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ABSTRACT
Numerical simulation models of water flow in variably saturated soils are impor-
tant tools in water resource management, assessment of water-related disaster and
agriculture. Richards equation is one of the most used models for the fluid flow
simulation into porous media. This is a partial differential equation whose analyt-
ical solution is only possible under a number of restrictive assumptions. Therefore
the deriviation of efficient numerical schemes for its approximated solution has to be
computed by discretization methods. We propose a numerical procedure considering
a simplified linearization scheme that makes it adaptable to parallel computing. A
comparison in computational performances with other three numerical procedures is
detailed for a large numerical experiments, including the assessment of the landslide
hazard in real areas. We prove the efficiency of the simplified numerical procedure
by comparing the results we obtained with a parallel code.
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1. Introduction

Numerical simulation models for water flow in unsaturated soils are important tools
in hydrology, meteorology, agronomy, environmental protection, and other soil-related
disciplines. An increasingly important issue related to the soil moisture dynamics
is the soil pollution, which consists of altering the chemical and geological balance
caused by the transmission and transport of pollutants into the soil, compromising
quality of freshwater [28, 30, 32]. The soil moisture dynamics can give also important
inputs to the efficient use of water resources, avoiding unnecessary irrigations in
agriculture and silviculture activities [29]. The soil water fluxes play a key role in
the water-related risk analysis: rainfall-induced landslides or floods cause property
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damage and pose a threat to life. For this reason, accurate prediction systems in areas
prone to water-related events constitute an important objective in Civil Protection.
An efficient warning system for the quantitative evaluation of the landslide hazard
should combine the weather predictions with the dynamics of soil moisture and a
slope stability model [4, 5], [34, 41].
The Richards equation [35] is one of the main tool for the fluid flow simulation into
porous media. It has been introduced by Richards, on the basis of the Darcy’s law and
mass continuity law [33]: thanks to the combination of these two principles, Richards
obtained a non linear partial differential equation, defining the water flow both in the
saturated and unsaturated porous media.
Richards equation can be given by different formulations: the head form, the moisture
content form and the mixed form are the most usual versions, but also other trans-
formed forms of the equation are possible [18, 22]. Nevertheless the Richards equation
cannot be solved by analytical methods: in particular, its strong non-linearity is
due to the soil hydraulic functions which relate the water content and the hydraulic
conductivity with the hydraulic head [31, 39]. An approximated solution has to be
computed by discretization methods. Strategies for the numerical solution of Richards
equation depends on the approximation techniques for the space derivatives and the
time derivatives and the solution method for the nonlinear system of discretization
equations. Several numerical routines have been already proposed in the scientific
literature. The use of finite difference [14, 16, 17] or finite element [9, 13, 25]
methods to approximate the space derivatives in Richards equation are the dominant
approaches. These methods are usually applied on a fixed spatial grid, although
an adaptive approach has been examined as well [1]. The standard time derivative
approximation method is the Euler approach [42]. Picard [20], modified Picard [22]
and Newton [26] methods are the most frequently used to deal with the nonlinearity of
the Richards equation. Regardeless of the method used, the linearization of Richards
equation yields to a system of linear equations, which is typically solved by using
direct methods in one dimensional problem [2], while iterative approaches must be
considered for large linear systems arising form three-dimensional problems [38].
The numerical solution of Richards equation is still a subject of intense research,
mainly, for the reduction of the computation time needed to achieve accurate results
in heterogeneous soils [6, 7, 27] and/or large geographical areas [8]. Furthermore,
real-world applications require the joint analysis of the soil moisture dynamics with
complementary processes, such as energy balance, geochemical reactions and rain
runoff, which make the computational problem of solving the Richards equation even
more complex. So, in the near future, the current computational tools for the solution
of Richards equation have to be extended to much larger computational domains
(in terms of spatial size as well as of physical processes analysed) and they must be
adapted to be implemented in High Performance Computing (HPC) codes.
Another difficulty in Richards equation is the efficient acquisition of model param-
eters. Actually, this is a quite common situation to all the mathematical models of
complex phenomena; however, in this particular case, it is a very crucial issue since
it depends on the weather data and on the geotechnical features of the soil. Weather
is usually acquired by proper stations on the territory or by satellite measurements.
Soil features are mainly characterized by the granulometry, which can be used to
identify the textural class of the soil studied among a number of possible classes
and it can be obtained by direct measurements and/or general geomorphological
features of the territory. So, both sets of these data are difficult to get with high
spatial resolution and accuracy. Unfortunately the lack of information can limit the
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successfull application of Richards equation to real-world problems, so a precise
sensitivity analysis for such a model should be provided in order to obtain reliable
results.
The purpose of this paper is to present a simple numerical scheme which is able
to solve the three dimensional Richards equation and readily adptable to parallel
computing. In order to test its efficiency, we compare this scheme with other three
numerical procedures developed for the solution of Richards equation; these four
procedures differ for the discretization scheme and/or for the linearization approach
as well as for the numerical solution of the linearized equations. The performance
of the numerical schemes are investigated in twelve homogeneous types of soil. We
compare these procedures in the application of landslide hazard evaluation on three
geographical areas where soils with heterogeneous types are present. At the end, in
order to demonstrate the potentially contribute that the simple procedure can bring
to the efficiency of the numerical solution of Richards equation, we provide its results
after using a simple parallel implementation.

The remaining part of the paper is organized as follows. Section 2 briefly de-
scribes the Richards equation. In Section 3, we present four numerical procedures,
which are based on the finite difference method and the finite element method.
Section 4 provides the first numerical experiment comparing the performance of the
procedures on a water infiltration problem where twelve types of soil are considered. In
Section 5, an application of the Richards equation to the landslide hazard evaluation
problem is proposed and the corresponding results are provided for three geographical
areas. Section 6 provides the results of the simple numerical procedure after using a
parallel implementation concerning the three geographical areas and some soil types.
In section 7 we give some conclusions and future development of this work.

2. The soil moisture dynamics

For the convenience of the reader, we describe the main features of the soil material
and the model for the soil moisture dynamics, that is the Richards equation. This
equation is one of the main tool for the simulation of fluid flow in porous media, and
it is presented in the following sections. In particular in Section 2.1 we define the most
important soil physical characteristics. Section 2.2 describes the Richards equation.

2.1. The soil physical characteristics

The soil is a porous medium consisting of a solid matrix characterized by microscopic
cavities that can be filled by air or by water [19].
The volume of the pore space or equivalently the volume of voids, is denoted with the
symbol Vv. The ratio between the volume of water Vw contained in the volume V and
the volume of voids Vv is called the degree of saturations S, so:

S =
Vw
Vv
. (1)
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The amount of water present in a porus medium can be described also by the water
content θ which is defined as

θ =
Vw
V
. (2)

The complete saturation condition (S = 1) is very difficult to achieve: this fact is
due to the presence of small air bubbles or blind pores [19]. We denote with θs the
saturated water content, that is the maximum water content that can be achived in
a soil. Also the absolute absence of water in the soil (S = 0) is an extreme situation
difficult to reach; we denote with θr the residual water content, that is the minimum
water content that we can find in the soil.
The ratio of the volume of voids to the total volume V is usually called the porosity
and it is denoted with the symbol nε, so

nε =
Vv
V
. (3)

The water present in a porous medium is subject to a great variety of forces;
however, due to the difficulty in describing this complex system, it is preferred to
refer to the energy [33] of water particles: in particular, at each point, this is the
sum of the kinetic energy (related to the velocity of the fluid) and of the potential
energy (linked to the position of the point in the gravitational field and the pressure
of the fluid). Because of the modest velocities characterizing the usual infiltration
and redistribution phenomena in soil, the kinetic energy is neglected so that the
total energy coincides with the potential component and is expressed in terms of the
hydraulic head, that is

h = ψ + z, (4)

where z is the height compared to an arbitrary level reference and ψ is the pressure
head. It is worth noticed that h is expressed in units of length since the potential
component is considered in term of elevation, see [33] for details.

2.2. Richards equation

According to Richards [35], the soil water flow is modeled by combining Darcy’s law
and mass conservation equation, yielding the following equation(

C(ψ) + Ss
θ(ψ)

nε

)∂h
∂t

=

=
∂

∂x

(
K(ψ)

∂h

∂x

)
+

∂

∂y

(
K(ψ)

∂h

∂y

)
+

∂

∂z

(
K(ψ)

∂h

∂z

)
+W − ET, (5)

where C(ψ) = dθ
dψ is the specific capillary capacity, Ss is the storage coefficient, K(ψ)

is the hydraulic conductivity, W is the recharge and it is related to the rate of pre-
cipitation, ET is the evapotraspiration and it represents the loss of water due to the
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evaporation of bare soils and traspiration of plants (it can be estimated by Penman-
Monteith formula [3]). Equation (5) can be used for describing water movement in
saturated and unsaturated porous media.
The functions θ(ψ) and K(ψ) can be supplied by empirical formulas: the Van
Genuchten model [39] is probably the most used in scientific computation applica-
tions because of its formulation by smooth functions. A usual version of this model
can be written as follows:

θ − θr
θs − θr

=


(

1
1+|αψ|n

)m
if ψ < 0

1 if ψ ≥ 0,
(6)

where α is the reciprocal value of ψ0, i.e. the air entry point [39], θr is the residual
water content, θs is the saturated water content, n and m are empirical parameters
depending on the soil, which must satisfy the following restriction

m = 1− 1

n
. (7)

The relative hydraulic conductivity function can be derived from θ, with the following
formula:

K(θ) = Ks

( θ − θr
θs − θr

) 1

2
(

1−
[
1−

( θ − θr
θs − θr

) 1

m
]m)2

. (8)

By using (6), we can expressed (8) in the following form:

K(ψ) =

{
Ks[1− (αψ)n]−m/2

[
1−

(
|αψ|n

1+|αψ|n

)m]2
if ψ < 0

Ks if ψ ≥ 0,
(9)

where Ks is the value of the permeability when the soil is saturated.
The various hydraulic parameters, e.g., α, θr, θs, n, Ks, are related to the pore size
distribution and pore geometry, so they ultimately depend on the soil type and can be
determined experimentally by specific laboratory tests. Table 1 shows typical values
of α, θr, θs, n, Ks related to twelve usual types of soils which are classified on the
base of the percentage of clay (Cl), silt (Si), sand (Sa), coarse-sand (Csa), and gravel
(Gr) in the soil [15, 23, 36, 40].

Equation (5) is a non linear differential equation, whose solution h is a func-
tion of spatial variables (x, y, z) ∈ Ω and time variable t. The computation of this
solution requires knowledge of the initial distribution of the hydraulic head h inside
the space domain Ω ⊂ R3. Moreover, it requires the knowledge of appropriate bound-
ary conditions along the domain boundary ∂Ω: specified hydraulic head (Dirichlet
type) and specified flux (Neumann type) are the most commonly used in soil-related
applications, see [33] for details.
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Table 1.

Parameters

Type Description θr θs α[1/m] n Ks[m/s]

CLAY Cl> 75% 0.11 0.48 1.33 1.31 1.00E-08
SILTY CLAY Cl> 50% Si>Sa 0.11 0.48 1.46 1.33 4.00E-07
CLAYEY SILT Si> 50% Cl>Sa 0.08 0.47 1.00 1.45 4.17E-07
SILT Si> 75% 0.05 0.49 0.66 1.65 1.00E-06
SANDY SILT Si> 50% Sa>Cl 0.04 0.45 1.05 1.53 1.89E-06
SILTY SAND Sa> 50% Si>Cl 0.06 0.40 2.78 1.39 5.05E-06
SAND Sa> 75% 0.05 0.39 3.36 2.11 5.83E-05
CLAYEY SAND Sa> 50% Cl>Si 0.08 0.40 2.14 1.36 2.83E-06
SANDY CLAY Cl> 50% Sa>Si 0.11 0.43 2.73 1.24 1.72E-06
SAND-SILT-CLAY Sa=Si=Cl 0.08 0.45 2.49 1.42 2.75E-06
COARSE SAND CSa> 75% 0.02 0.36 15.85 2.91 1.00E-03
GRAVEL Gr> 75% 0.02 0.36 15.85 2.91 5.01E-03

Different type of grain sizes and the corresponding parameters θr, θs, α, n, Ksat.

3. The discretization schemes and their implementation

We define four procedures for the numerical solution of Richards equation: such pro-
cedures differ for the discretization scheme, for the linearization approach and/or for
the solution of the linearized equations. In particular, we take into account two numer-
ical methods for the discretization in the space domain that are the finite difference
method and the finite element method, described in Section 3.1 and in Section 3.2,
respectively. These methods yield to a first order non-linear initial-value problem in
the time variable, analyzed in Section 3.3, whose solution can be found by applying
an iterative procedure together with a linearization strategy to deal with such a non
linear problem. In Section 3.3 we sescribe the different linearization strategies taken
into account.

3.1. The Finite difference approximation

A popular method to solve (5) is the finite difference scheme with central difference
quotients for the space derivatives:

(
Cni,j,k + Ss

θni,j,k
nε

)∂hn
∂t

(xi, yj , zk) =

=
1

(∆x)2

[
Kn
i+1/2,j,k(h

n
i+1,j,k − hni,j,k)−Kn

i−1/2,j,k(h
n
i,j,k − hni−1,j,k)

]
+

+
1

(∆y)2

[
Kn
i,j+1/2,k(h

n
i,j+1,k − hni,j,k)−Kn

i,j−1/2,k(h
n
i,j,k − hni,j−1,k)

]
+

+
1

(∆z)2

[
Kn
i,j,k+1/2(hni,j,k+1−hni,j,k)−Kn

i,j,k−1/2(hni,j,k−hni,j,k−1)
]
+Wn

i,j,k−ETni,j,k, (10)

where ∆x, ∆y, ∆z are the discretization steps in the x, y and z direction, respectively;
hni,j,k denote the approximate value of h in the generic grid point (xi, yj , zk) at time
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tn; a similar notation is used for C, K and θ. Note that values of discrete function
K at non integer indices are obtained by the average of the same function at integer
indices.

3.2. Finite element approximation

We suppose ∂Ω = ∂ΩD∪∂ΩN , where we prescribed a Dirichlet boundary condition on
∂ΩD and a Neumann boundary condition on ∂ΩN . We consider the Galerkin method
[9], that is based on the weak formulation of the Richards equation (5):∫

Ω
w
(
C(ψ) + Ss

θ(ψ)

nε

)∂h
∂t

dx+

∫
Ω
∇w · [K(ψ)∇h] dx

−
∫

Ω
w(W − ET ) dx+

∫
∂ΩN

wqh ds(x) = 0, ∀w ∈ H1
0(Ω), (11)

where qh = [K(ψ) · ∇h] · ν, ν is the outward normal vector of ∂ΩN , and H1
0 (Ω) is

the space of square integrable functions w having square integrable derivative defined
almost everywhere, and such that w(x) = 0, x ∈ ∂ΩD.

Solution h is approximated by a function h̃(x, t) ≈
∑Np

j=1Nj(x)hj(t) where Nj(x), x ∈
Ω, j = 1, 2, . . . ,Mp is a basis of functions and hj(t) are unknown coefficients to be
determined; in particular, this basis is usually defined by piece-wise polynomial func-
tions Ni having a small support Ωi with respect to the whole domain Ω. For semplicity
we suppose that an homogeneous Dirichlet boundary condition is prescribed on ∂ΩD.
The Galerkin method considers the weighting function w equal to the representation
functions, i.e. Ni, so formula (11) becomes

Mp∑
j=1

∂hi
∂t

∫
Ωi∩Ωj

Ni

(
C̃ + Ss

θ̃

nε

)
Njdx+

Mp∑
j=1

∫
Ωi∩Ωj

K̃∇Ni · ∇Nj dx

−
∫

Ωi

Ni(W − ET )dx+

∫
∂Ωi

N

Niqhds(dx) = 0

i = 1, 2, . . . ,Mp; (12)

where C̃ = C(h̃(x)); a similar notation is used for θ̃ and K̃.

3.3. Time discretization schemes

We consider a partition tn = n∆t of the time domain [0, T0], n = 0, . . . N , where
∆t > 0 is the time step. We observe that both (10) and (12), coupled with the initial
value of h, represent an initial-value problem in the time variable, so we can formally
rewrite these systems as

∂hn

∂t
= F (hn, tn), (13)
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where hn is the vector of the unknowns at time t = tn, F (hn, tn) is a non linear vector
function.
For the numerical solution of (13), we consider the single step methods [12] that can
be expressed in their generalized form

hn+1 = hn + ∆t[(1− λ)F (hn, tn) + λF (hn+1, tn+1)], (14)

where λ is a weighting factor, 0 ≤ λ ≤ 1.
The case λ = 0 is called explicit Euler method, the case λ = 1

2 is called Crank Nicolson
method while the case λ = 1 is called implicit Euler method.

3.4. Linearization tecniques

At each time tn, the numerical solution of nonlinear system (14) must be computed by
an approximation method. For this problem, we propose a simple iterative procedure.
Let hn+1,0 be an initial solution of (14) at time tn+1; we define hn+1,r for r = 1, 2, . . . R
by the following recursive procedure:

hn+1,r = hn + ∆t[(1− λ)F (hn, tn) + λF (hn+1,r−1, tn+1)], (15)

where, given an appropriate tolerance toll, R is the first iterate satisfying:∣∣∣∣∣∣hn+1,r − hn+1,r−1
∣∣∣∣∣∣
∞
< toll. (16)

Note that, the initial guess hn+1,0 is computed by the explicit Euler method and at
the end of the iterative process we define

hn+1 = hn+1,R. (17)

Other linearization methods used to solve (14) are Picard linearization scheme and
Newton scheme [24].
The iterative procedure (16) provides a very simple linearization scheme, so we can
expect only a limited efficicacy of this procedure. However, it is very interesting from
the computational point view, in fact formula (15) does not require the solution of
a linear system. So, in addition to its low computational cost, this procedure can be
also efficiently implemented in parallel codes in fact, the successive estimates hn+1,r

in equation (15) depends only on the solution of the previous time step hn and the
previous estimates of the new time step hn+1,r−1.

3.5. The procedures

We define four numerical procedures for the solution of Richards equation. These pro-
cedures are obtained by combining the previously described approximation approaches
in order to compare their efficiency.

Procedure 1. The finite difference method is used for space discretization; the solu-
tion of the system (14) is computed by the Crank-Nicolson method togheter with the
linearization scheme (15).
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Procedure 2. The finite difference method is used for space discretization; the solu-
tion of the system (14) is computed by the implicit Euler method togheter with the
Picard linearization scheme and the solution of the corresponding linearized systems
is obtainded by the multifrontal method, that is a direct method based on a sparse
variant of Gaussian elimination, see [10] for a detailed presentation of this method.

Procedure 3. The finite difference method is used for space discretization; the so-
lution of the system (14) is carried out by implicit Euler method togheter with the
Picard linearization scheme and the solution of the corresponding linearized systems
is obtainded by means of the preconditioned conjugate gradient method.

Procedure 4. The Galerkin finite element method [9] is used for space discretization;
the solution of the system (14) is carried out by the implicit Euler method togheter
with the Picard linearization scheme and the solution of the corrispondind linearized
systems is obtainded by means of the preconditioned conjugate gradient method.

4. Numerical experiments

We investigate the behavior of the four numerical procedures proposed in Section 3.5
in a range of twelve different soil types. In all the simulations we consider the same
spatial domain Ω1 = [0, Lx]× [0, Ly]× [0, Lz], where Lx = 90m, Ly = 50m and Lz =
4m and the same time period of 10 days. Table 1 shows the values of α, θr, θs, n, Ks

for the considered soil types with respect to the Van Genucthen model, see [15] for
details. At time t = 0 all the simulations start from a uniform saturation equal to 30%
and the time period is characterized by a precipitation rate of 100 mm/day. At the
boundary of Ω1 we impose the zero normal flow condition.
In all the simulations we used a constant time step ∆t equal to 15 minutes except
for Procedure 1, when coarse sand and gravel type are considered: in these cases,
the convergence of the linearization method requires the reduction of the time step
by a factor 1000, compromising the efficiency of the procedure. In fact the elapsed
CPU time for Procedure 1 is about 4 s for all the soils, but it grows at 11 minutes
when coarse sand and gravel type are considered. The elapsed CPU time relative to
Procedure 2, Procedure 3, Procedure 4 is about 8 s, 5 s and 4 minutes, respectively, in
all the soil types. We tested our simulations using Window PCs with 16 GB of RAM
and Intel Core i7, CPU 3.4 GHz.
Table 4 shows a comparison between the soil water content computed by the four
numerical procedures on the basis of the RE(1, j), i.e. the relative error in the 2-norm
between the solution computed by Procedure 1 and the one computed by Procedure
j (j = 2, 3, 4) at the end of the simulation period. We observe that, despite its simple
structure, Procedure 1 performs quite well in a large number of soils, providing also
good agreement with the results obtained by the other procedures with the exception
of the coarse sand soil, in fact, the solution for this soil is affected by a high the relative
error when compared with all the other procedures.
Procedures 1 and 2 are implemented with a FORTRAN program; for the multifrontal
method in Procedure 2, we used implementation provided by routine MA57 available
in the HSL software library [21]. Procedure 3 is implemented by using the software
package Variably Saturated Flow Process (VSF) for MODFLOW 2005, see [37] for
details. Procedure 4 is implemented by software package FEFLOW, see [9] for details.
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Table 2.

RE(1, 2) RE(1, 3) RE(1, 4)

CLAY 0.0311 0.000122 0.0808
SILTY CLAY 0.00405 0.00262 0.0368
CLAYEY SILT 0.000468 0.0257 0.0147
SILT 0.000590 0.00304 0.0631
SANDY SILT 0.00130 0.00290 0.0114
SILTY SAND 0.00305 0.00368 0.0387
SAND 0.000389 0.0399 0.0565
CLAYEY SAND 0.000997 0.00151 0.0709
SANDY CLAY 0.00438 0.000564 0.0360
SAND-SILT-CLAY1 0.000211 0.00174 0.0348
COARSE SAND 0.6143 0.54 0.614
GRAVEL 0.0103 0.0665 0.0299

Comparison between the solution computed by Procedure 1
and the other procedures for the twelve soil types described
in Table 1.

5. A landslide hazard application

We consider the application of Richards equation for a quantitative evaluation of the
landslide hazard.
The majority of slope instabilities are caused by particular weather conditions, such
as heavy rainfall or rapid snow melting, and are strongly associated with the pore
water pressure of soil that rapidly varies during rainfall (infiltration process) and
after the rainfall (redistribution process). These processes cause the increase in pore
saturation which in turn increases the pore pressure with the consequent reduction
of the effective stress of the soil that may trigger the slope failure. For this reason,
the solution of Richards equation integrated with a slope stability model can be
an effective procedure to assess the slope failure directly from weather data. The
efficiency of such a procedure depends on the quality and the quantity of available
weather data and geomorphological information. The spatial scale usually ranges from
large areas of thousands of square kilometers, to small areas encompassing a single
landslide. However, any reliable procedure for landslide hazard evaluation should
be accurately adapted to the particular geographical areas taken into account; in
fact this is a complex system depending on several geological, biological and climate
factors but also on social aspect like the land use.

The landslide hazard problem is usually formulated in terms of the Safety
Factor, which is given by the ratio between the forces that prevent the slope from
failing and those that bring the slope to collapse. So, the safety factor gives an
immediate way to compute a landslide hazard index: a value larger than 1 indicates
stable conditions, a value smaller than 1 indicates unstable conditions.
The Infinite Slope Model [11] is probably the easiest method for the computation
of the safety factor F , that is given by the following formula:

F =
C + (zγ − zwγw) cos2 β tanφ

zγ sinβ cosβ
, (18)

where C is the effective cohesion, γ is the unit weight of the soil, φ is the angle of
internal friction, γw is the unit weight of water; z is the depth of the failure surface,
zw is the height of the watertable above failure surface, β is the slope of the inclined
surface. Table 3 shows the values of the geotechnical parameters C, γ, φ relative to
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Table 3.

Parameters

Type C [kPa] γ[kN/m3] φ[degree]

CLAY 20.60 20.00 23.3
SILTY CLAY 12.77 18.14 18.2
CLAYEY SILT 7.69 16.33 21.1
SILT 6.25 18.50 30.0
SANDY SILT 8.95 15.68 30.5
SILTY SAND 2.00 17.95 33.5
SAND 0.99 16.38 35.0
CLAYEY SAND 11.25 20.70 32.8
SANDY CLAY 3.50 19.75 28.8
SAND-SILT-CLAY 4.88 18.30 24.5
COARSE SAND 3.75 19.07 29.0
GRAVEL 1.23 19.00 37.0

Different type of grain sizes and the corresponding parame-
ters C, γ, φ.

the twelve different types of soils we definied in Section 2.2.

The combination of the Infinite Slope Model (18) and the soil water flow, i.e.
Richards equation, allows the landslide hazard evaluation directly from weather data.
In particular, the solution of Richards equation (5) is used to obtained information
about zw in formula (18) that is given by the thickness of the saturated layer above
the failure surface; while the depth z coincide with the nodes of the domain and it
was computed increasing by 1 m for each node below the ground surface.
In the following, we consider a numerical experiment where the landslide hazard
index is computed on three geographical areas. In this experiment the soil moisture
dynamics is computed by Procedures 1, 2, 3.
The first test area measures 11.69 km2 and is located in the mid part of the Esino
river basin (central part of Italy) where a landslide occurred on March 2015. This is
representative a area due to its landslide susceptibility; moreover, previous geological
and geotechnical studies have provided all the required geomorphological information:
the soil is mostly characterized by clay, silty clay, silty sand, sand, clayey sand and
sandy clay. This area is given by steep slope as we can see in Figure 1a that is
a graphical representation of the slope values on the geographical area taken into
account. The proposed experiment considers the test area during the three months
before the landslide event (December/6/2014 to March/6/2015); in this observation
period, 258 mm of rain fell. At time t = 0 the initial saturation is chosen equal to 70%
and we imposed the zero normal flow condition at the boundary of the spatial domain.
Figure 1b shows a graphical representation of the safety factor values evaluated at
time t = 0 of the simulation: a nearly red zone is an unstable region (F < 1); a
nearly green zone is a stable region (F > 1). The numerical solution of Richards
equation is computed by both Procedure 1 and Procedure 2; in these simulations
we consider a temporal discretization ∆t = 15 minutes and a spatial discretization
∆C = 9.32m, ∆R = 12.85m, ∆V = 1m, the number of nodes is equal to 466955.
The relative error in the 2-norm between the soil moisture computed by Procedure 1
and the one computed by Procedure 2 at the end of the simulation period is 0.00285.
Procedure 1 takes 278 minutes to complete the simulation, while Procedure 2 takes
656 minutes. Figure 2a and 2b show a graphical representation of the safety factor
values concerning the last day of the simulation and carried on by Procedure 1 and
Procedure 2 respectively. Figure 2c shows a graphical representation of the water
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(a) Italian test area: graphical representation

of the slope values.

(b) Italian test area: graphical representation

of the safety factor at time t = 0 of the simu-
lation.

Figure 1. Graphical representation of the slope values and the safety factor at time t = 0 concerning Italian

test area.

table depth evaluated at time t = 0 of the simulation.
The second experiment considers a small area of Panagopoula (Greece) of about 1.5
km2, where the soil is mostly characterized by clay, sand, clayey sand and sandy
silt clay. Also in this case we considers a time period of 10 days characterized by a
precipitation rate of 100 mm/days. At time t = 0 the initial saturation is equal to
30% and the zero normal flow condition is imposed at the boundary of the domain.
The safety factor values evaluated at time t = 0 are represented in Figure 3b and the
values of the slope of the test area are represented in Figure 3a.
Also in this case, the numerical solution of Richards equation is computed by Proce-
dure 1 and Procedure 2, in these simulations we consider a temporal discretization
∆t = 15 minutes and a spatial discretization ∆C = 4.63m, ∆R = 5.91m, ∆V = 1m;
the number of nodes is equal to 391067. The relative error in the 2-norm between the
soil moisture computed by Procedure 1 and the one computed by Procedure 2 at the
end of the simulation period is 0.00170. Procedure 1 takes 50 minutes to complete the
simulation, while Procedure 2 takes 187 minutes. Figure 4a and 4b show a graphical
representation of the safety factor values concerning the last day of the simulation and
carried on by Procedure 1 and Procedure 2 respectively. Figure 4c shows a graphical
representation of the water table depth evaluated at time t = 0 of the simulation.
The third test area considers the Smolyan Lakes, its size is about 7.4 km2, it is
located northwest of the town of Smolyan (Bulgaria), and the soil is completely
characterized by gravel. In this case we study the test area during a time period of 10
days characterized by a precipitation rate of 100 mm/day. At time t = 0 the initial
saturation is equal to 20%, and the zero normal flow condition is imposed at the
boundary of the domain. The safety factor evaluated at time t = 0 and the values of
the slope of the test area are represented in Figure 5b and in Figure 5a respectively.
The numerical solution of Richards equation is computed by Procedure 1 and
Procedure 3; in these simulations we consider a temporal discretization ∆t = 15
minutes and a spatial discretization ∆C = 4.7m, ∆R = 6.2m, ∆V = 1m; the number
of nodes is equal to 582428. Procedure 3 takes 10 minutes to complete the simulation,
while Procedure 1 breaks down. Figure 6a shows a graphical representation of the
safety factor values concerning the last day of the simulation relative to the Procedure
3 for the soil moisture dynamics. Figure 6b shows a graphical representation of the
water table depth evaluated at time t = 0 of the simulation.
Procedure 1 provides a high efficient tool for the solution of Richards equation in
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(a) Procedure 1: graphical representation of

the safety factor at time t = 10 of the sim-

ulation concerning Italian test area.

(b) Procedure 2: graphical representation of

the safety factor at time t = 10 of the sim-

ulation concerning Italian test area.

(c) Italian area: graphical representation of the

water table depth at time t = 10 of the simu-

lation.

Figure 2. Italian test area: comparison between Procedure 1 and Procedure 2 in the evaluation of the safety
factor and graphical representation the water table depth at time t = 10

(a) Greek area: graphical rep-

resentation of the slope values.

(b) Greek area: graphical rep-

resentation of the safety factor
at time t = 0 of the simulation.

Figure 3. Graphical representation of the slope values and the safety factor at time t = 0 concerning the
Greek area.
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(a) Procedure 1: graphical rep-
resentation of the safety factor

at time t = 10 of the simula-

tion concerning Greek area

(b) Procedure 2: graphical rep-
resentation of the safety factor

at time t = 10 of the simula-

tion concerning Greek area

(c) Greek area: graphical rep-
resentation of the depth of the

water table at time t = 10 of

the simulation.

Figure 4. Greek test area: comparison between Procedure 1 and Procedure 2 in the evaluation of the safety
factor and graphical representation of the depth of the water table at time t = 10.

(a) Bulgarian area: graphical represen-

tation of the slope values.

(b) Bulgarian area: graphical represen-

tation of the safety factor at time t = 0
of the simulation.

Figure 5. Graphical representation of the slope values and the safety factor at time t = 0 concerning the

Bugarian area.

(a) Bulgarian area: graphical represen-

tation of the safety factor at time t =
10 of the simulation.

(b) Bulgarian area: graphical represen-

tation of the water table depth at time
t = 10 of the simulation.

Figure 6. Graphical representation of the depth of the water table and the safety at time t = 10 concerning
the Bugarian area.
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both Italian area and Greek area: in this case, its computational cost is significantly
lower than the one of Procedure 2, which is not efficient even in the computation of
the numerical solution of Richards equation for the Bulgarian area, where it takes
61 minutes to complete the simulation. Procedure 1 does not provide satisfactory
results for Bulgarian test area. This confirms the numerical results of section 4,
where we have already oberved the inability of Procedure 1 to deal with soils of
type coarse sand and gravel, for which we should deserve a more detailed analysis.
We can suppose that Procedure 1, if implemented in parallel codes, could obtain
computational costs efficient as well as the ones of Process 3, which performs quite
well even in the computation of the numerical solution of Richards equation for the
Italian and Greek area, where it takes 63 and 17 minutes respectively.

6. Code parallelization

7. Conclusions

The water movement in soil systems is described by Richards equation, a non linear
partial differential equation whose solution has several application fields. Appropriate
numerical methods for the approximation of such a solution can be taken into account:
in this paper, we described four different procedures to solve Richards equations. They
are compared in a range of twelve soil types, in terms of the accuracy in the solution and
the execution time. These procedures are also tested in the landslide hazard evaluation
on three geographical area with heterogeneous soil: in this case, the soil moisture is
combined with the Infinity Slope Model to assess the safety factor directly from the
weather data. Results show that Procedure 1 is unable to deal with two types of soil:
coarse sand and gravel type, so it breaks down when we compute the landslide hazard
evaluation in the Bulgarian test area. On the contrary, Procedure 1 seems to provide
acceptable results in a very efficient way in all the other soil types. We note that these
are quite surprising results, in fact they show that the very simple algorithm is able
to deal with a large number of soils.
Procedure 1 does not require the solution of a linear system and this is an important
aspect providing high efficiency in the solution of large scale problems. Moreover, this
feature made sure that we get very efficient implementation by parallel computing
codes........ So, despite its simplicity, Procedure 1 provides a concrete computational
tool able to numerically solve Richards equation on large geographical areas, which is
the pressing demand of several important applications, like natural hazard evaluation,
water resource analysis and weather forecast.
Procedure 1 deserves a more detailed analysis in order to overcome the difficulty to
deal with gravel and coarse sand soils. New linearization algorithms and relaxation
techniques will be the first tools employed to enhance Procedure 1.
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