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Long Term Correlation and Inhomogeneity of the
Inverted Pendulum Sway Time-Series under the

Intermittent Control Paradigm

Andrea Tigrinia, Federica Verdinia, Sandro Fiorettia, Alessandro Mengarellia,∗

aDepartment of Information Engineering, Università Politecnica delle Marche, 60131,
Ancona, Italy

Abstract

In this study the extended detrended fluctuation analysis (EDFA) was applied

to the sway data generated from an inverted pendulum (IP) model, intermit-

tently controlled at the ankle. The time series taken into account was the center

of pressure (COP), since it represents the widest used time series in posturog-

raphy, and it constitutes a natural link between model and data-based analysis

approaches for studying the dynamics of the human balance maintenance. COP

time-series were obtained by varying the intermittent control parameters (ICP)

in a uniform distribution range that ensures IP stability to quantify changes in

the long-term correlation and inhomogeneity of the time-series. Globally, EDFA

coefficients (α and β) showed to be sensitive to the variations of derivative con-

trol gain (D), whereas for proportional gain (P ) and ρ parameters no significant

trends were observed. However, relations between EDFA coefficients and ρ arose

whether derivative gain is examined within a low and high regions of value. For

low D gains, both α and β showed a significant correlation with ρ, which dis-

appears when higher D values were considered. Thus EDFA coefficients can

provide useful insights about the long-term correlation and local characteris-

tics of COP timeseries, which are strictly related to the control policy adopted
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for maintaining balance. This supports the validity of the intermittent motor

control paradigm for the human upright stance and suggests the use of EDFA

in real posturography applications, in order to extract meaningful information

regarding the properties of COP timeseries for different groups of patients.

Keywords: Center of Pressure (COP), Intermittent control, Extended

detrended fluctuation analysis (EDFA)

1. Introduction1

The study of bipedal upright stance and balance maintenance has fascinated2

many different scientific disciplines. Indeed, understanding the hidden mech-3

anisms that the central nervous system (CNS) employs to control the body4

mechanics is fundamental in neurorobotics to embody intelligence in humanoid5

robots [1, 2], but even in neuroscience and posturography, to better understand6

how pathologies affecting CNS may impact on the motor control [3, 4]. In this7

scenario, approaches that combine biomechanical modeling of the stance and8

the analysis of time-series, such as the evolution of the center of mass (COM)9

and the center of pressure (COP) [5, 6, 7], grounded the bases for a deeper10

comprehension of the motor control policies actuated by the CNS.11

Although stiffness-based stabilizing mechanisms and continuous control paradigm12

are widely used in literature to model the neuromuscular control of stance [8, 9],13

the intermittent control approach demonstrated to be supported by physiologi-14

cal evidence [10]. As first, muscle activity is bursting, and it may be mirrored in15

the control torques at the human joints [6]. Furthermore, Morasso, Schieppati,16

and Sanguineti [11, 12] highlighted the inability of the ankle stiffness alone to17

compensate the whole body gravity pull, without an active mechanism played by18

the CNS [5]. Moreover, the intermittent control policy can generalize a contin-19

uous one, as highlighted in [7]. Thus, despite the real motor control paradigm20

of the stance maintenance is unknown, it is plausible that the CNS can take21

advantage from the body structure in order to develop a control strategy that22

does not act continuously [10]. Indeed, global stability of the system can be23
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obtained switching between unstable dynamics [10, 13], hence trough a variable24

structure control policy. The idea of intermittency, meant as an agent that acts25

when necessary, was hypothesized also by Collins and De Luca [14], following26

a time-series analysis approach, i.e. the stabilogram diffusion analysis (SDA)27

[14].28

Despite the two previous perspectives, i.e. model-based and time-series anal-29

ysis, are different [7], the need for a unified perspective results of great impor-30

tance when one would obtain highly explainable models. Indeed, in [7] the31

aforementioned approaches were combined through the approximate bayesian32

computation, in order to infer the parameters of the intermittent controller33

from posturographic data. This makes more underpinned the interpretation34

of the results if compared to models obtained through black box identification35

procedures, where high fidelity data fitting could be payed with a limited inter-36

pretability. Literature shows other studies that followed the inclusive approach37

stated above. In [15] for instance, SDA was applied to simulated COP data38

obtained by using a simple inverted pendulum (IP) model, commonly used to39

describe the mechanics of the body stance, varying the continuous controller40

parameters, and then examining their relation with the SDA coefficients [14].41

Also in [10], changes in the intermittent control parameters (ICP) were related42

to changes in the power spectral density (PSD) of the sway data. Furthermore,43

such PSDs reproduced the multiple law scaling properties observed in data ac-44

quired during human quiet stance [10].45

The investigation of intermittent control models of human stance through46

time series analysis approaches is far to be completely assessed. In particular,47

as emerged from previous works [15, 16, 6, 17], a possible way to carry on48

such investigation is to employ COP model-generated data. This for two main49

reasons: firstly, the COP can be directly measured from force platforms without50

the need for any motion capture systems, commonly used to estimate the COM.51

Thus, the knowledge extracted from the model can be validated through real52

data. Secondly, COP is directly related with the control torques generated at53

the ankle and upper joints of the body [11, 8, 14], and hence it contains the54
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sign of the CNS control action. Another important aspect regards the selection55

of adequate descriptors used to evaluate the COP time-series. In [18] different56

spatial, temporal and frequency COP descriptors were presented. However, they57

do not account for the nonlinear properties and long-term correlation of COP58

data. Instead, other authors approached the study of COP time-series through59

the use of SDA, rambling and trembling decomposition, sway density curve and60

detrended fluctuation analysis (DFA) [14, 19, 4, 20, 21]. These are only few of61

the methodologies employed to capture more detailed information regarding the62

nature of biological processes behind balance maintenance.63

Recently, an extension of the DFA, named extended DFA (EDFA), was pro-64

posed in [22]. EDFA grounds its basis on the fact that experimental data often65

present inhomogeneity due to changes in the dynamics of the systems. This66

aspect can be encountered in many biological time series, ranging from heart67

rate to electroencephalography [23, 24]. Moreover, behind EDFA there is the68

idea to quantify not only the slow variations in the local mean value, as done69

by DFA, but also to consider other types of non-stationary behaviors, such as70

those induced by intermittency or faster oscillations [23]. Thus in this study,71

EDFA was applied to simulated COP time course obtained through intermit-72

tent control paradigm, applied to an IP model, and by varying the ICP within73

a plausible range [10, 7]. Then, EDFA coefficients were computed to asses how74

changes in the ICP affect posturographic data, and if EDFA can highlight hid-75

den properties of the motor control paradigm employed to stabilize the IP.76

The paper is organized as follows. Methods section describes the human77

stance model based on the intermittent controller used to generate simulated78

COP, then EDFA principles are recalled. Results are thus presented and dis-79

cussed in the third section, and concluding remarks reported in the last section80

end the paper.81
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2. Materials and Methods82

2.1. Upright stance balance maintenance model and data generation83

The human balance maintenance model considered in this study was pre-84

sented in [10], and it basically develops a variable structure control system to85

describe the body sway in quiet conditions. The latter can be modeled through86

an IP linearized in the neighborhood of the vertical equilibrium point [10]. Thus,87

the dynamics is given by:88

Iθ̈ = mghθ − T (1)

where θ is the COM sway angle in the sagittal plane, m is the subject body89

mass, h is the distance of the COM with respect to the ankle, g is the gravity90

acceleration, and I is the moment of inertia of the body around the ankle. The91

term mghθ, hence represents the gravitational toppling torque that is dynam-92

ically counterbalanced by T , i.e. the control torque applied at the pendulum93

joint. The latter can be modeled as in [10, 6]:94

T = Kθ +Bθ̇ + fP (θ∆) + fD(θ̇∆) + σξ (2)

The first two terms (Kθ and Bθ̇) model the passive feedback torques due to95

ligament and muscle tone. On the contrary, fP (θ∆) and fD(θ̇∆) model the96

active role played by the CNS that has been thought intermittent, depending97

on the portion of the phase plane the state is at a given time [10]. To be98

noted, the two terms depend respectively to the delayed sway angle and its99

time derivative. Indeed θ∆ = θ(t − ∆), where ∆ represents the physiological100

neural delay that accounts for both the afferent and efferent neural information101

transmission [10]. The last term in the right hand side of (2) represents the102

internal postural noise, modeled as an additive Gaussian white noise ξ(t) with103

standard deviation σ [10].104

The switching policy adopted for the model was defined in [10] and used also105

in [6]. It can be summarized as follows:106 fP (θ∆) = Pθ∆; fD(θ̇∆) = Dθ̇∆; if θ∆(θ̇∆ − lθ∆) > 0

fP (θ∆) = 0; fD(θ̇∆) = 0; otherwise

(3)
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where P and D represents the proportional and derivative gains of the active107

controller, while l characterizes the slope of the on-off boundary lines θ̇∆ = lθ∆108

[10, 7]. As highlighted in [7], for the closed loop system described above, the109

switching activity is driven by the portion of the phase plane where the active110

controller is turned on with respect to the whole phase plane (Fig. 1). This111

quantity can be defined as ρ and it is formally equivalent to [7]:112

ρ =
Son

Son + Soff
≡ 0.5− arctan (l)

π
(4)

Figure 1: Schematic representation of the phase space portion in which the active controller is

turned on (Son) and off (Soff ). The two regions were determined by the switching condition

in equation (3) where l determines the on-off boundary region.

To be noted, if the active controller is continuously turned on, the Soff area is113

equal to zero (ρ = 1), and the model generalizes the continuous motor control114

paradigm [15, 7]. For a non-null Soff the active controller is turned on and off115

(ρ < 1) and the motor control paradigm is the intermittent one. Eventually,116

if the Son area is zero (ρ = 0), the active controller never turns on and the117

pendulum stabilization can be reached only through the passive components of118

T .119
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However, as reported in [12], ankle stiffness alone cannot stabilize the upright120

stance, and by following the line proposed in [10], the stiffness term K (see121

equation (2)) was set at the 80% of mgh. In this way, an active control is122

always required [7, 11]. To run the simulations, the model parameters and the123

ICP, i.e. (P,D, ρ), were set as reported in table 1. The forward Euler method124

with a time step of 0.001 s was used to solve the delayed differential equation125

given by (1) after substitution of T through (2). Further details regarding the126

discretization and integration procedures can be found in [10, 7].127

One thousand stable simulations of 60 s were run sampling (P,D, ρ) from128

opportune uniform distributions (Table 1). For each simulation, the COP with129

respect to the ankle joint was obtained following the relation [25]:130

COP = COM − h

g
¨COM (5)

where COM can be obtained by the sway data since is the projection of the cen-131

ter of mass in the anterior posterior direction. More precisely, COM is obtained132

as COM = h sin(θ).

Table 1: Table shows the model parameters and the ICP used to simulate the model. P , D

and ρ were sampled from uniform distributions in plausible ranges [6, 7, 13]

m I h B K g ∆ σ P D ρ

(kg) (kg·m2) (m) (N·m·s/rad) (N·m/rad) (m/s2) (s) (N·m) (N·m/rad) (N·m·s/rad)

60 60 1 4.0 471 9.81 0.2 0.2 U[294; 471] U[0; 400] U[0.3; 1]

133

2.2. Extended detrended fluctuation analysis134

Given a time series x(i) of length N , the DFA involves the transformation135

of x(i) in its profile y(i) through an integration after mean removal [26, 24]:136

y(k) =

k∑
i=1

[x(i)− 〈x〉], 〈x〉 =

N∑
i=1

x(i) (6)

The resulting profile or random walk undergoes to non-overlapping segmenta-137

tions of equal length n. Then, for each segment of the profile, a local trend138
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yn(k) is computed through a linear fit in a least square sense [23]. When local139

trend is available, one can proceed by computing the fluctuation, or standard140

deviation of the signal profile around the local trend as:141

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (7)

The process is iterated for different segment size (n) in order to obtain F (n)142

over a possible large number of scales. In general, F (n) presents a power law143

behavior of the type:144

F (n) ∼ nα (8)

where the α-exponent can be estimated through the log-log representation of145

F (n) versus n [24, 26].146

What reported until now are the basic steps of the DFA. However, as high-147

lighted in [23], the inhomogeneity of the data, which can be due to multiple148

dynamics interactions, can lead to a consistent variability of the profile fluctu-149

ations around the local trend among the different signal epoch sizes (n). This150

can produce a departure from model (8), rendering more challenging the inter-151

pretation of the classical DFA. To mitigate this aspect, in [22, 23] the authors152

proposed a DFA extension, namely EDFA, that takes care of the heterogeneity153

in the RMS fluctuations. Hence, in addition to the canonical DFA, one can154

consider the following quantity:155

dF (n) = max[Floc(n)]−min[Floc(n)] (9)

where dF (n) is the difference between the maximum and minimum local RMS156

fluctuations Floc(n) [23]. Here, the local RMS fluctuations of the signal profile157

y(k) from the trend yn(k) depends on the epoch length (n). As observed in158

[23], also dF (n) could change with n, following a power-law dependence with159

another scaling exponent β:160

dF (n) ∼ nβ (10)

The EDFA was applied to each COP trace generated as described in section161

2.1, and both α and β were computed to evaluate how changes in the ICP162
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impact on the simulated COP time-series.163

3. Results and Discussion164

In Figure 2 the mean trends among all the simulated time series of both165

F and dF are shown in the log-log scale. A greater variability is present at166

higher time scales and an inverse relation exists between (n) and the frequency,167

as underlined in [27]:168

n(f) =
fs
f

(11)

where fs is the sampling frequency and f is the considered frequency. This169

suggests that modifications of the active controller parameters lead to changes170

of balance response focused at the higher time scales and thus at the lower171

frequency ranges [10], aligning with [28], where the effects of neural control on172

COP data were observed in the lower bands (LB) frequency range of 0.5-0.1173

Hz. Confirmations can be found also in [27], where part of such neural feedback174

due to the visuo-vestibular information should be mirrored in COP time-series175

at frequencies lower than 0.5 Hz [27]. This aspect supports the goodness of176

the intermittent motor control paradigm, since modifications of its parameters177

produce larger variations at the LB ranges (Fig. 3), thus in according with the178

regulatory activity of the CNS in the human balance maintenance, focused on179

the frequency LB [28, 10, 27]. For the above mentioned reasons, one can focus180

on the fluctuations at the higher time scales to observe the behavior of both F181

and dF in the LB.182

The EDFA appears suitable for capturing variations in the active control183

policy: observing the F and dF fluctuations restricted at the LB (Fig. 3), one184

can appreciate that both type of fluctuations are affected by ICP variations and185

dF showed a greater level of variability at all the (n) with respect to F , likely186

indicating that dF responds to the same control parameters changes by greater187

modifications of its value (Fig. 3).188
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Figure 2: Log-log representation of the EDFA fluctuations in mean and standard deviation,

the latter were computed over the 1000 synthetic COP time-series generated by the model.

Figure 3: Log-log representation of the EDFA fluctuations in mean and standard deviation.

Focus on the time scales that maps the frequency band 0.5-0.1 Hz.
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Figure 4: EDFA coefficients α and β obtained for the simulated COP time series and scattered

in relation to P parameter. The correlation coefficients results r = −0.12 and −0.15, for α

and β respectively. Figure shows also the linear trend between P and the coefficients.

Figure 5: EDFA coefficients α and β obtained for the simulated COP time series and scattered

in relation to D parameter. The correlation coefficients results r = −0.83 and −0.63, for α

and β respectively. Figure shows also the linear trend between D and the coefficients.
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Figure 6: EDFA coefficients α and β obtained for the simulated COP time series and scattered

in relation to ρ parameter. The correlation coefficients results r = −0.019 and 0.17, for α and

β respectively. Figure shows also the linear trend between ρ and the coefficients.

Figure 7: EDFA α coefficient scattered against D parameter. The two lines of the best fitting

model are reported in black and the knot point is indicated with the dashed, vertical line.
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Figure 8: EDFA β coefficient scattered against D parameter. The two lines of the best fitting

model are reported in black and the knot point is indicated with the dashed, vertical line.

Figure 9: EDFA coefficients α and β obtained for the simulated COP time series and scattered

in relation to ρ parameter for D <243 N ·m · s · rad−1. Figure shows also the linear trend

between ρ and the coefficients.
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Figure 10: EDFA coefficients α and β obtained for the simulated COP time series and scattered

in relation to ρ parameter for D ≥243 N ·m · s · rad−1. Figure shows also the linear trend

between ρ and the coefficients.

As highlighted in section 2.1, the motor control paradigm examined in this189

study depends upon ρ, P , and D. The EDFA coefficients showed different190

relationship with the above mentioned parameters when considered over their191

whole range of variation (Table 1). Globally, the P parameter did not appear192

related to neither the long term correlation properties, nor to the inhomogeneity193

of the simulated COP time-series, as showed by the poor correlation between194

P , α, and β (Fig. 4). This confirms that when P is large enough to compensate195

the portion of the gravitational toppling torque not counteracted by the passive196

muscles properties (K and B), a wide range of values is admissible for P and197

thus, with respect to D, its role becomes less crucial for the control model [6, 10].198

The latter aspect aligns with the strong relation observed between both EDFA199

coefficients and D (Fig. 5), highlighted by the significant correlations of the200

derivative gain with α and β (r = −0.83 and r = −0.63, p <0.0001). In passing,201

the α − D relation (Fig. 5) points out that the higher is D, the lower is the202

long-term correlation of the COP timeseries, in agreement with previous studies203
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that reported lower values of α in elderly populations, where a degraded motor204

control can be assumed [19, 29]. This was confirmed also in [7], where it was205

observed that patients affected by Parkinson’s disease showed higher D values206

if compared to healthy elderly. Indeed, control schemes with large derivative207

gain constitutes an energetically inefficient control strategy, with inflexible and208

non-reactive stabilizing mechanism, marked by lower α values [7].209

As happened for P , also ρ did not show any significant correlation with α210

and β coefficients (Fig. 6), indicating that, despite the significant role of ρ211

in defining the exchange between the ON and OFF sub-dynamics (see section212

2.1), it appears to be not directly related with the stochastic properties of COP213

timeseries quantified through the EDFA. In addition, it deserves to be noted214

that, within the range of P and D values selected in this study (Table 1), stable215

simulations were obtained for ρ up to '0.9, although ρ was free to vary with216

the upper bound set to 1 (Table 1). This indicates that the condition for a fully217

continuous control (ρ =1) was not reached and thus findings of this study hold218

when an intermittent control takes place.219

For what concerns the β coefficient, it can be observed that the inhomogene-220

ity of the COP timeseries decreases for progressively higher values of D (Fig. 5).221

The coefficient β was defined to indicate departure from the power law behavior222

(8), since the standard deviation of the profile from the local trend (7) can vary223

significantly among the different segments [22]. A reduction of inhomogeneity224

implies COP timeseries characterized by regular oscillatory fluctuations, closer225

to a stationary behavior. Hence, the β coefficient can provide additive informa-226

tion regarding the organization of biological signals in terms of complexity, since227

it provides a quantitative measure of local transients [22]. The lower β values228

observed for increasing derivative gains appears in agreement also with the loss229

of complexity paradigm [30]. This hypothesis essentially states that healthy230

physiological systems produce responses that are complex in the sense of non231

linear correlations and long-term dynamics, while a functions’ breakdown, due232

to aging or disease, leads to less complex outputs that mirror a reduced ability233

in producing an adaptive set of responses when facing motor, cognitive or neu-234
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rological needs [31, 32]. Thus, the reduction of β coefficient highlights a loss of235

fine-structures in COP epochs and it suggests a reduced capability to cope with236

balance demands, relying on a set of few and repeatable postural patterns with237

a limited physiological adaptability. Hence, a lower degree of inhomogeneity238

could reflect a rearrangement in the CNS motor control schemes due to certain239

pathologies, resembling an inefficient tuning of the IP active controller [7, 33].240

The above mentioned analysis indicates that, among the three ICP, D gain241

alone reflects changes in the long-term correlation and inhomogeneity properties242

of the whole COP timeseries. This aspect is strengthened also by considering243

separately α−D and β−D relations (Figs. 7 and 8). In both cases, it appeared244

that the inter-dependence between D and EDFA coefficients can be fitted with245

two straight lines characterized by different slopes, highlighting the possible246

existence of two different relationships, depending upon D values. In order to247

test this hypothesis, both the α − D and β − D were fitted through a least-248

square spline approach [34], testing respectively the existence of three models,249

described by one, two, and three polynomials of order 1. The criterion used250

for assessing the best model was the normalized Akaike’s information criterion251

(nAIC) [35], for which the most accurate model presents the lowest nAIC. For252

both α−D and β−D data distributions, the best fitting model was that with a253

single knot point and thus with two lines: in this case the nAIC resulted equal254

to −4.67 versus −4.57 (one line) and −4.40 (three lines) for α −D. Similarly,255

for β−D the two-lines model presented a nAIC of −3.67 versus −3.60 (one line)256

and −3.52 (three lines). In addition, in both cases the crossing point between257

the two lines (the knot), presented the same value, i.e. D =243 N ·m · s · rad−1
258

(Figs. 7 and 8).259

Given the presence of two different kind of relations between D and EDFA260

coefficients, a further analysis was performed regarding the correlation between261

α and β with the other two control parameters, i.e. P and ρ. Hence, those P and262

ρ values for which the correspondent D gain was respectively <243 N ·m·s·rad−1
263

and≥243 N ·m·s·rad−1 were separately taken into account. To be noted, such D264

value was obtained directly from the above mentioned data-driven analysis and265
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thus it cannot be claimed that it represents a critical value for the intermittent266

control scheme. Its possible physical meaning, however, deserves to be carefully267

investigated in future studies, also in relation to the other ICP.268

Regarding the proportional gain, as happened when the α − P and β − P269

correlations were examined over the entire range of the proportional gain (Fig.270

4), neither α nor β showed any direct relation with P ( r = −0.36 and −0.32 for271

D < 243N ·m · s · rad−1 and r = −0.19 and −0.11 for D ≥ 243N ·m · s · rad−1).272

This supports once more that within the range of values assumed by P in this273

study, its variations seem to not consistently affect the COP fractal properties274

measured by EDFA.275

On the other hand, the ρ parameter showed a different behavior with respect276

to α and β depending upon the values assumed by the derivative gain. When D277

is lower than 243 N ·m ·s ·rad−1, both α and β showed a significant (p <0.0001)278

correlation with ρ (r =0.44 and 0.61, respectively, Fig. 9). This suggests that279

the stochastic behavior and the inhomogeneity of a timeseries, quantified by the280

EDFA coefficients, manifest a direct relationship with the intermittent nature281

of balance control when D assumes typical values for this control strategy [7].282

Incidentally, this is also in agreement with ρ values that not overcome ' 0.7,283

which permits to exploit the two main features of the intermittent control: the284

stable manifold belonging to the OFF-dynamics and the spiraling state steering285

induced by the delayed unstable dynamic of the ON-subsystem. This eventually286

permits to obtain limit cycle stability without the need of greater control efforts287

[7]. In addition, the correlation between α and two control parameters (D and288

ρ) aligns with the findings by Yamamoto et al. [28], who reported that the slope289

of the COP power spectrum at the LB, which is directly related to α [36], is a290

universal characteristic of postural sway, associated to neural control strategies.291

Considering that, despite both trends are significant, β highlights a greater ca-292

pability in detecting changes in ρ, if compared to α, and thus it further supports293

the use of the extended version of the DFA for analyzing posturographic data.294

Finally, it is interesting to note that the α coefficient maintains in any case295

values quite close to 1 (Fig. 9), possibly referring to an attempt to maintain296
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the output of the balance regularization, i.e. the COP, close to a 1/f process.297

Indeed, the latter is frequently encountered in different physiological time-series,298

characterizing a healthy motor control [27, 37, 38]. On the other hand, the β299

coefficient covered a larger set of values (Fig. 9), pointing out that the sim-300

ulated COP timeseries exhibited different degrees of irregularity in their local301

structures [23, 22]. The latter can be associated with the complexity of the302

physiological system generating the data[22], which in healthy conditions is303

commonly characterized by a higher complexity [38, 39], leading in turn to an304

enhanced robustness and adaptability of the response [39, 40].305

Present results indicate that, when relatively low D values are used in the306

active controller, the ρ parameter is connected to the degree of inhomogeneity307

of the COP and thus to the complexity of the balance regulation. This can308

motivate additional studies aimed at investigating how the tuning of the Son and309

Soff regions impacts on the irregularity and complexity of the COP fluctuations.310

It should be noted that the EDFA investigated in this study provides a single-311

scale analysis, accounting for a global description of the data [23, 22], whereas312

many previous studies demonstrated the value of a multi-scale approach for COP313

timeseries [14, 19, 27, 32, 40]. This is also supported by present results, which314

highlighted different dynamics over different temporal scales (Fig. 2). Therefore,315

future works should be devoted to apply EDFA in a multi-scale analysis, in order316

to gain insights regarding the inhomogeneity of COP timeseries over different317

sub-dynamics.318

When the derivative gain assumes values higher than 243 N ·m ·s ·rad−1, the319

P gain remains unrelated to both α and β, as highlighted by the poor correlation320

coefficients (r = −0.19 and −0.11, respectively). In this case the same holds321

also for the ρ parameter (Fig. 10), for which the correlations observed in the322

previous case completely disappeared (r = −0.0021 for α− ρ and r = −0.14 for323

β − ρ). A possible explanation for this behavior can be proposed considering324

that, for such range of D values, the Son dynamics can stabilize the IP process325

per se [7], without the need for switching between sub-dynamics, since with this326

range of D values (≥243 N ·m · s · rad−1) the (P,D) of the ON-subsystem is327
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located inside the stability region reported by Suzuki et al. [7]. In this context,328

the control policy mimics a stabilizing delayed continuous control [7] and thus it329

is reasonable to assume that ρ becomes less crucial within this control scheme,330

loosing its relations with EDFA coefficients.331

Outcomes of this study indicate that the α and β coefficients introduced by332

the EDFA provides additional information on local COP structures, which in333

turns are related to the parameters of the intermittent control model. Further,334

EDFA resulted able to highlight subtle properties of sway fluctuation data which335

can be observed if different ranges of control parameters’ values are separately336

taken into account. Hence, EDFA can be used together with the classical DFA337

exponent to better characterize the upright balance maintenance under the in-338

termittent control regime, since inhomogeneity and long term correlations can339

be useful descriptors of the hidden postural control paradigm.340

4. Conclusion341

In this study, the EDFA was used to investigate the COP time-series gen-342

erated by using an IP model, intermittently controlled at the ankle. The IP343

model was used to simulate the dynamics of the human balance maintenance in344

the anterior-posterior direction [10]. The intermittent motor control paradigm345

confirmed to be adequate to simulate COP that presented characteristics of346

long-term correlation, as those observed for real data [4]. Moreover, the con-347

cept of inhomogeneity introduced in the EDFA turned out to be suitable for348

characterizing inner properties of the balance regulation output. The β coeffi-349

cient was coupled to the hidden controller parameter D and ρ, showing different350

relations depending upon the derivative gain values investigated.351

In addition, the modeling approach here employed resulted useful to high-352

light possible interpretation that the EDFA analysis can provide when applied353

to real data. Indeed, in a real scenario, functional rearrangements of the CNS354

can be identified in changes in the controller parameters, using opportune iden-355

tification procedures [33, 7]. Hence, EDFA, embedding the concept of inhomo-356
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geneity, can be particularly suitable in posturography to highlight differences in357

balance strategies between healthy and pathological groups. Lastly, the choice358

of using COP rather than other time series, i.e., COM and joints angles, lies359

on an important practical consideration, since COP is directly measurable from360

force-plate and it does not require any patient instrumentation or estimation361

procedure.362
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