions: 1.7 to 2.83 kg/hL	600–1000	1st application: 21.25 kg/ha succeeding applica- tions: 17 kg/ha	Na	Water solution prepared just before application and maintained stirred
		Fruit trees i.e., Apple fruit (<i>Malus</i> <i>Domestica</i>), Pear tree (<i>Pyrus</i> sp.) Grapevine		Physical bar- rier, Fungifuge: Foliar fungi like mildews (Ven- turia inaequalis, Erysiphe necator)		From BBCH	3–5 2–5	14–21 21–28	1.28–2.13 kg/hL 4.25–8.5	150–300	12.75 kg/ha	-	
Onion oil	Reg. (EU) 2018/1295 Bionext	ery,	Repellent, scent mask- ing	Carrot root fly (Psilla rosae)	Masking the smell of the umbelliferous crop by onion oil evaporated from dispensers	20 Shortly after planting or crop emergence (around mid– April) until end of No- vember (before har- vest)	1	Na	kg/hL Na	Pot dispenser s 0.08–0.160 L/ha Granule Dispenser 17.6–35.2 g/ha	Na	Na	4–8 dispensers per ha professional use only

Molecules	2022,	27,	3484
-----------	-------	-----	------

L-cysteine	Reg.(EU)2020/642Soleo-EcoSo- lutions	All crops and forestry in tropical areas	Insecticide	Leaf ants	cutting	Hand spreader	held	Post swarm- ing (July)	1–3	30	3–36 granule	Na	kg/ha	0.015 Max g/ha ²¹	Na	Used as an insecti- cide against ants. Application is made by hand on nest of ants. The applica- tion can be renewed, if necessary, with a maximum of 3 ap- plications. Mini- mum/Maximum
																1

Cow milk	Reg. (EU) 2020/1004 Basic-Eco-Lo- gique	Grapevine (Vitis vinifera)	Fungicide and viru- cide	Powdery mil- dew (Erysiphe necator)	Foliar application Spraying	From 1st shoots (BBCH 07) to inflores- cences fully developed; flowers sepa- rating (BBCH	3–6	6–8	10–40 L/hL	100–300	10–120 L/ha	Na	
		Vegetable Gardening pumpkin (Cucurbita pepo)	-	Pumpkins powdery mil- dew (Podosphaera fusca)		57) ²² From leaf de- velopment (BBCH 01) until flower- ing (BBCH 06) ²³	3–4	7–12	50 L/hL	400	200 L/ha		No application ir presence of fruits
		Flower Gerbera (Gerbera jamesonii)	-	Powdery mil- dew (Erysiphe cichoracearum)		Before and during flowering (BBCH 51– 69)	3–4	7	16 L/hL	500–1000	80–160 L/ha	8	

			Cucumber (Cucumis sa- tivus), Zuc- chini squash (Cucurbita pepo)		Powdery Mildew (Podo- sphaera fuligi- nea)		From weeks sowing leaf un on stem) t more mary shoots (BBCH 49) ²⁴	(9th folded main o 9 or pri- side visible	3-4		5–10 L/hL	1000-1500	50–150 L/ha	Na	
			Soybean (<i>Glycine max</i> (L.) Merr)	-	Soybean Pow- dery mildew (Erysiphe dif- fusa)			leaves 19–	3–4	7	18 L/hL	1000–1500	180–270 L/ha	-	
	Glov finge and mech cutti	Glove fingertips and mechanical cutting tools All crops	-	Viruses (me- chanically transferable) e.g., Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV), Pepper mild mottle vi- rus (PMMV), Cucumber green mottle mosaic virus (CGMMV)	Dipping	On tool	S	Before/af- ter every plant contact	Before/af- ter every plant contact	Before/after every plant contact	Na	Na		Dipping for 2 s. For reasons of effi- cacy use milk with at least 3,5% protein content. Replace the milk regularly (e.g., after each crop row) to prevent cross-contamination of the plants	
a bulb ex-	Reg. 2021/81 ITAB	(EU)	Potatoes (Solanum tuberosum)	Fungicide	Early blight (Al- ternaria solani)	Spray	BBCH 2	21–85	3–5	7	1 kg/hL	600– 1000	6–10 L/ha (0.3–0.5 kg onion bulb/ha)	Na	
Allium cepa bulb ex-			Vegetable Gardening Tomato (Ly- copersicum es- culentum)	-	Tomato late blight (Phy- tophthora infestans)		75 day plantin BBCH 2	g		3-4		1500	15 L/ha (0.75 kg onion bulb/ha)	-	

		Cucumber (Cucumis sa- tivus)		Cucumber gray mold (<i>Botrytis</i> <i>cinerea</i>)				7					
Chitosan	Reg. (EU) 2022/456	Horticulture	Fungicide	Plant elicitor, plant resistance against patho-	Spray Low–Medium volume spraying	BBCH 09 to BBCH 89	4–8	2 weeks	50–100 g/hL	200-400	100-400	Na	Chitosan can be pre- pared for use fol- lowing any of the
•	KitoZyme	olive trees	-	genic fungi and	1,50	From 1st new					800-3200	_	two recipes pro-
		grapes		bacteria		leaf develop- ment BBCH 10 to devel- opment of fruit BBCH 71				200–600	800–7800	_	vided in Appendix of Reg. (EU) 2022/456 (prepara- tion for use).
		grass				BBCH 09 to BBCH 89				200-400	800-3200		
		postharvest fruit treat- ment	-	Pathogenic fungi and bacte- ria	Immersion	Postharvest BBCH 89+	1	-	1	-	-	_	

¹ IBA: Interval between applications; PHI: minimum preharvest interval; Na: Data not available; ² The product cannot be applied in case of hot temperature. It is used in case of rainy period; ³ Indirect actions, no direct insecticide and fungicide properties; ⁴ maximum of rate per application; ⁵ maximum total rate per crop/season; ⁶ The aqueous solutions in this application are applied with few or without dilution. Here the case without dilution is calculated. Usually, not all trees are treated with brush application but only injured trees. In the calculation of maximum rate, it was assumed that 3.000 trees per ha are treated with 0,15 L product per tree. This means that all trees of an orchard would be treated with several big wounds, which would be really the maximum rate and in reality, is very improbable; ⁷ Expressed as acetic acid. 1/1 dilution of vinegar/water L/L; ⁸ Considering 0.9 to 2 qt of seeds per ha; ⁹ Expressed as acetic acid. 50 mL/1 L dilution of vinegar/water for vinegar at 8% acetic acid; ¹⁰ Of main active substance acetic acid for vinegar at 10% acetic acid; ¹¹ Expressed as acetic acid in a preparation with 60% vinegar (diluted in water), for vinegar at 10% acetic acid; ¹² Treatments must be delayed 24–48 h or more after rain; ¹³ Spray when there is sun (preferably morning); ¹⁴ Do not apply when any plant is at a later growth stage than BBCH 49; ¹⁵ With a maximum of 10% concentration (30 L in 300 L); ¹⁶ Do not apply on treating fingertips right before or during harvest of edible commodities; ¹⁷ Depending upon environmental factors such as climate and topography; ¹⁸ The quantities of fresh nettle (or dry matter) written represents the quantities of nettle used in the recipe, but not the quantities that are effectively put in field – there is a filtration before; ¹⁹ Treatment, just before sowing; ²⁰ Assuming plant density of between 0.1/m² to 1/m²; ²¹ 300 g of granules per nest multiplied by 120 nest/ha = 36 kg product/ha. Considering a maximum of 8

Substance Name	Use(s)	Application	Recipe	Formulation Type
Equisetum arv- ense	Fungicide	Spraying on crops	2–2.25% water dilution 200 to 225 g/100 L water The product cannot be applied in case of hot tem- perature. It is used in case of rainy period	Dispersible concen- trate
		Dry	9 kg / 100 kg mulch	Mulch
Chitosan hy- drochloride	Elicitor	Spraying on crops or seeds	0.05–0.2% water dilution 50 to 200 g/100 L water Must be applied within 24 h	Soluble powder, paste
Sodium hydro- gen carbonate	Fungicide	Aerial parts spraying Postharvest dipping	0.33–2% water dilution 333 to 2000 g/100 L water 1–4% water dilution 1 to 4 kg/100 L water	Soluble powder
	Herbicide	Direct dusting	10 g for a 50 cm Ø pot	Dry powder
Sunflower oil	Fungicide	Foliar spraying	0.1–0.5% water dilution 100 to 500 mL/100 L water	Oil dispersion
Hydrogen per- oxide	Seed treatment	Seeds soaking	Ready-to-use solution (<5%)	Ready-to-use solu- tion
<i>Urtica</i> spp.	Fungicide In- secticide	Spraying	3–4 days maceration in water at 20 °C Fresh leaves (75 g/L) or dried leaves (15 g/L) Water dilution by 6 of filtered maceration	Dispersible concen- trate
	secticide	Mulch incorpo- ration	Addition of dried aerial parts. 83 g/kg of mulch	Mulch
Clayed char- coal	Protectant	Soil burying	Buried. 500 kg/hectare maximum	Pellet
Sodium chlo-	Fungicide In-	Foliar spraying	600 to 2000 g/100 L water	Soluble powder
ride	secticide	Substrate bury- ing	Mix salt in the substrate. 30 g/kg substrate (3%)	Pellet
Beer	Molluscicide	Trap	Covered slug traps. 1 trap per m ² maximum	Pure product
Di Ammonium Phosphate	Attractant	Trap	Place in traps/bottle, 30 g/L.	Soluble powder
Onion oil	Odor mask	Oil dispenser	Fill the dispenser with onion oil only (20 mL) Fill the dispenser with oil then add the pellets (4.4 g oil per 30 g granule)	Oil or pellet
L-cysteine	Insecticide	Hand-held spreader	Mixture with matrix (flour, food grade) at a con- centration of maximum 8%	Bait (ready for use)
		Foliar spraying	5–50% water dilution = 0.5 to 5 L of cow milk filled up with water to 10 L	
Cow milk	Fungicide	Dipping	Dipping tools for 2 s in undiluted cow milk. For reasons of efficacy use milk with at least 3.5% protein content	Soluble concentrate
<i>Allium cepa</i> L. bulb extract	Fungicide	Spray applica- tion	Boil 500 g of chopped onions in 10 L of water for ten minutes then let infuse for a quarter of an hour and filter the mixture	Dispersible concen- trate
Chitosan	Fungicide	Spray applica- tion	Preparation 1: added to a half-filled water tank, making sure the powder is evenly distributed	Soluble powder

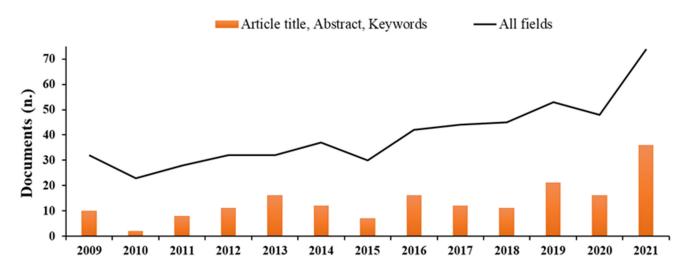
Table 2. Typical uses of the basic substances.

		&	over the water surface to avoid aggregation. The	
		Immersion	mixture should be stirred vigorously while add-	
			ing the remaining water. The mixture should be	
			used as soon as possible.	
			Preparation 2: dissolved in water with $pH < 5$.	
			The pH of water should be regulated by adding 7	
			mL vinegar (8% of acetic acid) per 1 L of water).	
		Seed	Vinegar to be diluted in compliance with the rates	
	F · · 1	treatment	of application reported in Appendix II.	Liquid for seed
	Fungicide	Tools	Undiluted for uses as herbicide on medicinal aro-	treatment
Vince		disinfection	matic and perfume crops.	
Vinegar	TT1. * .* .1 .	Spray or spot	For the herbicidal use in spot applications on	Timil
	Herbicide	application/	paths, borders, sidewalks and terraces, vinegar	Liquid
		In combination	needs to be diluted to a concentration of 60% vin-	Liquid
	pH modifier	with chitosan	egar in water (60/40 vinegar/water).	

Some applications were not validated by DGSanté and Member States during discussion and votes. Some were withdrawn (Table 3) by applicants during evaluation or discussions with no regulatory trace, while some were processed up to the vote and finally non-approved with corresponding Implementing Regulations (Table 4).

 Table 3. Basic substance applications retired during the evaluation process.

	Basic Substance	es Remove	ed/Withdrawn during Evaluation
Substance Name	Intended Use(s)	EFSA Opinion	Reason(s)
<i>Castanea</i> and <i>Schinopsis</i> sp. tannins	Bactericide, fungi- cide and nemati- cide	EN 1363	Limited number of studies about toxicity and residues led to a doubt concerning exposure assessment. Non-dietary exposure considered as hazardous
Honey from rhododen- dron	Rodenticide	EN 1155	Lack of studies concerning substance composition and effi- cacy on rodents. Rodents in traps might suffer 'too long'
Extract from rhododen- dron	Rodenticide	EN 1596	Lack of studies concerning substance composition and effi- cacy on rodents. Rodents in traps might suffer 'too long'
Quassia amara extract	Insecticide and re- pellent	EN 1382	Data gaps were identified for genotoxicity, residues, environ- mental risk and exposure assessment. Concerns were raised regarding reproductive and endocrine toxicity
Valeriana officinalis	Frost protection	None	Potential neurotoxicity, Valerian herbal tea makes it easier to fall asleep
Citrus pulp	-	None	-
Potassium metabisulfite	-	None	-
Didecyl-dimethylammo- nium chloride (DDAC)	-	RN-214	Toxic to aquatic organisms


Table 4. Basic substance applications refused (non-approval).

Substances Not Approved by the European Commission							
Substance Name	Intended	Implementing	EFSA	Reason(s)			
	Use(s)	Regulation	Opinion	Keason(s)			
	Fungicide and			Risk assessment for toxicology and ecotoxicol-			
Achillea millefolium L.		EU no. 2017/2057	7 EN 1093	ogy not comprehensive enough left doubts and			
	insecticide			substance is not considered as foodstuff			

<i>Arctium lappa</i> L. aerial parts	Fungicide and insecticide	EU no. 2082/2015	EN 699	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts and substance is not considered as foodstuff
Artemisia absinthium L.	Fungicide, ne- maticide and insecticide	EU no. 2015/2046	EN 665	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts and Regulation (EC) 1334/2008 fixes limits for this substance
Artemisia vulgaris L.	Insecticide/re- pellent	EU no. 2015/1191	EN 644	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts and Regulation (EC) 1334/2008 fixes limits for this substance
<i>Capsicum annuum</i> L. var. <i>annuum, longum</i> group, cayenne, extract (Oleoresin capsicum)	Repellent	EU no.2021/464	EN 1838	Risk assessment for toxicology show genotoxi- city, causing serious eye damage, being harm- ful if swallowed and also as cause of skin irrita- tion, although substance is considered as food- stuff
Caffeine	Molluscicide	EU no. 2022/xx	EN 6423	Proposal for non-approval under discussion
Carbon dioxide	Rodenticide	EU no. 2021/80	None	-
Comfrey steeping	Fungicide and insecticide	EU no. 2021/809		Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts and Regulation (EC) 1334/2008 fixes limits for this substance
Dimethyl Sulfide	Attractant	EU no. 2021/1451	EN 1911	Risk assessment for toxicology and ecotoxicol- ogy not provided for long-term toxicity and carcinogenicity concern
Grape (<i>Vitis vinifera</i>) cane tannins	Fungicide	EU no. 2020/29	EN 1414	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts and substance is not considered as foodstuff
Landes pine tar	Protectant and repellent	EU no. 2018/1294	EN 1311	It may contain substances of concern, so there is a lack of data, so risk assessment is not com- prehensive enough and left doubts
<i>Origanum vulgare</i> L. essential oil	Fungicide, bac- tericide and in- secticide	EU no. 2017/241	EN 1054	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts
Paprika extract E160c	Repellent	EU no. 2017/2067	EN 1096	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts
Potassium sorbate	Fungicide	EU no. 2017/2058	EN 1232	Lack of data concerning residues lead to an im- possibility concerning exposition assessment
Propolis (water soluble ex- tract)	Fungicide and bactericide	EU no. 2020/640	EN-1494	Defined as a skin sensitizer, risk assessment for genotoxicity and endocrine disruption toxicity left doubts. No safe limit for the use. Substance is not considered as foodstuff
<i>Rheum officinale</i> roots ex- tract	Fungicide	EU no. 2015/707	EN 617	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts and substance is not considered as foodstuff
Saponaria officinalis L. roots	Acaricide and elicitor	EU no. 2020/643	EN 1263	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts
Satureja montana L. essen- tial oil	Fungicide and bactericide	EU no. 2017/240	EN 1051	Risk assessment for toxicology and ecotoxicol- ogy not comprehensive enough left doubts

Tanacetum vulgare L.	Repellent	EU no. 2015/2083	Risk assessment for toxicology and ecotoxi B EN 666 ogy not comprehensive enough left doubts substance is not considered as foodstuff	and
Willow bark and stem ex- tract	Plant growth and defense	EU no.2022/	Previously proposed for non-approval sin EN 1872 not sold for other uses, proposal under disc	
	elicitor		sion, may be accepted.	

The scientific literature dealing with basic substances is relatively limited but increasing in recent years (Figure 2), and there is poor information about the effectiveness in field trials of basic substances toward pests and pathogens.

Figure 2. Number of documents available on Scopus through searches with keywords 'basic substances' in 'Article title, Abstract, and Keywords' (histograms) or in 'All fields' (linear) published over the last 10 years (Source: Scopus, accessed on 11 May 2022; https://www.scopus.com).

In the last decade, MRLs for pesticides with agricultural trade are becoming important. In the EU, there are increasing requirements from retailers to their suppliers to provide fruits and vegetables with an amount of pesticide residue below the MRLs (Table 5).

Table 5. Examples of requests from the retailer of the amount of the Maximum Residue Level (MRL) and Acute reference doses (ARfD).

Retaile	er	Max. %MRL/ Active Substance	Max. Sum %MRL/Sam- ple	Max. %ARfD/Ac- tive Substance	Max. Sum %ARfD/Sample	Max. Number of Active Substances /Samples
ALDI/ HOFER		70%	80%	70%	80%	3–5
ALBERT HEIJN	α	50%	-	50%	-	-
ASDA	ASDA	80%	-	-	-	-
BILLA	BILLA	100%	-	100%	-	-
DOHLA	Dohle	-	70%	-	70%	3–5
EDEKA		70%	-	100%	-	5

EDEKA OWN BRANDS	EDEKA	50%	_	70%	_	5
GLOBUS	Globus	70%	-	70%	100%	5
LIDL		33.3%	80%	100%	-	5
KAUFLAND	Kaufland	33.3%	80%	50%	50%	5
NORMA	NORMA	-	70%	-	70%	5
METRO	METRO	50%	80%	70%	100%	5
MIGROS	MIGROS	-	-	-	-	6
NETTO		70%	-	100%	-	5
REWE		50%	100%	70%	100%	5
REWE OWN BRANDS	REWE	50%	100%	50%	_	5
TEGUT	tegut	70%	-	70%	-	Max. 4 (>0.01 mg/kg)
TENGEL MANN		70%	150%	70%	100%	-

The substances tested during Casdar programs '4P', 'Carie', 'Sweet', 'HE, Ecophyto 'Usage' and some from projects have already been described (Marchand, 2016) (Table 6). New projects are ongoing to develop extensions of use, describe better efficacy through better positioning during the season or to investigate compatibility/incompatibility with other biocontrol agents (i.e., reduce copper and macro-organisms). This is the ongoing work for Coperreplace, ABAPIC (ITAB), Vitinnova (UNIVPM), and Euphresco BasicS (Euphresco Network).

Table 6. Examples of the applications of the basic substances in research projects.

Substance Name	Use(s)	Program	Reference					
Horsetail (Equise-	Funcicido	Casdar '4P'	[24, 26]					
tum arvense L.)	Fungicide	Coppereplace	[24–26]					
White willow	Fungicide	Casdar '4P'	[24.25]					
bark (Salix cortex)	Fungiciae	Casual 4r	[24,25]					
Vinegar	Seed treat-							
villegai	ment	– Casdar 'Carie'	[27]; http://itab.asso.fr/programmes/carie-ble.php					
Mustard seed	Seed treat-	Casual Calle	[27], http://hab.asso.ii/programmes/carie-bie.php					
powder	ment							
Sucrose	Elicitor Ecophyto 'Us-		[28]; https://ecophytopic.fr/cuivre-viticulture/proteger/micro-					
Fructose	Elicitor	age' and Casdar	doses-de-sucre					
riuciose	Elicitor	'Sweet', ABAPIC	[29]; https://ecophytopic.fr/sites/default/files/USAGE.pdf					
Lecithin	Fungicide	Casdar 'HE'	[30]; https://ecophytopic.fr/recherche-innovation/proteger/projet-					
Lectum	Fungiciue	Casual TIE	he					
Talc	Fungicide		[31]					
Whey	Fungicide	- out of program -	[32]					
Di-ammonium	Attractant	– out of program -	[33]; https://ecophytopic.fr/pic/proteger/proteger-ses-oliviers-de-					
phosphate (DAP)	Amactant		la-mouches-en-limitant-les-traitements					

34	of	41

Calcium hydrox- ide	Fungicide		[34]; https://www.researchgate.net/publica- tion/279636728_The_post-infection_activity_of_hy-	
			drated_lime_against_conidia_of_Venturia_inaequalis	
Chitosan hydro- chloride	Fungicide	Vitinnova	[35]; www.vitinnova.it/en	
		Euphresco Ba- sicS	[16]; https://www.researchgate.net/project/EUPHRESCO-Basic-	
			substances-as-an-environmentally-friendly-alternative-to-syn-	
			thetic-pesticides-for-plant-protection-BasicS	
		PRIMA Stop-	[36]; www.stopmedwaste.eu	
		MedWaste		
		ZeroSprechi	[37]; www.zerosprechi.info/en/zerosprechi	
		CleanSeed	[38]; https://www.cleanseed.it/en/cleanseed-2/	

Each use of plant extracts and natural products, such as decoctions, herbal teas, or aqueous solutions, have been defined and tested in the field or identified from the literature then controlled or cross-referenced with producer surveys. Whenever water is mentioned in these tests, it is either natural spring water or rainwater. Each basic substance preparation is described in Section 2.5 of Basic substances applications in EU 2012. The evaluation process of the basic substance application is getting longer, and legal delays fixed by EC are not consistently respected. The evaluation process lasts an average of 19 months (Supplementary Table S1 and Figure S1), while the legal maximum delay is fixed at 18 months until basic substance application admissibility. Even not considering admissibility evaluation delays that are considered outside of the evaluation process, this process becomes longer from year to year, resulting in a delay in availability of additional basic substances.

3. Discussion

The use of pesticides, if not appropriate, may lead to problems like contamination of the water, potential damage to sensitive species (e.g., bees), contamination of final food products and water, with up to 90% of applied pesticides not reaching the target species, and, also, because of the development of resistant pathogens and pests [39]. A high number of PPPs were not reauthorized (or companies did not provide the dossier for the reregistration of products out of patent, due to high costs and uncertain benefits) and leaves a gap for several uses. It is important that authorities provide a good number of options to growers to protect their crops, since farmers cannot stand without PPPs for certain crops and uses, and there is an increasing need, because a lot of substance prohibition dates are fixed without substitution mean. Just as an example, this occurred with the fungicide mancozeb in January 2022 and a risk to occur in 2025 with copper, that is fundamental for plant protection in organic agriculture and a good support to prevent the appearing of resistant isolates in IPM. In France, the use of neonicotinoids, known as dangerous insecticides, is extended when there is no other way to preserve crops and productivity. With Farm to Fork Strategy of the European Green Deal, the European Commission is committed to reduce the use of the most dangerous synthetic pesticides of 50% and achieve at least 25% of the EU agricultural land under organic farming by 2030, although the decrease of synthetic pesticides is already ongoing. These trends, together with the implementation of sustainable development goals—SDGs by the United Nations—are demanding for new alternatives, such as basic substances, to tackle some of these issues. To achieve these goals, more research is needed to advance the design of better farming systems and the development of alternatives to synthetic pesticides and to copper formulations.

Three decades ago, the concept of MRLs was poorly known, while, in recent years, MRLs for pesticides arguably have become the first action growers should consider in their pest management decisions [40]. Trying to interpret consumer demands, retailers are increasingly required to reduce pesticide residues even more than the allowed thresholds (MRLs), which are defined considering a wide security factor (e.g., ×100) using the presence of pesticide residues as a factor of competition among companies. Requests from the retailers and consumer to reduce synthetic pesticide residues from fresh produce even more than the allowed threshold, such that the rules defined by the public administration

have become more limiting for farmers in terms of the active ingredients allowed and MRLs [40,41]. The reduction of the presence of fungicide residues well beyond MRL may allow the pathogen to develop after harvest, resulting food loss and waste along the value chain. These developments have driven the search for alternative management strategies that are effective and not reliant just on conventional fungicide applications [5,42,43]. European regulation followed and carried this development with the introduction of new classes of phytosanitary products, in particular basic substances, but also new laws and simplification accompanied by the reduction of registration processes of low-risk substances, theoretically. Basic substances are approved for use in the EU and are products that are already sold for certain purposes, e.g., as a foodstuff or a cosmetic. Basic substances may be of major importance in biocontrol and several advantages can explain it. Basic substance regulatory application is simplified [44] and particularly reduced compared to other substances, therefore representing a lower cost to applicant (around 35-40 kEuro for approval of a basic substance and overall around 45 kEuro including approval for organic agriculture), thanks to the fact that these substances are already on the market for another purpose than plant protection, and safety is not an issue to be demonstrated. These substances are good alternatives available today and wide targets. Basic substances can be used in the crop protection as fungicide, bactericide, insecticide, etc., and most of them are allowed in organic production [18, 45–47]. The basic substances are in order from 2014, when was the first approved application of Equisetum arvense L., chitosan hydrochloride, and sucrose until 2022, when a second chitosan formulation was approved. In some conditions basic substances were already at farm level, with a level of pest management not different than the standard. Just as example, chitosan hydrochloride was also applied in commercial conditions, in the field, and postharvest treatments, and several studies proved that it could have an effectiveness comparable to some commercial PPPs [42,48]. Basic substances, probably less efficient and practical to use than other active substances authorized as PPPs, are known and used by producers since decades as substitution means and have already demonstrated their effectiveness. Basic substances were the perfect tool to provide to producers as known, easy-to-use, less dangerous, and environmentally more respectful. Today, there is a consensus among a wide range of stakeholders that synthetic pesticide used need to be gradually reduced to a level that is effectively required to ensure crop production and that risks of pesticide application should be reduced as far as possible. Basic substances are good alternatives available today in our hands. The use of these substances needs to be integrated in vocational education, training, and technical advice to farmers. Further research around the world on the efficacy of basic substances may prove in the future that these substances can replace pesticides without reducing yields or increasing production costs. To develop the uses and the field trials we listed here the main usages of basic substances. However, rates included in the approval schedule may not produce a significant containment of diseases and pests in specific pathosystems. Just as example, the advised application rate of chitosan hydrochloride is between 100 and 800 g/ha, equal to a concentration ranging among 0.05 and 0.2% with 200–400 L/ha, while trials in commercial vineyards found a good effectiveness delivering the chitosan hydrochloride, with a concentration of at least 0.5% and with a volume of at least 500 L/ha [34,49]. For this reasons, large-scale trials are very important to demonstrate the effectiveness toward pathogens and pests in different environments and growing contexts, and a flexibility could be required in suggested dosages to avoid that applying basic substances at suggested rated can lead to a lack of or poor effectiveness and then the disaffection of users toward these innovative compounds, and this is in contrast with the requirements of finding solutions alternatives to the application of synthetic pesticides keeping the standard quality and quantity of the production, which is one of the drivers of the Farm-to=Fork Strategy of European Green Deal. Moreover, the diluent allowed for basic substance, up to now concretely restricted to water, may be another substance. In this case, vinegar has just been authorized for chitosan. Finally, increasing the demand

from growers and competition among companies can lead to the reduction of costs of the treatments that, nowadays, are often higher than standard treatments.

4. Materials and Methods

4.1. Collection of Data

A systematic literature search from 2009 to 2021 was performed using the database of Scopus with the keywords 'basic substance' and 'basic substances'. In the EU, several retailers request an amount of pesticide residue on fruit and vegetables below the legal limit (MRL), and data on some protocols were collected through companies and plant doctors.

4.2. Legislation

Basic substance criteria are defined by article 23 of Regulation (EC) No. 1107/2009, cited in introduction. By way of derogation from Article 4 of this regulation, a basic substance is approved when all relevant evaluations conducted in accordance with other Community legislation, governing other uses of this substance, showing that it has neither an immediate or delayed harmful effect on human or animal health nor any unacceptable influence on the environment. Active substances that could be defined as 'foodstuff' are intrinsically considered as basic substances, following Article 2 of Regulation (EC) No. 178/2002. Basic substances shall be approved in accordance with paragraphs 2–6 of regulation (EC) No. 1107/2009 and by way of derogation from Article 5, the approval shall be for an unlimited period. By way of derogation from Article 7 of Regulation (EC) No. 1107/2009, an application for approval of a basic substance can be made by a Member State or any interested party. At the end of the evaluation process, basic substances shall be listed separately in the Regulation referred to in Article 13(4). The Commission may review the approval of an active substance at any time. It may take into account the request of a Member State to review the approval. Article 28 of Regulation (EC) No. 1107/2009 set the absence of marketing authorizations and usages allowance for basic substances. However, no formal authorization is required as long as the product contains exclusively basic substances (see corresponding Review Report) [49,50].

4.3. Approval Process

The approval process of a basic substance starts with a request for approval (Figure 3). The applicant estimates if the substance concerned fulfil all criteria of basic substances category and then complete the BSAT, in English, to obtain a Basic Substance Application. Several guidance documents, such as the official SANCO guide or the teaching guide from the ITAB, have been published to help applicants to build basic substance application correctly [50]. For the transmission of the basic substance application, once completed, the file should be sent to the DGSanté, representing the European Commission (EC). The Basic Substance Application can firstly be sent to national competent authorities for a preassessment and possibly a support. For example, in France, the Basic Substance Application can be sent to the Ministry of Agriculture (DGAl in France), who can ask for the National Authority' opinion and then transfer the file to the EC. Upon receipt of the Basic Substance Application, EC implements the approval procedure detailed in Article 23 of Regulation (EC) No. 1107/2009. Admissibility may be pronounced at any time, directly or after questions from DGSanté. It constitutes the real start of the application (black line in Figure 3). The first stage is based on the Basic Substance Application evaluation by Member States and EFSA as scientific assistance leading to a request for corrections and questions. The request is sent to the applicant, and his answers shall be sent back within one month to the EFSA. For decision and approval, at the end of the basic substance application evaluation, EFSA will deliver its opinion, append a comment, and send the basic substance application to the DG Health within 3 months for the final vote of Member States in the PAFF committee (Figure 3). Approval, if accorded, is effective at the date of the publication of an implementing Regulation modifying Regulation (EU) No. 540/2011 [8].

The period of examination of the basic substance application is established in paragraph 1 of article 37 of Regulation (EC) No. 1107/2009. It is said: 'The Member State examining the application shall decide within 12 months of receiving it whether the requirements for authorization are met. Where the Member State needs additional information, it shall set a period for the applicant to supply it. In that case, the 12-month period shall be extended by the additional period granted by the Member State. That additional period shall be a maximum of 6 months and shall cease at the moment when the additional information is received by the Member State. Where at the end of that period the applicant has not submitted the missing elements, the Member State shall inform the applicant that the application is inadmissible.' [10]. The maximum delay is therefore set at 18 months. However, although clearly defined, these steps are not so straightforward in many cases [51].

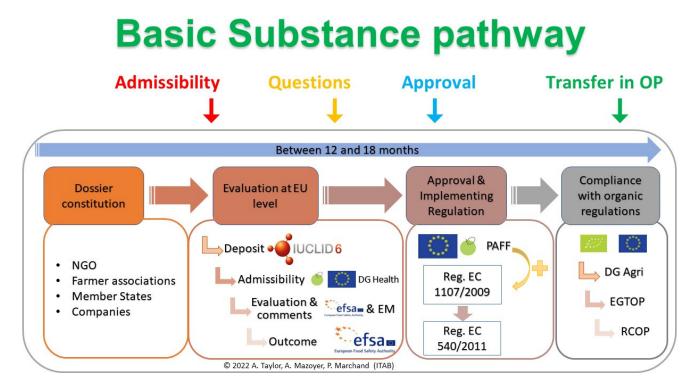


Figure 3. Approval process and timeline of a Basic Substance Application (BSA).

4.4. Extension of Uses Process

The request for an extension is somehow similar, except the need of support from corresponding agricultural sectors at the deposit step. Some extensions were voted after submission, some others were granted with admissibility and voted rapidly after; some later were following the full approval pathway, including admissibility, evaluation, outcome, full vote at PAFF Committee (appearance in Part A (lecture, discussion), C (proposal)[; and B (effective vote)). This latter process sometimes takes the same amount of time compared to a new approval, which is considered very excessive by the applicants, having an approved substance at the beginning of their request and only asking for one line sometimes in the Good Agricultural Practices (GAP) table.

4.5. Regulation Analysis

The EU Pesticides Database [52] was used to detect basic substances and their status (approved, nonapproved, pending, and modifications of Review Reports). Corresponding

linked Implementing Regulations [20] attached to each active substance were found using the same method and cross-verified with Implementing Regulation (EU) 540/2011. The EU law database for Eur-Lex was also used to track each Implementing Regulation publication. Furthermore, EFSA documents were also compiled to extract decisions supportive analyses.

5. Conclusions

Searching for alternative products for crop protection is an important strategy for promoting more sustainable food systems. The use of basic substances is in line with the restriction on the application of chemical PPPs and the principles of the European Green Deal and SDGs, mostly renewables and with no MRL. There is relatively poor information about the effectiveness of basic substances as compared to synthetic pesticides and biological PPPs. A higher testing and validation of the use of basic substances as a phytosanitary measure can lead to further reduction of application of synthetic pesticides. In addition, searching for the most effective dosage of the basic substance is critical and an important question for phytosanitary consultants (the plant doctors that are opinion leaders in application of innovations in pest management), growers, stakeholder, and companies to avoid that their application at the recommended dose can lead to a lack of or poor effectiveness of these substances. For this reason, a flexibility might be required in the suggested dosage of basic substances approved to ensure good maintenance of the quality and quantity of production, which is one of the keys of the Farm to Fork Strategy of the European Green Deal. Moreover, a defined timeline for approval is basilar to have the chance to increase the number of basic substances available for growers, the scientific community, and the whole agricultural sector, with final benefits for the consumers.

6. Patents

All Implementing Regulations may be considered as patents but with free exploitation, since no Marketing Authorizations are needed for basic substances.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27113484/s1, Figure S1: Time needed for Basic Substance Application admissibility evaluation over time (bars) and tendency line (dotted line); Table S1: Total time of basic substance application process within admissibility to Implementing Regulation publication in months.

Author Contributions: Conceptualization, G.R. and P.A.M.; methodology, Y.O., and M.M.; resources, G.R., Y.O., Y.D., M.M., and P.A.M.; writing—original draft preparation, G.R., Y.O., Y.D., M.M., and P.A.M.; writing—review and editing, G.R., Y.D., M.M., and P.A.M.; supervision, G.R. and P.A.M.; and funding acquisition, G.R. and P.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: For G.R. and M.M., this work was conducted within the framework of the PSR ZeroSprechi, PSR Vitinnova, PSR CleanSeed, and of PRIMA StopMedWaste projects, which are funded by PRIMA, a program supported by the European Union. For Authors Y.O., Y.D., and P.A.M., the French Ministry of Agriculture (CASDAR '4P', 'Contrat de branche Carie', 'Sweet', and 'HE'; Ecophyto 'Usage', 'Biocontrol' 'INADOM', and 'PARMA'), French Ministry of Ecology (Project 'PNPP' CT0007807, 'SubDOMEx', and 'Jussie'). All authors worked within the "Euphresco BasicS (Objective 2020-C-353) project. Thanks are expressed to Antonello Lepore, Gianni Ceredi and other technicians for providing data about pesticide residues requested by retailers.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. United Nation. Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100. 2019. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 10 December 2021).
- 2. FAO. 2021. Available online: https://www.fao.org/news/story/en/item/1402920/icode/ (accessed on 1 December 2021).
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. *Nat. Ecol. Evol.* 2019, *3*, 430–439. https://doi.org/10.1038/s41559-018-0793-y.
- Dietz-Pfeilstetter, A.; Mendelsohn, M.; Gathmann, A.; Klinkenbuß, D. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection. *Front. Plant Sci.* 2021, *12*, 682387. https://doi.org/10.3389/fpls.2021.682387.
- 5. Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. *Postharvest Biol. Technol.* **2016**, *113*, 69–76. https://doi.org/10.1016/j.postharvbio.2015.11.003.
- Chèze, B.; David, M.; Martinet, V. Understanding farmers' reluctance to reduce pesticide use: A choice experiment. *Ecol. Econ.* 2020, 167, 106349.
- Robin, D.; Marchand, P.A. Evolution of Directive (EC) No 128/2009 of the European parliament and of the council establishing a framework for Community action to achieve the sustainable use of pesticides. *JRS* 2019, 7, 1–7. https://doi.org/10.21423/jrsv07marchand.
- 8. EU. Commission Implementing Regulation No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European parliament and of the council as regards the list of approved active substances. *OJ* **2011**, *L153*, 1–186.
- 9. Matyjaszczyk, E. Problems of implementing compulsory integrated pest management. Pest Manage. Sci. 2019, 75, 2063–2067.
- 10. Robin, D.; Marchand, P.A. Biocontrol active substances: Evolution since the entry in vigour of Reg. 1107/2009. *Pest Manag. Sci.* **2019**, *75*, 950–959. https://doi.org/10.1002/ps.5199.
- 11. EC. Commission Regulation No 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. *OJ* 2009, *L*309, 1–50.
- Kowalska, J.; Roszkowski, S.; Krzymińska, J. Substancje podstawowe Efektywne uzupełnienie metod ochrony upraw. Basic substances – An effective supplement to crop protection methods. *Progress Plant Prot.* 2021, 61, 139–146. https://doi.org/10.14199/ppp-2021-015.
- 13. Marchand, P.A. Basic and low-risk substances under European Union pesticide regulations: A new choice for biorational portfolios of small and medium-sized enterprises. *J. Plant Prot. Res.* **2017**, *57*, 433–440.
- 14. Charon, M.; Robin, D.; Marchand, P.A. The importance of substances without maximum residue limit (MRL) in integrated pest management (IPM). *Biotechnol. Agron. Soc. Environ.* 2019, 23, 22–29.
- 15. EC. Regulation No 178/2002 of the European parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. *OJ* **2002**, *L*31, 1–24.
- 16. Euphresco. BasicS Project. 2021. Available online: https://www.researchgate.net/project/EUPHRESCO-Basic-substances-as-anenvironmentally-friendly-alternative-to-synthetic-pesticides-for-plant-protection-BasicS (accessed on 1 December 2021).
- Marchand, P.A.; Davillerd, Y.; Riccioni, L.; Sanzani, S.M.; Horn, N.; Matyjaszczyk, E.; Golding, J.; Roberto, S.R.; Mattiuz, B.-H.; Xu, D.; et al. BasicS, an euphresco international network on renewable natural substances for durable crop protection products. *Chron. Bioresour. Manag.* 2021, 5, 77–80.
- Romanazzi, G.; Feliziani, E.; Sivakumar, D. Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. *Front. Microbiol.* 2018, *9*, 2745. https://doi.org/10.3389/fmicb. 2018.02745.
- European Commission. WORKING DOCUMENT on the Procedure for Application of Basic Substances to be Approved in Compliance with Article 23 of Regulation (EC) No 1107/2009; SANCO/10363/2012 rev. 10; European Commission: Brussels, Belgium, 25 January 2021.
- 20. EU. EU Pesticides Database (v.2.2) Search Active Substances, Safeners and Synergists (europa.eu). 2021. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as (accessed on 23 May 2022).
- 21. Matyjaszczyk, E. Plant protection means used in organic farming throughout the European Union. *Pest Manage. Sci.* 2018, 74, 505–510. https://doi.org/10.1002/ps.4789.
- 22. Marchand, P.A. Basic substances under EU pesticide regulation: An opportunity for organic production? *Org. Farming* **2017**, *3*, 16–19. https://doi.org/10.12924/of2017.03010016.
- 23. EU. Commission Implementing Regulation (EU) amending and correcting Implementing Regulation (EU) 2021/1165 authorising certain products and substances for use in organic production and establishing their lists. *Official J. Eur. Union* 2022, *in press*.
- Marchand, P.A.; Isambert, C.A.; Jonis, M.; Parveaud, C.-E.; Chevolon, M.; Gomez, C.; Lambion, J.; Ondet, S.J.; Aveline, N.; Molot, B.; et al. Evaluation des caractéristiques et de l'intérêt agronomique de préparations simples de plantes, pour des productions fruitières, légumières et viticoles économes en intrants. *Innov. Agron.* 2014, *34*, 83–96.
- 25. CASDAR 4P, Protéger les Plantes Par les Plantes. 2014. Available online: https://ecophytopic.fr/recherche-innovation/proteger/projet-4p (accessed on 26 May 2022).

- 26. COPPEREPLACE. 2015. Available online: https://coppereplace.com/fr/project-coppereplace/ (accessed on 23 May 2022).
- Robin, N.; Bruyere, J. Traitements de semences: Contrôler la carie. In Actes Journée Technique; ITAB, Paris, France 2012; pp. 31– 40. Available online: http://www.itab.asso.fr/downloads/actes%20suite/carie-actes2012.pdf (accessed on 23 May 2022).
- 28. Arnault, I.; Bardin, M.; Ondet, S.; Furet, A.; Chovelon, M.; Kasprick, A.-C.; Marchand, P.; Clerc, H.; Davy, M.; Roy, G.; et al. Utilisation de micro-doses de sucres en protection des cultures. *Innov. Agron.* **2015**, *46*, 1–10.
- Arnault, I.; Aveline, N.; Bardin, M.; Brisset, M.N.; Carriere, J.; Chovelon, M.; Delanoue, G.; Furet, A.; Frérot, B.; Lambion, J.; et al. Optimisation des stratégies de biocontrôle par la stimulation de l'immunité des plantes avec des applications d'infra-doses de sucres simples. *Innov. Agron.* 2021, *82*, 411–423. https://doi.org/10.15454/tysh-8x74.
- Vidal, R.; Muchembled, J.; Deweer, C.; Tournant, L.; Corroyer, N.; Flammier, S. Évaluation de l'intérêt de l'utilisation d'huiles essentielles dans des stratégies de protection des cultures. *Innov. Agron.* 2018, 63, 1–20.
- Compo Expert. Report 2015. In LA PUGERE, 2011 Pear Psylla [Psylla piri], The TALC Efficiency Evaluation in a Preventive Control Strategy of the Pear Psylla Year; Station d'experimentation La Pugere, Mallemort, France 2015; pp. 1–68.
- CA (Chambre d'Agriculture de l'Aude). 2011. Réduction des coûts en viticulture. Produits alternatifs: Lactosérum [Reducing costs in viticulture: alternative crop protection: Lactoserum]. Technical report. Chambre d'Agriculture de l'Aude (CA11), Carcas-sonne, France, 123 pp...
- Duriez, J.M. Le phosphate di-ammonium, un attractant de la mouche de l'olive Journées Techniques Intrants, ITAB, Paris, France 2016. Available online: http://www.itab.asso.fr/downloads/jt-intrants-2016/10_duriez-afidol-pda.pdf (accessed on 23 May 2022).
- Montag, J.; Schreiber, L.; Schönherr, J. The post-infection activity of hydrated lime against conidia of *Venturia inaequalis*. In Proceedings of the Ecofruit-12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 31 January–2 February 2006.
- Romanazzi, G.; Piancatelli, S.; D'Ignazi, G.; Moumni, M. Innovative approaches to grapevine downy mildew management on large and commercial scale. In Proceedings of the 9th International Workshop on Grapevine Downy and Powdery Mildew, Cremona 20–22 July 2022, *in press*.
- 36. Romanazzi, G.; Moumni, M. New challenges in preventing and managing fresh fruit loss and waste. In Proceedings of the VI International Symposium on Postharvest Pathology, Limassol, Cyprus, 29 May–2 June 2022, *in press*.
- D'Ortenzio, A.L.; Fava, G.; Mazzoni, S.; Acciarri, P.; Baronciani, L.; Ceredi, G.; Romanazzi, G. Postharvest application of natural compounds and biocontrol agents to manage brown rot of stone fruit. In Proceedings of the VI International Symposium on Postharvest Pathology, Limassol, Cyprus, 29 May–2 June 2022, *in press*.
- 38. Piancatelli, S.; Moumni, M.; Binni, T.; Giardini, D.; Profili, R.; Napoleoni, D.; Morbidelli, M.; Fabbri, G.; Piersanti, G.; Nardi, S.; et al. Impiego di sostanze di origine naturale e a basso impatto ambientale nella protezione del cavolo cappuccio da seme. *Giornate Fitopatol.* 2022, *in press.*
- Park, D.W.; Yang, Y.S.; Lee, Y.U.; Han, S.J.; Kim, H.J.; Kim, S.H.; Kim, J.P.; Cho, S.J.; Lee, D.; Song, N.; et al. Pesticide residues and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: A 15-year study. *Foods* 2021, 10, 425. https://doi.org/10.3390/foods10020425.
- 40. El-Nahhal, I.; El-Nahhal, Y. Pesticide residues in drinking water, their potential risk to human health and removal options. *J. Environ. Manag.* **2021**, 299, 113611. https://doi.org/10.1016/j.jenvman.2021.113611.
- Hejazi, M.; Grant, J.H.; Peterson, E. Trade impact of maximum residue limits in fresh fruits and vegetables. *Food Policy* 2022, 106, 102203. https://doi.org/10.1016/j.foodpol.2021.102203.
- 42. Romanazzi, G.; Feliziani, E.; Baños, S.B.; Sivakumar, D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. *Crit. Rev. Food Sci. Nutr.* **2017**, *57*, 579–601. https://doi.org/10.1080/10408398.2014.900474.
- 43. Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Gutierrez-Martinez, P.; Alkan, N. Induced resistance to control postharvest decay of fruit and vegetables. *Postharvest Biol. Technol.* 2016, 122, 82–94. https://doi.org/10.1016/j.postharvbio.2016.08.003.
- 44. Robin, D.; Marchand, P.A. Expansion of the low-risk substances in the framework of the European Pesticide Regulation (EC) No. 1107/2009. *Eur. J. Risk Regul.* 2022, *xx*, 1–20. https://doi.org/10.1017/err.2021.58.
- Marchand, P.A. Basic substances: An opportunity for approval of low-concern substances under EU pesticide regulation. *Pest Manag. Sci.* 2015, *71*, 1197–1200. https://doi.org/10.1002/ps.3997.
- Marchand, P.A. Basic substances under EC 1107/2009 phytochemical regulation: Experience with non-biocide and food products as biorationals, J. Plant Prot. Res. 2016, 56, 312–318.
- 47. Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. *Sci. Total Environ.* **2021**, *795*, 148625. https://doi.org/10.1016/j.sci-totenv.2021.148625.
- Romanazzi, G.; Mancini, V.; Foglia, R.; Marcolini, D.; Kavari, M.; Piancatelli, S. Use of chitosan and other natural compounds alone or in different strategies with copper hydroxide for control of grapevine downy mildew. *Plant Dis.* 2021, 105, 3261–3268. https://doi.org/10.1094/PDIS-06-20-1268-RE.
- 49. EU. Working Document on the Procedure for Application of Basic Substances to be Approved in Compliance with Article 23 of Regulation (EC) No. 1107/2009 SANCO/10363/2012; (rev.9 of 21 March 2014); EU Brussels, Belgium: 2012.
- 50. EU. Commission Implementing Regulation (EU) 2022/456 of 21 March 2022 approving the basic substance chitosan in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ 2022, L93, 138–141.

- 51. Marchand, P.A.; Carrière, J. ITAB, Guide Pédagogique: Constituer un dossier d'approbation de substance naturelle au règlement (CE) n°1107/2009. **2012**. https://doi.org/10.13140/RG.2.2.33101.13284.
- 52. Vekemans, M.C.; Marchand, P.A. The fate of the Biocontrol agents under the European phytopharmaceutical regulation: A hindering for approval botanicals as new active substances? *Environ. Sci. Pollut. Res.* 2020, *27*, 39879–39887. https://doi.org/10.1007/s11356-020-10114-6.