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On the long-term common movement of resource and 
commodity prices. 

A methodological proposal 
             

Abstract 

This paper investigates the long-term common movement of resource and commodity prices. 
Beyond its unquestionable policy relevance, detecting such common behavior is empirically 
challenging. A novel methodological approach is proposed. It is based on a common latent factor 
hypothesis. This hypothesis is empirically investigated by specifying a FAVAR-MGARCH model 
combining the main univariate and multivariate stochastic features of these series. The two latent 
factors move around a zero-mean short-term level and a non-stationary long-run equilibrium level, 
respectively. Few heterogeneous and mostly unrelated resources and commodities are considered 
(crude oil, copper, wheat, beef, aluminium and corn). Using IMF monthly prices over the 1980:1-
2019:12 period, a Kalman Filter ML estimation is performed. Results suggest that, besides the 
time-varying price volatility, the last 15 years have seen a slight rise of the long-term nominal 
prices corresponding to a stabilization of the respective long-term real prices after a period of 
regular decline. Policy implications seem relevant and deserve further investigation. 
 
Keywords: Resource Prices, State-space Representation, FAVAR Models, Price Volatility. 

1. Introduction: objectives of the paper  

This paper proposes an empirically tractable approach to investigate the long-term dynamics of 

different Resource and Commodity Prices (RCP). In particular, the approach aims to assess whether 

a long-term common movement exists and to identify it. Designing such methodological approach 

is challenging. While the existence of seemingly common movements of RCP can be easily 

detected with descriptive statistics, their actual identification and estimation is problematic.  

The literature on RCP stochastic properties and behavior is vast but most works tend to concentrate 

on one or few of these univariate or multivariate properties. The original contribution the present 

paper aims to provide within this literature is thus methodological. It presents an unifying 

framework where all these features are integrated within a single stochastic process that is suitable 

to identify and estimate the common price movement across heterogeneous commodities. Unlike 

most of the recent empirical literature on the topic, the proposed approach does not concentrate on 

market price interdependence and, therefore, on the causal relationships among prices (Baffes and 
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Haniotis, 2016). Here, the observed commonality actually comes from the fact that all prices 

depend on the same underlying drivers. These drivers can not be actually observed and behave as 

common latent factors.  

Following this hypothesis, the common movement of prices is specified and investigated within a 

Factor Augmented VAR model with Multivariate GARCH effects (FAVAR-MGARCH model). For 

both price level and volatility, this model admits both interdependence and common movement. 

Although other approaches have been proposed in the recent empirical literature with a similar 

empirical motivation (Fousekis et al., 2016; Xu et al., 2019; Byrne et al., 2020), the novelty here 

consists in the identification of two different latent stochastics processes, respectively expressing 

the short and long-term common movement.  

The extrapolation of this long-term common factors represents the main reason of practical interest 

of the proposed approach. The existence of a common long-term movement could signal that, 

besides common short-run shocks, these commodities also share long-term dynamics of the 

respective market fundamentals (demand, supply, storage). Therefore, the empirical approach here 

proposed can provide an helpful tool to periodically signal changes on the long-term cross-market 

fundamentals. This signal could deserve, at the same time, a political answer as well as further 

investigations on the possible underlying causes.   

The paper is structured as follows. The relevant policy implications and the recent empirical 

literature about the main univariate and multivariate stochastic properties of RCP series are 

sketched in section 2. In section 3, the common latent factor hypothesis is implemented through a 

FAVAR-MGARCH model aiming to encompass all these stochastic features within an unifying 

framework. The presence of latent factors requires this model to be specified in the state-space form 

and the consequent ML estimation to be performed via Kalman Filter. Section 4 presents the data 

used concerning a small group of relevant but heterogeneous commodities and the adopted 

empirical specification. Section 5 illustrates the empirical results starting with a battery of tests to 
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assess the common properties and behavior of the series. The FAVAR-MGARCH model estimation 

results are then presented and discussed. In the light of these results, section 6 outlines the main 

potentials and policy implications of the proposed approach and discusses some promising future 

improvements and research directions on the topic. 

2. On why we should care about the common long-term price dynamics  

2.1. Resource prices as signals of scarcity  

In April 2011, Jeremy Grantham (one of the major investors and investment strategists worldwide) 

presented a detailed analysis of the 2007-2010 RCP bubble and eventually interpreted it as the 

macroscopic evidence of a major change in the long-term perspective on natural resource 

endowments (Grantham, 2011): mostly depending on the intense demand growth coming from 

emerging economies, the days of abundant resources are over and we are entering a new era of 

shortage and raising prices.1 In October 2014 the Expo2015 Magazine2 reported the following 

words of Lester Brown (one of the major world-wide experts on food security): The world is in 

transition from an era of food abundance to one of scarcity  

But the Grantham and Brown (G-B) hypothesis is controversial. As recently pointed out by 

UNCTAD3  real terms, commodity prices globally are at the levels of the late 

1980s, albeit with major variations in the dynamics of the different groups. In particular, 

UNCTAD 

concludes that the latest price movements actually signal a reversal of the RCP decline that began 

after the end of the boom in 2011 with all commodities that, in practice, had already recovered from 

that downturn. But serious doubts can be cast on whether this rebound is going to last and, above 

all, whether it contains some permanent change in the long-term prices. 

                                                           
1 Grantham designates this hypothesis as the great paradigm shift (Grantham, 2011, p. 5, 7, 8, 19).  
2  
3 United Nations Conference on Trade and Development.  
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The contradictory statements reported above highlights how the interpretation of the RCP dynamics 

can be challenging. This follows from two main reasons. The first reason concerns its policy 

implications. From a policy perspective, it seems critical to assess whether and to what extent a 

higher long-term equilibrium value of RCP is in fact occurring and, more importantly, to what 

extent it can be interpreted as the macroscopic evidence of a major change in the long-term 

perspective of these markets and the underlying natural resource endowment.4 On the contrary, a 

downward trend would suggest that we are still in a period of abundance which occurred in the 

second half of the last century. In fact, a long-term declining or rising price trend might be a 

necessary condition but not a sufficient one for abundancy/scarcity. The key problem is that prices 

may be considered as an expression of market equilibrium and a change in their pattern as evidence 

of some imbalances. But prices are not, themselves, scarcity. For instance, commodity stocks are 

generally intended as the main market fundamental expressing scarcity or abundance at least from 

t a strong negative 

correlation between stocks and prices.5 Therefore, other aspects of price dynamics together with a 

deeper investigation on the respective market fundamentals should be considered to properly 

interpret these signals, and before drawing compelling policy conclusions.  

In particular, according to several analysts, the common driver of all RCP actually is that set of 

macroeconomic variables (especially interest and inflation rates) eventually affecting the behaviour 

of agents operating on financial markets (Carter, 2002; Kim, 2015; Ohashi and Okimoto, 2016; 

Algieri et al., 2017; Bruno et al., 2017; Algieri and Leccadito, 2020).6 The increasing 

financialization of the commodity markets makes them increasingly dependent on these 

                                                           
4 
2015, p. 201).   
5 Considering three exemplary commodities (crude oil, natural gas, corn), for instance, a negative correlation is found between stocks 
and prices but it is relevant and statistically robust only for natural gas. It is worth reminding that the short price series available for 
natural gas prevents from considering it as a valid alternative to crude oil in the present study.   
6 Algieri and Leccadito (2020) distinguish the following different channels of cross-commodity price transmission: the fundamental 
channel ; two channels mostly 
operating in the shorter term, i.e., the financial channel , linked to the stock market and a sentiment channel  
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macroeconomic variables. As these latter may experience long-period jumps, this is eventually 

reflected in the common long-term mean price of most commodities (Arango et al. 2012). But this 

interpretation does not necessarily imply any long-term imbalance on the demand and/or supply 

sides as implied by the G-B hypothesis.  

However, the major interest here concerns the second main challenge for the economic analysis. 

Even though we conclude that the long-term price dynamics is a meaningful signal of a commodity 

abundance/scarcity, the real problem is: can we identify it? Unfortunately, RCP dynamics is really 

and increasingly complex. Deducing some change in the long-term tendency is empirically 

challenging. The observed price dynamics might result an increase in market turbulence and short-

term interdependence due to price levels and volatility transmission rather than (or in addition to) a 

change in some long-term tendency (Piot-Lepe , 2011; Listorti and Esposti, 2012; 

Esposti and Listorti, 2013). 

Eventually, in order to assess whether a change in the long-term RCP pattern actually occurred and 

whether it is common across markets, the price generation process must be properly identified. This 

requires a careful investigation of the price series stochastic properties to separate individual and 

common short-run movements from individual and common long-term components (Kim et al., 

2003; Schleicher, 2003; Bai, 2013; Martin et al., 2013). These common long-term components 

actually behave as unobserved (i.e., latent) variables. In the present analysis, a proper 

methodological approach is proposed to identify and extract them from observed monthly price 

series.  

2.2. The stochastic properties of resource price series: an overview of recent empirical evidence 

In any empirical investigation on RCP dynamics, the first and often toughest challenge consists in 

the proper identification of the price series stochastic properties. Such properties emerge as some 

combination of short and long-run movements and of individual and common components (Kim et 

al., 2003; Schleicher, 2003; Bai, 2013; Martin et al., 2013). This combined effect may concern both 
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the price levels and their variances (Piot- , 2011; Listorti and Esposti, 2012; 

Esposti and Listorti, 2013; Algieri and Leccadito, 2020). The recent literature has focused on some 

critical aspects of this stochastic generation process.  

One key property is that RCP are expected to behave like mean-reverting series (Bobenrieth et al., 

2014; Valera and Lee, 2016). This comes from the fact that these markets depend on a stable and 

often inelastic demand while, on the supply side, they are strongly limited by natural constraints 

(i.e., some underlying natural resource stock). As a consequence, while in the short-term market 

prices may also significantly deviate, in the medium and long run they tend to revert back to the 

stable supply and demand market-clearing equilibrium. From the statistical point of view, the main 

consequence of this feature is that these price series are expected to be stationary, or integrated of 

order 0 (Schwartz, 1997; Routledge et al., 2000; Bobenrieth et al., 2014). Nonetheless, statistical 

tests performed on these series mostly suggest that RCP behave like I(1) (non-stationary) series 

(Cáceres Hernández and Martín Rodríguez, 2017). 

This apparent contradiction may have three statistical explanations. On the one hand, RCP always 

show a strong serial correlation. The main implication is that price at a given time t is strongly 

influenced by its lagged values, thus temporary price shocks may persist for a long period of time 

(Wei and Leuthold, 1998; Esposti and Listorti, 2013).7 A second possible explanation concerns the 

presence of structural breaks, that is shocks with permanent effects thus affecting the long-term 

mean value towards which the series tends to revert. It is well known that, if not properly 

considered, the presence of a structural breaks within a stationary series may lead to accept the 

presence of a unit root thus wrongly concluding the series is non-stationary (Glynn et al., 2007). A 

third possible explanation is a generalization of the second. It consists in the fact that the long-term 

equilibrium value towards which RCP tend to revert is not a constant value but it is itself a I(1) 

stochastic process (for instance, a random walk or a stochastic trend) as the consequence of 

                                                           
7 This long memory is also called fractional integration and it may be the reasons why low power unit roots may tend to designate 
these prices as I(1) series.   
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successive permanent changes (or structural breaks) of the respective market fundamentals (Valera 

and Lee, 2016).  

A further issue which emerged particularly in the last two decades, starting from 2007 (Piot-Lepetit 

, 2011; Chavas et al., 2014), is that this complex behaviour of RCP series does not 

only concern their levels but also their variances or volatility. Price volatility tends to remain quite 

stable over long periods then followed by shorter periods of rapid increase (volatility clusters). Also 

this increase often disappears in a few months but sometimes it may remain for longer periods or 

become permanent. Moreover, in some circumstances volatility tends to respond more to periods of 

price decrease than of price increase (the so-called leverage effect), thus making the volatility 

response not only time-varying but also asymmetric (Nelson, 1991).8   

In general terms, the combination of these conflicting properties eventually motivate the recurrence 

of spikes, runs and bubbles . At least part of these abrupt price changes could remain also in the 

longer-term, thus behaving as permanent jumps or structural breaks (Brooks and Prokopczuk, 

2013; Xu et al., 2019; Gilbert and Kasidi Mugera, 2020) making it very problematic to disentangle 

the short-term (temporary) movements from the long-run dynamics (Gilbert, 1995).  

The main focus of the present work, however, concerns a further property of these price dynamics. 

Despite their complex behaviour, they seem to move together (Brooks and Prokopczuk, 2013). This 

common movement is typically revealed by a positive correlation among price expected values (or 

means), and/or among the respective variances (i.e., volatility) (Chavas et al., 2014). The theoretical 

and empirical literature has suggested two different explanations of this common movement of RCP 

series.  

The first explanation is that price levels are interdependent. There is some, possibly reciprocal, 

causation relationship due to some real or financial linkage. This interdependence takes the form of 

                                                           
8 In the analysis of asset prices, the leverage effect refers to the observed tendency of an asset's volatility to be negatively correlated 
with the asset's returns. A number of empirical papers have confirmed that an unexpected fall in asset prices may increase volatility 
more than an unexpected increase of the same magnitude. Although such effect may be less relevant in the case of commodity prices, 
the increasing financialization of these markets suggest that asymmetric volatility should not be ruled out in the analysis.  
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price transmission, as the shocks experienced by one price in its level are transmitted to other 

prices. Consequently, price series are generated by interdependent stochastic processes and as such 

should be modelled within empirical analysis (Listorti and Esposti, 2012; Algieri and Leccadito, 

2020).  

The second explanation excludes a relevant causation relationship among prices. In fact, they 

actually are independent stochastic processes. After all, real linkages can hardly be argued when 

very different and apparently unrelated commodities are under investigation, like beef and copper, 

for instance. Nonetheless, they may share some common exogenous drivers and whenever these 

drivers experience a shock, this is transmitted to all prices (Baffes and Haniotis, 2016). Some of 

these common factors are expression of generalized market fundamentals (e.g., long-term 

demand/supply growth forces) and behave as unobserved factors (Gilbert, 1995).9 Others might 

actually be observable at the global level (for instance, interest rate, population and income growth, 

etc.) but not necessarily at the same (usually higher) frequency at which prices are observed and 

investigated. For these reasons, these common drivers can hardly be entered as observable variables 

in the empirical analysis and have to be regarded as the underlyings of one or more common latent 

factors. 

There is a further major feature of the RCP common movement that have been highlighted by 

recent several empirical studies: the common movement occurs not only in the price levels but also 

in the price variances or volatilities (Algieri and Leccadito, 2020). This implies that also price 

volatilities can be transmitted (volatility spillovers). Consequently, if asymmetric response of 

volatility is observed in one market, volatility transmission itself can be asymmetric (Koutmos and 

Booth, 1995; Jane and Ding, 2009).10    

                                                           
9 A detailed review of these possible underlying common market fundamentals is well beyond the scope of the present study. Algieri 
and Leccadito (2020) provides a short list of common macroeconomic variables driving commodity prices.  
10 Also for volatility transmission, a common factor hypothesis can be formulated, that is, the presence of latent factors affecting all 
price volatilities thus generating a common volatility behaviour (Cortazar et al., 2017). This circumstance is not considered here as it 
would lead to an empirically unidentifiable model specification. Nonetheless, this may represent a major challenge for future 
research in this field.     
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Eventually, the recent empirical literature clearly suggests that the actual RCP dynamics is

generated by complex stochastic processes resulting from some combination of these univariate and 

multivariate short-run and longer-term properties. Representing such processes is a major 

methodological challenge in terms of empirical specification, identification and estimation. The 

empirical literature separately investigating these aspects is vast, including recent studies exploring 

the possible role of common latent factors (Byrne et al., 2020). But none of these studies is able to 

incorporate all the aforementioned data generating mechanisms. The present paper aims to fill this 

methodological gap.

3. Modelling approach: state-space representation and the FAVAR-MGARCH model

3.1. Modelling the price interdependence

From the discussion above it follows that the empirical investigation of  the common movement of 

prices necessarily concerns a balanced panel dataset where N price series are observed over T

periods (months in the present case). Firstly assume that the generic i-th price observed at the 

generic time t ( tip , ) follows an autoregressive (AR) process: 

where is a constant term (drift), are autocorrelation coefficients and is a disturbance term

assumed to be i.i.d. Once these AR processes are estimated, usual tests can be performed in order to 

assess the underlying stochastic processes and, in particular, their order of integration and the 

presence of conditional heteroskedatisticy (ARCH). 

If there is some common movement across prices, however, this representation of the underlying 

stochastic process is incomplete. In this case, a correlation across estimated error terms, that is, 

, must be admitted (Chen et al., 2014). Cross-price correlation can 
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be the consequence of price interdependence (or price transmission) with the stochastic process 

generating any single price represented as:

As prices are reciprocally interdependent, the actual stochastic process generating price series has to 

be represented in a vector form, i.e., as a VAR process:

where is the Nx1 vector of prices and the Nx1 vector of the i.i.d. disturbance terms.

Cross-price correlation, however, can also originate from common drivers. They behave as 

exogenous possibly lagged variables affecting all price dynamics. With M common drivers, the 

single price formation process (2) becomes:

where indicates the value of the k-th generic common driver at time t and are coefficients 

expressing the direct effect of on (also called factor loadings). In a more compact matrix 

form, (4) can be written as a VAR model with exogenous variables (VARX):

where indicates the Mx1 vector of common factors. Two main issues arise when an estimable 

specification of (5) has be chosen to properly represent this multivariate stochastic generation 

process. One concerns , the other concerns the error term . 

3.2. Modelling the common latent factors

Common drivers might be unobservable thus behaving as common latent factors. This occurs not 

only for the lack of data (at least at the same frequency at which prices are observed), but also 

because these factors may actually be the outcome of complex and multiple phenomena barely 
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expressed by single observed variables (Gilbert, 1995). If unobserved, the stochastic process of is 

also unknown and must be somehow assumed ex ante.

Following previous works, here we consider two latent state variables expressing two 

complementary market fundamentals or market imbalances (Gilbert, 1995): represents the long-

term equilibrium level towards which prices tend to revert; represents the short-run deviations 

from this equilibrium. Here we assume that follows a Brownian motion process and, in 

particular, a random walk, while follows a zero-mean Ornstein-Uhlenbeck process, i.e., a 

stationary AR process without a drift (Schwartz and Smith 2000; Sørensen 2002). According to this 

representation, beyond short-run deviations, prices tend to revert to their long-term mean which is, 

however, not constant but behaves like an I(1) process due to persistent shocks in the underlying 

market fundamentals (i.e., supply and demand).

This specification of latent factor is of major relevance as it makes two aforementioned features 

of commodity prices explicit. In particular, it implies that is a process whose exogenous shocks 

retains, at least partially, a permanent effect. Once transmitted to prices according to (5), it may 

explain both non-stationarity and the presence of structural breaks in RCP series. On the former 

aspect, it can be concluded that, as one of their drivers is a random walk, prices themselves 

eventually behave as I(1) (Valera and Lee, 2016). On the latter aspect, a non-stationary latent 

factors as may be the generator of exogenous structural breaks in RCP series due to the non-

mean reverting permanent shocks. After all, as mentioned, I(1) processes and structural breaks can 

be confounded in testing resource price properties and this is perfectly logic here as they come from 

the same underlying stochastic process.

Though unobservable, one possible way to empirically deal with latent factors is to treat them as 

state variables within a state-space representation of the stochastic process expressing price 

formation (Schwartz, 1997). The state-space representation of (5) consists, as usual, by a transition 

(or state) equation and a measurement (or observation) equation. The transition equation describes 
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the stochastic dynamics of the (unobserved) state variables. (Schwartz and Smith, 2000; Sørensen, 

2002). The measurement equation relates observables (i.e. prices) among them and to the state

variables according to (5). In compact matrix notation, the state-space representation of (5) is thus 

the following:  

  

where A, C, BS and D are matrices of unknown coefficients to be estimated while = .

is the Cholesky factor of the time-varying conditional covariance matrix (see section 3.3). For

the presence of autoregressive unobserved factors, this kind of model is also called Dynamic-Factor

(DF) model and, whenever the observation equation takes on an autoregressive form (VAR) as in 

(6), it is designated as a Factor Augmeneted VAR (FAVAR) model (Bernanke et al, 2005).11

3.3. Modelling the conditional volatility and volatility transmission

In (6) the NxN t matrix can be specified to admit time-varying volatility thus the presence of 

volatility clusters (i.e., periods characterized by higher/lower price variances). Moreover, a proper 

specification t can admit that correlation also occurs across variances, that is, price volatility is 

transmitted across markets (volatility spillovers) (Algieri and Leccadito, 2020). To achieve this, t

can be specified as a MGARCH12 structure. A DCC13-MGARCH (1,1) specification (Engle and 

Sheppard, 2001; Engle, 2002) is here adopted to admit both volatility clusters and transmission.14

                                                          
11 With respect to DF models, the FAVAR specification better resembles some typical features of macroeconomic series as well as of 
resource and commodity prices. In particular, FAVAR specification not only admits that (some of the) observable variables 
(commodity prices in the present case) follow an autoregressive stochastic process but also that they are dynamically interdependent, 
that is, they behave like factors by hitting (some of) the other prices directly. This specification thus seems appropriate here as both 
priced interdependence and the presence of exogenous common drivers are admitted as possible determinants of the common 
movement of prices (see sections 1 and 2). See Stock and Watson (2016; 2017) for a discussion on the relation between DF models 
and FAVAR models.
12 Multivariate Generalized AutoRegressive Conditional Heteroskedasticity.
13 Dynamic Conditional Correlation.
14 The price transmission process in both level and volatility could suggest more complex structures of the conditional variability. In 
particular, in order to account for the search of the best compromise between returns and risk by investors, the possibility of a linkage 
between the risk (conditional volatility) and the conditional mean of a price could be included in the adopted framework. This would 
admit an effect on price levels of changes in market volatility. In asset price modelling this effect is sometime explicitly considered 
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This specification can be expressed as   where is a diagonal matrix of 

conditional variances t
2 evolving according to a univariate GARCH(1,1) model, and is a matrix 

of conditional quasicorrelations defined as with 

+ + . is a (4x1) vector of standardized residuals, = 

. Matrix is the unconditional covariance matrix of the standardized errors . and are 

non-negative adjustment parameters with 0 that govern the dynamics of 

conditional quasicorrelations (thus also called adjustment parameters). Eventually, the DCC-

MGARCH (1,1) model returns estimates of two adjustment parameters and of N(N-1)/2 

(quasi)correlation terms. 

Finally, this specification can be augmented to admit asymmetric volatility transmission whenever 

case an asymmetric response of volatility (or leverage effect) is observed in at least one commodity 

market. An asymmetric GARCH model can be obtained via two alternative strategies (Chen et al., 

2019). One is the Exponential GARCH (EGARCH) model (Nelson, 1991) where asymmetry is 

admitted simply through a parameter whose statistical significance, sign and magnitude indicates 

whether and to what extent negative or positive innovations in the market have a greater impact on 

its volatility. EGARCH modelling is are very helpful to investigate asymmetry in univariate 

analysis (and it is adopted here for this purpose), but its extension to the multivariate case (Koutmos 

and Booth, 1995; Jane and Ding, 2009) can be particularly challenging when N 4, as in the present 

case, due to the large number of parameters to be estimated. Moreover, the loglinear specification 

implied by EGARCH modelling would be inconsistent here with the linear conditional variance 

equation to be integrated in the state-space specification (6).

                                                                                                                                                                                                
with the so-called GARCH M (GARCH-in-Mean) models (Beirne et al., 2010). Such a circumstance, however, seems unlikely in 
the case of commodity markets. Moreover, this solution, as well as other alternative and richer specifications, is unfeasible in the 
present study as the adopted state-space specification and estimation approach make it underidentified or prevent the Kalman Filter 
MLE procedure to achieve convergence. Nonetheless, future research in this direction may definitely represent an interesting field of 
study.       
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An alternative strategy to admit asymmetry is represented by the Threshold GARCH (TGARCH) 

model originally proposed by Glosten et al. (1993) (thus also known as GJR-GARCH model). In 

this case, the conditional variance equation is simply augmented by introducing indicator variables 

(that is, a set of dummies) taking value 1 when the price variation is negative (price declines) and 

zero otherwise (price increases). Due to its estimation feasibility and consistency with the 

specification (6), this solution is here adopted to admit asymmetry within the MGARCH model. 

Therefore, for any of the N prices a full first-order EGARCH specification is firstly adopted to 

assess whether asymmetry occurs in individual series (see section 5.2). Then, for those N* series 

(with N* ) for which asymmetry is statistically confirmed, if any, the conditional variance 

equation of the MGARCH model is augmented by introducing the (N*xT) matrix  containing the 

aforementioned N* dummies. To this matrix of dummies, a (N*xN*) matrix of unknown parameters 

F is associated. Once estimated, the diagonal elements of F (fii, i  N*) are expected to confirm the 

asymmetry within the individual markets, while the off-diagonal elements (fij, i,j N*, ) indicate 

whether and to what extent asymmetry is also transmitted across markets (i.e., asymmetric volatility 

spillovers). 

4. Empirical analysis  

4.1. Selected commodities and data 

The present application uses the monthly prices (in US$) from January 1980 to December 2019 

(therefore, 480 observations for any price series) as reported in the IMF Primary Commodity Price 

Database. Although more than 50 different prices are available in the database, the model is here 

applied to only 4 commodities. This reduces the computational complexity implied by the adopted 

estimation approach and also facilitates the interpretation of results.15 Nonetheless, as the objective 

of the present exercise pertains the generalised price dynamics of natural and agricultural 

                                                           
15 Given the state-space specification of the model, the adopted estimation approach based on the Kalman filter and ML estimation is 
unable to achieve convergence for more than four commodities. Further developments could reduce this limitation in future 
applications thus allowing the estimation of the model on a larger set of commodities.      
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commodities, this relatively small number may represent a limitation. To cope with this issue, two 

empirical strategies are adopted here.  

First of all, the four cases are selected to still represent the whole set of different production 

processes and uses, i.e. the wide heterogeneity across commodities. Therefore, a relevant case for 

any group of commodities (energy, metal, crop and livestock) is selected: crude oil, copper, wheat, 

beef. Wheat and beef are agricultural commodities but with quite different production processes, 

supply chains and uses. Though very different in their supply chains, uses and market fundamentals, 

these four commodities may still show interdependence since the price increase of one commodity 

(e.g., crude oil or wheat) may cause an increase of production costs of another commodity (e.g., 

copper and beef). 

Secondly, model estimation is performed twice: first, on the four aforementioned commodities; 

then, replacing two of these four cases with other commodities belonging to same group. In 

particular, copper is replaced with aluminium and wheat with corn. This allows assessing whether 

the empirical evidence is robust with respect to the composition of the commodity set under 

analysis.  

A further relevant issue is whether to use the actually observed nominal prices (as available in the 

IMF dataset) or nominal prices adjusted for inflation (real prices). The use of real prices seems a 

natural choice for a robust estimation and interpretation, whenever the extraction of the price long-

term pattern is aimed to indicate possible real imbalances in underlying market fundamentals. In 

fact, for this reason, most of the previous empirical studies in this field use deflated (i.e. real) prices. 

At the same time, however, nominal price deflation is always an artefact (Peterson and Tomek, 

2000). Not only the proper deflator should be detected. More importantly, deflating may 

significantly change the stochastic properties of price series eventually influencing the whole 

modelling and estimation strategy.  
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Therefore, in the present study the empirical analysis is carried out using both nominal and real 

prices in parallel in order to assess whether and to what extent price deflation meaningfully alters

the empirical results. Real prices are obtained, for all price series, by using as deflator the monthly 

US Consumer Price Index (CPI) reported by the IMF Macroeconomic & Financial Data.

4.2. Empirical specification and estimation approach

According to the discussion above, model (6) takes the following extensive form:

Transition/State equation:

(7a)

Measurement/Observation equation:

(7b)

where , , and indicate crude oil, copper, wheat and beef prices, respectively. Then, 

is replaced by (aluminium) and by (corn). , , , and are unknown 

parameters to be estimated. I.i.d. normal distribution is assumed for both and . Specifying t

as a MGARCH process possibly with asymmetry (thus, with the additional f.. parameters), finally 

designates (7a)-(7b) as a FAVAR-MGARCH model.16 This specification admits transmission in 

both price levels and volatility (asymmetry included) and admits common latent factors for price 

levels. So, it seems suitable to capture most of the complex common movements across prices. 

The consistent estimation of a combination of VAR and MGARCH processes is challenging 

(Carnero and Eratalay, 2014; Maekawa and Setiawan, 2014; Ohashi and Okimoto, 2016) and is 

                                                          
16 It is worth noticing that the Choleski factorization implied by this MGARCH structure assumes that volatility transmission follows 
a commodity ordering that starts from crt and ends with bet.       
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even more problematic when latent factors are included in the VAR structure. In principle, due to 

the distributional assumptions on and , model (7a)-(7b) could be estimated with Maximum 

Likelihood Estimation (MLE) using the diffused Kalman Filter to obtain the prediction error form 

of the log-likelihood function (Harvey, 1989). In practice, however, this Kalman Filter MLE 

estimation is unfeasible both for the non-linearity implied by the MGARCH structure and for the 

highly computational complexity involved. 

To overcome this estimation issue, a two-step estimation procedure is followed here. Firstly, a

consistent estimation of G ( ) is obtained with a conventional DCC-MGARCH model ML 

estimation (Engle and Sheppard, 2001; Engle, 2002) possibly admitting asymmetry according to the 

respective tests on the individual series. Then, is entered within model (7a)-(7b) to perform the 

Kalman Filter ML estimation.

5. Results

The empirical investigation starts with some descriptive evidence and with the univariate analysis 

aiming to identify the stochastic properties of the price series and their common features. The 

multivariate analysis is then presented by firstly estimating conventional models expressing price 

interdependence in levels and volatility (VAR/VECM17 and MGARCH models). Finally, the 

FAVAR-MAGARCH model is estimated with the consequent latent factor extraction.   

5.1. Main regularities of resource price dynamics: some descriptive evidence

Figure 1 juxtaposes the monthly price dynamics of the 4 different commodities over the period

under consideration.18 Both nominal and real prices are displayed (Figures 1a and 1b, respectively).

                                                          
17 Vector Error Correction Model. 
18 For the sake of space limitations, the other two commodities considered in the present empirical analysis (aluminium and corn in 
replacement of copper and wheat, respectively) are not included in Figure 1. Their dynamics is substantially analogous with the 
commodities they replace. Respective figures are available upon request.   
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Sample averages and standard deviations are computed for four sub-periods (1980-1994, 1995-

2004, 2005-2013, 2014-2019).19  

For all commodities the average nominal price observed in the 2005-2013 period is significantly 

higher (more than 50%) than previous periods when it remained quite stable. The observed average 

price in this sub-period exceeds the upper 95% confidence bound computed by adding up twice the 

standard deviation to the average of the previous periods. On the contrary, the following sub-period 

(2014-2019) shows, for three commodities, a sort of reversion towards the values observed in the 

1980-1994 and 1995-2004 periods. In general terms, however, price levels observed in this last time 

segment seem to be closer to the values of the post-2005 period suggesting that part of the price 

spikes observed during the 2005-2013 period actually persisted in the longer-term.   

These regularities seem to hold true not only for price levels but also for price volatility. Figure 1a,b 

clearly shows that in the 2005-2013 decade also the standard deviation grew sharply for all 

commodities. Even in this case, the last five years (2014-2019) partially reabsorb the spike of the 

previous decade but, as for the levels, most of the volatility growth actually remains and suggests a 

sort of permanent effect. In general terms, all commodities approximately behave in the same way 

and with the same timing. Such apparently common dynamics of price levels and volatilities would 

also suggest a multivariate stochastic generation process.  

A further interesting evidence concerns the difference between nominal and real prices. Not 

surprisingly, moving from nominal to real values substantially downsizes the price dynamics both 

in terms of levels and volatility. However, real prices show less homogeneous patterns across 

commodities. Therefore, the presence of common movement, with the consequent multivariate 

                                                           
19 These four subperiods are arbitrary and considered here only for descriptive purposes as they are not considered further in the 
specification of the empirical model and in the consequent estimation procedure. Obviously, alternative sub-periods other than the 
four here adopted could be considered. The choice is made on the basis of a pure visual inspection of price series that suggests a 
small price jump (at least for wheat and beef) around 1995 and a major jump for all commodities starting around 2005. These 
discontinuities are also confirmed by the ZV and CMR unit-root tests reported in Table 1. An analogous identification of sub-periods 
(or structural breaks) can be found in previous works on similar commodity sets (Grantham, 2011; Fan and Xu, 2011; Esposti and 
Listorti, 2013; Chen et al., 2014). 
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conditionality, seems more questionable for both real price level and volatility.20 For wheat and beef 

the 1980-1995 period shows the highest values in both price level and volatility. In the following 

sub-periods, prices seem to stabilize and the post-2005 price spike seems almost negligible. For the 

two non-agricultural cases (crude oil and copper) the existence itself of a long-term price trend is 

questionable. In these cases, however, volatility clusters are more evident with higher volatility 

observed in the first (1980-1994) and the third (2005-2013) subperiods. The key point is that the 

properties of the stochastic process eventually generating the real and the nominal price series might 

be substantially different. This makes the adoption of an econometric approach admitting but not 

imposing these stochastic properties particularly appropriate.      

5.2. Univariate analysis   

Table 1 reports a battery of diagnostic statistical tests performed on nominal and real prices of the 

six commodities under study. They are, in sequence: the Augmented Dickey Fuller (ADF) unit-root 

test; the Lagrange Multiplier (LM) test for the presence of conditional heteroskedasticity (ARCH 

effects); the t-test on the term expressing the asymmetric response of volatility within a full first-

order EGARCH model; the test of fractional integration (Phillips 1999a,b) assessing persistence (or 

long memory); the Zivot-Andrews (ZV) unit-root test admitting one endogenous structural break; 

the Clemente-Montanes-Reyes (CMR) unit-root test admitting two endogenous breaks in the AO 

(Additive Outlier) and IO (Innovational  Outlier) alternative specifications.21  

It emerges that all prices show very similar stochastic features. Once the proper specification has 

been selected (number of lags, and of the presence of drift and deterministic trend), all price
 
series 

show a unit root.22 No significant difference emerges between nominal and real prices, the only 

                                                           
20 The main changes that can be observed moving from nominal to real prices could be evidently attributed to periods of 
rising/declining inflation. As inflation homogenously affects all prices, however, the differences observed in real prices among 
commodities express actual differences in the respective short and long-term dynamics.  
21 For more details on the ZV and CMR tests, see Zivot and Andrews (2002), Clement et al. (1998) and Baum (2005).    
22 The ADF test is reported in Table 1. Also the Kwiatkowski-Phillips-Schmidt-Shin (KPPS) and Phillips Perron (PP) tests are 
performed. The former assumes stationarity as the null hypothesis while the latter is expected to be more robust 



 
20 

 

difference being that real prices show a unit root with no deterministic trend, arguably taking into 

account the common underlying inflation rate in the case of nominal prices.  

However, the ADF test can lose power thus providing misleading evidence under two 

circumstances. The first concerns the presence of long memory or fractional cointegration. 

Fractional integration implies that price series, though not behaving as random walks, still keep the 

memory of a shock for a long period.23 In this respect Table 1 suggests that all price series are 

neither I(0) nor I(1) but rather I(d) processes, with 0<d<1 (Wei and Leuthold, 1998). Test results 

indicate that stationarity can be excluded in all cases while the I(1) hypothesis actually show quite 

low p-values with three commodities (wheat, aluminium and corn) for which it is lower than 10%. 

All series, both nominal and real, thus show a dynamics that is very close to being either an I(1) 

process or a mean-reverting series where the effects of one-time shock take a very long time to 

vanish. 

The second possible confounding factor concerns the presence of structural breaks that, within a 

stationary series, may lead to wrongly accept the presence of a unit root (Fan and Xu, 2011; Chen et 

al., 2014; Al-Maadid et al., 2017; Dogan and Ozturk, 2017; Hickam et al., 2018; Omojou et al., 

2020).24 The two unit-root tests admitting endogenous structural breaks (ZV and CMR tests) are 

concordant in confirming that all prices are non-stationary in both nominal and real terms regardless 

the presence of structural breaks. In this respect, the ZV test suggests that no statistical structural 

break is found for real term prices, while only for nominal crude oil and copper prices a statistically 

significant structural break occurred in mid-2005. Even though the CMR test allows for two 

                                                                                                                                                                                                 
under heteroskedasticity. Results of these tests fully correspond with those obtained with ADF tests and are available 
upon request.   
23 Fractional integration is here tested following the approach originally proposed by Geweke and Porter-Hudak (1983) and 
then modified by Phillips (1999a,b). This test is based on a particular representation of the stochastic process generating the price 
series called ARFIMA(p,d,q) (Autoregressive Fractionally Integrated Moving Average) model, where p and q express, as usual, the 
orders of auto-regressive and the moving-average parts, respectively, and d the order of (fractional) integration. The procedure 
proposed by Phillips (1999a,b), and here adopted, tests the value of parameter d thus distinguishing stationary, unit-root and 
fractionally integrated processes. This procedure produces two test statistics, one for the null d=0 and one for d=1. If d=0 is accepted 
the series is stationary; if d=1 is accepted the series has a unit root. If both are rejected (namely, 0<d<1), then fractional integration 
(long memory) is accepted.  
24 We would like to thank an anonymous referee for helpful suggestions on this aspect. 
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structural breaks, it substantially confirms the ZV test results: no statistical structural break for real 

prices; only one significant break for crude oil and copper nominal prices. In such case, when 

innovational outliers are considered (the IO model, allowing for a gradual shift in the mean of the 

series) the break is dated in early 2005, while under additive outliers (the AO model, which captures 

a sudden change in the series) the break is dated almost one year later, as expected.25 In any case, 

what matters here is that the possible presence of structural breaks does not eliminate the clear 

evidence in favor of a generalized non-stationarity of the series considered.  

Finally, the ARCH test indicates that for no price series the presence of conditional 

heteroskedasticity can be excluded thus suggesting the generalized presence of volatility clusters. 

Also in this case, the conclusion holds true without significant differences between nominal and real 

prices. In addition, the positive sign of the respective coefficient within the EGARCH models 

suggests the presence of a leverage effect, that is, negative innovations (unanticipated price 

decrease) increases volatility more than positive innovations. However, the asymmetry in the 

volatility response is found significant only for crude oil, copper and aluminum (both nominal and 

real prices). Moreover, even when statistical significant this asymmetric effects is not particularly 

strong as it is substantially lower than the symmetric effect.26 As anticipated in section 3.3, these 

statistically significant asymmetric responses are properly taken into account by augmenting the 

MGARCH modelling approach with the respective dummies.27 

Eventually, the adopted battery of tests suggest that all 6 price series, both in nominal and real 

terms, show similar stochastic processes, with only some minor differences. This does not 

necessarily mean, however, that they share some common movement. To provide initial evidence 

supporting this hypothesis, Table 1 also reports the pair-wise correlation coefficients of estimated 

                                                           
25 Even though not statistically significant, it is still worth noticing that the second break is dated between 2014 and 2015. More 
generally, and regardless statistical significance, the breaks identified across all series tend to confirm the sub-periods adopted in 
Figure 1a,b. 
26 For the sake of space limitations, the whole set of EGARCH model estimates are not reported here. They are available upon 
request.     
27 We are grateful to an anonymous referee for helpful comments on the possible presence of asymmetries.  
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residuals of the 6 ADF unit-root test equations. For almost all pairs of prices (in both nominal and 

real terms) we observe a significant and positive correlation coefficient for. This positive correlation 

suggests that whenever the individual autoregressive stochastic processes are taken into account, 

there remains a residual part of price dynamics that shows some commonality across series. 

Correlation is quite strong for pairs of commodities belonging to the same group, that is, copper and 

aluminum, wheat and corn. This provides further justification for using these couples as alternatives 

in the 4-case model estimation.  

5.3. Multivariate analysis   

5.3.1. Cointegration and volatility spillover   

Table 2 reports results concerning the cointegration analysis for both nominal and real prices of the 

four commodities under study. Results for the alternative group of commodities are reported in the 

Annex (Table A1). The trace cointegration test indicates that these prices are cointegrated but, in 

fact, they may move along two different cointegration vectors. The same result is obtained with 

aluminium and corn replacing copper and wheat. Consequently, cointegration by itself does not 

guarantee a univocal economic interpretation of price linkages. Even if we consider only the first 

extracted cointegration relationship, the VECM estimation confirms that, although a long-run 

relationship among prices can be identified, its interpretation is not straightforward and, somehow, 

counterintuitive.  

The cointegration vector coefficient of copper is not statistically different from 0, thus its 

counterintuitive (i.e., negative) sign is not qualitatively meaningful. A similar result is obtained with 

aluminium instead of copper but with a statistically significant parameter, suggesting that 

aluminium moves in the opposite direction compared to other commodities while they are expected 

to move in the same direction. According to the adjustment parameters, no price behaves as an 

exogenous driver of all the others. All prices respond to the others and this is not easily interpretable 

especially when crude oil, the main candidate being the driving price, is considered. The Granger 
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causality tests make the picture emerging from this VECM estimation even more puzzling. Crude 

oil and wheat prices are caused by all other prices, while copper price is independent from beef 

price (as could be expected) and beef price only depends on wheat price.    

Although Johansen et al. (2000) generalize the standard cointegration framework by proposing a 

VECM with a structural break in the deterministic terms, here the univariate analysis does not 

support the occurrence of a common structural breaks. Therefore, this variant of the VECM is not 

adopted here. Nonetheless, in order to take the evidence emerging from test on individual series 

properly into account, the crude oil and copper price equations of the VECM with nominal prices 

are augmented with a dummy variable taking value 1 from mid-2005 onwards. Then, following 

Esposti and Listorti (2018), an ex-post cointegration testing is performed through an ADF test on 

residuals of the long-run cointegration relationship. In this respect, Table 2 and Table A1 indicate 

that the estimated parameters associated to the structural break (d2005,cr and d2005,cp) are not 

statistically significant thus rejecting the presence of a structural break within the relationship 

expressing price interdependence. Furthermore, all ADF tests on the residuals of the estimated 

VECM long-run relation clearly indicate they are stationary thus confirming the correctness of the 

cointegrating relationship.     

Table 3 and Table A2 report the DCC-MGARCH model estimates on the two alternative groups of 

prices. Results suggest that price volatility varies over time for all series as indicated by the 

adjustment parameters, thus confirming the ARCH effects emerging in Table 1. This evidence 

apparently supports the existence of volatility clusters that are synchronous across the commodities 

as visually suggested by Figure 1. The DCC-MGARCH model collapses to the CCC-MGARCH 

model when 1 = 2 = 0. Both these two estimated coefficients are positive (as expected) but are 

substantially different in magnitude with only 2 statistically different from 0. So the CCC28 

specification can be evidently excluded with the implication that not only conditional variances are 

                                                           
28 Constant Conditional Correlation. 
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correlated but that this correlation is also time-variant. On the other hand, however, the conditional 

(quasi)correlation between the standardized residuals is statistically significant only between crude 

oil and copper (or aluminium). In all other cases, quasicorrelation is poor (always lower than 0.1) 

and not statistically different from 0. Therefore, the DCC-MGARCH estimation does not confirm 

the existence of generalised volatility spillovers. The only clear evidence is the volatility of the 

crude oil price that is positively transmitted to the volatility of copper and aluminium.  

A similar conclusion can be drawn with respect to asymmetric volatility response. The coefficients 

associated to the respective dummies confirm that asymmetry occurs for crude oil, copper and 

aluminum nominal and real prices (terms fcr,cr, fcp,cp and fal,al). But, unlike asset markets where it is 

often observed, here results indicate that the cross-market transmission of this asymmetry is 

excluded as the respective terms (fcr,cp, fcp,cr and fcr,al, fal,cr) are not statistically different from 0. 

A final remark about this multivariate analysis concerns the comparison between nominal and real 

prices. As for the univariate analysis, no significant differences emerge, with the only difference of 

the lack of a deterministic trend and of possible structural break outside the cointegration 

relationship. Cointegration is observed also for real prices with quite similar cointegration 

relationships and comparable adjustment parameters. The same conclusion holds for the DCC-

MGARCH estimates and the possible asymmetry of the volatility response. They are largely 

comparable between nominal and real prices with asymmetric response of volatility limited to the 

crude oil price and some evidence of volatility transmission (or spillover) from crude oil to copper 

and aluminium but not generalizable to agricultural commodities. 

5.3.2. Latent factors estimates   

The FAVAR-MGARCH model (7a)-(7b) estimation is reported in Table 4 (and in Table A3 for the 

alternative group of commodities). Estimates confirm that all prices are significantly driven by the 

long-term latent factor (z1) and the sign confirms the expectation as all prices move in concordance 
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with the variations of the factor. This occurs without any significant difference for both real and 

nominal prices and is confirmed also on the alternative group commodities.  

For the short-term latent factor (z2), on the contrary, only some prices show a significant 

relationship. This is the case of crude oil and copper for both real and nominal prices and of real 

aluminium and beef price in the alternative group. Moreover, significant parameters are either 

positive or negative, thus do not indicate a univocal response to variations of this latent factor. This 

behaviour of parameters associated to factor z2 seems fully consistent with the fact that the 

autoregressive structure of the model should already take short-term responses into account and z2 is 

expected to capture only the unexplained part of this variation.  

Through the autoregressive terms the VAR structure also takes the possible interdependence across 

price into account. In fact, only some of the estimated parameters associated to these terms are 

statistically significant. This occurs for most of the own lags and for the linkage emerging between 

mineral prices (copper and aluminium) and crude oil and between agricultural prices (wheat and 

corn) and beef prices, while wheat/corn and beef prices show only some significant positive 

coefficients in response to crude oil prices. Also in this respect, no major difference emerges 

between real and nominal prices.   

The most interesting outcome of the proposed approach, however, is the estimation of the latent 

factors themselves as their extraction is expected to reveal presence and behaviour of the common 

drivers of prices. They are displayed in Figure 2a for the nominal price and in Figure 2b for the real 

prices.29 In both cases, it emerges that the estimated patterns are fully consistent with latent variable 

construction in equation (7a). z2 behaves as a zero-mean stationary autoregressive process. 

Nonetheless, particularly the 2005-2015 decade signals larger deviations from the mean value 

reasonably as consequence of the increased price volatility. z1 is consistent with a random walk with 

                                                           
29 Figure reports estimates starting from 1981:1 as the first 12 observations (months) are used to initialize and stabilize the Kalman 
Filter estimation of the latent factors.  
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drift and it is able to capture what can be intended as the varying long-term equilibrium price with 

the respective jumps (or structural breaks).  

As expected, however, for z1 substantial differences occur between nominal and real prices. In the 

former case, this long-term price shows a slight regular increase until late eighties then it remains 

. Starting about in 2004/2005 this long-

term equilibrium price jumped to a significantly higher value maintained for almost a decade. Then, 

it drops again to finally stabilize at a value that seems significantly higher (between 5% and 10%) 

than the pre-2004/2005 stable level. In the case of real prices, the long-term dynamics is essentially 

different though with a substantial correspondence of the years and periods of deviations, jumps or 

structural breaks. In this case, factor z1 does not provide any evidence of a generalized rising level 

over time. On the contrary, a slight decline emerges over the first 25 years though more regular in 

Then, after 2007 this decline stops showing a small 

jump in the 2007-2011 period and then, a stabilization until the end of the period under study. This 

stabilization level is about 15% lower than the initial z1 value. 

Eventually, this seems to be the main empirical result of the present study in the light of the 

underlying research question. Comparing the estimated long-term latent factor, z1, for nominal and 

real prices, it emerges that the supposed increase in the long-term equilibrium values, possibly as a 

consequence of an increasing scarcity, tends to disappear when the inflation rate is properly taken 

into account. It remains true, however, that the last two decades seem to mark the end of the 

previous long period of declining prices in real terms and of stable nominal prices, but also a 

significant increase of volatility. 

If compared to the two latent factors extracted for the first group of four commodities, the factors 

obtained replacing copper with aluminium and wheat with corn are qualitatively and statistically 

similar (Figure A2). Of the two latent factors, z2 seems less volatile, especially in the last decades, 
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for this alternative group of commodities. Also factor z1 seems more stable but its overall pattern 

largely confirms, for both nominal and real prices, what was observed on the original group.  

Beside the interpretation of specific results, however, the major evidence emerging from the 

proposed approach is the confirmation that it is able to provide an alternative representation, that of 

common latent factors, of the common movement of resource prices compared to the conventional 

multivariate analysis. In fact, it integrates and expand the usual multivariate models. Results suggest 

that price interdependence, thus price transmission, in both level and volatility can not be ruled out 

but it is weak and often concerns sub-set of commodities. At the same time, the estimated latent 

common factors seem able to explain large part of the common movement of different 

commodities. Extracting the latent factor expressing the non-stationary long-term equilibrium price 

(factor z1) suggests that, apart from the increased price volatility, no indisputable evidence of a 

long-term generalised price rise actually emerges. On the one hand, only a slight significant and 

permanent rise occurs in the last fifteen years in nominal prices. On the other hand, when looking at 

real prices this long-term dynamics seems rather to indicate a stabilization after a long period of 

decline.  

6. Concluding remarks and further research developments 

This paper focuses on the common movement of resource and commodity prices and its underlying 

drivers. The policy implications of this common movement are remarkable as it might signal long-

term changes of market fundamentals eventually indicating periods of abundance/scarcity. The 

present work has a methodological motivation, that is, to develop an unifying framework able to 

empirically capture all the common stochastic properties of these price series, and their common 

long-term movement in particular, but still incorporating possible price interdependence in both 

levels and volatility. 
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Results here presented confirm that the proposed approach is capable of achieving this purpose and, 

therefore, it may represent a significant original contribution in this field. In particular, extracting 

the common latent factors represents a significant addition to the toolkit available to market analysts 

and decision makers. This new tool might allow a sort of periodical surveillance mechanism on the 

common long-term perspective of the resource markets and, thus, may constitute a significant new 

support to appropriate policy decision making in this field.    

Nonetheless, the empirical exercise here presented also leaves room for significant improvements 

within the proposed methodology. Three aspects, in particular, are worth noticing. First of all, 

caution is needed in deriving conclusions on general validity on the long-term price dynamics and, 

in particular, about a global end of abundance and a new era of scarcity with the consequent 

considerable policy implications. In fact, results here presented actually convey inconclusive 

information on whether there is a monotonic rising or declining trend in the long run. This does not 

only require additional information in terms of longer time series but, more importantly, an 

extension of the analysis to a wider set of heterogenous resources and commodities. Unfortunately, 

such an extension is problematic within the adopted approach due to the computational limitations it 

arises whenever the number of series under analysis exceeds four. 

Secondly, an economics of the price latent factors, therefore a deeper latent factor interpretation, is 

still lacking. The proposed modelling strategy is not explicit on the major economic drivers 

underlying these factors but it is flexible enough to be developed in this direction. Therefore, 

interesting future directions of research in this field may consist in integrating the approach here 

presented with additional modelling and data about the market fundamentals underlying the 

extracted latent factors, thus reconnecting the modelling strategy with the vast literature produced in 

this respect. 

There is another limitation of the adopted approach. The proposed model disregards the possible 

univariate and multivariate interdependence between price level and price volatility. Even though 
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this seems more likely in asset markets than in resource and commodity markets, this 

interdependence could be a major determinant of the change of the long-term common dynamics 

observed since the early 0s. Results here obtained actually suggest the need for a deeper 

investigation of this level-volatility linkage. In principle, the structure of the model here proposed 

admits some improvements in this respect: However, the adopted specification and estimation 

solutions, and the consequent computational burden, seriously question their empirical feasibility. 

Future research could significantly contribute in this direction. 
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Table 1 Univariate analysis on the 6 commodity nominal and real prices.

a Augmented Dickey Fuller (ADF) unit-root test with 12 lags and deterministic trend 
b Lagrange Multiplier (LM) test performed on the residuals of the ADF unit-root test equations and 12 lags
c Term expressing the asymmetric response within a full first-order EGARCH model (Nelson, 1991)
d Test of fractional integration according to Phillips (1999a,b); p-values are reported
e Zivot Andrews (ZV) unit-root test with one endogenous structural break in the intercept, lags selected with AIC and deterministic trend; only statistically 
significant breaks are reported
f Clemente, Montanes and Reyes (CMR) unit-root test with two endogenous breaks, lags selected with AIC and deterministic trend; AO (Additive Outlier), 
IO (Innovational  Outlier) ; only statistically significant breaks are reported  
*Statistically significant at 5% level 

Nominal prices

ADFa ARCHb EGARCHc Fractional integrationd ZV
(break month)e

CMR
(break months)f

t (H0: d=0) z (H0: d=1) IO AO

Crude oil -2.584 83.076* 0.194* 0.000 0.112 -4.876*
(2005m5*)

-5.753*
(2005m1*, 2014m6)

-5.992*
(2005m12*, 2015m3)

Copper -2.355 91.203* 0.193* 0.000 0.124 -5.325*
(2005m7*)

-5.927*
(2005m3*, 2014m7)

-5.668*
(2006m3*, 2015m4)

Wheat -2.913 37.168* 0.046 0.000 0.088 -5.073* 6.662* -5.729*
Beef -1.998 27.716* 0.118 0.000 0.184 -4.934* -5.496* -5.938*
Aluminium -3.164 98.195* 0.160* 0.000 0.066 -5.058* -5.765* -5.494*
Corn -2.806 30.299* 0.090 0.000 0.074 -5.251* -5.872* -5.745*

Correlation coefficient of estimated residuals of ADF unit-root test equations
Crude oil Copper Wheat Beef Aluminium Corn

Crude oil 1.000
Copper 0.313* 1.000
Wheat 0.166* 0.179* 1.000
Beef 0.167* 0.197* 0.193* 1.000
Aluminium 0.278* 0.532* 0.149* 0.085 1.000
Corn 0.187* 0.181* 0.507* 0.169* 0.154* 1.000

Real prices

ADFa ARCHb EGARCHc Fractional integrationd ZV
(break month)e

CMR
(break months)f

t (H0: d=0) z (H0: d=1) IO AO
Crude oil -2.828 79.442* 0.185* 0.000 0.106 -4.835* -5.609* -5.664*
Copper -2.633 79.914* 0.165* 0.000 0.117 -5.749* -5.554* -5.547*
Wheat -3.120 25.727* -0.038 0.000 0.067 -4.966* -5.642* -5.030*
Beef -2.324 25.462* 0.102 0.000 0.155 -4.803* -5.765* -5.579*
Aluminium -3.341 94.489* 0.146* 0.000 0.055 -4.939* -6.643* -5.590*
Corn -3.278 28.983* 0.078 0.000 0.060 -4.831* -5.547* -5.658*

Correlation coefficient of estimated residuals of ADF unit-root test equations

Crude oil Copper Wheat Beef Aluminium Corn
Crude oil 1.000
Copper 0.292* 1.000
Wheat 0.144* 0.174* 1.000
Beef 0.108* 0.109* 0.153* 1.000
Aluminium 0.255* 0.527* 0.118* 0.080 1.000
Corn 0.126* 0.119* 0.506* 0.120* 0.139* 1.000
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Table 2 Cointegration analysis on the 4 commodity nominal and real prices: cointegration rank, VECM 

estimates a and causality test (results with Aluminium and Corn are reported in the Annex). 

Nominal prices 
Rank Trace statistic  Vector Adjustment Short-run Granger causality test 2)  

0 

1 

2 

70.89* 

38.31 

13.92 

Crude oil 1 -0.022* 
Copper: 16.09* 
Wheat: 20.98* 
Beef: 15.10* 

Copper 1.005* -0.027* 
Crude oil: 17.06* 
Wheat: 24.54* 
Beef: 4.90 

Wheat -4.246* -0.025* 
Crude oil: 7.28 
Copper: 22.17* 
Beef: 12.45* 

Beef -0.912* -0.012* 
Crude oil: 5.15 
Copper: 9.86 
Wheat: 19.33* 

Structural break dummies: d2005,cr: 0.994; d2005,cp: 2.085 

Real prices 
Rank Trace statistic  Vector Adjustment Short-run Granger causality test 2) 

0 

1 

2 

67.23* 

35.10 

13.81 

Crude oil 1 -0.051* 
Copper: 12.97* 
Wheat: 16.01* 
Beef: 14.49* 

Copper 0.821* -0.019* 
Crude oil: 11.51* 
Wheat: 11.92* 
Beef: 4.21 

Wheat -3.921* -0.027* 
Crude oil: 5.04 
Copper: 16.52* 
Beef: 11.45* 

Beef -0.743* -0.018* 
Crude oil: 2.05 
Copper: 5.82 
Wheat: 15.60* 

a The VECM model is estimated on the first cointegration vector extracted with 6 lags. In the case of nominal prices, a deterministic 
trend is also included within the cointegration vector. 
*Statistically significant at 5% level  
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Table 3 DCC-MGARCH (1,1) model estimates on the 4 commodity nominal and real prices (results with 

Aluminium and Corn are reported in the Annex). 

Nominal prices 
Correlation parameters Adjustment parameters  

Crude oil and Copper: 0.321* 
Crude oil and Wheat: -0.009 
Crude oil and Beef: 0.075 

1 = 0.013 

2 = 0.944* 

p-value ( 1= 2=0) = 0.000a Copper and Wheat: 0.138 
Copper and Beef: 0.060  

Wheat and Beef: 0.032  

Asymmetry parameters 
fcr,cr: 0.129* ; fcr,cp: 0.051 ; fcp,cp: 0.094*; fcp,cr: 0.025  

Real prices 
Correlation parameters Adjustment parameters  

Crude oil and Copper: 0.305* 
Crude oil and Wheat: -0.016 
Crude oil and Beef: 0.040 

1 = 0.012 

2 = 0.924* 

p-value ( 1= 2=0) = 0.000a 
Copper and Wheat: 0.125 
Copper and Beef: 0.026  

Wheat and Beef: 0.019 

Asymmetry parameters 
fcr,cr: 0.107* ; fcr,cp: 0.040 ; fcp,cp: 0.091*; fcp,cr: 0.022  

a Wald test 
*Statistically significant at 5% level  
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Table 4 FAVAR model (7a)-(7b) estimates on nominal and real prices (estimated standard error in 
parenthesis).

Equation
Coefficient

Estimate
Equation

Coefficient
Estimate

Nominal Prices

Factor 1 ( 1z ) Wheat (wh)

Constant ( 1.855* (0.254) Constant ( whc ) 38.0* (12.08)

Factor 2 ( ) t ( wh1 ) 2.97* (0.522)

t-1 0.647* (0.189) t ( wh2 ) 0.799 (0.659)

t-1 0.325 (0.189) crt-1 ( 31 ) 0.557* (0.244)

Crude oil (cr) crt-2 ( 31 ) 0.096 (0.183)

Constant ( crc ) 6.01* (2.95) cpt-1 ( 32 ) 0.001 (0.002)

d2005,cr 1.521 (0.907) cpt-2 ( 32 ) 0.003 (0.003)

t ( cr1 ) 1.74* (0.231) wht-1 ( 33 ) 0.922* (0.051)

t ( cr2 ) -1.43* (0.227) wht-2 ( 33 ) -0.017 (0.050)

crt-1 ( 11) 0.833* (0.168) bet-1 ( 34 ) 0.209* (0.104)

crt-2 ( 11) -0.150* (0.069) bet-2 ( 34 ) -0.400* (0.104)

cpt-1 ( 12 ) -0.001 (0.001) Beef (be)

cpt-2 ( 12 ) -0.001 (0.001) Constant ( bec ) 16.6 (5.93)

wht-1 ( 13 ) 0.010 (0.017) t ( be1 ) 0.941* (0.248

wht-2 ( 13 ) 0.013 (0.017) t ( be2 ) -0.281 (0.278)

bet-1 ( 14 ) 0.031 (0.032) crt-1 ( 41) -0.053 (0.092)

bet-2 ( 14 ) -0.062 (0.032) crt-2 ( 41) -0.069 (0.072)

Copper (cp) cpt-1 ( 42 ) 0.004* (0.001)

Constant ( cpc ) 351.4* (135.4) cpt-2 ( 42 ) -0.001 (0.002)

d2005,cp 5.773 (4.896) wht-1 ( 43 ) -0.120* (0.022)

t ( cp1 ) 66.0* (20.8) wht-2 ( 43) 0.077* (0.020)

t ( cp2 ) 158.2* (22.1) bet-1 ( 44 ) 1.12* (0.046)

crt-1 ( 21) -4.99* (2.41) bet-2 ( 44 ) -0.221* (0.047)

crt-2 ( 21) -1.77 (6.23)

cpt-1 ( 22 ) 0.786* (0.110)

cpt-2 ( 22 ) -0.110* (0.497)

wht-1 ( 23 ) 2.88 (2.23)

wht-2 ( 23) -0.398 (0.877)

bet-1 ( 24 ) 4.56 (3.15)

bet-2 ( 24 ) -1.23 (2.39)
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Table 4 (continued)

Equation
Coefficient

Estimate
Equation

Coefficient
Estimate

Real Prices

Factor 1 ( 1z ) Wheat (wh)

Constant ( 2.128* (0.305) Constant ( whc ) 79.1 (53.0)

Factor 2 ( ) t ( wh1 ) 11.0* (3.01)

t-1 1.16* (0.187) t ( wh2 ) 3.88 (3.03)

t-1 -0.175 (0.189) crt-1 ( 31 ) -0.053 (0.344)

Crude oil (cr) crt-2 ( 31 ) 0.003 (0.187)

Constant ( crc ) 3.00 (3.98) cpt-1 ( 32 ) -0.004 (0.004)

t ( cr1 ) 0.495* (0.225) cpt-2 ( 32 ) 0.003 (0.003)

t ( cr2 ) -0.823* (0.332) wht-1 ( 33 ) 0.194* (0.022)

crt-1 ( 11) 1.02* (0.054) wht-2 ( 33 ) -0.075 (0.168)

crt-2 ( 11) -0.108* (0.046) bet-1 ( 34 ) 0.189* (0.072)

cpt-1 ( 12 ) 0.002* (0.001) bet-2 ( 34 ) -0.156 (0.113)

cpt-2 ( 12 ) -0.001 (0.001) Beef (be)

wht-1 ( 13 ) 0.018 (0.055) Constant ( bec ) 57.75 (58.73)

wht-2 ( 13 ) 0.001 (0.014) t ( be1 ) 0.256* (0.119)

bet-1 ( 14 ) 0.013 (0.027) t ( be2 ) -0.630 (0.345)

bet-2 ( 14 ) -0.022 (0.027) crt-1 ( 41) 0.318* (0.099)

Copper (cp) crt-2 ( 41) 0.212 (0.134)

Constant ( cpc ) 992.1* (322.7) cpt-1 ( 42 ) 0.002 (0.002)

t ( cp1 ) 104.6* (12.0) cpt-2 ( 42 ) 0.001 (0.002)

t ( cp2 ) -160.5* (45.6) wht-1 ( 43 ) 0.110* (0.051)

crt-1 ( 21) 2.44 (1.64) wht-2 ( 43) -0.084 (0.089)

crt-2 ( 21) -0.778 (3.21) bet-1 ( 44 ) 0.089* (0.037)

cpt-1 ( 22 ) 0.554* (0.087) bet-2 ( 44 ) 0.168 (0.146)

cpt-2 ( 22 ) -0.053 (0.055)

wht-1 ( 23 ) -0.602 (4.11)

wht-2 ( 23) -0.211 (2.40)

bet-1 ( 24 ) -0.987 (2.53)

bet-2 ( 24 ) -0.509 (2.66)

*Statistically significant at 5% level 
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Figure 1a  Monthly international nominal prices of the 4 commodities (in US$) from January 1980 (1980m1) to December 2019 (2019m12): sub-period 

statistics (1980m1-1994m12; 1995m1-2004m12; 2005m1-2013m12; 2014m1-2019m12).  
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Figure 1b  Monthly international real prices (US CPI used as deflator) of the 4 commodities (in US$) from January 1980 (1980m1) to December 2019 

(2019m12): sub-period statistics (1980m1-1994m12; 1995m1-2004m12; 2005m1-2013m12; 2014m1-2019m12).  
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Figure 2 Estimated Long (z1) (1981m1=100) and Short-term (z2) (1981m1=0) dynamic latent factors: 

nominal (a) and real (b) prices. 
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ANNEX

Table A1  Cointegration analysis on the nominal and real prices of the alternative group of 4 commodities 

(with aluminium and corn replacing copper and wheat): cointegration rank, VECM estimates a and causality 

test. 

Nominal prices 
Rank Trace statistic  Vector Adjustment Short-run Granger causality test  

0 

1 

2 

69.07* 

32.21 

10.34 

Crude oil 1 -0.030* 
Aluminium: 18.55* 
Corn: 11.98* 
Beef: 19.02* 

Aluminium 0.801 -0.025* 
Crude oil: 13.74* 
Corn: 17.58* 
Beef: 4.03 

Corn -1.426* -0.010* 
Crude oil: 15.35* 
Aluminium: 4.17 
Beef: 14.36* 

Beef -0.780* -0.012* 
Crude oil: 6.96 
Aluminium: 4.11 
Corn: 12.70* 

Structural break dummy: d2005,cr: 0.906 

Real prices 
Rank Trace statistic  Vector Adjustment Short-run Granger causality test 

0 

1 

2 

57.77* 

20.41 

8.83 

Crude oil 1 -0.021* 
Aluminium: 16.39* 
Corn: 18.06* 
Beef: 14.58* 

Aluminium 0.914* -0.032* 
Crude oil: 11.86* 
Corn: 11.07* 
Beef: 5.00 

Corn -1.717* -0.019* 
Crude oil: 16.13* 
Aluminium: 6.12 
Beef: 12.01* 

Beef -0.655* -0.020* 
Crude oil: 2.95 
Aluminium: 2.56 
Corn: 11.64* 

a The VECM model is estimated on the first cointegration vector extracted with 6 lags. In the case of nominal prices, a deterministic 
trend is also included within the cointegration vector. 
*Statistically significant at 5% level  
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Table A2 DCC-MGARCH (1,1) model estimates on the nominal and real prices of the alternative group of 

4 commodities (with aluminium and corn replacing copper and wheat). 

Nominal prices 
Correlation parameters Adjustment parameters  

Crude oil and Aluminium: 0.350* 
Crude oil and Corn: -0.039 
Crude oil and Beef: 0.061 

1 = 0.021* 

2 = 0.938* 

p-value ( 1= 2=0) = 0.000a Aluminium and Corn: 0.092 
Aluminium and Beef: 0.024  

Corn and Beef: 0.006  

Asymmetry parameters 
fcr,cr: 0.118* ; fcr,al: 0.039 ; fal,al: 0.102*; fal,cr: 0.025 

Real prices 
Correlation parameters Adjustment parameters  

Crude oil and Aluminium: 0.291* 
Crude oil and Corn: -0.062 
Crude oil and Beef: 0.059 

1 = 0.030* 

2 = 0.911* 

p-value ( 1= 2=0) = 0.000a Aluminium and Corn: 0.095 
Aluminium and Beef: 0.024  

Corn and Beef: 0.005  

Asymmetry parameters 
fcr,cr: 0.116* ; fcr,al: 0.044 ; fal,al: 0.096*; fal,cr: 0.023 

a Wald test 
*Statistically significant at 5% level  
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Table A3 FAVAR model (7a)-(7b) estimates on the alternative group of 4 commodity nominal and real

prices (estimated standard error in parenthesis). 

Equation
Coefficient

Estimate
Equation

Coefficient
Estimate

Nominal Prices

Factor 1 ( 1z ) Corn (co)

Constant ( 1.278* (0.557) Constant ( ) 150.2* (59.3)

Factor 2 ( ) t ( ) 4.64* (0.573)

t-1 1.419* (0.578) t ( ) 0.425 (0.347)

t-1 -0.424 (0.249) crt-1 ( 31 ) 0.688* (0.156)

Crude oil (cr) crt-2 ( 31 ) 0.006 (0.017)

Constant ( crc ) 8.36* (4.07) alt-1 ( 32 ) -0.019 (0.016)

d2005,cr 1.440 (0.839) alt-2 ( 32 ) -0.015 (0.009)

t ( cr1 ) 0.113* (0.040) cot-1 ( 33 ) 0.673* (0.080)

t ( cr2 ) 0.268 (0.221) cot-2 ( 33 ) 0.002 (0.058)

crt-1 ( 11) 0.903* (0.057) bet-1 ( 34 ) 0.458* (0.159)

crt-2 ( 11) -0.190* (0.058) bet-2 ( 34 ) 0.198 (0.111)

alt-1 ( 12 ) -0.004* (0.002) Beef (be)

alt-2 ( 12 ) -0.001 (0.003) Constant ( bec ) 44.5 (22.8)

cot-1 ( 13 ) 0.091* (0.026) t ( be1 ) 1.61* (0.407)

cot-2 ( 13 ) -0.010 (0.020) t ( be2 ) -2.05 (1.88)

bet-1 ( 14 ) 0.137 (0.143) crt-1 ( 41) -0.047 (0.260)

bet-2 ( 14 ) -0.006 (0.035) crt-2 ( 41) 0.503 (0.291)

Aluminium (al) alt-1 ( 42 ) -0.044 (0.025)

Constant ( ) 1593.0* (323.5) alt-2 ( 42 ) 0.036 (0.018)

t ( ) 50.1* (7.30) cot-1 ( 43 ) 0.074* (0.033)

t ( ) 47.7 (37.9) cot-2 ( 43 ) -0.073 (0.070)

crt-1 ( 21) 6.22* (1.87) bet-1 ( 44 ) 0.087* (0.015)

crt-2 ( 21) -3.29 (1.69) bet-2 ( 44 ) 0.015 (0.198)

alt-1 ( 22 ) 0.351* (0.082)

alt-2 ( 22 ) 0.098 (0.064)

cot-1 ( 23 ) -1.57 (0.802)

cot-2 ( 23) 0.435 (0.677)

bet-1 ( 24 ) 1.60 (1.32)

bet-2 ( 24 ) -1.95 (1.23)
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Table A3 (continued)

Equation
Coefficient

Estimate
Equation

Coefficient
Estimate

Real Prices

Factor 1 ( 1z ) Corn (co)

Constant ( 1.639* (0.346) Constant ( ) 7.41* (3.45)

Factor 2 ( ) t ( ) 5.09* (1.67)

t-1 0.778* (0.062) t ( ) -3.14 (2.26)

t-1 0.214 (0.063) crt-1 ( 31 ) 0.271* (0.120)

Crude oil (cr) crt-2 ( 31 ) -0.137 (0.277)

Constant ( crc ) 4.40* (1.21) alt-1 ( 32 ) 0.021* (0.004)

t ( cr1 ) 0.225* (0.074) alt-2 ( 32 ) 0.003 (0.004)

t ( cr2 ) 0.253 (0.554) cot-1 ( 33 ) 0.529* (0.118)

crt-1 ( 11) 1.05* (0.048) cot-2 ( 33 ) 0.018 (0.073)

crt-2 ( 11) -0.119* (0.048) bet-1 ( 34 ) 0.086 (0.207)

alt-1 ( 12 ) -0.001 (0.002) bet-2 ( 34 ) 0.022 (0.107)

alt-2 ( 12 ) 0.001 (0.001) Beef (be)

cot-1 ( 13 ) 0.015 (0.054) Constant ( bec ) 26.6* (10.4)

cot-2 ( 13 ) -0.006 (0.018) t ( be1 ) 2.51* (1.15)

bet-1 ( 14 ) 0.037 (0.038) t ( be2 ) -3.76* (0.976)

bet-2 ( 14 ) -0.014 (0.029) crt-1 ( 41) 0.141 (0.083)

Aluminium (al) crt-2 ( 41) -0.027 (0.072)

Constant ( ) 49.7* (12.0) alt-1 ( 42 ) -0.001 (0.002)

t ( ) 59.6* (19.9) alt-2 ( 42 ) 0.001 (0.002)

t ( ) 50.0* (17.0) cot-1 ( 43 ) 0.122* (0.050)

crt-1 ( 21) 5.09* (2.09) cot-2 ( 43) -0.014 (0.032)

crt-2 ( 21) -6.15 (3.45) bet-1 ( 44 ) 0.688* (0.078)

alt-1 ( 22 ) 0.433* (0.103) bet-2 ( 44 ) -0.184 (0.061)

alt-2 ( 22 ) 0.213* (0.064)

cot-1 ( 23 ) 2.20* (0.931)

cot-2 ( 23) 2.04 (1.40)

bet-1 ( 24 ) 0.674 (2.879)

bet-2 ( 24 ) -0.187 (1.94)

*Statistically significant at 5% level 
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Figure A2 Estimated Long (z1) (1981m1=100) and Short-term (z2) (1981m1=0) dynamic latent factors on 

the alternative group of 4 prices: nominal (a) and real (b) prices 
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