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A B S T R A C T   

Demand response programs encompass a range of externally control strategies designed to modify consumer end- 
use load according to specific grid demands. In the current renewable integration context, power systems need to 
implement such demand strategies to provide energy flexibility during grid stress periods. Nevertheless, the 
extensive adoption of demand response initiatives in the building sector is confronted by notable obstacles, 
mainly due to the absence of standardized assessment methods and metrics, and the lack of established regu
latory frameworks, all of which hinder the formation of competitive flexibility asset portfolios. Indeed, energy 
flexibility quantification frameworks are not unified and are usually based on the control objectives and quan
tification indicators. In this framework, this paper proposes a methodology to cluster residential buildings based 
on the analytical assessment of their dynamic thermal response, regardless the boundary conditions (i.e., weather 
data, occupancies, …) and the type of demand response event. The proposed methodology provides a quick and 
simple quantification of how a building is expected to respond under different demand response events and 
durations, which is critical for both customers and demand response agents to decide and select the involvement 
of buildings in each event and potentially to design personalized demand response events for each building. 

An extensive analysis was conducted to evaluate the methodology based on 28 real residential buildings, 
whose data were presented in a previous study. Results provide the potential effectiveness and application for 
energy flexibility purposes of this methodology based on dynamic thermal building clustering. Moreover, it can 
be concluded that it is not possible to deduce a thermal inertia available classification exclusively based on 
design thermal and geometric characteristics of the building; being necessary to consider the duration of 
involvement, since they highly influence on the residential building thermal behavior, and thus, on the corre
sponding clustering.   

1. Introduction 

To cope with global warming and the forthcoming fossil fuel crisis, 
many countries, including the European Union [1], have committed to 
becoming NetZero by 2050 [2]. One of the main strategies to achieve the 
goal is the transition to an energy system based on renewable energy 
sources [3]. However, the unpredictable nature of the most common 
renewable sources, such as wind and solar resources, requires solutions 
to ensure the security of energy supply [4]. This point makes necessary 

to rethink the management of the entire energy system [5]. Moreover, 
the electrification of transportation is leading to increased demand 
peaks, potentially triggering inherent stability issues. 

Whereas the traditional management involves tracking energy de
mand with generation, the new management will have to be able to 
adapt energy power to available generation (i.e., Demand Side Man
agement, DSM [6]). DSM includes all strategies aimed at influencing 
energy consumption to optimize generation, distribution, and energy 
end use [7]. DSM strategies can be classified into energy efficiency and 
Demand Response (DR) [8]. Specifically, DR commonly provides 
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incentives to shift or reduce demand in electricity markets to balance the 
grid [9]. Subsequently, promoting the large-scale application of DR 
strategies can have a considerable impact on the flexibility of the sys
tems under a high penetration of renewables [10]. 

In this context, the building sector can play a key role [11]. There are 
many reasons why buildings can contribute significantly to the energy 
transition. Firstly, their impact on the overall energy demand. In fact, 
and according to the International Energy Agency, buildings are 
responsible for about 30 % of global final energy consumption [12]. 
Secondly, there is plenty of space for energy efficiency. For example, 
considering the European Union, it is estimated that around 75 % of 
buildings need major renovation [13], and at least 60 % of the buildings 
heat demand worldwide are still met by fossil fuels [14]. Moreover, 
buildings allow to decouple rather easily demand for heating and/or 
cooling from generation. Indeed, different thermal inertia reserves can 
be exploited in buildings [15]. For instance, the thermal mass of the 
envelope can be used as a storage medium [16], the thermostat can be 
controlled with a temperature dead band (e.g., by exploiting thermo
statically controllable loads [17]), or heating and/or cooling systems 
can be equipped with external storage devices (sensible [18] or latent 
[19] thermal energy storage systems). Finally, the increasing spread of 
high-efficiency electrically powered heating and cooling systems, such 
as electrically driven heat pumps, makes possible to directly link the 
manageable heat demand to the electricity consumption [20]. 

DSM programs, and especially DR events, can be successfully applied 
in buildings to provide grid flexibility [21]. Several pilot projects have 
already demonstrated this potential for applying DR event in buildings 
[22]. An energy flexible building is defined as a building able to manage 
its demand and/or generation according to local climatic conditions, 
user needs and energy grid requirements [23]. In general, how flexible a 
building depends on its intrinsic characteristics. In fact, both the ge
ometry, the thermal losses, the thermal inertia of the envelope and the 
type of heating and/or cooling system are factors that determine how 
much heating/cooling demand can be decoupled from generation [24]. 

The above-mentioned factors contribute significantly to the energy 
efficiency of the building. However, unlike the efficiency, the quantifi
cation of a flexibility reserve is also highly dependent on the operation 
(i.e., the type of DR event, dynamically varying boundary conditions and 
the thermal dynamics of the building itself) [25]. For these reasons, the 
identification of a standard methodology for characterizing energy 
flexibility in buildings is still an open topic. However, if DR strategies are 

to be applied on a large scale, it is necessary for the DR agent, in charge 
of deciding on the activation of the energy flexibility of individual 
buildings, to be able to assess a priori which buildings are to be activated 
based on the different requirements of the grid. Therefore, a standard 
method to label buildings based on their response to different types of 
DR events is required. In fact, as Pallonetto et al. [26] also pointed out, 
currently the lack of commonly accepted and standardized metrics to 
assess DR represents one of the main obstacles to achieving a widespread 
distribution of DR programs in residential buildings. 

Nowadays, recent contributions propose methodologies to quantify 
energy flexibility in buildings [27 28]. For instance, Junker et al [29] 
proposed a characterization of the energy flexibility of a building 
through a dynamic function (i.e., the Flexibility Function) and a Flexi
bility Index. The methodology is based on applying penalty signals to the 
building (e.g., price signal, CO2 intensity or a control signal imposed by 
the grid) within penalty-aware control. Then flexibility index describes 
how the building dynamically reacts to the specific penalty signal. 
Majdalani et al. [30] evaluated energy flexibility such as the ability of 
the building to respond to a cost signal. In particular, the authors pro
posed a single indicator (i.e., the Expected Flexibility Savings Index) to 
assess the energy flexibility obtainable from the management of heating 
and cooling systems in residential buildings. Arteconi et al. [24] also 
quantified flexibility with a single dimensionless indicator (i.e., the 
Flexibility Performance Indicator). In this case, however, the Flexibility 
Performance Indicator considers several aspects such as response and 
recovery time, power and shiftable energy. This study also showed how 
the indicator could be used to classify the potential flexibility reserve of 
the building during a standard DR event. On the other hand, Reynders 
et al. [31] introduced three flexibility indices to characterize different 
dimensions of the flexibility (i.e., size, time and cost). The performance 
indicators were: the available storage capacity, the storage efficiency 
and the power shifting capability. These were calculated by comparing 
the building heat power demand in the baseline scenario (i.e., without 
activation of flexibility) with the flexible scenario (i.e., in case of 
application of a single reference DR event). Tang and Wang [32] 
introduced two sets of flexibility indexes (i.e., flexibility capacities and 
flexibility ratios) to characterize the flexible response of buildings dur
ing DR events. In this case the methodology was based on the compar
ison between a flexible and a baseline scenario. Another study in which 
the potential reserve of energy flexibility was assessed through multiple 
indicators was conducted by Ruan et al. [33]. Here the authors 

Nomenclature 

Acronyms 
COP Coefficient of Performance 
DSM Demand Side Management 
DR Demand Response 
HVAC Heating, Ventilation and Air Conditioning 
ID Building identifier 
LPM Lumped Parameter Model 

Symbols 
A First thermal inertia class (high performance) 
A System matrix state space formulation 
B Second thermal inertia class (medium–high performance) 
B Input matrix state space formulation 
C Heat capacitors (Wh/K) 
C Third thermal inertia class (medium–low performance) 
C Output matrix state space formulation 
D Forth thermal inertia class (low performance) 
D Feedthrough matrix state space formulation 
f Factor (-) 

q Heat power (W) 
R Thermal resistance (K/W) 
t Time (hours) 
T Temperature (◦C) 
U Input vector 
X State vector 
Y Output vector 
τ Time constant (hours) 

Subscripts 
i referred to the internal air node 
TM referred to the virtual node representing the internal 

thermal mass 
e referred to electrical gains 
HVAC referred to the Heating, Ventilation and Air Conditioning 
L referred to long-time events 
s referred to solar gains 
S referred to short-time events 
w referred to the virtual temperature of the interior of the 

thermal envelope  
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introduced three indicators representing energy efficiency, load and 
energy reduction. The indicators were calculated by comparing the re
sults of dynamic simulations of the building without and with the 
application of a reference DR event. Extending the latter approach, 
Chena et al. [34] proposed different indicators according to the source of 
flexibility. Indeed, based on previous studies, the authors proposed a 
framework for energy flexibility quantification distinguishing among 
the following contributions: the energy generation from the building 
itself (e.g., PV panels on site), the building thermal mass, the contribu
tion of dedicated storage devices and the shift loads ability of appliances. 
A different approach was presented by Li and Hong [35]. Indeed, Li and 
Hong proposed a data driven method to quantify energy flexibility in 
buildings. In this way, the authors did not need a baseline scenario to 
calculate the flexibility indicators but identified it from measured data 
of real buildings subjected to DSM programs. A similar approach was 
also proposed by Zhu et al. [36]. The authors developed a data-driven 
model to quantify the DR potential of building HVAC (Heating, Venti
lation and Air Conditioning) systems. In particular, Zhu et al. introduced 
flexibility indicators, identified from the data, calculated on the basis of 
the generalization of the building response under different boundary 
conditions. 

Recently, Lu et al. [37] affirmed that energy flexibility quantification 
frameworks are not unified and are usually based on the control ob
jectives and quantification indicators. Based on the specific literature, 
most quantification methods consider flexibility as a property of the 
overall system (understood as the result of the actual interaction be
tween the HVAC system and the grid). This assumption makes the 
estimation of the flexibility reserve dependent on the characteristics of 
each specific case study. On the other hand, few studies propose a 
method capable of analytically quantifying the thermal mass actually 
available in the building, regardless of the boundary conditions and the 
specific DR event. 

Some of the studies characterizing energy flexibility in individual 
buildings are summarized in Table 1. Note that those mentioned are not 
all the available contributions on this topic, as the extensive scientific 
literature described in [27 28]. However, they represent some signifi
cant examples useful to distinguish the various characteristics of the 
available methodologies. Regarding Table 1, it can be observed that, in 
most cases the focus of the characterization is on the building, while the 
DR event is considered a reference condition. Furthermore, the energy 
flexibility is usually quantified and described as an intrinsic character
istic of the building, strongly related to the specific boundary conditions 
(i.e., the dynamic variation of weather conditions, the setpoint profile 
for comfort, …) and the type of DR event. Therefore, the most common 
flexibility indicators do not allow a direct evaluation of the thermal mass 
exploitable alone. On the contrary, they tend to aggregate and sum
marize the flexible behavior considering all dimensions of flexibility. 
However, from the point of view of a DR agent, it would be desirable to 

know how each building may respond according to a specific DR event 
and the current thermal mass available. In other words, it can be 
interpreted as a need to quantify the different levels of effective thermal 
inertia exploitable in a building. From this perspective, there is a lack of 
contributions and methods focused on labeling buildings based on their 
current thermal mass. To overcome this drawback, in this paper, the 
authors introduce a novel methodology that challenges the conventional 
approach used for categorizing energy flexibility in buildings (Table 1). 
Indeed, it is known that when a DR event is applied to an HVAC system 
in a building, its response changes significantly depending on the cur
rent thermal mass available and the type of DR event. In general, this 
thermal mass may not match with the entire thermal mass of the 
building and, furthermore, the same building may behave in a different 
way depending on the duration of the involvement (short events, e.g., a 
few minutes, or long events, e.g., hours). For these reasons, the thermal 
mass quantification is not able to be estimated directly from thermal and 
geometric characteristic estimations of the building; being highly 
dependent on the DR event itself. Under the present framework, quickly 
and simply quantifying how a building is expected to respond under 
different DR events is critical for DR agents. Consequently, the proposed 
methodology can be applied under both operational and planning DR 
scenarios, where it is crucial to decide and select the involvement of 
buildings in each DR event. The proposed methodology allows to 
characterize analytically the dynamic response of buildings, regardless 
of the boundary conditions (i.e., weather dynamics, season, role of oc
cupants) and the type of DR event. In this way, a DR agent can have a 
general characterization of its available portfolio and plan involvement 
scenarios. Given the dynamic nature of assessing energy flexibility in 
buildings, the methodology is based on the thermal characterization of 
the dynamic response of the building; hence, a dynamic simulation 
model is required. The proposed methodology involves the calculation 
of two performance indicators (that could be considered as character
istic time constants) that allow to simplify the evaluation of how the 
building behaves during short- and long-term involvements. Based on 
the time constants, buildings can be labeled according to classes of 
current thermal inertia and thus facilitate the planning of building 
involvement scenarios by a DR agent. Furthermore, to show its potential 
in a more operational context, the methodology is also presented in two 
ways. Indeed, the labeling could be carried out both by considering only 
the building (i.e. independently of the specific boundary conditions such 
as the dynamics of the meteorological conditions and the imposed 
comfort condition) and from an operational perspective (i.e. considering 
all or some of the boundary conditions). 

The rest of the paper is structured as follows: in Section 2 the 
methodology is described. The methodology contains the description of 
the dynamic model to be built and the procedures to be followed to 
calculate time constants and to identify labelling classes. Section 3 de
scribes the case study. The results are presented and discussed in Section 

Table 1 
Overview of the mentioned methodologies to quantify energy flexibility of buildings during DR events.  

Reference Characterization through Flexibility activation Dependence on at least one 
boundary condition 

Performance indicators 
differentiated by type of DR 

Dynamic 
function 

Global 
indicator 

Multiple 
indicators 

Penalty- 
aware control 

Simulation of a DR 
reference events 

Junker et al [29] X X  X  Yes No 
Majdalani et al. [30] X X  X  Yes No 
Arteconi et al. [24]  X   X Yes No 
Reynders et al. [31]   X  X Yes No 
Tang and Wang [32]   X  X Yes No 
Ruan et al. [33]   X  X Yes No 
Chen et al. [34]   X  X Yes No 
Li and Hong [35]  X   X Yes No 
Zhu et al. 

[36]  
X   X Yes No 

Methodology 
proposed in this 
study   

X  X No Yes  
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4. Finally, the main conclusions are summarized in Section 5. 

2. Methodology 

This section describes the methodology to label buildings according 
to their current thermal mass. The responsiveness of a building during a 
DR event depends on both the intrinsic characteristics of the building (i. 
e., its thermal and geometric properties) and the type of DR event (i.e., 
type of DR signal and duration of involvement); but also, on the oper
ational conditions of the building (i.e., its actual thermal dynamics and 
variable boundary conditions). For this reason, a Lumped Parameter 
Model (LPM) is identified for each building. Details concerning LPMs are 
described in Section 2.1. After the LPM definition, the dynamic response 
can be characterized by calculating the two proposed indicators: two 
characteristic time constants that allow a quick assessment of the ability 
of the building to respond under short- and long-term DR events. The 
two characteristic time constants differ from the traditional global time 
constant of the building [38], usually based on building design charac
teristics (i.e., thermal capacity of the building materials and thermal 
transmittance of the walls) and providing an averaged global thermal 
mass of the building. Instead, the time constants proposed in this work 
allow to quantify the current thermal mass available during different 
duration DR events. Furthermore, their calculation is based on LPMs. 
Therefore, they consider the real dynamic evolution of the building. 

The proposed methodology is described in the most general form, 
aiming to be versatile for different case studies and classification ob
jectives. In fact, characteristic time constants may (or may not) consider 
various aspects (i.e., boundary conditions) that, in any case, should be 
specified prior. As a summary, Fig. 1 shows schematically the proposed 
methodology. 

2.1. Lumped parameter model identification 

The selected LPM is based on equivalent resistors and thermal ca
pacitances (RC-network). In fact, it is one of the most adopted solutions 
for thermal building modeling [39]. It can be identified both with 
measured data (i.e., grey box approach [40]) or obtained exclusively 
from knowledge of the thermal and geometric characteristics of the 
building (i.e., white box approach [41]). A third-order model is selected, 
being proposed by the specific literature as a suitable trade-off between 

computational effort and reliability [42 43]. Fig. 2 depicts a general 
scheme of the proposed LPM model. R1, R2, R3, and R4 are thermal re
sistances (in K/W), C1, C2 and C3 are heat capacitors (in Wh/K), To is the 
outdoor air temperature (in ◦C), Tw is a virtual temperature of the 
interior of the thermal envelope (in ◦C), Ti is the temperature of the 
internal air (in ◦C), TTM is the temperature of a virtual node modeling the 
internal thermal mass of the building (in ◦C), qHVAC represents the 
heating or cooling output provided by the HVAC system (in W) and qe, qs 
are the electrical and solar gains (in W). The solar gains qs are obtained 
from the total incident solar radiation, multiplied by a solar factor (fS). 

Eqs (1)–(3) describe the energy balance between nodes in the LPM: 

C1
dTw

dt
=

(To − Tw)

R1
+
(Ti − Tw)

R2
(1)  

C2
dTi

dt
=

(To − Ti)

R4
+
(Tw − Ti)

R2
+
(TTM − Ti)

R3
+ qe + qs + qHVAC (2)  

C3
dTTM

dt
=

(Ti − TTM)

R3
(3)  

Furthermore, with this formulation the LPM can be expressed in the 
form of a state space model according to Eqs. (4) and (5): 

Ẋ(t) = A • X(t)+B • U(t) (4)  

Y(t) = C • X(t)+D • U(t) (5) 

Fig. 1. General overview of the proposed methodology.  

Fig. 2. LPM model (RC-network) [43].  
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where A, B, C and D are respectively the system, the input, the output 
matrix, and feedthrough matrixes, Ẋ(t) represents the state vector U(t)
the input vector and Y(t) the output vector. 

To better represent the dynamics of the building with a third order 
LPM, the authors suggest obtaining numerical values of the parameters 
(i.e., R1, R2, R3, R4, C1, C2 C3 and fS) with a grey box approach (i.e., see 
Annex A for more details). In the absence of measured data, a white box 
approach can also be used. However, it is important to point out that, 
even in the case of a white box approach, the key characteristics of the 
building (i.e., the geometric and thermal properties) must be known in 
advance. In any case, the current thermal inertia that is considered by 
the characterization methodology proposed in this study considers the 
information used to identify the LPM. 

2.2. Boundary conditions settings 

Time constants can be calculated for different characterization ob
jectives. Indeed, they can be determined only considering the intrinsic 
characteristics of the building (i.e., design characterization). In this case, 
no boundary conditions are required, and the characterization of the 
building is suitable regardless of the season (i.e., heating or cooling) and 
location. The design characterization allows to consider only the 
intrinsic design features of the building, i.e., the geometry, the stratig
raphy of the envelope walls, the type of fixtures, etc. On the other hand, 
the methodology can be applied also considering boundary conditions 
(i.e., operative characterization) and, in particular, heat gains. The 
definition of heat gains becomes the indicators representative for the 
building in those boundary conditions. As internal gains contribute 
differently depending on the season (reducing heating demand in winter 
and increasing cooling consumption in summer), it is essential to 
establish the following boundary conditions: (i) the season (whether it is 
heating or cooling), (ii) indoor comfort settings (the desired indoor 
thermostat temperature), and (iii) weather conditions (outdoor air 
temperature and overall solar irradiation). Regarding the operational 
characterization, time constants, can assume greater importance in 
assessing the individual building influence, or clusters of buildings, for 
different geographical locations and seasons. 

2.3. Calculation of the time constants 

Two indicators are introduced to characterize the current thermal 
inertia of a building. Both indicators have time dimension (i.e., 
expressed in hours) and allow to estimate the speed of the internal 
temperature changes respectively: (i) for the short-term (τS) and (ii) for 
the long-term response of the building (τL). Before defining τS and τL, it 
is necessary to stablish the initial assumptions to apply the methodology. 
With this aim, both boundary and the starting condition must be 
selected. These parameters include the outdoor temperature (To), the 
heat gains (qe and qs), the HVAC system contribution (qHVAC) and the 
starting values of the states in LPM (Ti(0),TTM(0) and Tw(0)). 

As described in the previous subsection, the definition of boundary 
conditions depends on the objective of the characterization. The 
following assumptions can be thus considered for design characteriza
tion purposes: (i) Fixed outdoor air temperature, although the numerical 
values of the time constants are not dependent on the numerical value of 
To. (ii) No contributions from heat gains due to electrical loads and solar 
radiation. (iii) Indoor air reference temperature (Tsetpoint). Note that the 
numerical value of the parameter does not affect the time constants, and 
it does not take on the same numerical value as To. Moreover, such as
sumptions allow for a characterization independent of boundary con
ditions. 

As far as the operative characterization is concerned, the above- 
mentioned variables are defined based on the specific case study. The 
outdoor temperature must be representative of the chosen location. The 
heat gains (qe and qs) are defined consistent with the location and case 

study, and the indoor air temperature setpoints (Tsetpoint) must be defined 
according to the season under consideration (i.e., heating or cooling 
season). Note that only (iii) applies to both design and operational 
characterization. 

Considering the initial values of the LPM states, such values can be 
defined from the test hypotheses according to: 

Ti(0) = TTM(0) = Tsetpoint (6)  

Tw(0) =
K1To

R1
+

K2Ti(0)
R2

1
R1
+ 1

R2

(7)  

As was previously discussed, the current thermal inertia of the building 
is characterized through the estimation of two characteristic time con
stants. These constants represent the DR response capacity of the 
building in the short (τS) and long term (τL). More specifically, they 
quantify how long the internal air temperature varies in comparison to 
ordinary indoor air temperature evolution, in the absence of DR events, 
differentiating short and longer observation time intervals. Their theo
retical definitions are:  

• τS: time interval in which the indoor air temperature (Ti) reaches 
63.2 % of the maximum temperature difference (To − Tsetpoint) at the 
growth rate defined by the first derivative at t equal to 0 hr. It can be 
analytically determined from the numerical values of the LPM pa
rameters, see Fig. 2: 

τS = 0.632 • C2

⎛

⎜
⎜
⎝

1
R1
+ 1

R2
1

R1R2
+ 1

R1R4
+ 1

R2R4

⎞

⎟
⎟
⎠ (8)    

• τL: time interval in which the indoor air temperature (Ti) reaches 
63.2 % of the maximum temperature difference (To − Tsetpoint), 
considering only the thermal mass of the building facing outwards. It 
is empirically determined by running the building model test. This 
test is carried out by setting the reciprocal of R3 equal to 0 W K− 1. 
Fig. 3 shows the LPM used to calculate τL distinguishing between the 
characterization objective. 

Note that a model suitable of representing the real processes need to 
find a trade-off between fidelity and number of parameters. When the 
number of parameters is too large, two issues can arise: (i) the over
fitting, when the model is fitting only the data to be used for training and 
it probably would provide inconsistent results when extrapolating and 
(ii) the lack of identifiability when the combination of the parameters of 
the model can be high and produce the same answer. This last case is 
particularly treacherous for the objective of this study, hence the choice 
of a second order model and two-time constants to characterize the 
current thermal mass. 

2.4. Building labeling classes 

Based on the values obtained for the time constants (τS and τL), 
several differences among current thermal inertia classes can be then 
identified. In particular, the time constant τS allows to label the building 
in a short-term inertia class (identified with the subscript ‘S’ in Fig. 4a). 
The time constant τL identifies the long-term inertia class (subscript ‘L’ 
in Fig. 4b). The difference between these two inertia classes allows to 
identify dynamically such thermal mass able to be used in different 
duration DR events. The thresholds of the numerical values of the time 
constants that allow the classes in Fig. 4 to be divided can be deduced 
empirically from the comparison of the application of the methodology 
to multiple buildings. The numerical values of the time constants that 
allow the division of classes are obtained by clustering the results of the 
application of the methodology to several buildings. An example of 
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subdivision is shown in the following section, where a case study is 
introduced. In general, the definition of classes may be adaptable and 
modifiable. Indeed, each DR agent could apply the methodology to their 
own portfolio of buildings, thus establishing its own effective thermal 
inertia classes. 

3. Case study 

To assess the suitability of the proposed methodology, time constants 
are estimated for a case study composed of 28 real buildings. The case 
study was extensively described by the authors in [43], where also 
detailed numerical parameters of the LPMs are provided. However, for 
ease of reading, the main features of the case study are briefly described 
(for more details refer to [43]). Table 2 contains the main characteristics 
of the buildings. As can be seen, the portfolio is rather heterogeneous. In 
fact, the case study includes residential buildings which differ in terms of 
construction period (i.e., construction materials, stratigraphy, heat loss 
to the outside, type of windows, …), size, geometry, and type of building 
(i.e., mid terrace, detached cottage, semidetached, end terrace, …). 
Fig. 5 shows the heterogeneity of the case study, considering two 
representative parameters: (i) building size, assessed in terms of floor 
area in Fig. 5a; and (ii) building type in Fig. 5b. 

Given the availability of measured data ([44]), a grey box approach 
was used to identify numerical values of the parameter for LPMs (Fig. 2). 
In particular, the dataset used for training contains time series of indoor 
temperature, outdoor temperature, and electricity consumption for each 
of the 28 buildings at 5-minute intervals. The fitting was very satisfac
tory. Indeed, the average error, calculated with respect to the cooling 
degree hours, showed an average error of 4.2 % and a worst-case 

difference of 13 % (Annex A for more details). 
Both design and operative characterization were applied to the case 

study. In the former case, as described in the previous section, it was not 
necessary to choose a specific location for the calculation of time con
stants. However, to demonstrate the effectiveness of the design method 
and validate its classification, ideal DR events are applied to individual 
LPMs. The DR event consists of forced switching off the HVAC system 
when the peak power occurs. In one case, the forced shutdown is 
imposed for a short time interval (i.e., 5 min to assess the short-term 
responsiveness of the building). In the other case, the shutdown is 
imposed for a longer period (i.e., 2 h to assess long-term DR events). It is 
worth underlining that the definition of such DR events is only necessary 
to demonstrate the effectiveness of the methodology. The character
ization results do not vary under different DR events. Summer season is 
considered, and meteorological data (data measured by the weather 
station) from the city of Murcia (N 37◦59′-O 1◦ 7′, Spain) are used to 
estimate HVAC demand. The thermal power provided by the HVAC 
system is obtained by solving a linear programming optimization 
problem for each building [45]. The objective function of each optimi
zation problem concerns the minimization of the thermal energy to 
maintain the internal temperature setpoint. In fact, the constraint con
ditions involve the state space equations (Eq. (1)-(3)) and require the 
internal temperature to remain close to the comfort set point. The 
cooling power of the HVAC (qHVAC in Fig. 2) represents the decision 
variable. It is limited, to each time interval, by the maximum capability 
of the cooling system. The latter is represented by a real air–water heat 
pump. The rated power of each heat pump is calculated from the values 
of the heat loss coefficients given in Table 2 (a set-point comfort con
ditions of 24 ◦C is considered; i.e., Tsetpoint and the maximum reached 

Fig. 3. LPM model to calculate τL: (design and operative characterization).  

Fig. 4. Labeling of buildings based on their ability to respond to DR events: (a) classes for short term DR events and (b) classes for long-term DR events.  
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outdoor temperature of 45 ◦C). To obtain electricity consumption, the 
dynamic variation of the Coefficient of Performance (COP) with the 
operational condition (i.e., modulation, source and sink temperatures) 
are modeled by linear interpolation of the data provided by the manu
facturer (a fixed water supply temperature of 7 ◦C is assumed) [45]. 
Table 3 summarizes the rated cooling loads for each building and the 
rated power of the corresponding heat pump (COP at full load, outdoor 
air temperature of 45 ◦C and water supply of 7 ◦C equal to 2.16). 

Regarding the operative classification of the case study, reference 
values for qs are used, see Fig. 3. The reference values are extrapolated 
from the classification of European climates conducted by Pernigotto 
and Gasparella [46]. In that work, the authors presented a new classi
fication of 66 European climates based on clustering analysis. They 
identified six representative climate zones based on similar conditions of 

dry bulb temperature, relative humidity and global horizontal irradia
tion. For each climate zone, representative cities were identified as 
summarized Table 4. 

Considering that the contribution of solar gains is not constant, its 
influence depending on the operating mode of the HVAC system (i.e., 
heating or cooling), two solar irradiation values are assessed for each 
location (one for winter and one for summer). These values are kept 
constant and applied as inputs to the LPM in Fig. 3. In detail, qs,winter (in 
W m− 2) is calculated as the average daily equivalent solar irradiation 
during winter (calculated considering the months of December, January 
and February). In a similar way, qs,summer (W m− 2) is assumed as the 
average daily equivalent solar irradiation during summer (calculated 
with reference to the months of July and August). These values were 
considered by considering representative typical meteorological year 
(TMY) for the representative cities in Table 5 [47]. 

In addition, the time constants under the presence of heat gains 
depend on the values of the outdoor air temperature and the starting 

Table 2 
Main characteristics of the case study buildings (ID assignment for each build
ing) [43].  

ID Floor Area 
(sqm) 

Type of building Age of 
construction 

Heat Losses 
(W/K) 

1 31.2 3rd floor of Mid 
Terrace 

1904  371.0 

2 85 Mid Terrace 2006  114.0 
3 85 Mid Terrace 2006  114.0 
4 85 Mid Terrace 2006  114.0 
5 93.91 Detached Cottage 1790  305.4 
6 90.26 Semi Detached 1957  361.2 
7 77.17 End Terrace 1959  279.6 
8 65.62 Semi Detached 1924  363.7 
9 64.86 3rd floor of Mid 

Terrace 
1904  209.7 

10 61.33 Semi Detached 1969  382.3 
11 94.06 Semi Detached 2005  449.1 
12 88 End Terrace 1964  245.6 
13 57.22 Mid Terrace 1904  284.4 
14 88.8 End Terrace 1960  231.9 
15 95.81 End Terrace 2005  134.2 
16 77.8 Semi Detached 1964  237.2 
17 62.52 End Terrace 1969  223.3 
18 95.81 Mid Terrace 2005  134.2 
19 67.27 3rd floor of Mid 

Terrace 
1904  237.1 

20 58.85 Mid Terrace 1969  212.3 
21 95.81 End Terrace 2005  134.2 
22 95.81 End Terrace 2005  134.2 
23 75.63 Terrace 1969  230.6 
24 38.66 Mid Terrace 1904  260.4 
25 95.81 End Terrace 2005  134.2 
26 41.8 Semi Detached 1970  140.7 
27 77.17 Mid Terrace 1969  270.7 
28 80.9 End Terrace 1959  322.1  

Fig. 5. Case study composition: (a) distinction according to construction period and building size (floor area) and (b) distinction according to construction period 
and building type. 

Table 3 
Rated cooling load and side of the heat pump for each case study buildings (ID 
assignment for each building).  

ID Rated cooling loads (W/ 
m− 2(− |-)) 

Heat Pump cooling capacity (Water 7 ◦C/ Air 
45 ◦C) (kW) 

1  249.7  7.8 
2  28.2  2.4 
3  28.2  2.4 
4  28.2  2.4 
5  68.3  6.4 
6  84.0  7.6 
7  76.1  5.9 
8  116.4  7.6 
9  67.9  4.4 
10  130.9  8.0 
11  100.3  9.4 
12  58.6  5.2 
13  104.4  6.0 
14  54.8  4.9 
15  29.4  2.8 
16  64.0  5.0 
17  75.0  4.7 
18  29.4  2.8 
19  74.0  5.0 
20  75.8  4.5 
21  29.4  2.8 
22  29.4  2.8 
23  64.0  4.8 
24  141.4  5.5 
25  29.4  2.8 
26  70.7  3.0  
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value of the indoor air temperature. However, to evaluate only the 
contribution of the solar gains, the fixed outdoor temperatures of 40 ◦C 
and 0 ◦C (To) are assumed for all climate zones, for summer and winter 
seasons respectively. The initial conditions for indoor air were 24 ◦C and 
20 ◦C for comfort in summer and comfort in winter (Tsetpoint) accordingly. 
Again, as for the DR events tested, these values are chosen only to show 
with a practical case the effectiveness of the building categorization 
methodology. In particular, the choice to keep the outdoor temperatures 
fixed is made only to highlight the role of solar gains. Additional tests 
could be performed by users who want to apply the methodology to 
highlight the impact of other boundary conditions in the operative 
classification. 

4. Results 

In this section, the results of applying the proposed methodology to 
the case study are described and discussed. In particular, the first sub
section (4.1) describes the design characterization and the division into 
classes of current thermal inertia. The second subsection (4.2) gives the 
operative characterization. Finally, in the last subsection (4.3), it is 
clarified how the proposed methodology ca be used by a DR agent. In 
this last subsection, the strengths and limitations of the methodology are 
also discussed. 

4.1. Design characterization 

This subsection describes the application of the design character
ization methodology to the 28 buildings previously described in Section 
3. Firstly, the performance indicators (i.e., τS and τL) and the division of 
the buildings into current inertia classes is reported. Secondly, DR events 
are applied to the LPMs of each building aimed to validate the proposed 
methodology. 

4.1.1. Calculation of time constants for design characterization 
The estimated time constants for all 28 buildings shown in the case 

study are summarized in Table 6. By considering the relevant variability 
of time constants among the different buildings, a traditional clustering 
algorithm (i.e., K-means clustering) is applied to classify such buildings 
according to their short- and long-term response with this we intend to 

verify if the buildings can be indeed classified in clusters, see Fig. 6. Two 
divisions of clusters are identified: the short-term time constant (see τS 

in Fig. 6a) and the longer-term time constant (see τL in Fig. 6b). Tables 7 
and 8 give the list of buildings enclosed in each cluster for short-term 
response (Table 7) and for long-term response (Table 8) respectively. 

Based on the results obtained from the corresponding clustering, it is 
then possible to define current thermal inertia classes, identifying to 
their response to short- (subscript S in the classes) and long- (subscript L 
in the classes) term, see Fig. 7. Boundary values to define the classes can 
be also evaluated, as seen in Table 9. These values are determined from 
the application of the proposed methodology for the specific case study. 
These limits can be considered as a first attempt to a classification 
approach, as they are only based on this case study. The greater the 
number of buildings to which the proposed methodology is applied, the 
greater the robustness of the clustering. It may also involve changing the 
numerical threshold values and class size to be defined. However, the 
purpose of this work is to describe and assess the methodology, evalu
ating its potential effectiveness and application for energy flexibility 
purposes based on dynamic thermal building clustering. With this aim, 
the corresponding dynamic behavior of buildings during DR events in 
varying inertia classes is discussed in detail in the next section. 

4.1.2. Validation of the classification with the application of DR events: 
Evaluation and discussion 

Two types of DR events are applied to validate the methodology: (i) a 
short-term and (ii) a long-term DR event. The first DR event consists of 
switching-off the cooling system for 5 min during the hour of peak de
mand (i.e., 1p.m.). On the other hand, the long-term DR event (ii) is 
achieved by switching off the cooling system for 2 h, starting at 1p.m. (i. 
e., the time when the peak occurs). The analysis is shown on a repre
sentative day (i.e., day with the outdoor temperature closest to the 
seasonal average). To evaluate the different response of the buildings, an 
approach similar to that proposed by Huang et al. [48] is adopted to 
differentiate the thermal inertia level of the buildings in different clas
ses. Indeed, Huang et al. suggested considering the speed of zone tem
perature change in response to the DR event. In particular, the increase 
in indoor air temperature at the end of the event (ΔTi) is determined, i. 

Table 4 
European climatic zones [46].  

Climatic 
zone 

Description Representative city 

1 Cold climate without dry season 
and with cold summer 

Ostersund (Sweden) 

2 Cold climate without dry season 
and with warm summer 

Prague, Ostrava (Czech 
Republic) or Poznan (Poland) 

3 Temperate climate without dry 
season and with warm summer 

Strasbourg (France) 

4 Temperate climate with dry and 
hot summer 

Marseille (France) 

5 Temperate climate without dry 
season and with hot summer 

Pescara (Italy). 

6 Temperate climate with dry and 
hot summer 

Sevilla (Spain), Messina (Italy) 
or Larnaca (Cyprus)  

Table 5 
Reference solar irradiation values for each European climatic zone.  

Climatic zone qs,winter (W/m− 2(− |-)) qs,summer (W/m− 2(− |-)) 

1 59 250 
2 117 316 
3 122 370 
4 208 461 
5 201 437 
6 275 513  

Table 6 
Time constants (design characterization).  

BULDING ID τS(hr) τL(hr) 

1  1.0  1.7 
2  1.3  2.1 
3  3.1  4.9 
4  1.5  2.4 
5  1.1  1.8 
6  0.8  1.7 
7  1.2  2.1 
8  1.2  2.1 
9  1.6  2.6 
10  1.3  2.2 
11  1.0  2.2 
12  0.8  1.7 
13  1.9  3.0 
14  1.6  2.7 
15  0.5  2.5 
16  1.5  2.8 
17  2.0  3.3 
18  1.5  2.5 
19  1.0  1.6 
20  1.0  1.9 
21  1.2  2.2 
22  0.9  1.6 
23  2.9  4.7 
24  1.4  2.9 
25  1.6  2.7 
26  0.8  1.3 
27  2.1  3.4 
28  0.5  1.1  
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e., after 5 min in the case of the short event and after 2 h in the case of 
the long event. Results are shown in Figures 8 and 9 by grouping 
buildings according to the corresponding thermal inertia classes (i.e., 
according to clustering, see Table 9). Fig. 8 shows ΔTi values, including 
both the short-term (Fig. 8a) and long-term (Fig. 8b) classification for 
short and long-term DR events respectively. In Fig. 9, the averaged in
ternal temperature variation is calculated by current thermal inertia 
class and type of event: short term DR event in Fig. 9a and long-term DR 
event in Fig. 9b. Note how the design classification is effective in dis
tinguishing the dynamic behavior of buildings during DR events. In fact, 

passing from class A (high performance) to class D (low performance), 
both for short- and long-lasting DR events, ΔTi decreases. Indeed, it is 
deduced that the internal air temperature evolution during the short- 
term DR event increases by 0.8 %, 1.2 %, 1.7 % and 2.6 % respec
tively for classes AS, BS, CS and DS. Regarding the values for long-term 
DR events, the increasing percentages of the average temperature are 
12.6 %, 17.9 %, 19.1 %, 22.2 % respectively for classes AL, BL, CL and DL. 
This key finding of this paper is that the temperature variation indeed 
correlates with the clusters. Therefore, the clusters can be used to 
anticipate the effect that the DR events will have on the buildings, and 
subsequently to define ad hoc events for each cluster. 

Fig. 10 shows the dynamic behavior, in terms of indoor air temper
ature, of a representative building (i.e., ID 3, 13,7,6) for each class 
during a short-term (Fig. 10a) and a long-term (Fig. 10b) DR event. This 
evolution also demonstrates the suitability of building labeling. In fact, 
for both types of events, the speed of the internal air temperature Ti 
increases, with the cooling system off, increases from class A (high 
performance) to class D (low performance). 

Fig. 11 shows the labeling of buildings according to the flexibility 

Fig. 6. Clustering results from the case study (the straight line represents the centroid for each cluster). (a) clustering based on short-term and (b) long- 
term response. 

Table 7 
Buildings in each cluster (short-term response).  

Cluster Buildings 

1 3, 23 
2 13, 17, 27 
3 2, 4, 7, 8, 9,10, 14, 16, 18, 21,24,25 
4 1, 5, 6, 11,12, 15,19, 20, 22, 26, 28  

Table 8 
Buildings in each cluster (long -term response).  

Cluster Buildings 

1 3, 23 
2 13, 14, 16, 17, 24, 25, 27 
3 2, 4, 7, 8, 9, 10, 11, 15, 18, 21 
4 1, 5, 6, 12, 19, 20, 22, 26, 28  

Fig. 7. Classes of thermal inertia identified with respect to values of time constants: (a) τS and (b) τL.  

Table 9 
Thermal inertia classes limit values.  

CLASS Short term (subscript S) Long term (subscript L) 

A τS ≥ 2.9 hr τL ≥ 4.7 hr 
B 1.6 < τS < 2.9 hr 2.7 ≤ τL < 4.7 
C 1.1 < τS ≤ 1.6 hr 1.9 < τL < 2.7 
D τS ≤ 1.1 hr τL ≤ 1.9 hr  
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classes, summarizing the main results of the design characterization; 
Fig. 11a for short term and Fig. 11b for long term DR events. Moreover, 
Fig. 11 depicts the results distinguishing the construction periods of the 
buildings. As can be seen, it is not possible to deduce a classification of 
current thermal inertia available exclusively based on the knowledge of 
the design thermal and geometric characteristics (i.e., design thermal 
losses and floor area) of the corresponding building. In fact, a direct 

dependence between the year of construction and the thermal inertia 
class cannot be deduced. Fig. 12 shows the distribution of the values of 
the time constants (both short- and long-term) in relation to the con
struction age. As can be seen, no dependency can be observed. 

The same conclusion can be affirmed if thermal (Figs. 13a) and 
geometric (Figs. 13b) characteristics are considered. These results 
confirm the extremely dynamic nature of energy flexibility as a 

Fig. 8. Increase in indoor air temperature during ideal DR events for all case study buildings grouped by cluster: (a) short-term DR and (b) long-term DR event.  

Fig. 9. Average increase in indoor air temperature for each class (obtained as the arithmetic mean of the results in Figure 8: (a) short-term and (b) long-term 
DR event. 

Fig. 10. Focus on the internal node temperature during a DR event for a representative building in each cluster: (a) short-term and (b) long-term DR event.  
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characteristic of the building, reinforcing the need to provide dynamic 
models for a proper quantification. 

Furthermore, also a T-test for independent samples has been used to 
verify the independence between the year of construction between 
clusters. This test is a robust and widely recognized statistical tool in 

scientific research. This is particularly suitable for comparing the means 
of two groups when the samples are independent, and the data are 
normally distributed. In the context of our study, the T-test has been 
used to evaluate whether it is significant to differentiate clusters by the 
construction year. By applying the T-test, the authors evaluate if a 

Fig. 11. Comparison between short and long-term inertia classes for each building (buildings changing class are in bold):(a) short-term and (b) long-term DR event.  

Fig. 12. Distribution of the values of the time constants calculated for the case study as a function of construction epoch.  
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Fig. 13. Distribution of the values of the time constants calculated for the case study as a function of (a) thermal (i.e., heat losses) and (b) geometrical properties (i.e., 
floor area). 

Fig. 14. Distribution of the values of the long-term time constant calculated for the case study as a function of the values of the short-term time constant: (a) focus on 
low classes and (b) focus on high classes. 
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simple classification by age is more adequate than the cluster. In all 
comparative cases between two samples: cluster 1 and 2, cluster 1 and 3, 
and cluster 1 and 4, p-values were greater than 0.05. These results 
indicate that the absence of statistically significant differences in the 
average construction years among the examined clusters suggests that 
the year of construction, as a variable, is not a factor to effectively 
differentiate among the different clusters. Therefore, it can be concluded 
that the year of construction does not provide an effective distinguishing 
criterion among the existing clusters. 

Fig. 11 also gives additional information to distinguish buildings for 
which a change in the whole class is observed when assessing the short- 
and long-term response capacity. These buildings (buildings ID 11, 14, 
15, 16, 24 and 25) represent approximately 21 % of the observed sam
ple. Given the limited number of case studies analyzed, this percentage 
cannot be overlooked. Fig. 14 shows the values of the short-term and 
long-term time constants calculated for the case study buildings; dis
tinguishing buildings classified in low inertia classes (Fig. 14a) from 
those in higher classes (Fig. 14b). Since the values of the time constants 
are obtained from analytical calculations, the observation of Fig. 14a, 
which contains the greatest number of data, combined with the non- 
negligible percentage of buildings with changing inertia classes, al
lows to confirm the need to distinguish the classification according to 
the duration of involvement in a DR event. In contrast, Fig. 14b seems to 
suggest a linear dependence between the values of the short-term and 
long-term time constants. However, given the small number of samples 
in this area, this behavior cannot be confirmed. Further buildings should 
be tested to confirm what was preliminarily observed. 

With this aim, Fig. 15 proposes a focus on the dynamic behavior of 
two buildings: ID 9 and ID 15. Regarding building ID 9, there is no class 
change from short-term to long-term characterization (class CL/CS). 
However, building ID 15 presents a class change from class CL to DS. 
After the long DR event; i.e., after 2 h highlighted with the grey area in 
Fig. 15, both two buildings achieve approximately the same internal 
temperature increasing (i.e., 4.66 ◦C for building ID 9 and 4.74 ◦C for 
building ID 15). Note that, instead the dynamic evolution of the tem
peratures of the two buildings for a shorter time than the start time of the 
event, building ID 15 (class DS) increases its internal temperature faster 
than building ID 9 (class CS). For example, 5-minute time interval after 
the starting of the DR event, the difference between both temperatures is 
about 0.42 ◦C. This difference reaches its maximum value 15 min after 
the starting of the DR event, red area in Fig. 15, where the difference 

between the two temperatures is 0.63 ◦C. 

4.2. Operative characterization 

Regarding the numerical values of the solar irradiation defined in 
Table 5, the result of the operative characterization is discussed in this 
section. As was previously described in Sections 2 and 3, it is necessary 
to specify the season of the analysis. Subsequently, the results are then 
separated according to heating or cooling demand requirements. With 
this aim, Figures 16 and 176 show the percentual variation of the cor
responding time constants (for short term in Fig. 16 and long-term DR 
events in Fig. 17 respectively) with respect to the design characteriza
tion (see Table 6 as well as the season (i.e., heating and cooling demand) 
and climate zone change (see Table 5). From these results, the numerical 
value of the time constants increases for each building considering the 
effect of internal gains for heating seasons. This pattern remains 
consistent for both time constants: τS (Fig. 16a) and τL (Fig. 17a). 
Moreover, the percentage increase tends to increase from climatic zone 
1 (cold climate without dry season and with cold summer) to 6 
(temperate climate with dry and hot summer). An inverse dependency is 
observed for the case of the cooling season, given in Fig. 16b and 17b. In 
this case, in fact, the numerical value of the time constants in the 
operative characterization remains lower than or equal to that obtained 
with the design characterization. Reduction percentages here also tend 
to increase from climate zone 1 to climate zone 6 with 33 % reduction 
for τS (Fig. 16b) and 68 % reduction for τL (Fig. 17b). 

With regard to the thresholds identified for the classes, see Table 9, 
such changes in the value of the time constants can lead to a change in 
class for the same building as the operating conditions change. Further 
information can be found in Annex B, where extensive results corre
sponding to the operative characterization are given in detail. Class 
changes are highlighted in bold. Note that the greater the thermal gains, 
the more the building can aspire to high performance thermal inertia 
classes (i.e., going from D to A) for the heating season. This trend re
verses for the cooling season: as the heat gains increases, the labeling of 
the building moves towards lower performance classes (i.e., going from 
A to D). However, this fact does not apply to all buildings, though it is 
also an intrinsic characteristic of the building that only emerges after 
applying the characterization methodology. 

Fig. 15. Comparison during a long-term DR event between a building that does not change class (building 9 class CL/CS) a building that changes class (building 15 
DS/CS). 
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4.3. Discussion: How the method could be used by a DR agent? 

The application of the methodology to the case study remarked the 
relevance of both distinctions introduced for the characterization of the 
building during DR events (i.e., characterization according to the 
observed duration of the response and according to the design or 
operational level). Design characterization has proven essential for 
classifying buildings exclusively based on their intrinsic design features. 
(e.g., construction materials, size, type of fixtures). On the other hand, 
the application of the same proposed methodology considering the 
boundary conditions (typical of the particular application) points out 
the dynamic response variations of the building, only depending on the 
corresponding operation. 

In light of these results, the proposed methodology is able to be 
applied in the following way by a DR agent, who can involve a portfolio 
of buildings such as those in the case study. Firstly, the agent should 
apply the design characterization to define the limits of the short-term 
and long-term inertia classes, either with a data-driven method or by 
direct characterization. The agent can already have an overview of the 
characteristics of the individual buildings available. Subsequently, 
based on the actual operational boundary conditions and grid re
quirements, the agent can apply operational characterization to plan 
involvement scenarios. In addition, the proposed methodology is 
adaptable for cluster-level demand response events by merely adjusting 
the boundary conditions and reevaluating the time constants. 

The methodology straightforward application and the transparency 

of its performance indicators affirm its suitability for validation under 
design and highly operational scenarios. In this method, the lack of in
formation relating to power and/or shiftable energy could be a possible 
drawback. However, the authors are confident that the arrival of more 
connected devices under the IoT paradigm will bridge this issue and not 
represent a barrier to the proposed methodology. What is more, the 
proposed methodology does not allow for a direct assessment of the 
building recovery phase to undisturbed conditions (i.e., before the DR 
event). In this phase, in fact, undesirable effects could be observed in the 
demand curve of the building, due to delayed power peaks to restore the 
building to its pre-event condition. However, it should be emphasized 
that the proposed methodology is based on the analytical character
ization of the thermal mass of buildings. Thus, the different aspects 
considered in the characterization (e.g. the heating and cooling system) 
depend on the data used to identify the LPM. All the way these aspects 
should be also considered in the operational planning of building 
involvement. Note that the proposed methodology estimates the thermal 
response of the building also considering the thermal discomfort caused 
to customers (i.e., evaluated as the variation in the internal air tem
perature compared to comfort set-point). Additional proposals of 
quantifying displaced power/energy could be related to the proposed 
methodology to complete the global overall view of a DR agent in a 
multidimensional approach. 

Fig. 16. Percentage variation of τS compared to design characterization as the climatic zone varies: (a) heating season and (b) cooling season.  
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5. Conclusions 

This paper describes an innovative methodology to characterize the 
dynamic thermal response of building under demand response events. 
The proposed methodology complements the conventional approach for 
quantifying building energy flexibility. In fact, it allows to quantify the 
thermal mass to be exploited in buildings under DR events and 
depending on each event duration. The methodology allows the 
analytical characterization of the dynamic behavior of buildings, 
regardless of the type of demand response event and specific boundary 
conditions (such as weather or season). Actually, and due to this dy
namic nature of the building energy flexibility characterization, the 
proposed methodology requires the definition of a lumped parameter 
model for each building. The model can be then defined both in the 
presence of measured data and only based on the design characteristics 
of the building. Simulations allow to calculate two indicators: the 
characteristic time constants of the building. These time constants 
quantify the ability of the building to respond under DR events both 
short-term and long-term conditions. Based on the values of such time 
constants, classes of thermal inertia can be defined. Two different 
characterization objectives are introduced: (i) design characterization, 
buildings are labeled only based on their intrinsic characteristics of the 
building themself (i.e., regardless of specific boundary conditions); and 
(ii) operative characterization, the time constants allow to consider the 
variability of the boundary conditions. To test the suitability of the 
proposed methodology, it is applied to a portfolio of 28 real residential 

buildings. The buildings differ in type, construction period and size. The 
main results obtained can be summarized in the following points.  

• The methodology applied to the case study proved to be effective in 
distinguishing the different dynamic response capabilities of build
ings during different demand response events.  

• The subdivision into thermal inertia classes is representative of the 
different levels of thermal mass currently available in each building. 
It is also demonstrated by applying realistic demand response events 
to buildings labeled in different classes. 

• It is essential to distinguish the duration of the event in the charac
terization. Some buildings showed a class change from short-term to 
long-term classification.  

• It was found that it is not possible to deduce the dynamic response of 
a building in different demand response events only from its design 
characteristics.  

• The introduction of the variability of the boundary conditions can 
lead to a different dynamic characterization of the building 
compared to the design one. However, it is also a characteristic that 
can only be evaluated after applying both the design and operational 
characterization methodology. 

In conclusion, the study highlighted the dynamic nature of the en
ergy flexibility of buildings and the need to introduce a characterization 
methodology that also includes the type of demand response event, not 
only the thermal building characteristics. The proposed methodology is 

Fig. 17. Percentage variation of τL compared to design characterization as the climatic zone varies: (a) heating season and (b) cooling season.  
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designed to be easily applicable, customizable and with results that are 
simple to interpret by a demand response agent. Note that this proposal 
is a preliminary application of the methodology. In fact, the inertia 
classes are obtained with reference only to the portfolio case study. In 
fact, the study can be considered as a starting point for the analytical 
characterization of buildings in a specific portfolio to be used by DR 
operators. However, even considering a reduced number of buildings, 
the time constants provided effective labeling of the buildings, allowing 
to facilitate the planning of building involvement scenarios based on 
different specific operating conditions. 
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Appendix 

Lumped parameter models to represent the dynamics of buildings. and characteristic of the case study. 
Fig. A1. Percentage absolute values of LPM model fitting errors for each building in the case study.   

Table A2 
Main thermal and geometrical characteristics of the case study from the clipboard based assessment of the CHP Acceleration project from which the data of this study 
has been extracted [43].  

ID Floor area 
(sqm) 

Type of building Year Wall area 
(sq m) 

Wall U-Value (W sqm− 1 K− 1) Glass area 
(sq m) 

Glass type Heat losses (W/K) 

1 31.2 3rd floor of Mid Terrace 1904 67.84 3.26  7.7 Single  370.95 
2 85 Mid Terrace 2006 57.77 0.2  19.7 Double  113.99 
3 85 Mid Terrace 2006 57.77 0.2  19.7 Double  113.99 
4 85 Mid Terrace 2006 57.77 0.2  19.7 Double  113.99 
5 93.91 Detached Cottage 1790 107.67 0.9  22.81 Some Single, Some Double  305.43 
6 90.26 Semi Detached 1957 71.56 2.12  25.69 missing  361.2 
7 77.17 End Terrace 1959 97.6 0.76  17.9 Double  279.57 
8 65.62 Semi Detached 1924 missing missing  10.35 missing  363.74 
9 64.86 3rd floor of Mid Terrace 1904 missing missing  9.98 missing  209.67 
10 61.33 Semi Detached 1969 73.68 missing  4.32 missing  382.33 
11 94.06 Semi Detached 2005 missing missing  20.14 missing  449.1 
12 88 End Terrace 1964 88.46 1.63  14.07 missing  245.62 
13 57.22 Mid Terrace 1904 missing missing  5.04 missing  284.38 
14 88.8 End Terrace 1960 89.87 0.62  13.5 missing  231.9 
15 95.81 End Terrace 2005 78.68 0.63  11.94 mix of solid, triple and double  134.19 
16 77.8 Semi Detached 1964 108 0.46  18.2 Double  237.19 
17 62.52 End Terrace 1969 96.5 0.46  13.3 Single  223.33 
18 95.81 Mid Terrace 2005 78.68 0.63  11.94 mix of solid, triple and double  134.19 
19 67.27 3rd floor of Mid Terrace 1904 missing 2.2  7.19 missing  237.14 
20 58.85 Mid Terrace 1969 86.2 0.76  13.5 Double  212.33 
21 95.81 End Terrace 2005 78.68 0.63  11.94 Mix of solid, triple and double  134.19 
22 95.81 End Terrace 2005 78.68 0.63  11.94 Mix of Solid, Triple and double  134.19 
23 75.63 Terrace 1969 97.8 0.46  14.2 Double  230.62 
24 38.66 Mid Terrace 1904 missing 1.2  8.52 missing  260.38 
25 95.81 End Terrace 2005 78.68 0.63  11.94 mix of solid, triple and double  134.19 
26 41.8 Semi Detached 1970 25.65 0.52  14.01 Double  140.69 
27 77.17 Mid Terrace 1969 97.6 0.76  17.9 Double  270.71 
28 80.9 End Terrace 1959 119.6 0.76  15.2 Single  322.1   

Table A3 
Numerical values of the LPMs [43].  

ID 1/R1 
(W/K) 

C1 
(Wh/K) 

1/R2 
(W/K) 

C2 
(Wh/K) 

1/R3 
(W/K) 

C3 
(Wh/K) 

1/R4 
(W/K) 

fS 
(-) 

1 191.06 91.13 84.7  143.09  84.18  4982.82 35.48  1.10 
2 128.95 0.01 69.35  199.65  100.46  5135.95 53.53  3.05 
3 166.88 62.44 0  573.49  162.49  4945.2 118.3  4.90 
4 877.24 143.03 0  153.2  98.57  4866.32 66.74  2.03 

(continued on next page) 
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Table A3 (continued ) 

ID 1/R1 
(W/K) 

C1 
(Wh/K) 

1/R2 
(W/K) 

C2 
(Wh/K) 

1/R3 
(W/K) 

C3 
(Wh/K) 

1/R4 
(W/K) 

fS 
(-) 

5 252.92 1.12 174.48  322.52  141.92  4919.55 84.1  2.71 
6 352.51 3002.51 368.61  734.79  275.16  5169.91 412.54  7.35 
7 200.21 121.58 78.74  174.16  93.64  4992.06 34.11  0.49 
8 200.14 120.89 78.81  174.12  93.9  4992.16 33.96  0.95 
9 389.02 0.01 236.9  591.17  214.34  5204.82 90.71  2.28 
10 609.32 0.18 380.08  844.13  563.41  4996.06 167.99  4.24 
11 146.85 284.72 234.53  273.74  103.54  4947.87 82.43  2.31 
12 355.74 3005.74 371.84  746.72  278.39  5173.14 420.02  10.58 
13 451.05 286.63 0  495.8  199.7  5039.17 169.35  3.12 
14 390.77 0 148.7  590.5  223.15  5179.46 123.56  2.94 
15 0 131.24 332.01  65.45  68.45  1200.95 81.12  0.25 
16 500.28 1000.28 366.38  1000.28  272.93  5167.68 201.39  5.12 
17 255.71 2117.15 56.98  613.05  104.93  5294.83 151.89  1.65 
18 514.57 314.57 214.57  1014.57  614.57  50,014.57 272.83  19.40 
19 566.67 47.3 157.61  203.25  116.12  4493.08 10.42  1.87 
20 268.2 314.9 180.29  266.49  105.15  5149.23 62.09  1.73 
21 200.05 121.05 78.05  174.05  93.05  4992.05 33.27  1.35 
22 263.84 93.83 109.46  242.55  172.33  4945.35 89.21  1.00 
23 320.01 0.17 167.93  501.68  131.53  4921.23 0  0.96 
24 158.26 1593.63 247.37  900.8  236.58  5253.78 311.42  3.38 
25 413.89 0 277.8  631.6  233.23  5056.88 77.96  4.00 
26 461.74 454.55 0.04  112.78  104.64  4896.19 89.2  1.95 
27 452.64 0 156.79  1165.88  320.91  5016.19 234.87  1.41 
28 976.77 3158.21 342.28  205.38  378.36  2774.62 4.76  2.26  

ANNEX b 

Results of the operative characterization   

Table B1 
Values of τS for different climatic zones (contribution of solar gains).     

Climatic zone  

1 2 3 4 5 6 

ID winter summer winter summer winter summer winter summer winter summer winter summer 

1  1.0  0.8  1.0  0.8  1.0  0.8  1.1  0.7  1.1  0.7  1.1  0.7 
2  1.3  1.1  1.4  1.1  1.4  1.0  1.4  1.0  1.4  1.0  1.5  1.0 
3  3.1  2.7  3.2  2.6  3.2  2.6  3.4  2.5  3.3  2.5  3.5  2.4 
4  1.5  1.2  1.6  1.1  1.6  1.1  1.7  1.0  1.7  1.0  1.8  1.0 
5  1.1  1.0  1.1  1.0  1.1  1.0  1.2  0.9  1.1  0.9  1.2  0.9 
6  0.8  0.8  0.8  0.8  0.8  0.8  0.8  0.7  0.8  0.7  0.8  0.7 
7  1.3  1.0  1.3  1.0  1.3  1.0  1.4  0.9  1.4  0.9  1.4  0.9 
8  1.3  1.0  1.3  1.0  1.3  1.0  1.4  0.9  1.4  0.9  1.4  0.9 
9  1.6  1.5  1.6  1.4  1.6  1.4  1.6  1.4  1.6  1.4  1.7  1.4 
10  1.3  1.3  1.3  1.3  1.3  1.3  1.4  1.2  1.4  1.2  1.4  1.2 
11  1.0  0.9  1.0  0.9  1.0  0.9  1.1  0.9  1.1  0.9  1.1  0.8 
12  0.8  0.8  0.8  0.8  0.8  0.8  0.8  0.7  0.8  0.8  0.8  0.7 
13  1.9  1.7  1.9  1.7  1.9  1.6  2.0  1.6  2.0  1.6  2.0  1.6 
14  1.6  1.5  1.7  1.5  1.7  1.5  1.7  1.4  1.7  1.4  1.7  1.4 
15  0.5  0.4  0.5  0.4  0.6  0.4  0.6  0.4  0.6  0.4  0.6  0.4 
16  1.5  1.5  1.6  1.5  1.6  1.4  1.6  1.4  1.6  1.4  1.6  1.4 
17  2.0  1.8  2.0  1.8  2.0  1.7  2.1  1.7  2.1  1.7  2.1  1.7 
18  1.5  1.5  1.5  1.4  1.5  1.4  1.5  1.4  1.5  1.4  1.6  1.4 
19  1.0  0.9  1.0  0.8  1.0  0.8  1.0  0.8  1.0  0.8  1.1  0.8 
20  1.0  0.9  1.0  0.9  1.0  0.9  1.1  0.8  1.1  0.9  1.1  0.8 
21  1.3  1.0  1.3  1.0  1.3  1.0  1.4  0.9  1.4  0.9  1.5  0.9 
22  0.9  0.8  1.0  0.8  1.0  0.8  1.0  0.8  1.0  0.8  1.0  0.8 
23  3.0  2.5  3.0  2.4  3.0  2.4  3.2  2.3  3.2  2.3  3.3  2.2 
24  1.4  1.3  1.4  1.3  1.4  1.3  1.4  1.3  1.4  1.3  1.4  1.3 
25  1.7  1.5  1.7  1.5  1.7  1.5  1.7  1.5  1.7  1.5  1.7  1.4 
26  0.8  0.7  0.9  0.7  0.9  0.6  0.9  0.6  0.9  0.6  0.9  0.6 
27  2.1  2.0  2.1  2.0  2.1  2.0  2.2  1.9  2.2  1.9  2.2  1.9 
28  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.4   
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Table B2 
Values of τL for different climatic zones (contribution of solar gains).   

Climatic zone  

1 2 3 4 5 6 

ID winter summer winter summer winter summer winter summer winter summer winter summer 

1 1.8 1.3 1.9 1.2 1.9 1.2 2.2 1.1 2.1 1.1 2.3 1.1 
2 2.5 1.2 3.1 1.1 3.2 1 5.6 0.9 5.2 0.9 ∞ 0.8 
3 6.2 2.4 8.8 2.2 9.2 1.9 ∞ 1.7 ∞ 1.7 ∞ 1.6 
4 2.8 1.3 3.5 1.2 3.5 1.2 6.1 1 5.7 1 ∞ 0.9 
5 1.9 1.3 2.1 1.2 2.2 1.2 2.4 1.1 2.4 1.1 2.8 1 
6 1.8 1.2 2 1.1 2.1 1.1 2.4 1 2.4 1 2.9 0.9 
7 2.2 1.8 2.2 1.7 2.2 1.7 2.3 1.7 2.3 1.7 2.4 1.7 
8 2.2 1.7 2.3 1.6 2.3 1.5 2.6 1.4 2.6 1.4 2.8 1.3 
9 2.7 2.1 2.8 1.9 2.8 1.9 3.1 1.7 3.1 1.8 3.3 1.7 
10 2.3 1.7 2.4 1.7 2.4 1.6 2.7 1.5 2.7 1.5 2.9 1.4 
11 2.4 1.6 2.6 1.5 2.6 1.4 3 1.2 3 1.3 3.4 1.2 
12 1.9 1.1 2.2 1 2.2 0.9 3.1 0.8 3 0.8 4.4 0.8 
13 3.3 2.1 3.7 1.9 3.8 1.7 4.6 1.6 4.5 1.7 5.6 1.6 
14 2.8 2 3 1.8 3 1.7 3.4 1.7 3.4 1.7 3.8 1.6 
15 2.5 2.2 2.6 2.2 2.6 2.2 2.7 2.1 2.7 2.2 2.7 2.1 
16 3.1 2.1 3.3 2 3.3 1.9 3.8 1.7 3.8 1.7 4.2 1.7 
17 3.4 2.7 3.6 2.6 3.6 2.5 3.9 2.3 3.8 2.3 4.2 2.2 
18 3.3 1.2 5 1 5.2 0.9 ∞ 0.8 ∞ 0.8 ∞ 0.8 
19 1.7 1.2 1.9 1.1 1.9 1.1 2.2 1 2.2 1 2.4 0.9 
20 2 1.5 2.2 1.4 2.2 1.3 2.3 1.2 2.3 1.2 2.6 1.2 
21 2.3 1.5 2.5 1.4 2.5 1.3 2.9 1.2 2.9 1.2 3.4 1.2 
22 1.7 1.3 1.7 1.3 1.7 1.2 1.7 1.2 1.7 1.2 1.8 1.2 
23 4.8 3.8 5.1 3.6 5.1 3.5 5.5 3.3 5.5 3.3 5.8 3.2 
24 3.1 2.2 3.3 2.2 3.3 2.1 3.7 1.9 3.6 2 3.9 1.8 
25 2.9 1.9 3.2 1.7 3.3 1.7 3.8 1.5 3.8 1.6 4.5 1.4 
26 1.5 0.8 1.7 0.8 1.7 0.8 2.2 0.7 2.2 0.7 3.1 0.7 
27 3.5 3.1 3.6 3 3.6 2.9 3.7 2.8 3.7 2.8 3.8 2.8 
28 1.2 0.8 1.2 0.8 1.2 0.8 1.4 0.8 1.3 0.8 1.5 0.7   

Table B3 
Short-term inertia classes for each building with the contribution of the solar gains.    

Climatic zone   

1 2 3 4 5 6 

ID Class* winter summer winter summer winter summer winter summer winter summer winter summer 

1 DS CS DS DS DS DS DS DS DS DS DS CS DS 
2 CS CS CS CS DS CS DS CS DS CS DS CS DS 
3 AS AS BS AS BS AS BS AS BS AS BS AS BS 
4 CS CS CS CS CS CS DS BS DS BS DS BS DS 
5 DS CS DS CS DS CS DS CS DS CS DS CS DS 
6 DS DS DS DS DS DS DS DS DS DS DS DS DS 
7 CS CS DS CS DS CS DS CS DS CS DS CS DS 
8 CS CS DS CS DS CS DS CS DS CS DS CS DS 
9 CS CS CS CS CS CS CS BS CS BS CS BS CS 
10 CS CS CS CS CS CS CS CS CS CS CS CS CS 
11 DS DS DS DS DS DS DS DS DS DS DS DS DS 
12 DS DS DS DS DS DS DS DS DS DS DS DS DS 
13 BS BS BS BS BS BS BS BS CS BS CS BS CS 
14 CS BS CS BS CS BS CS BS CS BS CS BS CS 
15 DS DS DS DS DS DS DS DS DS DS DS DS DS 
16 CS CS CS CS CS CS CS CS CS CS CS CS CS 
17 BS BS BS BS BS BS BS BS BS BS BS BS BS 
18 CS CS CS CS CS CS CS CS CS CS CS CS CS 
19 DS DS DS DS DS DS DS DS DS DS DS DS DS 
20 DS DS DS DS DS DS DS DS DS DS DS DS DS 
21 CS CS DS CS DS CS DS CS DS CS DS CS DS 
22 DS DS DS DS DS DS DS DS DS DS DS DS DS 
23 AS AS BS AS BS AS BS AS BS AS BS AS BS 
24 CS CS CS CS CS CS CS CS CS CS CS CS CS 
25 CS BS CS BS CS BS CS BS CS BS CS BS CS 
26 DS DS DS DS DS DS DS DS DS DS DS DS DS 
27 BS BS BS BS BS BS BS BS BS BS BS BS BS 
28 DS DS DS DS DS DS DS DS DS DS DS DS DS 

* Short-term labeling with design characterization   
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Table B4 
Long-term inertia classes for each building with the contribution of the solar gains.    

Climatic zone   

1 2 3 4 5 6 

ID Class* winter summer winter summer winter summer winter summer winter summer winter summer 

1 DL DL DL DL DL DL DL CL DL CL DL CL DL 
2 CL CL DL BL DL BL DL AL DL AL DL AL DL 
3 AL AL CL AL CL AL DL AL DL AL DL AL DL 
4 CL BL DL BL DL BL DL AL DL AL DL AL DL 
5 DL DL DL CL DL CL DL CL DL CL DL BL DL 
6 DL DL DL CL DL CL DL CL DL CL DL BL DL 
7 CL CL DL CL DL CL DL CL DL CL DL CL DL 
8 CL CL DL CL DL CL DL CL DL CL DL BL DL 
9 CL BL CL BL DL BL DL BL DL BL DL BL DL 
10 CL CL DL CL DL CL DL BL DL BL DL BL DL 
11 CL CL DL CL DL CL DL BL DL BL DL BL DL 
12 DL DL DL CL DL CL DL BL DL BL DL BL DL 
13 BL BL CL BL DL BL DL BL DL BL DL AL DL 
14 BL BL CL BL DL BL DL BL DL BL DL BL DL 
15 CL CL CL CL CL CL CL BL CL BL CL BL CL 
16 BL BL CL BL CL BL DL BL DL BL DL BL DL 
17 BL BL BL BL CL BL CL BL CL BL CL BL CL 
18 CL BL DL AL DL AL DL AL DL AL DL AL DL 
19 DL DL DL DL DL DL DL CL DL CL DL CL DL 
20 DL CL DL CL DL CL DL CL DL CL DL CL DL 
21 CL CL DL CL DL CL DL BL DL BL DL BL DL 
22 DL DL DL DL DL DL DL DL DL DL DL DL DL 
23 AL AL BL AL BL AL BL AL BL AL BL AL BL 
24 BL BL CL BL CL BL CL BL DL BL CL BL DL 
25 BL BL DL BL DL BL DL BL DL BL DL BL DL 
26 DL DL DL DL DL DL DL CL DL CL DL BL DL 
27 BL BL BL BL BL BL BL BL BL BL BL BL BL 
28 DL DL DL DL DL DL DL DL DL DL DL DL DL 

* Long-term labeling with design characterization 
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