
22 July 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Automatic Repair of Timestamp Comparisons / Liva, Giovanni; Khan, Muhammad Taimoor; Pinzger, Martin;
Spegni, Francesco; Spalazzi, Luca. - In: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. - ISSN 0098-
5589. - STAMPA. - 47:11(2021), pp. 2369-2381. [10.1109/TSE.2019.2948351]

Original

Automatic Repair of Timestamp Comparisons

Publisher:

Published
DOI:10.1109/TSE.2019.2948351

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/275521 since: 2024-05-22T17:44:27Z

This is the peer reviewd version of the followng article:

note finali coverpage

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

1

Automatic Repair of Timestamp Comparisons
Giovanni Liva, Member, IEEE, Muhammad Taimoor Khan, Member, IEEE,

Martin Pinzger, Senior Member, IEEE, Francesco Spegni, and Luca Spalazzi

Abstract— Automated program repair has the potential to reduce the developers’ effort to fix errors in their code. In particular, modern
programming languages, such as Java, C, and C#, represent time as integer variables that suffer from integer overflow, introducing
subtle errors that are hard to discover and repair. Recent researches on automated program repair rely on test cases to discover
failures to correct, making them suitable only for regression errors. We propose a new strategy to automatically repair programs that
suffer from timestamp overflows that are manifested in comparison expressions. It unifies the benefits of static analysis and automatic
program repair avoiding to depend on testing to identify and correct defected code. Our approach performs an abstract analysis over
the time domain of a program using a Time Type System to identify the problematic comparison expressions. The repairing strategy
rewrites the timestamp comparisons exploiting the binary representation of machine numbers to correct the code. We have validated
the applicability of our approach with 20 open source Java projects. The results show that it is able to correctly repair all 246 identified
errors. Furthermore, several patches for three open source projects have been acknowledged and accepted by their developers.

Index Terms—Software/Program Verification, Formal methods, Error handling and recovery

F

1 INTRODUCTION

SOFTWARE failures are expensive and they consume the
majority of developers time [1], nonetheless most of

these software failures are predictable and avoidable [2].
Researchers have proposed several analysis techniques of
source code to reduce software maintenance and fixing
effort to remove implementation errors.

A technique to reduce the developers’ effort to fix a de-
fected implementation is automated program repair. Briefly,
an automated program repair approach performs some
transformation of the source code to remove an existing
error. This technique is performed in two steps: first it iden-
tifies statements in the source code that contain errors and
then, it repairs them. The modern repair techniques [3], [4],
[5], [6], [7], [8], [9] often use test cases to (i) construct models
of the correct behavior of a program to identify the errors
to repair; and to (ii) validate their proposed repairs. Thus,
such techniques require developers to write reproducible
and deterministic tests that point out the error subjected
of the repair. This helps to solve issues due to regression
errors but it is not feasible for new yet-undiscovered faults.
Other approaches, such as Randoop [10], [11], Agitator [12],
or Evosuite [13] help developers to automatically create test
cases for discovering new errors. The generated tests stress
functionalities of the program with random sequences of
input values and method invocations for the class under
test. They help developers achieve a high coverage [14] and,
hopefully, discover previously unknown defects that can be
addressed by the automated program repair techniques.

• G. Liva, and M. Pinzger are with the Department of Software Engineer-
ing, Alpen-Adria Universität Klagenfurt, Austria.
E-mail: {Giovanni.Liva, Muhammad.Khan, Martin.Pinzger}@aau.at

• M. T. Khan is with the department of CyberSecurity, University of Surrey,
United Kingdom.
E-mail: m.t.khan@surrey.ac.uk

• F. Spegni, and L. Spalazzi are with the Department of Information
Engineering, Università Politecnica delle Marche, Italy.
E-mail: {f.spegni,l.spalazzi}@univpm.it

It is well known that relying on testing for the identifi-
cation of errors has a shortcoming: they show the existence
of errors but they do not provide insight information about
what is their root cause. Therefore, testing activities have
been complemented with static analysis [15] that considers
the semantics of the code. This type of technique performs
a symbolic execution or an abstract interpretation of the
program aiming at finding errors as early as possible be-
fore shipping the program to the customers. Huge soft-
ware companies, such as Google [16], [17], Facebook [18],
[19], and Microsoft [15], [20] are pushing the integration
of static analysis tools in their development cycle. With
the popularity of continuous integration and continuous
delivery systems (CI/CD), it is important to automatically
prevent faults and these tools fit perfectly in this software
development practice. For every release of the software,
a pipeline of verification is executed where the provided
tests and static analysis tools are executed. If at any point
errors are found, the building process is terminated and
the executable is not delivered to the users. Moreover, the
results of the verification pipeline are sent to developers to
help them fix the identified bugs.

Identifying and repairing errors in a program is challeng-
ing, even more when the error stems from bad handling of
timing of events. Modern programming languages, such as
Java, C, and C#, offer APIs to manipulate and model time as
timestamp using integer variables. Recent works [21], [22],
[23] show how the timestamp representation is fragile in
the context of mainstream programming languages. Integer
Overflows due to manipulation of timestamps could be
dangerous and exploited to violate the security offered by
modern operating systems. Recently, two vulnerabilities1,2

due to timestamp overflows were discovered in the Linux
kernel. An example of the problems inherited by manip-

1. https://nvd.nist.gov/vuln/detail/CVE-2018-12896
2. https://nvd.nist.gov/vuln/detail/CVE-2018-13053

2

1 public T acquire(long time, TimeUnit unit)

throws TimeoutException, IOException {

2 long endTimeMs = mClock.millis() + unit.

toMillis(time);

3 ...

4 long currTimeMs = mClock.millis();

5 try {

6 if (currTimeMs >= endTimeMs || !mNotEmpty.

await(endTimeMs - currTimeMs, TimeUnit.

MILLISECONDS)) {

7 throw new TimeoutException("Acquire

resource times out.");

8 }

9 }

10 ...

11 }

Listing 1: Excerpt of method acquire that contains a times-
tamp overflow error.

ulating time via timestamp is presented in Listing 1 that
shows a bug of Alluxio,3 discovered and repaired with
our approach. The method acquire accepts a timeout
parameter that expresses the maximal amount of time that
the caller is willing to wait for acquiring a resource. The
method implements the acquisition with a while true loop
(omitted) that iterates until either the resource is acquired
or it times out throwing an exception. Variable endTimeMs
(see line 2) contains the expiration date that is used to verify
whether the request times out. It is computed as the sum of
current time and the timeout parameter. Since timestamp
stores the milliseconds that have been passed since January
1st 1970, those values are inherently huge and can easily
overflow. In fact in the timestamp comparison at line 6, if
the variable endTimeMs previously overflowed in line 2,
the method wrongly returns the timeout exception without
waiting for the resource to be available for the expected
amount of time.

We propose a novel approach to automatically repair
programs that suffer from timestamp overflows errors that
are manifested in comparison expressions. It unifies the ben-
efits of static analysis and automatic program repair and it
can be easily integrated into the CI/CD pipeline of a project,
without depending on testing to identify and repair the
defected code. Our approach performs an abstract analysis
over the time domain of a program using the formal time se-
mantics of a programming language to support a Time Type
System (TTS). We show the applicability of our approach
for the Java language using the time semantics presented by
Liva et al. [21]. One peculiarity of the time semantics is that
it can be used to identify those program variables that store
time values, called time variables. Time variables in Java
use the integer representation with either the int or long
data types to store numbers that represent time values. A
Java program can handle the time either by looking at the
moment when one or more events occur, or by computing
the difference between two events. For this reason we refine
the time analysis in [21] by recognizing two different types
of time variables: Timestamp and Duration. If we interpret
the (real) time as a line, then Timestamp values are used
to represent arbitrary points along this line, while Duration

3. https://github.com/Alluxio/alluxio/pull/7320

values can be used to represent an interval between two
points. Timestamp variables are problematic because they
store huge numbers and they can easily overflow. Thus, we
aim to repair comparison expressions between Timestamp
values. We exploit TTS to find fragile Timestamp compar-
isons in Java programs, such as the example presented in
Listing 1, that can be automatically repaired.

We have implemented the approach in a prototype tool4

that we have applied to 20 open source Java projects to
study the applicability of our approach. In our evaluation,
we answer the following research questions:

• RQ1: What is the precision and recall of TTS in inferring
time types?

• RQ2: What is the correctness of the patches created by
our approach?

• RQ3: What is the usefulness of the patches created by
our approach?

With the first research question, we aim to discover empiri-
cally the precision and recall of our time type system to infer
the time types of expressions. The second research question
is used to assess if the patches can remove the errors and
finally, we investigate with the feedback of developers if the
patches can be accepted as repair. The results of our eval-
uation show that TTS has a precision of 100% and a recall
of 99.97% in identifying timestamp comparisons. Moreover,
all of the proposed patches are correct and several of them
have been acknowledged and accepted by the developers of
three projects. In summary, this paper makes the following
contributions:

• an extension of the formal time semantics for the Java
programming language;

• a time type system;
• an evaluation of the approach with 20 open source

projects;
• several errors repaired that have been accepted by the

developers of three open source projects.
The remaining of the paper is organized as follows:

Section 2 presents an overview of our approach; Section 3
details the definition of the time type system and Section
4 presents our repair approach. In Section 5 we evaluate
our approach and we discuss implications, limitations, and
threats to the validity of our experiments in Section 6.
Section 7 gives an overview of the related works and we
conclude the paper in Section 8.

2 APPROACH

Figure 1 presents the two steps of our approach to re-
pair timestamp comparisons. In the first step, presented
in Section 3, our approach analyzes the source code of a
program to extract the time information. First, it applies
the time semantics presented by Liva et al. [21] to identify
time expressions in the source code. Then, this information
is processed by our Time Type System (TTS) that extracts
the time type of each expression. These operations are
applied recursively until a fix point is reached and no more
additional time expressions are identified in the source code.
The output of this step is the source code annotated with the
time type information and the list of statements that perform

4. https://git.io/fNiBz

3

Source
Code

User Def.
RTd,RTt,
and ET

methods

List of
Timestamp

Comparisons

Annotated
Source Code
with Types

Source Code
Repaired

Time Type
System

Repair

1�

2�

Fig. 1: Overview of our approach to repair timestamp com-
parisons.

a comparison between two timestamp expressions that we
call Timestamp comparisons.

Given the list of comparisons and the source code anno-
tated with time types, the second step repairs all timestamp
comparisons that could have overflow problems using the
technique described in Section 4.

3 TIME TYPE SYSTEM

Our approach extends the formal time semantics of the Java
programming language proposed by Liva et al. [21] to sup-
port a Time Type System (TTS). One peculiarity of the time
semantics is that it can be used to identify those program
variables that store time values, called time variables. In
addition to the date/time APIs provided by the Java JDK
and other libraries, time variables can be declared using the
int or long data types. Furthermore, such time variables
(and expressions) can be used in a program to store two
semantically different information:

1) Duration: the value of the expression specifies a scalar
amount of time;

2) Timestamp: the value of the expression specifies a
specific point in time.

If we interpret the (real) time as a line, then Timestamp
values are used to represent arbitrary points along this line,
while Duration values can be used to represent an interval
between two points. This differentiation is mandatory for
our purposes since our repair strategy seeks for expressions
that compare Timestamp values that can suffer from integer
overflow problems.

In the following subsections, we introduce a type system
to infer the two time types for time expressions in programs.

3.1 Time Semantics Extension
The syntax and definition of the time type system abstracts
from the definition of a specific programming language.
In this manner, it can be used for multiple programming
languages providing the mapping between the specific con-
structs offered by the programming language to our time
type system syntax. However, since we show the applica-
bility of our approach for the Java programming language
using the time semantics defined by Liva et al. [21], we
present examples that map Java constructs to the syntax

Methods m ::= i(x1, , xn){ s }

Statements s ::= e x = e if (b) then s1 else s2
while (b) s s1; s2 return e

Expressions e ::= n x e1 + e2 e1 � e2 e1 ⇥ e2
e1 ÷ e2 obj.m(e1, , en) b

min
max (e1, e2)

Booleans b ::= e1 < e2 e1 <= e2 e1 >= e2
e1 > e2 b1 && b2 b1 || b2

Fig. 2: Programming language grammar supported by the
Time Type System (TTS).

of the time type system. Through a manual analysis of the
Java 8 time APIs, the authors have formally defined the
semantics of four types of time methods that can be used
in Java. On top of this analysis, they have defined rules
that infer program variables which store time values, called
time variables, and statements that deal with time, called
time statements. From their work, we are interested in only
the methods that use, or can modify, time variables, namely
methods that: (i) return time values (RT) and (ii) accept time
as a parameter (ET). We extend their analysis dividing the
RT methods into two more fine-grained categories:

• RTt as the set of RT methods that return a Timestamp
value;

• RTd as the set of RT methods that return a Duration
value;

Furthermore, we refine also the set of ET methods
of the Java time APIs, for which we manually anno-
tated each time parameter with its time type. For the
remaining of the paper, with ET we refer to this ex-
tension. An example of our refinement is the method
java.lang.Object.wait(long timeout) that we cat-
egorized as ET method and we assigned the parame-
ter timeout the type Duration. As another example, the
method java.lang.System.nanoTime() is categorized
as RTt since it returns a Timestamp value.

Based on this semantics of manually categorized Java
time methods, TTS recursively analyzes the source code of a
project until a fix point is reached, i.e., no more time methods
are identified. In each iteration, TTS extends the three sets
of time methods and when a new time method is found,
TTS processes the source code again since the method might
be used to discover new time variables, statements, and
methods.

3.2 Syntax Rules
Figure 2 presents a subset of the generic programming
language supported by TTS described using rules in Backus-
Naur form. It presents the most interesting cases of the lan-
guage with methods, statements, expressions, and boolean
comparisons. Here, i represents an identifier for method
names and obj for object names, n represents a numerical
literal, and x ranges over program variables.

Methods m. We elide many details of the definition of
a program and we represent it just as a list of methods.

4

�0 := 8ni=1isT imeV ar(xi) ! �[xi 7! DoT] �0 ` s a �0

� ` i(x1, , xn){ s } a �0 [METHOD]

Fig. 3: Methods.

� `s1 :⌧ 0a �0 �0 `s2 :⌧ 00a �00

� ` s1; s2 a �00 [STM]
� `e :⌧ a �0[e 7! ⌧]

� ` return e : ⌧ a �0 [RET]

� ` b a �0 �0 ` s a �00

� ` while (b) s a �00 [WHILE]
� ` e :⌧ a �0[e 7! ⌧]

� ` x = e :⌧ a �0[x 7! ⌧]
[ASSIGN]

� ` b a �0 �0 ` s1 a �00 �0 ` s2 a �000

� ` if (b) then s1 else s2 a �00 [�000 [IF]

Fig. 4: Statements.

To simplify the exposition, we remove all the information
regarding packaging, visibility, type hierarchy, and global
variables. Nevertheless, the details of how our approach
handles a Java class are briefly presented in Section 3.3.
Each method m is composed of an identifier i, a list of
variables (x1, , xn) that represent its input parameters and
a sequence of statements s.

Statements s. We include here the syntax for the assign-
ment, if, while, and return statements. The other conditional
and loop statements typically provided in programming
languages are handled in a similar way. The rule for the
assignment statement assign the expression e to variable
x. The rules for the if and while statements contain a
boolean expression b. Concerning the if statement, if b is
true, the sequence of statements s1 is executed otherwise s2.
Concerning the while statement, if b is true, the sequence
of statements s is execute. The rule for the return statement
returns the expression e.

Expressions e. Regarding literals n, the rule consid-
ers only integer values. Furthermore, our syntax supports
method calls in the form obj.m(e1, , en), the basic mathe-
matical operations, and min/max operations.

Booleans b. We support all the boolean operators for the
comparison of timestamps. Note, that equality checks do
not suffer of overflow comparison problems and therefore,
we skip it. We also include the logical conjunction and
disjunction of boolean expressions.

3.3 Type Inference Rules
Our approach accepts as input a well-typed program and
outputs the program annotated with the time type informa-
tion. The type inference rules describe how TTS assigns a
time type to literals, variables, and expressions. The rules are
expressed via operational semantics [24] and they consist of
a set of premises and a conclusion. Both premises and the
conclusion are judgments. A judgment has the form e : ⌧
which means e has type ⌧ . In the context of the paper, ⌧
refers to a time type. Judgments include a type environment
� that contains the set of type bindings from variables and
expressions to their respective time types. Since assignments
can change the binding of a variable to a new time type,
we designed our type system to be flow-sensitive which is
achieved by inserting an output environment �0 in addition
to the input environment. For the sake of readability, we
have shortened the names of time types Timestamp and
Duration with T and D, respectively.

�0 := � 8ni=1
�i�1`ei:⌧a�i

�i�1`ei:⌧a�i[ei 7!⌧]

�0
0 := �n 8(i,⌧)2PosType(m) �0

i�1`ei:⌧a�0
i[ei 7!⌧]

�`obj.m(e1, . . . , en)a�0
n

[ET]

m 2 RT⌧ � ` obj.m(e1, . . . , en) a �0

� ` obj.m(e1, . . . , en) : ⌧ a �0 [RT]
n 2 int _ n 2 long

� ` n :D a �
[LITERAL]

� ` e1 : ⌧ a �0 �0 ` e2 : ⌧ a �00

� ` min
max (e1, e2) : ⌧ a �00

[MIN-MAX] x 2 � ⌧ := �(x)

� ` x : ⌧ a �
[VAR]

� ` e1 : ⌧ 0 a �0

�0 ` e2 : ⌧ 00 a �00

8
>><

>>:

1�_ 2� : � = �
2�_ 3�_ 4� : � = +
4� : � = ⇥
4� : � = ÷

� ` e1 � e2 : ⌧0 a �00 [INT]

1� : ⌧ 0 = ⌧ 00 ! ⌧0 := D 2� : ⌧ 0 = T ^ ⌧ 00 = D ! ⌧0 := T
3� : ⌧ 0 = D ^ ⌧ 00 = T ! ⌧0 := T 4� : ⌧ 0 = D ^ ⌧ 00 = D ! ⌧0 := D

Fig. 5: Expressions.

�0 = � 8ni=1�i�1 ` bi a �i � 2 {||, &&}
� ` b1 � · · ·� bn a �n

[BOOL]

� ` e1 : ⌧ a �0

�0 ` e2 : ⌧ a �00 � 2 {<,<=, >=, >}

� ` e1 � e2 a �00 [COMP]

Fig. 6: Booleans.

Example. The following shows an example of a typing
rule consisting of two premises e1 and e2. The rule is read as:
given that e1 has type Duration and e2 has type Timestamp
in the type environment �, then the sum of the expressions
e1 and e2 has type Timestamp. Therefore, variable x has
type Timestamp in the output environment �0.

� ` e1 :D a � � ` e2 :T a �

� ` x = e1 + e2 :T a �[x 7! T]

The reasoning of the rule is based on the notion that if
we add some time to a date, the result is still a date but
in the future. Moreover, since the expression is assigned to
variable x, the resulting environment extends � with a new
mapping between x and its time type T .

Figure 3 presents the starting point of our analysis. The
extended time semantics could detect that a class attribute or
a parameter of a method is time related. In fact, the function
isT imeV ar returns true if the expression in input is a refer-
ence to a time variable. However, it is not possible to know a
priori the exact time type of the time parameters/attributes
because they do not always have an initialization expression
that can be used to infer their time type. Therefore, we
introduce the DoT time type which expresses that a time ex-
pression is of type Duration or Timestamp. Time parameters
of a method and time attributes of a class are initialized in
the environment with the type DoT as defined in rule METHOD

by the environment �0. Through the analysis of the code,
TTS tries to infer their precise time types, choosing between
Duration and Timestamp.

Figure 4 presents the rules for handling basic statements.
Rule STM shows how a sequence of statements is processed
one after the other. Rule RET unpacks the expression of a

5

� ` e1 : ⌧ 0 a �0 �0 ` e2 : ⌧ 00 a �00

⌧0 :=

8
<

:

⌧ 0 ⌧ 0 6= DoT ^ ⌧ 00 = DoT
⌧ 00 ⌧ 00 6= DoT ^ ⌧ 0 = DoT
DoT otherwise

� ` min
max (e1, e2) : ⌧0 a �00

[DOT-MIN-MAX]

� ` e1 : ⌧ 0 a �0

�0 ` e2 : ⌧ 00 a �00

8
>><

>>:

1�_ 2�_ 3�_ 4� : � = �
4�_ 5�_ 6�_ 7� : � = +
2�_ 8� : � = ⇥
2�_ 8� : � = ÷

� ` e1 � e2 : ⌧0 a �00 [DOT-INT]

1� : ⌧ 0 = T ^ ⌧ 00 = DoT ! ⌧0 := DoT 2� : ⌧ 0 = D ^ ⌧ 00 = DoT ! ⌧0 := D
3� : ⌧ 0 = DoT ^ ⌧ 00 = T ! ⌧0 := D 4� : ⌧ 0 = DoT ^ ⌧ 00 = D ! ⌧0 := DoT
5� : ⌧ 0 = T ^ ⌧ 00 = DoT ! ⌧0 := T 6� : ⌧ 0 = D ^ ⌧ 00 = DoT ! ⌧0 := DoT
7� : ⌧ 0 = DoT ^ ⌧ 00 = T ! ⌧0 := T 8� : ⌧ 0 = DoT ^ ⌧ 00 = D ! ⌧0 := D

Fig. 7: DoT Expression Type Inference.

return statement and analyzes it recursively. Conditional
and cyclic execution statements may have a timestamp
comparison in their guard. Rules IF and WHILE first process
the guard and then each of their sequence of statements
independently. Finally, rule ASSIGN updates the environment
adding (or updating) the time type of the variable x. Vari-
able declarations are handled as assignment expressions.

Figure 5 shows the rules for handling expressions. For
every method call TTS verifies if it belongs to a time method
of the extended time semantics. If the called method con-
tains a time parameter in its signature, rule ET processes each
argument recursively and updates the type environment
accordingly. The rule uses an auxiliary function posType
that returns for the method m the set of positions for its
arguments that are expected to be time related and their
expected time types. If the call is to a method that returns
a time value, rule RT returns the time type of the expression
performing a look-up in the sets of time methods. Further-
more, TTS considers every numeric literal that appears in an
expression as Duration type. The time type system supports
the most common mathematical operators that can be used
with the integer types described by the INT rule. Depend-
ing on the operator used, we consider four different cases.
TTS is designed to accept only correct operations between
time values. In fact, operations such as the sum between
two timestamp values is not accepted because the sum of
two dates is not a meaningful operation. The subtraction
operator, instead, accepts two timestamp values and the
operation results in a Duration time type. Moreover, TTS
supports also the functions max and min. Developers tend
to use such functions to sanitize the input of time variables
[22]. These functions return a time type equal to the time
types of their arguments. Finally, rule VAR performs a lookup
in the type environment for a time variable and its time type.

The rules for handling boolean expressions are presented
in Figure 6. They do not return any time type but their
expressions can modify the environment and they are the
code locations where timestamp comparisons appear. Rule
BOOL shows that each boolean expression connected by a
boolean operator is processed left-to-right following the
Java specification [25]. Expressions that compare time, as
depicted by rule COMP, must have the same time type on
both sides of the comparison.

The remaining rules describe how TTS handles DoT

expressions and they are presented in Figure 7. The general
idea of these rules is to infer the precise5 type whenever
it is possible. For instance, in rule DOT-MIN-MAX if the first
argument is of type DoT and the second argument is of
Duration, TTS infers that the first argument is of type
Duration and it updates the type environment accordingly.
The update of the environment is performed by analyzing
the expression and obtaining the correct type for all the DoT
time variables through the unification via pattern matching
[26] with the cases of the rules that do not accept the DoT
time type.

Example. Consider the following piece of code:
1 void foo(long time){

2 //{time : DoT}

3 long now = System.nanoTime();

4 //{time : DoT, now : T}

5 long tmp = (time - now) * 1000;

6 //{time : T, now : T, tmp : D, 1000 : D}

7 Thread.sleep(tmp);

8 //{time : T, now : T, tmp : D, 1000 : D}

9 }

Through the application of our time semantics, the pa-
rameter time is marked as a time variable. Through the
rule METHOD, the type environment contains an entry for this
parameter mapping it to the type DoT. The first statement
in Line 3 matches the rule ASSIGN and the right-hand-side of
the assignment the rule RT. Through the extended time se-
mantics, TTS infers that the method call has type Timestamp
because its signature is in RTt. Thus, it adds an entry to the
type environment for variable now mapping it to the type
Timestamp. Analyzing the right-hand-side of the assign-
ment statement in Line 5, rule INT matches the multiplication
case. The INT rule then analyzes both operands where the
second operand, being a scalar value, has type Duration.
The first operand, instead, is a subtraction referencing the
variable time that has type DoT. Therefore, rule DOT-INT

matches with 3� of the first case assigning the subtraction
the type Duration. Since there is a match of a DoT rule,
TTS tries to infer the appropriate time type for the time

parameter. Currently, TTS has the expression DoT �T = D
that it tries to match with the cases of the rule INT. This
rule has two cases for the subtraction operator, but the latter
does not match because it requires a Timestamp type on the
right-hand side instead of a Duration. Then, 1� of rule INT is
the only case that matches and therefore, TTS infers that the
parameter time has type Timestamp.

Unfortunately, it is not always possible to infer a concrete
type for DoT variables. The following code presents an
example of such a case:

1 long fee(long time){

2 //{time : DoT}

3 long ms = TimeUnit.toMillis(100);

4 //{time : DoT, ms : D}

5 return (time - ms);

6 //{time : DoT, ms : D, return : DoT}

7 }

The environment is initialized with the parameter time
of DoT time type. After the first statement, the environment
contains the information that variable ms has type Duration.
Analyzing the expression of the return statement, the time
type system matches rule DOT-INT with 4� of the first case.

5. Either Timestamp or Duration

6

7 6 5 4 3 2 1 0

v= 0 1 1 1 1 1 1 0 = 126

sign magnitude

7 6 5 4 3 2 1 0

w= 0 0 0 0 0 0 1 0 = 7

7 6 5 4 3 2 1 0

x= 1 0 0 0 0 0 0 0 =�122

+

=

Fig. 8: Example of an integer overflow due to the two’s
complement representation.

When TTS tries to infer the correct type for variable time

using the cases of rule INT, both cases of the subtraction
matches. Since there is no unique case that matches, TTS
is not able to infer the correct type because both Timestamp
and Duration are valid types for this expression.

4 REPAIRING TIMESTAMP COMPARISON

Looking at the example presented in Listing 1, the condi-
tion currTimeMs >= endTimeMs might wrongly throw
a TimeoutException because the value for the variable
endTimeMs might overflow. Such a comparison is there-
fore called linearly unstable according to the linear stability
principle [27]. The reason lies in how the Java Virtual Ma-
chine (JVM) handles overflows and arithmetic operations.
Java uses the standard representation of two’s complement
[28] to represent integer numbers. The first bit in a two’s
complement representation indicates the sign of the number,
where 1 represents a negative and 0 a positive number. The
part from the second bit until the end of the binary repre-
sentation is called magnitude. Figure 8 shows an example of
an integer overflow in the two’s complement representation.
Variables v, w, x use 8 bits to represent integer numbers in
the range from -128 to 127. The sum of v (126) and w (7)
causes an integer overflow resulting in -122 stored to x. The
two’s complement representation is therefore not linearly
stable because a small perturbation on the input value can
lead to an unexpected large change in the result. In our
example, the sum of 7 and 126 leads to -122 that is way
different from the expected result, namely 133.

As argued in the introduction, the integer values of
timestamps are typically large so that mathematical opera-
tions, such as the plus-operation, while syntactically correct,
are prone to integer overflows. Regarding the example
presented in Listing 1, we can express the comparison
with a mathematical equivalent but more stable expression:
endTimeMs - currTimeMs <= 0. In terms of our time
type system, our approach rewrites the comparison between
two Timestamps to a comparison between two Durations
while preserving its semantics. Although mathematically
equivalent, the two expressions differ due to the two’s
complement representation used by computers [29]. If one

7 6 5 4 3 2 1 0

x= 1 0 0 0 0 1 1 0 =�122

7 6 5 4 3 2 1 0

y= 0 0 0 0 1 0 0 1 = 9

7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 = 125

�

=

Fig. 9: Example of how to exploit the two’s complement
representation to cancel an integer overflow.

of the two Timestamps suffered from an overflow, the sub-
traction will likely lead to an integer underflow that cancels
the overflow. Figure 9 continues the example presented
in Figure 8. If after the overflow stored in x, there is a
comparison such as if (x < y), the statement will return
true (�122 < 9), although the programmer expects it to be
false because the expected comparison 133 < 9 is false.
On the contrary, if the code contains the condition rewritten
as x - y < 0, it will return, as expected, false because
the subtraction �122 � 9 results in an integer underflow,
namely 125, that compensates for the previous overflow. The
condition 125 < 0 then returns, as expected, false.

We call normal form for Timestamp comparisons, a com-
parison in the form:

expr1 � expr2 < 0 (1)

Then, we can express the problem of rewriting the compar-
ison between two Timestamp expressions as a refactoring
problem that improves the program’s design, while preserv-
ing its current behavior [30], [31]. The behavior of a program
is specified by the developers or it can be obtained from
the program itself through the execution of the test suite.
However, tests may not give the complete picture, therefore
we call the behavior extracted through the execution of
the tests the observable behavior. In our approach, we alter
the program’s behavior only for the currently unobserved
behavior that contains errors.

A common technique to specify a refactoring problem is
using Hoare triples [32] that are composed of three parts:
precondition, procedure, and postcondition. We define our
refactoring problem with a defensive implementation [33]
using the following Hoare triple:

true

{if pre(P) then change(P)}
(Pre(P) ^ Post(P,P 0)) _ (¬Pre(P) ^ P 0 = P),

(2)

where P 0 refers to the result of the refactoring procedure
over the program P ; Pre(P) is the function that protects
the refactoring from generating a wrong program reject-
ing every program that the refactoring specification cannot
handle; and Post(P,P 0) is the function that validates the
correctness of the refactoring procedure that is applied to

7

the program P ; pre(P) is the implementation of the func-
tion Pre(P); and change(P) is the implementation of the
function that rewrites any Timestamp comparison into the
normal form. The precondition in our case is true, because
the validity of the application of the refactoring procedure
is part of the action that is implemented by the refactoring
procedure in the refactoring tool. The postcondition ensures
that only if the application of the refactoring procedure is
possible, the output contains the correct changes.

Post(P,P 0) = wellFormed(P) ^ wellFormed(P 0) ^
obsBehavior(P) = obsBehavior(P 0)

(3)

Equation 3 shows how the refactoring procedure can be
validated. The output program P 0 should exhibit the same
observable behavior of the input program and should be
well formed, i.e., it does not introduce any syntactical error
and it can successfully compile and execute the test suite.

Although easy to express, the function Pre(P) and its
implementation pre(P) are in practice a major problem,
such as demonstrated in [34], [35], [36], [37], [38], [39], [40],
[41], [42]. For our purpose, Pre(P) requires that the com-
parison is performed between two expressions that have
type Timestamp. We use TTS to check the precondition
of the problem. If fulfilled, which means TTS identified a
comparison between two Timestamp expressions, our ap-
proach refactors it by rewriting the comparison expression
into its normal form. Finally, our approach verifies the post-
condition using the build system of a project: first it veri-
fies that the modified program compiles and is well-typed
(wellFormed); second, it executes the test suite to verify
that the refactoring did not change the observed behavior.

5 EXPERIMENTS

In this section, we present the experiments we have per-
formed to evaluate our approach to repair timestamp com-
parisons. We address the following three research questions:

• RQ1: What is the precision and recall of TTS in inferring
time types?

• RQ2: What is the correctness of the patches created by
our approach?

• RQ3: What is the usefulness of the patches created by
our approach?

The next subsections describe the setup of the experi-
ments and how we performed them.

5.1 Setup
We have implemented our approach in a prototype tool
used to answer the three research questions. For the dataset
creation, we have queried GitHub for popular Java projects
and we applied filters to select projects that vary in size,
vendor, and domain. We preferred projects that use dis-
tributed components or communication protocols over the
network to enhance the likelihood of timestamp compar-
isons. Our search resulted in a dataset comprising 20 Java
projects. For each project, we downloaded the source code
of the latest release. Table 1 lists the 20 projects together
with descriptive statistics of their size, number of tests,
and statement coverage. We have verified that each project

is configured for reporting the statement coverage. If no
coverage support was defined, we added the Coberture6

plugin into the build script using its default configuration
to compute the statement coverage score. Regarding the
projects size, the number of classes per project varies from
124 to 27, 208 containing from 716 up to 205, 432 methods
that in total comprise 9, 590, 951 SLOC. The number of tests
per project varies from 162 up to 150, 648 resulting in a
total of 302, 616 tests. Regarding the coverage, Airavata is
the project with the lowest coverage, namely 8.25%. Elastic-
job has the highest coverage of 87.84%. On average, the
provided tests cover 51.93% of the projects’ source code.

Our prototype tool analyzed the 9, 590, 951 SLOC in a
total of 11.72 hours.7 The AWS project alone took most of
the time, namely 7 hours. Although AWS is 68% bigger
than Camel in terms of SLOC, it required 86% more time
to compute. This means that the run time required by our
prototype is not linearly increasing with the size of a project.
In fact, it depends on how the source code is structured.
We observed that the AWS project has many if-then (and
switch) statements that are expensive operations for TTS:
when analyzing a branching instruction, TTS creates a new
copy of the environment for each branch which is a time
and memory consuming operation.

5.2 RQ1 - Identifying Timestamp Expressions
With the first experiment, we want to investigate if the
definition of TTS is adequate to correctly infer the time types
of expressions. Since TTS can be proved to be sound but not
complete, we studied its empirical precision and recall.

To have an estimate value for the recall, we ran our
prototype tool on the source code of each project apply-
ing the time semantics to identify the time variables that
appears on the left-hand-side of an assignment expression.
Then, we used TTS to compute their time types. We counted
the number of time variables for which TTS inferred a time
type (Duration or Timestamp) and the number of variables
for which it could not (they have type DoT). The results
of this experiment are presented in the columns #Time
Var, #Typed, and #DoT of Table 1. Over all projects, TTS
identified 1, 069, 598 time variables and for most of them,
namely 1, 069, 265, it infers a time type. Only for 333 time
variables (0.03%) it could not infer the time type, resulting in
an overall recall of 99.97%. For instance, in HBase 248, 895
time variables were typed and only for 40 time variables,
TTS was not able to infer their time types. For Airavata, TTS
inferred for all the 131, 439 time variables their time types.

Regarding the precision, we randomly selected 400 out
of the 1, 069, 265 time variables to obtain results with 95%
level of confidence and 5% margin of error. For these time
variables, we manually assessed their time types based on
the assignment expression. Then, we ran TTS and verified
that its output is aligned with the manual results. The man-
ual analysis was performed by the authors of the paper and
by an external developer with an inspection of the source
code that contains each of the 400 selected time variables.
The manual inspection was performed using the IntelliJ8

6. http://cobertura.github.io/cobertura/
7. All experiments have been conducted on a computer with a 2.5

GHz Intel CPU and 16 GB of physical memory running macOs 10.13.5.
8. https://www.jetbrains.com/idea/

8

TABLE 1: Results of the application of our approach on the 20 Java projects showing number of analyzed files (# File),
classes (# Classes), methods (# Methods), test and their coverage (# Tests), single line of code (SLOC), the seconds required
for the analysis (Time), the number of time variables identified (# Time Var), the number of time variables that are assigned
with a Time Type (# Typed), the number of time variables for which TTS was not able to decide between Duration or
Timestamp time type (# DoT), and finally the number of patches produced (# Patches).

Name # File # Classes # Methods # Tests SLOC Time [s] # Time Var # Typed # DoT # Patches

Activemq 4,454 5,100 44,072 20,450 (30.41%) 421,839 473.63 31,094 31,071 23 23
Activiti 2,002 2,103 15,381 3,968 (60.68%) 139,672 203.48 11,266 11,266 0 0
Airavata 1,604 9,320 70,875 162 (8.25%) 711,587 1,146.17 131,439 131,439 0 1
Alluxio 1,319 3,364 24,975 4,270 (45.85%) 233,897 223.00 36,854 36,833 21 8
Atmosphere 348 500 4,101 504 (55.16%) 35,843 35.86 4,074 4,072 2 0
Aws-sdk-java 26,415 27,208 205,432 2,586 (57.33%) 1,795,234 28,091.57 186,336 186,335 1 9
Beam 1,696 3,844 21,404 8,930 (66.64%) 210,960 201.79 19,548 19,543 5 1
Camel 17,185 20,024 116,080 47,704 (40.68%) 1,065,292 4,696.54 77,766 77,760 6 6
Elastic-job 571 611 2,497 1,842 (87.84%) 26,418 19.17 1,942 1,941 1 0
Flume 642 995 6,705 2,288 (48.00%) 85,750 52.29 9,086 9,075 11 8
Hadoop 8,056 12,597 100,635 10,830 (51.16%) 1,267,414 1,955.95 121,859 121,715 144 35
Hazelcast 5,696 7,663 59,294 11,035 (76.57%) 649,789 736.54 37,383 37,355 28 1
Hbase 3,638 9,535 128,928 4,614 (34.11%) 1,201,149 1,995.11 248,935 248,895 40 51
Jetty 2,556 3,781 25,554 12,742 (45.65%) 342,602 301.51 26,568 26,559 9 8
Kafka 1,315 1,896 14,007 9,331 (71.87%) 149,644 119.29 16,440 16,429 11 19
Lens 843 1,036 8,114 2,432 (53.83%) 99,523 75.88 10,622 10,613 9 9
Nanohttpd 87 124 716 478 (75.25%) 7,532 4.25 742 742 0 0
Neo4j 6,681 9,158 61,407 150,648 (53.61%) 680,986 770.02 43,814 43,804 10 18
Sling 5,354 6,022 38,049 7,078 (35.80%) 433,384 1,046.44 50,845 50,834 11 49
Twitter4j 426 418 4,642 724 (40.00%) 32,436 41.63 2,985 2,984 1 0
SUM 90,888 125,299 952,868 302,616 (51.93%) 9,590,951 42,190.12 1,069,598 1,069,265 333 246

editor and its slicing and point to features to navigate the
code. They first analyzed the expression that assigns a value
to the time variable and then used IntelliJ to backward
slice the code to assess that the correct type was indeed
inferred w.r.t. the classification of time method of the Java
APIs (see Section 3.1). Analyzing the 400 time variables,
309 (77.25%) were manually categorized with Timestamp
type and 91 (22.75%) with Duration type. For all the vari-
ables, TTS computed the same time type obtained with the
manual analysis. Based on this result, we conclude that TTS
has an empirical precision of 100% in inferring time types.

5.3 RQ2 - Patch Correctness

For ActiveMQ, Atmosphere, Elastic-Job, NanoHttpd, and
Twitter4j our prototype tool was not able to find errors and
create a patch to repair them. However, for the other 15
projects it was able to propose 246 patches. From the previ-
ous research question, we know that TTS infers correctly
the time types of expressions. To further verify this, we
manually assessed, using the aforementioned methodology,
that each side of all faulty comparisons identified by TTS
is indeed a Timestamp expression. We confirmed that all
the 246 comparisons to repair are between Timestamps
expressions and they represent the input for our second
evaluation.

In this evaluation, we investigated if the repair preserves
the program semantics while removing potential overflow
errors. According to the problem definition presented in
Equation 3, the post condition assures that the repaired
program is well formed and the observable behavior is
maintained i.e., the patch does not introduce any new error
in the program. To evaluate if our patches do not break
the post conditions, we applied each proposed patch one
at a time. After each patch application, we ran the test
phase of the build system of the project to verify that the
post condition for the repaired program holds. We ran the

tests without any additional configuration or parameter.
The build system first, assures that the program is well
formed through the compilation of the source files and
second, that the observable behavior is maintained through
the execution of the test suite. For all the 246 patches,
the build system executed the 302, 616 tests without any
error. This shows that our approach correctly repairs the
246 errors without introducing any side effect that can alter
the program’s behavior in other parts of the system.

5.4 RQ3 - Patch Usefulness
In addition to the previous assessments, we also studied
the usefulness of the patches in two different ways. First,
the first author of the paper, an independent researcher, and
an external developer, who have several year of academic
and professional experience in developing Java applications,
verified through a manual control- and data-flow analysis
if the Timestamp comparisons identified by TTS are indeed
subjected to overflow errors. Second, we applied the patches
to the projects and submitted them as pull-requests to obtain
the feedback from the original developers of the projects.

The manual data- and control-flow analysis has been
performed independently by each researcher and by the
developer, analyzing the faulty comparisons identified by
TTS to assess that they required to be repaired. The analysis
has been performed in the same manner as presented in
Section 5.2. Then, all participants came together and dis-
cussed the results. For each discrepancy in their results, they
analyzed together the code to reach a consensus agreement.
They have discovered that 41 of the 246 repaired time
comparisons are not suffering from errors due to overflow.
Therefore, our fix is not strictly necessary. In the 41 cases,
the developers handle the potential overflow in the source
code. For instance, TTS identified the following problematic
if-condition in the Hadoop project:

if (cacheExpiryTimeStamp >= 0 &&

cacheExpiryTimeStamp < now)

9

Variable now holds the current system clock value and there-
fore it is certain that the variable always stores a correct,
i.e., not overflowed, time value. Variable cacheExpiry-

TimeStamp, instead, holds the result of a mathematical op-
eration on timestamps that could overflow. The developers
of Hadoop have protected the code against the overflow
by adding the condition cacheExpiryTimeStamp >= 0

to the if-condition. The overflow itself then is handled in the
else-branch.

Regarding the evaluation with developers, we selected
three projects namely, ActiveMQ, Alluxio, and Kafka. The
restriction to these three projects was necessary because,
for getting pull-requests accepted, it is mandatory to create
a test harness for every failure detected. The creation of
the test harness is time consuming since it requires to be
familiar with the projects and their source code. At the
moment of writing we were able to create and submit 3 pull-
requests including the test-harnesses to the three projects.
We obtained feedback on all our pull-requests that we used
to evaluate the usefulness of our patches. The developers of
ActiveMQ responded with ”Good catch!” and the ones from
Alluxio with ”Really cool fix!”. In both projects, they accepted
our patches and merged the pull-requests.3,9 In the Kafka
project, instead, our pull-request10,11 started a discussion
on how to best handle timestamp overflows. While they
acknowledged our solution, they also found that a more
readable and maintainable solution to this issue is needed.
They suggested to rewrite the logic of the program, if
possible, avoiding mathematical operations that could lead
to an overflow. For the moment, however, the developers
decided to accept our pull-request and to roll-out the better
fix in the next releases. Furthermore, another developer of
the project proposed12 to centralize the handling of time
manipulation with a specific class that correctly implements
all the logic necessary to modify and compare time values.

Based on these results we can answer research question
RQ3 as follows: our approach showed evidence that it can
aid developers to repair Timestamp comparison and it can
be integrated into the deployment pipeline where develop-
ers can push unsafe code that is automatically repaired.

6 DISCUSSION

In this section, we discuss the outcome of our evaluation
and their implication for researchers and practitioners. Fur-
thermore, we discuss the limitations of our approach and
the potential threats to validity of our empirical studies.

6.1 Summary of Results
With our three research questions, we studied three aspects
of our approach. The first research question is designed to
investigate the ability of our proposed time type system to
identify Timestamp comparisons. Since identifying compar-
ison is trivial, we studied the ability of TTS in inferring the
correct time type for source code expressions. The results
show that among the 20 projects, it is able to infer a time

9. https://github.com/apache/activemq/pull/284
10. https://github.com/apache/kafka/pull/5078
11. https://github.com/apache/kafka/pull/5183
12. https://github.com/apache/kafka/pull/5087

type with a recall of 99.97% and a precision of 100%. The
second and third research questions, instead, are designed
to investigate the repairing correctness and usefulness of our
approach. First, we assessed that the patches are correctly
repairing the errors without introducing new ones. Second,
we published our repairs as pull-requests in the project
repositories to get the feedback of the developers. They
confirmed the usefulness of our approach.

6.2 Implication of Results
Concerning the implications on the research in this area, the
definition of a time type system opens a possible further
area of research. We envision researchers use the definition
of our time type system to study the evolution of time
APIs and how they are refactored or changed by evolving
the software project. In fact, changing the Hoare triple
that defines the problem, our approach can target different
problems related to time properties. Furthermore, existing
taxonomies and studies on code smells and anti-patterns
can be extended by considering time types.

Our solution can be applied to any language that uses
the two’s complement representation. We use Java only as
case study to show the applicability of our approach. There-
fore, researchers on compilers definition and development
could integrate the ideas of TTS and directly provide out-
of-the-box better basic types to express time values in the
program. This would improve static checkers that can be
run on the source code before producing the machine code.
Our results have also several implications on practitioners.
Developers can use our approach in their continuous inte-
gration and continuous delivery pipeline. When a commit
is pushed into the version control system, our approach can
process the commit and automatically apply the transfor-
mation on timestamp comparisons. If it is too expensive to
apply for every commit, they could introduce it only in the
nightly or weekly build. Moreover, it can help developers
discuss the logic of their system and consider to refactor the
code as it happened with the developers of Apache Kafka.

6.3 Limitations
In our approach, we present a static analysis technique that
infers time types for time expressions. In principle, our
time type system is sound, which implies that it assures
the typical timed-”nonstuckness” property, i.e., any well-
typed program cannot get stuck w.r.t. time. In other words,
it establishes the fact that the time variables, as determined
by the typing rules defined in Section 3.3, contain time
values. The proof of the soundness directly follows from
the given typing rules based on the time semantics of Java
[21]. However, further details of the proof are beyond the
scope of this paper. Nevertheless, we have investigated
empirically via means of precision and recall the theoretical
limitation of our approach. The result shows that, it can infer
the time types of expressions with a precision of 100% and
a recall of 99.97%. Another limitation of our approach is
a lack of data-flow analysis. In fact, we repair 41 Times-
tamp comparisons that are not strictly necessary because
developers already thought about a possible overflow and
handled it with ad-hoc code. Even though it is not strictly
necessary, the repair does not affect the correctness of the

10

program but it introduces an extra operation to perform.
Further studies are necessary to evaluate how this repairs
are seen by developers.

6.4 Threat to Validity
In the following section, we discuss threats to the internal
and external validity of our evaluation, and how we ad-
dressed them in our experiments.

Internal Validity. One threat to the internal validity
concerns the reliability of the prototype. We mitigated this
threat formalizing TTS and sketching its proof of soundness
to assure that the approach is designed correctly. Moreover,
we mitigated errors in the implementation with manual and
unit tests. Furthermore, we computed the precision of our
approach with a manual analysis. Among the 1, 069, 598
time variables that are assigned with time expressions, we
randomly selected 400 that we have manually investigated.
The size of our sample set exceeds the minimum number
of 384 required to obtain results at a 95% confidence level
with a 5% margin of error. Moreover, we mitigated possi-
ble threats to validity of the different manual evaluations
performing the experiments independently by the different
authors of the paper, the independent researcher, and the
external developer.

In the first research question we based our computation
of precision and recall on the number of time variables iden-
tified in the source code. Therefore, our computed values are
valid w.r.t. the precision and recall of the defined formal
time semantics. However, the formal time semantics has
shown an empirical precision and recall of 100% in iden-
tifying time variables and time statements. This mitigates
potential threats to the validity of our results.

Equation 3 shows that TTS works on the basis that the
input program is well typed. In our studies we always used
a version of the project that is compilable, i.e., well typed,
so the time type inferred are trustworthy. The assumption
of having compilable source code is realistic since it is rare
that a commit cannot be compiled [43]. Furthermore, we
evaluated if the synthesized patches introduce any new
error relying on the test suite of the projects. Therefore, if
not enough tests are provided by developers there could be
a chance that an unwanted side effect is generated by one of
our patches and it passes unnoticed.

External Validity. Threats to the external validity of
our studies concern the generalization of the results. We
mitigated this threat by choosing open source Java projects
that differ in vendor, size, and domains. Moreover, we
implemented our approach in a prototype tool that is pub-
licly available online.4 Other researches can freely use our
tool and apply it to other case studies and extend our
results. Furthermore, our approach is based on how ma-
chines encode integer number with the two’s complement
representation. Therefore, our technique can be extended
to other programming languages, such as C and C#, that
use the same encoding. This subsumes that also the formal
time semantics is extended for the programing language of
subject.

7 RELATED WORK
The main contribution of this paper is a technique that
automatically repairs programs. In this domain, multiple re-

searches address this problem with a generate-and-validate
approach. When a test fails, the repairing strategy generates
a patch and then, it validates or refuses it based on the
outcome of the test suite. This kind of repairing approaches
rely on building the set of all possible changes, called search
space, that can be applied to repair the defected code.
Long et al. [6] studied how changing the search space for
existing techniques the repairing success rate changes. They
discovered that including information taken from outside
of the test suite enables these systems to successfully iden-
tify more correct patches. Le et al. [44] propose a genetic
algorithm to repair defects. The algorithm can be run in a
cloud environment with an average cost of 8$ per patch,
solving 50% of the discovered faults. Instead, Nguyen et al.
[3] propose an approach that creates a constraint problem
from the source code based on the tests execution. Then,
it generates a patch that satisfies such constraint problem.
A common shortcoming of these techniques is that they
overfit the problem and generate patches that pass the test
cases more than repairing the code. Recent researches start
to use semantic information to repair the program without
overfitting. Ke et al. [5] process a large corpus of projects to
extract snippets of code that are encoded as SMT constraints
that are stored in a database. When a fault is discovered
during the execution of a test, they derive the input-output
relationship and query the database. The results of the
query are used to synthesize a more accurate patch. Instead,
Mechtaev et al. [8] present an approach that synthesizes a
patch from a formal specification of the requirements of the
project. Tonder and Le Goues [9], similarly to our approach,
introduce a method that does not rely on testing to discover
faults to repair. They model a program via an intermediate
language that performs operation on a heap. Users can
specify properties that must hold in the heap. Every time a
property does not hold, their approach synthesizes a patch
using the code where the property holds.

In the domain of overflow detection, Beckert and
Schlager [45] propose the KeY specification for the Java
language that combines the semantics of the infinite integer
with the semantics of finite integer used by machines. Devel-
opers can write the specification of their software with KeY
and then proof properties using Dynamic Logic. Instead,
Rich et al. [46] present the definition of a type system
that formally specifies the semantics for multiple undefined
behavior of the C99 language. The type system is used to
monitor at runtime integer expression and detect integer
attacks, such as integer under and overflows. Following a
similar idea, Dietz et al. [47] present IOC, a tool that is part
of the Clang toolchain to compile C/C++ programs on Mac
OS and iOS. Their tool analyzes the LLVM [48] code repre-
sentation of a C/C++ program and it identifies undefined
behavior for integer operation. The work of Cocker and
Hafiz [49] solves multiple integer overflow problems. They
define three different operations that rewrite the source code
of a C program to protect its runtime to suffer from integer
problems. Their technique introduces and replaces common
mathematical operations with calls to auxiliary library func-
tions. The library implements correctly the mathematical
operations and in case of overflow, it returns a runtime
exception. Those transformations are security-oriented and
thus, they broke the expected behavior of the program. This

11

differs from our approach because we perform transforma-
tions that preserve the expected behavior of the program.

The closest related work to our is presented by Logozzo
and Martel [50]. They proposed an approach that repairs in-
teger overflows for arithmetics expressions. However, their
work has some limitation. It works only on sum expressions
and does not supports a full-fletch programming language.
It cannot handle side-effects so modern programming lan-
guages cannot be targeted. Finally, it requires users input to
specify templates for the expressions to repair. In contrast,
our approach performs a full-fletch static analysis on the
source code without requiring any user inputs.

8 CONCLUSION
In this paper, we presented a static analysis approach to
automatically repair programs that does not rely on testing
for discovering faulty code. Our approach repairs programs
that suffers from problematic timestamp comparisons and
we show its applicability for the Java programming lan-
guage. We introduce a Time Type System (TTS) that is build
on top of a time semantics of the programming language.
TTS is used to identify the timestamp comparisons to repair.
These comparisons are rewritten in a form that exploits how
machines encode numeric values to produce a mathematical
equivalent but more stable expression for comparing times-
tamp values.

We performed three experiments on 20 open source
projects to evaluate (i) the precision and recall of TTS
in identifying timestamp comparisons, (ii) the correctness
of the synthesized patches, and (iii) their usefulness for
developers. The results show that our approach can iden-
tify timestamp comparisons with a precision of 100% and
a recall of 99.97%. Furthermore, all the patches created
correctly repair the 246 identified errors. We performed a
manual analysis over the 246 patches and we discovered
that for 41 of them, developers already knew the problem
and handled it with ad-hoc code. We also published several
patches for three of the 20 projects as pull-requests. All of
them were acknowledged and accepted by the developers
of the projects. Future work will be devoted to add a
data-flow analysis to TTS to correctly find the errors that
developers are aware of and are handled with ad-hoc code.
Furthermore, our approach is general and can be applied
to other programming languages. We plan to extend its
support to more programming languages, such as C++ and
C#. Moreover, we plan to study with an industrial partner
how developers perceive our approach when it is integrated
into their continuous integration and continuous delivery
pipeline.

ACKNOWLEDGMENTS
The authors would like to thank Veit Frick, Karin Hodnigg,
and the Austrian Research Promotion Agency FFG for fund-
ing this research within the FFG Bridge 1 program, grant no.
850757.

REFERENCES
[1] K. H. Bennett and V. T. Rajlich, “Software maintenance and evo-

lution: a roadmap,” in Proceedings of the Conference on the Future of
Software Engineering (FOSE). ACM, 2000, pp. 73–87.

[2] R. N. Charette, “Why software fails [software failure],” Ieee Spec-
trum, vol. 42, no. 9, pp. 42–49, 2005.

[3] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in Proceedings of
the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 772–781.

[4] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan
et al., “Automatically patching errors in deployed software,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009, pp. 87–102.

[5] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search,” in Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 2015,
pp. 295–306.

[6] F. Long and M. Rinard, “An analysis of the search spaces for
generate and validate patch generation systems,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 702–713.

[7] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable mul-
tiline program patch synthesis via symbolic analysis,” in Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference
on. IEEE, 2016, pp. 691–701.

[8] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roy-
choudhury, “Semantic program repair using a reference imple-
mentation,” in Proceedings of ICSE. IEEE, 2018, pp. 129–139.

[9] R. Van Tonder and C. Le Goues, “Static automated program repair
for heap properties,” in Proceedings of ICSE. IEEE, 2018, pp. 151–
162.

[10] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed ran-
dom testing for Java,” in Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion (OOPSLA). ACM, 2007, pp. 815–816.

[11] C. Pacheco, S. K. Lahiri, and T. Ball, “Finding errors in .NET
with feedback-directed random testing,” in Proceedings of the 2008
international symposium on Software testing and analysis (ISSTA).
ACM, 2008, pp. 87–96.

[12] M. Boshernitsan, R. Doong, and A. Savoia, “From Daikon to
Agitator: lessons and challenges in building a commercial tool for
developer testing,” in Proceedings of the 2006 international sympo-
sium on Software testing and analysis (ISSTA). ACM, 2006, pp.
169–180.

[13] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation
for object-oriented software,” in Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 2011, pp. 416–419.

[14] ——, “1600 faults in 100 projects: Automatically finding faults
while achieving high coverage with evosuite,” Empirical Software
Engineering, vol. 20, no. 3, pp. 611–639, 2015.

[15] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: using static analysis to find bugs in the
real world,” Communications of the ACM, vol. 53, no. 2, pp. 66–75,
2010.

[16] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm sigplan
notices, vol. 39, no. 12, pp. 92–106, 2004.

[17] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh, “Using static analysis to find bugs,” IEEE software,
vol. 25, no. 5, 2008.

[18] Facebook, “Infer static analyzer,” 2017, accessed 05 Jun 2018.
[Online]. Available: http://fbinfer.com/

[19] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi, “Fast
and precise type checking for JavaScript,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, p. 48, 2017.

[20] N. Nagappan and T. Ball, “Static analysis tools as early indicators
of pre-release defect density,” in Proceedings of the 27th international
conference on Software engineering. ACM, 2005, pp. 580–586.

[21] G. Liva, M. T. Khan, and M. Pinzger, “Extracting timed automata
from Java methods,” in Proceedings of the 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
2017, pp. 91–100.

[22] G. Liva, M. T. Khan, F. Spegni, L. Spalazzi, A. Bollin, and
M. Pinzger, “Modeling time in Java programs for automatic error
detection,” in Proceedings of the IEEE/ACM Conference on Formal
Methods in Software Engineering (FormaliSE 2018). IEEE Press, 2018.

[23] L. Spalazzi, F. Spegni, G. Liva, and M. Pinzger, “Towards model
checking security of real time Java software,” in 2018 International

12

Conference on High Performance Computing & Simulation (HPCS).
IEEE, 2018, pp. 642–649.

[24] G. D. Plotkin, “A structural approach to operational semantics,”
1981.

[25] Oracle. (2018) Java 8 language specification. Accessed 19 Jun
2018. [Online]. Available: https://docs.oracle.com/javase/specs/
jls/se8/html/jls-15.html#jls-15.7

[26] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” Journal of the ACM (JACM), vol. 12, no. 1, pp. 23–41,
1965.

[27] U. Itkis, Control systems of variable structure. Halsted Press, 1976.
[28] K. Hwang, Computer arithmetic principles, architecture, and design.

John Wiley & Sons Inc, 1979.
[29] J. R. Rice, Numerical Methods in Software and Analysis. Elsevier,

2014.
[30] W. G. Griswold, “Program restructuring as an aid to software

maintenance,” Ph.D. dissertation, 1992.
[31] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D.

dissertation, 1992.
[32] C. A. R. Hoare, “An axiomatic basis for computer programming,”

Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.
[33] F. Steimann, “Constraint-based refactoring,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 40, no. 1, p. 2,
2018.

[34] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing
of refactoring engines,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2007,
pp. 185–194.

[35] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Mari-
nov, “Systematic testing of refactoring engines on real software
projects,” in European Conference on Object-Oriented Programming.
Springer, 2013, pp. 629–653.

[36] M. Schaefer and O. De Moor, “Specifying and implementing
refactorings,” in ACM Sigplan Notices, vol. 45, no. 10. ACM, 2010,
pp. 286–301.

[37] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, and F. Tip, “Correct
refactoring of concurrent Java code,” in European Conference on
Object-Oriented Programming. Springer, 2010, pp. 225–249.

[38] M. Schäfer, T. Ekman, and O. De Moor, “Sound and extensible
renaming for Java,” ACM Sigplan Notices, vol. 43, no. 10, pp. 277–
294, 2008.

[39] M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor, “Stepping
stones over the refactoring rubicon,” in European Conference on
Object-Oriented Programming. Springer, 2009, pp. 369–393.

[40] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral
testing of refactoring engines,” IEEE Transactions on Software En-
gineering, vol. 39, no. 2, pp. 147–162, 2013.

[41] F. Steimann and A. Thies, “From public to private to absent:
Refactoring Java programs under constrained accessibility,” in
European Conference on Object-Oriented Programming. Springer,
2009, pp. 419–443.

[42] F. Steimann and J. von Pilgrim, “Constraint-based refactoring with
foresight,” in European Conference on Object-Oriented Programming.
Springer, 2012, pp. 535–559.

[43] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, and D. Poshyvanyk, “There and back again: Can you
compile that snapshot?” Journal of Software: Evolution and Process,
vol. 29, no. 4, p. e1838, 2017.

[44] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 3–13.

[45] B. Beckert and S. Schlager, “Software verification with integrated
data type refinement for integer arithmetic,” in International Con-
ference on Integrated Formal Methods. Springer, 2004, pp. 207–226.

[46] D. Brumley, T.-c. Chiueh, R. Johnson, H. Lin, and D. Song, “Rich:
Automatically protecting against integer-based vulnerabilities,”
Department of Electrical and Computing Engineering, p. 28, 2007.

[47] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in C/C++,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, p. 2, 2015.

[48] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
international symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 2004,
p. 75.

[49] Z. Coker and M. Hafiz, “Program transformations to fix c in-
tegers,” in Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 2013, pp. 792–801.

[50] F. Logozzo and M. Martel, “Automatic repair of overflowing
expressions with abstract interpretation,” in Electronic Proceedings
in Theoretical Computer Science, ser. EPTCS, vol. 129, 2013, pp. 341–
357.

Giovanni Liva is working toward the doctoral
degree at the Alpen-Adria Universität, Austria.
He received his Computer Science B.Sc. in 2013
at Universitá degli Studi di Udine. In 2015 he
received his M.Sc. degree cum laude in the joint
program between Universitá degli Studi di Udine
and Alpen-Adria-Universität Klagenfurt. His re-
search interests include program analysis, ab-
stract interpretation, model checking, and soft-
ware evolution.

Muhammad Taimoor Khan Muhammad
Taimoor Khan is Lecturer in Secure Systems
at Surrey Center for Cyber Security, University
of Surrey, UK. His current research focus is
on developing secure by design cyber physical
(robotic) systems. Since last decade, he has
been applying formal methods to assure
reliability and security of various software
systems, e.g., industrial control systems,
computer mathematics-based systems, to name
a few. He has been working as a scientist

at various premier international research institutes, including INRIA,
France and MIT CSAIL, USA; he is jointly working with these institutes
now. Dr. Khan has won various research and academic awards
including best paper award(s).

Martin Pinzger Martin Pinzger is a full professor
at the University of Klagenfurt, Austria where he
is heading the Software Engineering Research
Group. His research interests are in software
evolution, mining software repositories, program
analysis, software visualization, and automating
software engineering tasks. He is a member of
ACM and a senior member of IEEE.

Francesco Spegni Francesco Spegni is post-
doctoral researcher at Universitá Politecnica
delle Marche, Italy, where he previously re-
ceived his PhD degree in Computer Engineer-
ing (2011). He received his B.S. and M.S. in
Computer Science at Universita‘ degli Studi di
Bologna, Italy (2007). He has been visiting fellow
at SRI International, California (2010), and TU
Wien, Austria (from 2013 till 2015). His research
includes model checking of software, as well
as parameterized model checking of timed and

probabilistic systems.

Luca Spalazzi Luca Spalazzi is associate pro-
fessor at the Universitá Politecnica delle Marche,
Italy. He received the MS degree in electronic
engineering (1989) and the PhD degree in ar-
tificial intelligent systems (1994) from the Uni-
versity of Ancona, Italy. He worked as a consul-
tant at the IRST-FBK, Trento, Italy, from 1991 to
1993 and in the 1997. He was a visiting scholar
at the Australian Artificial Intelligence Institute
(AAII), Carlton, Victoria, Australia (1992), and
at the Stanford University, California (1996). His

research has been supported by grants from the European Union, the
Italian Minister of Education, University and Research, the Austrian Re-
search Agency FFG. His present research areas include formal methods
and model checking applied to software engineering, cybersecurity and
privacy, and multi-agent systems. Regarding the application of formal
methods to software engineering, he has worked on the application
of semantic model checking to service computing and parameterized
model checking to timed systems.

	Pagina vuota

